JP4692373B2 - Capacitive sensor - Google Patents

Capacitive sensor Download PDF

Info

Publication number
JP4692373B2
JP4692373B2 JP2006126441A JP2006126441A JP4692373B2 JP 4692373 B2 JP4692373 B2 JP 4692373B2 JP 2006126441 A JP2006126441 A JP 2006126441A JP 2006126441 A JP2006126441 A JP 2006126441A JP 4692373 B2 JP4692373 B2 JP 4692373B2
Authority
JP
Japan
Prior art keywords
layer
fixed electrode
semiconductor layer
contact
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006126441A
Other languages
Japanese (ja)
Other versions
JP2007298384A (en
Inventor
大介 若林
英一 古久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006126441A priority Critical patent/JP4692373B2/en
Publication of JP2007298384A publication Critical patent/JP2007298384A/en
Application granted granted Critical
Publication of JP4692373B2 publication Critical patent/JP4692373B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、固定電極と可動電極との間の静電容量を検出することにより所定の物理量を検出する静電容量式センサに関する。   The present invention relates to a capacitance sensor that detects a predetermined physical quantity by detecting a capacitance between a fixed electrode and a movable electrode.

従来より、公知の半導体プロセスを用いて半導体基板を加工することで可動電極が弾性要素を介して固定部に可動支持される構造を形成し、作用した外力等に応じて可動電極が固定電極に対して接離可能となるようにして、これら電極間の静電容量の変化を検出することで加速度や角速度等の種々の物理量を検出できるようにした静電容量式センサが知られている(例えば特許文献1)。   Conventionally, a semiconductor substrate is processed using a known semiconductor process to form a structure in which the movable electrode is movably supported by the fixed portion via an elastic element. A capacitance type sensor is known that is capable of detecting various physical quantities such as acceleration and angular velocity by detecting changes in capacitance between these electrodes so as to be able to contact and separate from each other ( For example, Patent Document 1).

そして、この種の静電容量式センサとして、半導体層内の一部分と絶縁層上に形成した固定電極としての導体層の所定位置とを相互に接触させてこれらの間で導通を確保し、当該固定電極の電位を当該半導体層内の一部分を介して取り出すように構成したものが知られている(例えば特許文献2)。   Then, as this type of capacitive sensor, a part of the semiconductor layer and a predetermined position of the conductor layer as a fixed electrode formed on the insulating layer are brought into contact with each other to ensure conduction between them, A configuration in which the potential of the fixed electrode is extracted through a part of the semiconductor layer is known (for example, Patent Document 2).

上記特許文献2の構造では、導体層を絶縁層と半導体層とによって挟持することで、上記半導体層内の一部分と導体層とを相互に接触・導通させるようにしている。
特開2000−28634号公報 特開平8−254438号公報
In the structure of Patent Document 2, a conductor layer is sandwiched between an insulating layer and a semiconductor layer, so that a part of the semiconductor layer and the conductor layer are brought into contact with each other and conductive.
JP 2000-28634 A JP-A-8-254438

しかしながら、上記特許文献2の構成では、導体層が薄く平坦に設けられているため、接触圧を高くしにくく、十分な導通状態を得るのが難しい場合があった。   However, in the configuration of Patent Document 2, since the conductor layer is thin and flat, it may be difficult to increase the contact pressure and to obtain a sufficient conduction state.

そこで、本発明は、静電容量式センサにおいて絶縁層に設けた固定電極の電位を半導体層に設けた電位取出部を介して取り出す場合に、固定電極と電位取出部との間でより確実に導通を確保することができる構造を得ることを目的とする。   Therefore, the present invention is more reliable between the fixed electrode and the potential extraction portion when the potential of the fixed electrode provided in the insulating layer in the capacitance type sensor is taken out through the potential extraction portion provided in the semiconductor layer. It aims at obtaining the structure which can ensure conduction | electrical_connection.

請求項1の発明にあっては、絶縁層に形成された固定電極と、半導体層の固定部分にビームを介して可動支持された可動電極と、を備えるとともに、当該固定電極と可動電極とを間隙をもって相互に対向配置させて検出部が構成され、当該間隙の大きさに応じた静電容量を検出することで所定の物理量を検出する静電容量式センサにおいて、上記半導体層に、上記固定電極または当該固定電極に繋がる導体層と接触して導通する電位取出部を形成して、当該電位取出部を介して固定電極の電位を取り出すように構成し、上記電位取出部には、上記半導体層を凹設した凹部を形成するとともに、当該凹部内に、導体からなる突起状の接点部を電位取出部の半導体層と導通する状態で形成して、上記接点部を、先端部が上記半導体層の上記絶縁層との接合面よりも突出するように高く形成し、当該接点部の先端部が上記固定電極に繋がる平坦状の導体層表面の幅方向全域に亘って当接するように、接点部の先端部を上記導体層に押圧接触させるようにしたことを特徴とする。 The invention according to claim 1 includes a fixed electrode formed on the insulating layer, and a movable electrode movably supported by a fixed portion of the semiconductor layer via a beam, and the fixed electrode and the movable electrode are provided. In a capacitive sensor that detects a predetermined physical quantity by detecting a capacitance according to the size of the gap, the detection unit is configured to be opposed to each other with a gap. Forming a potential extraction portion that is in contact with and conductive with an electrode or a conductor layer connected to the fixed electrode, and configured to take out the potential of the fixed electrode through the potential extraction portion, and the potential extraction portion includes the semiconductor Forming a recess having a recessed layer, and forming a projecting contact portion made of a conductor in a conductive state with the semiconductor layer of the potential extraction portion in the recess, and the tip portion is the semiconductor Above insulation layer Is high is formed so as to protrude from the joint surface, so that the tip portion of the contact portion is in contact over the entire width of the flat conductor layer surface which leads to the fixed electrode, the tip portion of the contact portion It is characterized by being brought into press contact with the conductor layer .

