JP4595864B2 - Capacitive sensor - Google Patents

Capacitive sensor Download PDF

Info

Publication number
JP4595864B2
JP4595864B2 JP2006089217A JP2006089217A JP4595864B2 JP 4595864 B2 JP4595864 B2 JP 4595864B2 JP 2006089217 A JP2006089217 A JP 2006089217A JP 2006089217 A JP2006089217 A JP 2006089217A JP 4595864 B2 JP4595864 B2 JP 4595864B2
Authority
JP
Japan
Prior art keywords
movable electrode
electrode
detection
fixed
fixed electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006089217A
Other languages
Japanese (ja)
Other versions
JP2007263746A (en
Inventor
英一 古久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006089217A priority Critical patent/JP4595864B2/en
Publication of JP2007263746A publication Critical patent/JP2007263746A/en
Application granted granted Critical
Publication of JP4595864B2 publication Critical patent/JP4595864B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Description

本発明は、固定電極と可動電極との間の静電容量を検出することにより所定の物理量を検出する静電容量式センサに関する。   The present invention relates to a capacitance sensor that detects a predetermined physical quantity by detecting a capacitance between a fixed electrode and a movable electrode.

従来より、公知の半導体プロセスを用いて半導体基板を加工することで固定部に弾性要素を介して可動電極が支持された構造を形成し、作用した外力等に応じて可動電極が固定電極に対して接離可能となるようにして、これら電極間の静電容量の変化を検出することで加速度や角速度等の種々の物理量を検出できるようにした静電容量式センサが知られている。(例えば、特許文献1、特許文献2。)。   Conventionally, a semiconductor substrate is processed using a known semiconductor process to form a structure in which a movable electrode is supported by an elastic element on a fixed portion. There is known a capacitance type sensor that can detect various physical quantities such as acceleration and angular velocity by detecting a change in capacitance between these electrodes so as to be able to contact and separate. (For example, Patent Document 1 and Patent Document 2).

特許文献1では、静電容量式センサとして、加速度などの物理量によって変位する1個の質量層から、加速度を検出する検出方向に対して垂直に伸び、互いに対向するように配置された複数の固定電極指と可動電極指とを備えることで、互いに垂直な2軸方向の加速度を検出する半導体装置が開示されている。   In Patent Document 1, as a capacitive sensor, a plurality of fixed elements arranged so as to extend perpendicularly to a detection direction for detecting acceleration from one mass layer displaced by a physical quantity such as acceleration and to face each other. A semiconductor device is disclosed that detects acceleration in two axial directions perpendicular to each other by providing an electrode finger and a movable electrode finger.

また、特許文献2では、静電容量式センサとして、加速度などの物理量によって変位する正方環状の質量部材(可動電極)の対向する2組の辺に平行となるように固定的な電極対を設けることで、互いに垂直な2軸方向の加速度を検出するソリッドステート加速度計が開示されている。
特表2000−512023号公報 特開平4−269659号公報
In Patent Document 2, as a capacitive sensor, a fixed electrode pair is provided so as to be parallel to two opposing sides of a square annular mass member (movable electrode) that is displaced by a physical quantity such as acceleration. Thus, a solid-state accelerometer that detects acceleration in two axial directions perpendicular to each other is disclosed.
Special Table 2000-512023 JP-A-4-269659

しかしながら、特許文献1、特許文献2で開示されている発明は、その構成から、検出方向とは垂直な他軸方向への加速度に対して、可動電極と固定電極の対向面積を変化させ容量差を発生させてしまう可能性が高いといった問題がある。   However, the inventions disclosed in Patent Document 1 and Patent Document 2 change the facing area between the movable electrode and the fixed electrode with respect to the acceleration in the other axis direction perpendicular to the detection direction. There is a problem that there is a high possibility of generating.

そこで、本発明は、上述した実情に鑑みて提案されたものであり、他軸方向の検出感度を抑制し、目的する検出方向の物理量を確実に検出することができる静電容量式センサを提供することを目的とする。   Therefore, the present invention has been proposed in view of the above-described circumstances, and provides a capacitance type sensor that can suppress detection sensitivity in the other-axis direction and reliably detect a physical quantity in the target detection direction. The purpose is to do.