請求項2の発明にあっては、上記凹部上に平坦な上面を有する下敷層を形成し、当該下敷層上に上記接点部を形成したことを特徴とする。   The invention according to claim 2 is characterized in that an underlay layer having a flat upper surface is formed on the recess, and the contact portion is formed on the underlay layer.

本発明によれば、電位取出部に形成した導体からなる突起状の接点部の先端部によって固定電極または当該固定電極に繋がる導体層を押圧接触させて接触圧力を高めるようにしたので、固定電極と電位取出部との間でより確実に導通を確保することができる。   According to the present invention, the contact pressure is increased by pressing the fixed electrode or the conductor layer connected to the fixed electrode with the tip of the protruding contact portion formed of the conductor formed on the potential extraction portion. It is possible to ensure conduction more reliably between the voltage extraction portion and the potential extraction portion.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。図1は、本実施形態にかかる静電容量式センサの半導体層の平面図、図2は、図1のA−A線における静電容量式センサの断面図、図3は、図1のB−B線における静電容量式センサの断面図、図4は、ビーム部の断面図(図2のC−C断面図)、図5は、可動電極が揺動する様子を示す模式図であって、(a)は揺動していない状態、(b)は一方側が固定電極に近付いた状態、(c)は他方側が固定電極に近付いた状態を示す図、図6は、静電容量式センサの半導体層の一部としての電位取出部を示す拡大図であって、(a)は平面図、(b)は(a)のD−D断面図、(c)は組立前の状態を示す図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 is a plan view of a semiconductor layer of the capacitive sensor according to the present embodiment, FIG. 2 is a cross-sectional view of the capacitive sensor taken along line AA in FIG. 1, and FIG. FIG. 4 is a cross-sectional view of the capacitive sensor at line -B, FIG. 4 is a cross-sectional view of the beam section (CC cross-sectional view of FIG. 2), and FIG. 5 is a schematic view showing how the movable electrode swings. (A) is a state where it is not swinging, (b) is a state where one side is close to the fixed electrode, (c) is a view showing a state where the other side is close to the fixed electrode, and FIG. It is an enlarged view which shows the electric potential extraction part as a part of semiconductor layer of a sensor, (a) is a top view, (b) is DD sectional drawing of (a), (c) is the state before an assembly. FIG.

本実施形態にかかる静電容量式センサ1(以下、単にセンサ1と記す)は、図2に示すように、半導体基板を処理してなる半導体層2の表裏両側に、ガラス基板等の絶縁層20,21を陽極接合等によって接合して構成されている。これら半導体層2と絶縁層20,21との接合面には、比較的浅い凹部22が形成されており、半導体層2各部の絶縁性や可動電極5の動作性の確保が図られている。なお、本実施形態では、半導体層2と絶縁層20との接合面については、半導体層2側に凹部22を設ける一方、半導体層2と絶縁層21との接合面については、絶縁層21側に凹部22を設けている。   As shown in FIG. 2, an electrostatic capacitance type sensor 1 (hereinafter simply referred to as sensor 1) according to the present embodiment has an insulating layer such as a glass substrate on both sides of a semiconductor layer 2 obtained by processing a semiconductor substrate. 20 and 21 are joined by anodic bonding or the like. A relatively shallow recess 22 is formed on the bonding surface between the semiconductor layer 2 and the insulating layers 20 and 21, so that insulation of each part of the semiconductor layer 2 and operability of the movable electrode 5 are ensured. In the present embodiment, the bonding surface between the semiconductor layer 2 and the insulating layer 20 is provided with the recess 22 on the semiconductor layer 2 side, while the bonding surface between the semiconductor layer 2 and the insulating layer 21 is provided on the insulating layer 21 side. A recess 22 is provided on the surface.

また、絶縁層20の表面20a上には導体層23が成膜されており、半導体層2の各部の電位を取得するための電極として用いられる。本実施形態では、絶縁層20にサンドブラスト加工等によって貫通孔24を形成して半導体層2の表面(絶縁層20側の表面)の一部を露出させておき、絶縁層20の表面上から貫通孔24の内周面上および半導体層2の表面(図2ではアンカ部3の表面)上にかけて電気的に接続された一連の導体層23を成膜するようにして、当該導体層23から半導体層2内の各部の電位を検出できるようにしてある。なお、絶縁層20の表面上は、樹脂層(図示せず)によって被覆(モールド成形)するのが好適である。   A conductor layer 23 is formed on the surface 20 a of the insulating layer 20 and is used as an electrode for acquiring the potential of each part of the semiconductor layer 2. In the present embodiment, a through hole 24 is formed in the insulating layer 20 by sandblasting or the like to expose a part of the surface of the semiconductor layer 2 (the surface on the insulating layer 20 side) and penetrate from the surface of the insulating layer 20. A series of electrically connected conductor layers 23 are formed on the inner peripheral surface of the hole 24 and on the surface of the semiconductor layer 2 (the surface of the anchor portion 3 in FIG. 2). The potential of each part in the layer 2 can be detected. The surface of the insulating layer 20 is preferably covered (molded) with a resin layer (not shown).