本発明の静電容量式センサは、物理量の変位に応じて動作する可動電極と、固定電極とを相互に間隙を介して対向配置し、前記固定電極と前記可動電極との間隙の大きさに応じて検出される静電容量に基づき前記物理量を検出する静電容量式センサにおいて、前記可動電極は、前記固定電極との前記間隙を介した対向配置関係を保ちながら前記固定電極の周囲を囲むとともに、当該可動電極の動作を受け止めるストッパ部を囲む構造を有しており、前記可動電極の中心から最大限離れた前記可動電極の端部と平行に、前記固定電極を前記間隙を介して対向配置させるとともに、前記可動電極を正方形状とし、正方形状とした前記可動電極の1辺に対して、前記固定電極を内側から平行に対向配置させており、前記可動電極は、正方形状とした可動電極中央部と、当該可動電極中央部の外側を囲う正方形状の検出可動電極と、前記可動電極中央部の4隅から対角線上にそれぞれ伸びて前記検出可動電極の4隅を結合する4つの結合部と、を有し、前記固定電極は、前記検出可動電極の内側に沿って延びる検出固定電極と、当該検出固定電極の中央部から前記可動電極の中心に向けて突出する突出部を有したT字状に形成されており、前記ストッパ部を、前記突出部の両脇に配置するとともに、当該ストッパ部の前記可動電極中央部の対向面に凸状の突起を設け、前記物理量が入力された際に前記突起で前記可動電極中央部を受け止めるようにしたことを特徴とする。 In the capacitance type sensor of the present invention, a movable electrode that operates according to a displacement of a physical quantity and a fixed electrode are arranged to face each other with a gap therebetween, and the size of the gap between the fixed electrode and the movable electrode is set. In the capacitance type sensor that detects the physical quantity based on the detected capacitance, the movable electrode surrounds the fixed electrode while maintaining an opposing arrangement relationship with the fixed electrode through the gap. together, and have a structure that surrounds the stopper portion which receives the operation of the movable electrode, parallel to the end portion of the movable electrode away maximally from the center of the movable electrode, the fixed electrode via the gap counter causes disposed, the movable electrode a square-shaped, with respect to one side of the movable electrodes and square-shaped, and is parallel opposed to the fixed electrode from the inside, the movable electrode was a square And the dynamic electrode central portion, the square detection movable electrodes surrounding the outside of the movable electrode central portion, four coupling the four corners of the detection movable electrodes extending respectively diagonally from the four corners of the movable electrode central portion The fixed electrode has a detection fixed electrode extending along the inside of the detection movable electrode, and a protrusion protruding from the center of the detection fixed electrode toward the center of the movable electrode. The stopper portion is arranged on both sides of the protruding portion, and a convex protrusion is provided on the opposing surface of the central portion of the movable electrode of the stopper portion so that the physical quantity is input. The center of the movable electrode is received by the protrusion when the protrusion is formed .

本発明によれば他軸方向の検出感度を抑制し、目的する検出方向の物理量を確実に検出することを可能とする。   According to the present invention, it is possible to suppress the detection sensitivity in the other axis direction and reliably detect the physical quantity in the target detection direction.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[静電容量式センサの構成]
図1、図2を用いて、本発明の実施の形態として示す静電容量式センサの構成について説明する。
[Configuration of capacitive sensor]
A configuration of a capacitance type sensor shown as an embodiment of the present invention will be described with reference to FIGS.

図1は、静電容量式センサの半導体層2を示した平面図である。図1に示すように、半導体層2は、半導体基板に公知の半導体プロセスにより間隙10を形成することで、フレーム部3、ビーム部4、可動電極5、固定電極6、ストッパ部7が形成されている。   FIG. 1 is a plan view showing a semiconductor layer 2 of a capacitive sensor. As shown in FIG. 1, the semiconductor layer 2 is formed with a frame portion 3, a beam portion 4, a movable electrode 5, a fixed electrode 6, and a stopper portion 7 by forming a gap 10 in a semiconductor substrate by a known semiconductor process. ing.