そして、図1〜図3等に示すように、半導体基板に公知の半導体プロセスによって間隙10を形成することにより、半導体層2に、アンカ部3や、ビーム部4、可動電極5、フレーム部7、電位取出部8等が形成される。   Then, as shown in FIGS. 1 to 3 and the like, by forming a gap 10 in the semiconductor substrate by a known semiconductor process, the anchor portion 3, the beam portion 4, the movable electrode 5, and the frame portion 7 are formed on the semiconductor layer 2. Then, the potential extraction portion 8 and the like are formed.

半導体層2は、図1に示すように、全体として平面視で略長方形状に形成されており、フレーム部7が、その半導体層2の四つの周縁(四辺)に沿って略一定幅で枠状に設けられている。   As shown in FIG. 1, the semiconductor layer 2 is formed in a substantially rectangular shape as a whole in plan view, and the frame portion 7 has a frame with a substantially constant width along the four peripheral edges (four sides) of the semiconductor layer 2. It is provided in the shape.

間隙10は、例えば、垂直エッチング加工(例えば、ICP(Inductively Coupled Plasma;誘導結合プラズマ)加工等の反応性イオンエッチング)によって形成し、間隙10両側の壁面を半導体層2の表面と垂直にして、それら壁面同士を相互に略平行に対向させるのが好適である。   The gap 10 is formed by, for example, vertical etching (for example, reactive ion etching such as ICP (Inductively Coupled Plasma) processing), and wall surfaces on both sides of the gap 10 are perpendicular to the surface of the semiconductor layer 2. It is preferable that the wall surfaces face each other substantially in parallel.

フレーム部7の内側には、半導体層2の平面視略中央位置よりフレーム部7の一長辺側(図1の上側)に僅かにずれた位置に、矩形断面(本実施形態では略正方形断面)を有する柱状のアンカ部3が設けられており、このアンカ部3のフレーム部7の短辺に対向する一対の側壁からビーム部4,4がフレーム部7の長辺と略平行に延伸している。なお、本実施形態では、図2および図3に示すように、アンカ部3を絶縁層20のみに当接(接合)させているが、さらにもう一方の絶縁層21に当接(接合)させるようにしてもよい。   A rectangular cross section (in the present embodiment, a substantially square cross section) is located on the inner side of the frame section 7 at a position slightly shifted from the substantially central position in plan view of the semiconductor layer 2 to one long side of the frame section 7 (upper side in FIG. 1). ), And the beam portions 4 and 4 extend from the pair of side walls facing the short side of the frame portion 7 of the anchor portion 3 substantially parallel to the long side of the frame portion 7. ing. In this embodiment, as shown in FIGS. 2 and 3, the anchor portion 3 is brought into contact (bonded) only with the insulating layer 20, but is further brought into contact (bonded) with the other insulating layer 21. You may do it.

ビーム部4は、図4に示すような一定の矩形(略長方形)断面を有する梁として構成されている。全体的な大きさにもよるが、一例としては、半導体層2の厚み方向の高さhは10マイクロメートル以上(500マイクロメートル以下)、半導体層2の表面に沿う方向の幅wは数マイクロメートル(3〜10マイクロメートル程度)とすることができる。   The beam portion 4 is configured as a beam having a certain rectangular (substantially rectangular) cross section as shown in FIG. Although depending on the overall size, as an example, the height h in the thickness direction of the semiconductor layer 2 is 10 micrometers or more (500 micrometers or less), and the width w in the direction along the surface of the semiconductor layer 2 is several micrometers. It can be a meter (about 3 to 10 micrometers).

そして、このビーム部4は、一定の断面でフレーム部7の長辺に沿う方向に延伸し、アンカ部3側の端部4aに対して反対側となる端部4bが可動電極5に接続されている。   And this beam part 4 is extended in the direction in alignment with the long side of the frame part 7 with a fixed cross section, and the edge part 4b on the opposite side with respect to the edge part 4a by the side of the anchor part 3 is connected to the movable electrode 5. ing.

可動電極5は、フレーム部7の内周面7aに間隙10をもって対向する平面視略矩形状の外周面5dを備えるとともに、アンカ部3およびビーム部4,4の外側を間隙10をもって囲むように形成されている。すなわち、可動電極5は、図1に示すように、アンカ部3およびビーム部4,4に対して、フレーム部7の一長辺側(図1の下側)には、間隙10を空けて略矩形状の大板部5aを備える一方、フレーム部7の他の長辺側(図1の上側)には、間隙10を空けて略矩形状の小板部5bを備えており、これら大板部5aと小板部5bとが、フレーム部7の短辺に沿う一対の接続部5c,5cを介して相互に接続された形状となっている。そして、ビーム部4,4はそれぞれ対応する接続部5c,5cの略中央部に接続されている。なお、上記構成では、大板部5aの質量は小板部5bの質量よりも大きくなる。   The movable electrode 5 includes a substantially rectangular outer peripheral surface 5d facing the inner peripheral surface 7a of the frame portion 7 with a gap 10, and surrounds the outside of the anchor portion 3 and the beam portions 4 and 4 with a gap 10. Is formed. That is, as shown in FIG. 1, the movable electrode 5 has a gap 10 on one long side (lower side in FIG. 1) with respect to the anchor portion 3 and the beam portions 4 and 4. On the other long side (upper side in FIG. 1) of the frame portion 7 is provided with a substantially rectangular small plate portion 5b with a gap 10 between these large rectangular plate portions 5a. The plate portion 5 a and the small plate portion 5 b are connected to each other via a pair of connection portions 5 c and 5 c along the short side of the frame portion 7. And the beam parts 4 and 4 are respectively connected to the approximate center part of the corresponding connection parts 5c and 5c. In the above configuration, the mass of the large plate portion 5a is larger than the mass of the small plate portion 5b.