図2は、図1のE−E線で半導体層2を切断するように静電容量式センサ1を切断した様子を示した断面図である。図2に示すように、静電容量式センサ1は、この半導体層2の表裏両面にガラス基板などの絶縁層20,21を、例えば、陽極接合などをして接合することで形成される。これら半導体層2と絶縁層20,21との接合面には、比較的浅い凹部22が形成されており、半導体層2各部の絶縁性や可動電極5の動作性の確保が図られている。図1に示すように、半導体層2が略正方形状となるように静電容量式センサ1は、切り出されることになる。   FIG. 2 is a cross-sectional view showing a state in which the capacitive sensor 1 is cut so that the semiconductor layer 2 is cut along the line EE in FIG. As shown in FIG. 2, the capacitive sensor 1 is formed by bonding insulating layers 20 and 21 such as a glass substrate to the front and back surfaces of the semiconductor layer 2 by, for example, anodic bonding. A relatively shallow recess 22 is formed on the bonding surface between the semiconductor layer 2 and the insulating layers 20 and 21, so that insulation of each part of the semiconductor layer 2 and operability of the movable electrode 5 are ensured. As shown in FIG. 1, the capacitive sensor 1 is cut out so that the semiconductor layer 2 has a substantially square shape.

図1に示すように、フレーム部3には、内側の4隅から、それぞれ当該フレーム部3の各辺と平行に、かつ中途で直角に折れ曲がりながら中心に向けて渦巻き状に伸びる4本のビーム部4が設けられている。図1に示すようにビーム部4は、それぞれフレーム部3の二辺分に亘って相互干渉することなく延設されるとともに、内側端部では可動電極5の隅部に接続されており、フレーム部3に対して可動電極5を弾性的に可動支持するバネ要素(渦巻きバネ)として機能する。   As shown in FIG. 1, the frame portion 3 has four beams extending from the inner four corners in a spiral shape toward the center while being bent at a right angle in the middle in parallel with each side of the frame portion 3. Part 4 is provided. As shown in FIG. 1, each of the beam portions 4 extends over two sides of the frame portion 3 without interfering with each other, and is connected to a corner portion of the movable electrode 5 at the inner end portion. It functions as a spring element (spiral spring) that elastically moves and supports the movable electrode 5 with respect to the portion 3.

これにより、静電容量式センサ1では、可動電極5に対し、バネ要素としてのビーム部4によって可動支持される質量要素(マス)としての機能を与え、これらバネ要素と質量要素とによってバネ−マス系を構成している。このような静電容量式センサ1は、質量要素としての可動電極5の位置変位による可動電極5、固定電極6間の静電容量の変化を検出する。そして、静電容量式センサ1は、検出された静電容量の変化をC−V変換することで得られる電圧波形から当該静電容量式センサ1に加えられた加速度を検出することができる。   Thus, in the capacitive sensor 1, the movable electrode 5 is given a function as a mass element (mass) that is movably supported by the beam unit 4 as a spring element, and the spring element and the mass element serve as a spring. It constitutes a mass system. Such a capacitance type sensor 1 detects a change in capacitance between the movable electrode 5 and the fixed electrode 6 due to a positional displacement of the movable electrode 5 as a mass element. And the capacitive sensor 1 can detect the acceleration added to the said capacitive sensor 1 from the voltage waveform obtained by carrying out CV conversion of the change of the detected electrostatic capacitance.

具体的には、この静電容量の変化は、略正方形状とされた可動電極5の4辺を検出可動電極5aとし、この検出可動電極5aに可動電極5の中心方向、つまり可動電極5の内側に固定電極6の検出固定電極6aを対向配置させてなる検出部8A乃至8D(以下、総称する場合は、単に検出部8と呼ぶ。)によって検出される。可動電極5の形状を略正方形状とすると、質量要素としてバランスがよく正確な加速度検知を実現することができる。   Specifically, this change in capacitance is caused by four sides of the movable electrode 5 having a substantially square shape as the detection movable electrode 5a, and the detection movable electrode 5a has a center direction of the movable electrode 5, that is, the movable electrode 5 Detection is performed by detection units 8A to 8D (hereinafter collectively referred to simply as detection unit 8) in which detection fixed electrodes 6a of fixed electrode 6 are arranged to face each other. When the shape of the movable electrode 5 is substantially square, accurate acceleration detection with a good balance as a mass element can be realized.

図1に示すY軸方向に加速度が与えられると、可動電極5がY軸方向に変位し、検出部8Aの検出可動電極5a、検出固定電極6aで検出される静電容量と、検出部8Bの検出可動電極5a、検出固定電極6aで検出される静電容量に差が生じる。この静電容量の差からY軸方向の加速度を検出することができる。   When acceleration is applied in the Y-axis direction shown in FIG. 1, the movable electrode 5 is displaced in the Y-axis direction, the capacitance detected by the detection movable electrode 5a and the detection fixed electrode 6a of the detection unit 8A, and the detection unit 8B. There is a difference in the capacitance detected by the detection movable electrode 5a and the detection fixed electrode 6a. The acceleration in the Y-axis direction can be detected from the difference in capacitance.