このように可動電極5がセンサ1の固定部としてのアンカ部3にビーム部4,4を介して可動支持された構造は、半導体層2に適宜に間隙10を形成するとともに半導体層2および絶縁層20,21のうち少なくともいずれか一方に適宜に凹部22を形成することで得ることができる。よって、アンカ部3、ビーム部4,4、および可動電極5は、半導体層2の一部として一体に構成されており、それらアンカ部3、ビーム部4,4、および可動電極5の電位はほぼ等電位とみなすことができる。   Thus, the structure in which the movable electrode 5 is movably supported by the anchor portion 3 as the fixed portion of the sensor 1 via the beam portions 4 and 4 appropriately forms the gap 10 in the semiconductor layer 2 and also insulates the semiconductor layer 2 and the insulation. It can be obtained by appropriately forming the recess 22 in at least one of the layers 20 and 21. Therefore, the anchor portion 3, the beam portions 4, 4 and the movable electrode 5 are integrally configured as a part of the semiconductor layer 2, and the potentials of the anchor portion 3, the beam portions 4, 4 and the movable electrode 5 are It can be regarded as almost equipotential.

ビーム部4,4は、フレーム部7に対して可動電極5を弾性的に可動支持するバネ要素として機能する。本実施形態では、図4に示すように、ビーム部4,4は、センサ1の厚み方向に長い断面(ビーム部4の延伸軸に垂直な断面)を有しているため、当該厚み方向には撓みにくく、また、可動電極5はビーム部4,4を挟んで相互に対向する大板部5aと小板部5bとを備えており、ビーム部4,4の両側での質量が異なっているため、センサ1に厚み方向の加速度が生じると、大板部5aおよび小板部5bに作用する慣性力の差によってビーム部4,4がねじられ、可動電極5はビーム部4,4を中心として揺動することになる。すなわち、本実施形態では、ビーム部4,4はねじりビーム(トーションビーム)として機能することになる。   The beam portions 4 and 4 function as spring elements that elastically moveably support the movable electrode 5 with respect to the frame portion 7. In the present embodiment, as shown in FIG. 4, the beam portions 4 and 4 have a long cross section in the thickness direction of the sensor 1 (a cross section perpendicular to the extending axis of the beam portion 4). The movable electrode 5 is provided with a large plate portion 5a and a small plate portion 5b that are opposed to each other with the beam portions 4 and 4 interposed therebetween, and the masses on both sides of the beam portions 4 and 4 are different. Therefore, when acceleration in the thickness direction occurs in the sensor 1, the beam portions 4 and 4 are twisted by the difference in inertial force acting on the large plate portion 5a and the small plate portion 5b, and the movable electrode 5 causes the beam portions 4 and 4 to move. It will swing around the center. That is, in the present embodiment, the beam portions 4 and 4 function as a torsion beam (torsion beam).

そして、本実施形態では、可動電極5の大板部5aおよび小板部5bのそれぞれに対向するように絶縁層20の下面20bに固定電極6A,6Bを設け、大板部5aと固定電極6Aとの間の静電容量、および小板部5bと固定電極6Bとの間の静電容量を検出することで、これら間隙の変化、ひいてはセンサ1の固定部に対する可動電極5の揺動姿勢の変化を検出することができるようになっている。   In this embodiment, the fixed electrodes 6A and 6B are provided on the lower surface 20b of the insulating layer 20 so as to face the large plate portion 5a and the small plate portion 5b of the movable electrode 5, respectively, and the large plate portion 5a and the fixed electrode 6A are provided. , And the capacitance between the small plate portion 5b and the fixed electrode 6B, the change in these gaps, and hence the swinging posture of the movable electrode 5 with respect to the fixed portion of the sensor 1 are detected. A change can be detected.

図5の(a)は、可動電極5が揺動することなく絶縁層20の下面20bに対して平行な姿勢にある状態を示している。この状態では、大板部5aと固定電極6Aとの間の間隙25aの大きさと、小板部5bと固定電極6Bとの間の間隙25bの大きさとが等しくなるため、大板部5aおよび固定電極6Aの相互対向面積と、小板部5bおよび固定電極6Bの相互対向面積とを等しくしてある場合には、大板部5aと固定電極6Aとの間の静電容量と、小板部5bと固定電極6Bとの間の静電容量とは等しくなる。   FIG. 5A shows a state in which the movable electrode 5 is in a posture parallel to the lower surface 20b of the insulating layer 20 without swinging. In this state, the size of the gap 25a between the large plate portion 5a and the fixed electrode 6A is equal to the size of the gap 25b between the small plate portion 5b and the fixed electrode 6B. When the mutual facing area of the electrode 6A is equal to the mutual facing area of the small plate portion 5b and the fixed electrode 6B, the capacitance between the large plate portion 5a and the fixed electrode 6A, and the small plate portion The electrostatic capacitance between 5b and the fixed electrode 6B becomes equal.

図5の(b)は、可動電極5が揺動して絶縁層20の下面20bに対して傾き、大板部5aが固定電極6Aから離間するとともに、小板部5bが固定電極6Bに近接した状態を示している。この状態では、図5の(a)の状態に比べて、間隙25aは大きくなり、間隙25bは小さくなるから、大板部5aと固定電極6Aとの間の静電容量は小さくなり、小板部5bと固定電極6Bとの間の静電容量は大きくなる。   5B, the movable electrode 5 swings and tilts with respect to the lower surface 20b of the insulating layer 20, the large plate portion 5a is separated from the fixed electrode 6A, and the small plate portion 5b is close to the fixed electrode 6B. Shows the state. In this state, the gap 25a becomes larger and the gap 25b becomes smaller than in the state of FIG. 5A, so that the capacitance between the large plate portion 5a and the fixed electrode 6A becomes small, and the small plate The electrostatic capacitance between the part 5b and the fixed electrode 6B increases.

図5の(c)は、可動電極5が揺動して絶縁層20の下面20bに対して傾き、大板部5aが固定電極6Aに近接するとともに、小板部5bが固定電極6Bから離間した状態を示している。この状態では、図5の(a)の状態に比べて、間隙25aは小さくなり、間隙25bは大きくなるから、大板部5aと固定電極6Aとの間の静電容量は小さくなり、小板部5bと固定電極6Bとの間の静電容量は大きくなる。   5C, the movable electrode 5 swings and tilts with respect to the lower surface 20b of the insulating layer 20, the large plate portion 5a is close to the fixed electrode 6A, and the small plate portion 5b is separated from the fixed electrode 6B. Shows the state. In this state, the gap 25a becomes smaller and the gap 25b becomes larger than in the state of FIG. 5A, so that the capacitance between the large plate portion 5a and the fixed electrode 6A becomes small, and the small plate The electrostatic capacitance between the part 5b and the fixed electrode 6B increases.

したがって、一例としては、大板部5aと固定電極6Aとの間の静電容量と、小板部5bと固定電極6Bとの間の静電容量との差動出力から、可動電極5の姿勢を把握することが可能となる。すなわち、これら静電容量の値から、加速度や角加速度など、種々の物理量を把握することができる。   Therefore, as an example, the attitude of the movable electrode 5 is determined based on the differential output of the capacitance between the large plate portion 5a and the fixed electrode 6A and the capacitance between the small plate portion 5b and the fixed electrode 6B. Can be grasped. That is, various physical quantities such as acceleration and angular acceleration can be grasped from these capacitance values.

静電容量は、可動電極5および固定電極6A,6Bの電位から取得することができる。本実施形態では、図1および図2に示すように、アンカ部3上の絶縁層20には貫通孔24が形成されており、可動電極5の電位は、この貫通孔24の内面に形成した導体層23を介して取り出される。   The capacitance can be acquired from the potentials of the movable electrode 5 and the fixed electrodes 6A and 6B. In this embodiment, as shown in FIGS. 1 and 2, a through hole 24 is formed in the insulating layer 20 on the anchor portion 3, and the potential of the movable electrode 5 is formed on the inner surface of the through hole 24. It is taken out through the conductor layer 23.

一方、固定電極6は、絶縁層20の下面20b上に略矩形状の導体層(例えばアルミニウム合金の層)として形成してある。固定電極6を成膜する工程では、固定電極6と一続きの導体層として、配線パターン11および端子部9も同時に成膜される。したがって、固定電極6の電位は、配線パターン11および端子部9、半導体層2に形成された電位取出部8、ならびに電位取出部8上の絶縁層20に形成された導体層23を介して取り出されるようになっている。   On the other hand, the fixed electrode 6 is formed on the lower surface 20b of the insulating layer 20 as a substantially rectangular conductor layer (for example, an aluminum alloy layer). In the step of forming the fixed electrode 6, the wiring pattern 11 and the terminal portion 9 are simultaneously formed as a continuous conductor layer with the fixed electrode 6. Therefore, the potential of the fixed electrode 6 is taken out through the wiring pattern 11 and the terminal portion 9, the potential extraction portion 8 formed in the semiconductor layer 2, and the conductor layer 23 formed in the insulating layer 20 on the potential extraction portion 8. It is supposed to be.

ここで、図6を参照して、電位取出部8の構成について説明する。電位取出部8は、半導体層2に形成した間隙10や半導体層2または絶縁層21に形成した凹部22によって、可動電極5やフレーム部7等の半導体層2の他の部分と絶縁され、略円柱状に形成されるパッド部8aと、パッド部8aからフレーム部7の短辺に沿って細長く伸びる台座部8bとを備えている。そして、この台座部8bの端子部9に対応する部分を切り欠くように平坦な底面8cを備える凹部26が形成されている。この凹部26は、異方性エッチング(ウエットエッチング)によって形成し、深さの精度を確保するとともに、より平坦な底面8cを得るようにするのが好適である。   Here, with reference to FIG. 6, the structure of the electric potential extraction part 8 is demonstrated. The potential extraction portion 8 is insulated from other portions of the semiconductor layer 2 such as the movable electrode 5 and the frame portion 7 by the gap 10 formed in the semiconductor layer 2 and the recess 22 formed in the semiconductor layer 2 or the insulating layer 21. A pad portion 8a formed in a columnar shape and a pedestal portion 8b extending from the pad portion 8a along the short side of the frame portion 7 are provided. And the recessed part 26 provided with the flat bottom face 8c is formed so that the part corresponding to the terminal part 9 of this base part 8b may be notched. The recess 26 is preferably formed by anisotropic etching (wet etching) to ensure depth accuracy and to obtain a flatter bottom surface 8c.