一方、図1に示すX軸方向に加速度が与えられると、可動電極5がX軸方向に変位し、検出部8Cの検出可動電極5a、検出固定電極6aで検出される静電容量と、検出部8Dの検出可動電極5a、検出固定電極6aで検出される静電容量に差が生じる。この静電容量の差からX軸方向の加速度を検出することができる。   On the other hand, when acceleration is applied in the X-axis direction shown in FIG. 1, the movable electrode 5 is displaced in the X-axis direction, and the capacitance detected by the detection movable electrode 5a and the detection fixed electrode 6a of the detection unit 8C, and detection Difference occurs in the capacitance detected by the detection movable electrode 5a and the detection fixed electrode 6a of the portion 8D. The acceleration in the X-axis direction can be detected from the difference in capacitance.

図1に示すように可動電極5は、質量要素として可動電極5を機能させるための略正方形状の中心部5b(可動電極中央部)を中心に配し、この中心部5bの4隅から検出可動電極5aを1辺とする正方形の対角線上に伸びる4本の結合部5cにより、検出可動電極5aと中心部5bとを結合させた構成となっている。このような可動電極5に対し、4つの固定電極6は、それぞれ検出可動電極5a、中心部5b、2本の結合部5cによって周囲を囲まれる領域内に形成されている。つまり、可動電極5は、検出可動電極5aと検出固定電極6aの対向配置関係を保ちながら固定電極6の周囲を囲む構造を有している。 As shown in FIG. 1, the movable electrode 5 is centered on a substantially square central portion 5b (movable electrode central portion) for causing the movable electrode 5 to function as a mass element, and is detected from four corners of the central portion 5b. The movable movable electrode 5a and the central portion 5b are coupled to each other by four coupling portions 5c extending on a square diagonal line with the movable electrode 5a as one side. For such a movable electrode 5, four fixed electrodes 6 are formed in a region surrounded by a detection movable electrode 5a, a central portion 5b, and two coupling portions 5c, respectively. That is, the movable electrode 5 has a structure that surrounds the periphery of the fixed electrode 6 while maintaining the opposing arrangement relationship of the detection movable electrode 5a and the detection fixed electrode 6a.

本発明の静電容量式センサ1は、上述したように固定電極6が、可動電極5の内側に設けられているため、固定電極6から電位を取り出すことことが非常に困難となっている。そこで、図1に示す固定電極6の中央部6bの位置A乃至位置D上に、図2に示すような絶縁層20をサンドブラスト加工等によって貫通させた貫通孔24を介し、中央部6bの表面6c、貫通孔24の内周面24a、絶縁層20の表面20aに固定電極6の電位を取り出すための電極部23を金属薄膜にて形成することで固定電極6の電位を取り出すようにしている。なお、絶縁層20の表面20aは、図示しない絶縁性の樹脂層によって被覆(モールド成形)される。   In the capacitance type sensor 1 of the present invention, since the fixed electrode 6 is provided inside the movable electrode 5 as described above, it is very difficult to extract a potential from the fixed electrode 6. Therefore, the surface of the central portion 6b is passed through the through-hole 24 in which the insulating layer 20 as shown in FIG. 2 is passed through the position A to the position D of the central portion 6b of the fixed electrode 6 shown in FIG. 6c, the electrode portion 23 for extracting the potential of the fixed electrode 6 is formed on the inner peripheral surface 24a of the through hole 24 and the surface 20a of the insulating layer 20 with a metal thin film so that the potential of the fixed electrode 6 is extracted. . The surface 20a of the insulating layer 20 is covered (molded) with an insulating resin layer (not shown).

これにより、わざわざ半導体層2から可動電極5、ビーム部4を避けるように配線して固定電極6の電位を取り出す必要がなく、最短距離で絶縁層20上に配線を引き出せるため、絶縁層20上に薄膜配線によりパターンニングした場合にパターン間に発生する寄生容量を大幅に低減することができる。したがって、静電容量式センサ1の信頼性を向上させることができる。   This eliminates the need for wiring from the semiconductor layer 2 so as to avoid the movable electrode 5 and the beam portion 4 to take out the potential of the fixed electrode 6 and allows the wiring to be drawn out on