そして、この底面8c上には下敷層27(例えば、二酸化珪素(SiO)の層)が形成され、さらに、この下敷層27と隣接した位置にほぼ同じ高さの導体層28が形成されるとともに、下敷層27の上面から導体層28の上面にかけて、フレーム状の山部12aを連設してなる平面視で略梯子状の接点部12が形成される。このとき、導体層28および接点部12は、同一の導体材料(例えばアルミニウム合金等)による層として形成することができる。 An underlayer 27 (for example, a layer of silicon dioxide (SiO 2 )) is formed on the bottom surface 8c, and a conductor layer 28 having substantially the same height is formed at a position adjacent to the underlayer 27. At the same time, a substantially ladder-shaped contact portion 12 is formed from the upper surface of the underlying layer 27 to the upper surface of the conductor layer 28 in a plan view in which frame-shaped peaks 12a are continuously provided. At this time, the conductor layer 28 and the contact portion 12 can be formed as layers made of the same conductor material (for example, an aluminum alloy).

この場合、下敷層27を二酸化珪素(SiO)の層とすれば、下敷層27の上面が平坦に形成され(鏡面化され)、下敷層27を設けることなく山部12a(接点部12)を形成した場合に比べて、各山部12aの高さを精度良く揃えることができる。したがって、山部12aと端子部9との接触圧力をより精度良く設定することが可能となる。 In this case, if the underlying layer 27 is a layer of silicon dioxide (SiO 2 ), the upper surface of the underlying layer 27 is formed flat (mirrored), and the peak portion 12a (contact portion 12) is provided without providing the underlying layer 27. Compared with the case of forming, the heights of the mountain portions 12a can be aligned with high accuracy. Therefore, the contact pressure between the peak portion 12a and the terminal portion 9 can be set with higher accuracy.

さらに、本実施形態では、図6の(c)に示すように、接点部12の山部12aを、半導体層2の表面2aより上に高さδhだけ突出するように高く形成し、これにより、半導体層2と絶縁層20との接合により、端子部9によって山部12aを押圧して塑性変形させ、山部12a(接点部12)と端子部9との密着度を高めて、それらの間での接触および導通がより確実なものとなるようにしている。なお、端子部9の導体層の厚みを精度良く管理できる場合には、当該導体層の厚みを考慮して山部12aの高さを設定する(厚み分だけ低く設定する)ことも可能である。   Furthermore, in this embodiment, as shown in FIG. 6C, the crest portion 12a of the contact portion 12 is formed so as to protrude by a height δh above the surface 2a of the semiconductor layer 2, thereby By joining the semiconductor layer 2 and the insulating layer 20, the terminal portion 9 is pressed and plastically deformed by the terminal portion 9, and the degree of adhesion between the mountain portion 12 a (contact portion 12) and the terminal portion 9 is increased. The contact and conduction between them are made more reliable. In addition, when the thickness of the conductor layer of the terminal portion 9 can be managed with high accuracy, it is possible to set the height of the peak portion 12a in consideration of the thickness of the conductor layer (set to be lower by the thickness). .

また、図1に示すように、大板部5aおよび小板部5bの表面上の適宜位置にはストッパ13を設け、可動電極5と固定電極6A,6Bとが直接的に接触(衝突)して損傷するのを抑制するようになっているが、このストッパ13を下敷層27と同一材料として同じ工程で形成するようにすれば、これらを別途形成する場合に比べて製造の手間が減り、製造コストを低減することができる。さらに、この場合、凹部22の半導体層2の表面2aからの深さと、凹部26の半導体層2の表面2aからの深さとを同じ値に設定すれば、これら凹部22,26を同じ工程で形成することができるようになる分、製造コストのより一層の低減が可能となる。   Further, as shown in FIG. 1, a stopper 13 is provided at an appropriate position on the surface of the large plate portion 5a and the small plate portion 5b, so that the movable electrode 5 and the fixed electrodes 6A and 6B are in direct contact (collision). However, if the stopper 13 is formed of the same material as the underlying layer 27 in the same process, the manufacturing labor is reduced as compared with the case where these are formed separately. Manufacturing cost can be reduced. Further, in this case, if the depth of the recess 22 from the surface 2a of the semiconductor layer 2 and the depth of the recess 26 from the surface 2a of the semiconductor layer 2 are set to the same value, the recesses 22 and 26 are formed in the same process. As a result, the manufacturing cost can be further reduced.

以上の本実施形態によれば、電位取出部8に形成した導体からなる突起状の山部12a(接点部12)の先端部を固定電極6A,6Bに繋がる導体層としての端子部9に押圧接触させて接触圧力を高めるようにしたので、固定電極6と電位取出部8との間でより確実に導通を確保することができる。   According to the present embodiment described above, the tip of the protruding peak portion 12a (contact point portion 12) made of a conductor formed in the potential extraction portion 8 is pressed against the terminal portion 9 as a conductor layer connected to the fixed electrodes 6A and 6B. Since the contact pressure is increased by contact, conduction between the fixed electrode 6 and the potential extraction portion 8 can be ensured more reliably.

また、本実施形態では、電位取出部8に平坦な底面8cを有する凹部26を形成して、山部12a(接点部12)としての厚み(高さ)を確保できる分、当該山部12aを所期の形状(高さ、先端形状等)に調整しやすくなり、ひいては所望の接触圧力を確保しやすくなる。   Further, in the present embodiment, the concave portion 26 having the flat bottom surface 8c is formed in the potential extraction portion 8 so that the thickness (height) as the mountain portion 12a (contact portion 12) can be secured. It becomes easy to adjust to a desired shape (height, tip shape, etc.), and it becomes easy to secure a desired contact pressure.

また、導体層が厚くなりすぎた場合には、その上面で微小な凹凸が生じる場合があるが、本実施形態では、下敷層27を設けた分、山部12a(接点部12)の高さを適宜に低く設定できるため、山部12aの先端部に凹凸が生じるのが抑制されて、ひいては固定電極6と電位取出部8との間でより確実に導通を確保することができる。   In addition, when the conductor layer becomes too thick, minute irregularities may occur on the upper surface thereof. In this embodiment, the height of the crest portion 12a (contact portion 12) is provided by the provision of the underlay layer 27. Therefore, it is possible to suppress the occurrence of unevenness at the tip of the peak portion 12a, and as a result, it is possible to more reliably ensure conduction between the fixed electrode 6 and the potential extraction portion 8.

特に、本実施形態のように、下敷層27を二酸化珪素(SiO)の層とすれば、下敷層27の上面が平坦に形成され(鏡面化され)、下敷層27を設けることなく山部12a(接点部12)を形成した場合に比べて、各山部12aの高さを精度良く揃えることができ、以て、接触圧力を精度良く設定できる上、位置による接触圧力のばらつきや、接触圧力の個体差を抑制することができる。 In particular, as in the present embodiment, if the underlying layer 27 is a silicon dioxide (SiO 2 ) layer, the upper surface of the underlying layer 27 is formed flat (mirrored), and the ridges are formed without providing the underlying layer 27. Compared with the case where 12a (contact part 12) is formed, the heights of the crests 12a can be aligned with high accuracy, so that the contact pressure can be set with high accuracy and the contact pressure varies depending on the position and contact. Individual differences in pressure can be suppressed.

また、本実施形態のように、接点部12の山部12aを、半導体層2の表面2aより上に突出させるようにすれば、半導体層2と絶縁層20との接合により、端子部9によって山部12aを押圧して塑性変形させることができ、山部12a(接点部12)と端子部9との密着度を高めて、これらの間、ひいては固定電極6と電位取出部8との間でより確実に導通を確保することができる。   Further, as in the present embodiment, if the crest portion 12a of the contact portion 12 protrudes above the surface 2a of the semiconductor layer 2, the terminal portion 9 causes the junction between the semiconductor layer 2 and the insulating layer 20. The crest portion 12a can be pressed and plastically deformed, and the degree of adhesion between the crest portion 12a (contact portion 12) and the terminal portion 9 is increased, and between these, by extension, between the fixed electrode 6 and the potential extracting portion 8 Thus, conduction can be ensured more reliably.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。例えば、接点部によって固定電極そのものを押圧するように構成してもよいし、揺動方式に限らず、進退動方式等の他形式のセンサとしても本発明を実施可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments, and various modifications can be made. For example, the fixed electrode itself may be pressed by the contact portion, and the present invention can be implemented not only as a swing method but also as other types of sensors such as an advance / retreat method.

本発明の実施形態にかかる静電容量式センサの半導体層の平面図。The top view of the semiconductor layer of the electrostatic capacitance type sensor concerning embodiment of this invention. 図1のA−A線における静電容量式センサの断面図。Sectional drawing of the electrostatic capacitance type sensor in the AA line of FIG. 図1のB−B線における静電容量式センサの断面図。Sectional drawing of the electrostatic capacitance type sensor in the BB line of FIG. 本発明の実施形態にかかる静電容量式センサのビーム部の断面図(図2のC−C断面図)。Sectional drawing (CC sectional drawing of FIG. 2) of the beam part of the electrostatic capacitance type sensor concerning embodiment of this invention. 本発明の実施形態にかかる静電容量式センサの可動電極が揺動する様子を示す模式図であって、(a)は揺動していない状態、(b)は一方側が固定電極に近付いた状態、(c)は他方側が固定電極に近付いた状態を示す図。It is a schematic diagram which shows a mode that the movable electrode of the capacitive sensor concerning embodiment of this invention rock | fluctuates, Comprising: (a) is the state which is not rock | fluctuating, (b) has approached the fixed electrode on one side. A state, (c) is a figure which shows the state which the other side approached the fixed electrode. 本発明の実施形態にかかる静電容量式センサの半導体層の一部としての電位取出部を示す拡大図であって、(a)は平面図、(b)は(a)のD−D断面図、(c)は組立前の状態を示す図。It is an enlarged view which shows the electric potential extraction part as a part of semiconductor layer of the electrostatic capacitance type sensor concerning embodiment of this invention, (a) is a top view, (b) is DD cross section of (a). FIG. 3C is a diagram showing a state before assembly.

符号の説明Explanation of symbols

1 静電容量式センサ
2 半導体層
4 ビーム部(ビーム)
5 可動電極
6A,6B 固定電極
8 電位取出部
9 端子部(導体層)
12 接点部
20 絶縁層
26 凹部
27 下敷層

DESCRIPTION OF SYMBOLS 1 Capacitance type sensor 2 Semiconductor layer 4 Beam part (beam)
5 Movable electrode 6A, 6B Fixed electrode 8 Potential extraction part 9 Terminal part (conductor layer)
12 Contact portion 20 Insulating layer 26 Recessed portion 27 Underlay layer

Claims (2)

絶縁層に形成された固定電極と、半導体層の固定部分にビームを介して可動支持された可動電極と、を備えるとともに、当該固定電極と可動電極とを間隙をもって相互に対向配置させて検出部が構成され、当該間隙の大きさに応じた静電容量を検出することで所定の物理量を検出する静電容量式センサにおいて、
前記半導体層に、前記固定電極または当該固定電極に繋がる導体層と接触して導通する電位取出部を形成して、当該電位取出部を介して固定電極の電位を取り出すように構成し、
前記電位取出部には、前記半導体層を凹設した凹部を形成するとともに、当該凹部内に、導体からなる突起状の接点部を電位取出部の半導体層と導通する状態で形成して、
前記接点部を、先端部が前記半導体層の前記絶縁層との接合面よりも突出するように高く形成し、当該接点部の先端部が前記固定電極に繋がる平坦状の導体層表面の幅方向全域に亘って当接するように、接点部の先端部を前記導体層に押圧接触させるようにしたことを特徴とする静電容量式センサ。
A detection unit including a fixed electrode formed on the insulating layer and a movable electrode supported and supported by a fixed portion of the semiconductor layer via a beam, and the fixed electrode and the movable electrode are arranged to face each other with a gap therebetween In the capacitance type sensor that detects a predetermined physical quantity by detecting the capacitance according to the size of the gap,
The semiconductor layer is configured to form a potential extraction portion that conducts in contact with the fixed electrode or a conductor layer connected to the fixed electrode, and is configured to extract the potential of the fixed electrode through the potential extraction portion,
In the potential extraction portion, a concave portion in which the semiconductor layer is recessed is formed, and in the concave portion, a protruding contact portion made of a conductor is formed in a state of being electrically connected to the semiconductor layer of the potential extraction portion,
The contact portion is formed high so that the tip portion protrudes from the bonding surface of the semiconductor layer to the insulating layer, and the tip direction of the contact portion is connected to the fixed electrode in the width direction. A capacitance type sensor characterized in that the tip of the contact portion is pressed against the conductor layer so as to be in contact over the entire area .
前記凹部上に平坦な上面を有する下敷層を形成し、当該下敷層上に前記接点部を形成したことを特徴とする請求項1に記載の静電容量式センサ。   The capacitive sensor according to claim 1, wherein an underlying layer having a flat upper surface is formed on the concave portion, and the contact portion is formed on the underlying layer.
JP2006126441A 2006-04-28 2006-04-28 Capacitive sensor Expired - Fee Related JP4692373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126441A JP4692373B2 (en) 2006-04-28 2006-04-28 Capacitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126441A JP4692373B2 (en) 2006-04-28 2006-04-28 Capacitive sensor

Publications (2)

Publication Number Publication Date
JP2007298384A JP2007298384A (en) 2007-11-15
JP4692373B2 true JP4692373B2 (en) 2011-06-01

Family

ID=38767994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126441A Expired - Fee Related JP4692373B2 (en) 2006-04-28 2006-04-28 Capacitive sensor

Country Status (1)

Country Link
JP (1) JP4692373B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10649000B2 (en) 2015-12-17 2020-05-12 Panasonic Intellectual Property Management Co., Ltd. Connection assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213747A (en) * 1993-01-14 1994-08-05 Toyota Motor Corp Capacitive semiconductor sensor
JPH06326332A (en) * 1993-05-13 1994-11-25 Omron Corp Capacitive sensor
JPH08254438A (en) * 1995-03-15 1996-10-01 Omron Corp Capacity type sensor
JP2005233926A (en) * 2004-01-21 2005-09-02 Seiko Instruments Inc Capacity type dynamic quantity sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213747A (en) * 1993-01-14 1994-08-05 Toyota Motor Corp Capacitive semiconductor sensor
JPH06326332A (en) * 1993-05-13 1994-11-25 Omron Corp Capacitive sensor
JPH08254438A (en) * 1995-03-15 1996-10-01 Omron Corp Capacity type sensor
JP2005233926A (en) * 2004-01-21 2005-09-02 Seiko Instruments Inc Capacity type dynamic quantity sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10649000B2 (en) 2015-12-17 2020-05-12 Panasonic Intellectual Property Management Co., Ltd. Connection assembly

Also Published As

Publication number Publication date
JP2007298384A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
TWI417547B (en) Capacitive sensor
JP2007298405A (en) Electrostatic capacity type sensor
KR101553786B1 (en) Capacitance type pressure sensor, method for manufacturing same, and input device
JP4605087B2 (en) Capacitive sensor
JP5790920B2 (en) FUNCTIONAL ELEMENT, SENSOR ELEMENT, ELECTRONIC DEVICE, AND FUNCTIONAL ELEMENT MANUFACTURING METHOD
KR101724982B1 (en) Capacitance type pressure sensor and input apparatus
JP5315350B2 (en) MEMS sensor
TWI670225B (en) Micromechanical component and process for its production
JP5222947B2 (en) MEMS sensor
JP4600344B2 (en) Capacitive sensor
JP4692373B2 (en) Capacitive sensor
JP4775412B2 (en) Semiconductor physical quantity sensor
JP2005321257A (en) Capacitance type pressure sensor
JP5442277B2 (en) MEMS sensor and manufacturing method thereof
WO2011016348A1 (en) Mems sensor
WO2010032819A1 (en) Mems sensor
JP4752874B2 (en) Semiconductor physical quantity sensor
JP6070787B2 (en) Functional elements, sensor elements and electronic devices
US10330472B2 (en) Angular velocity acquisition device
WO2015025496A1 (en) Semiconductor physical quantity sensor
JP2007298407A (en) Capacitance sensor
JP2012247193A (en) Mems device
JP5837846B2 (en) Capacitance type physical quantity sensor and manufacturing method thereof
JP4595864B2 (en) Capacitive sensor
JP5824385B2 (en) Capacitance type physical quantity sensor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4692373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees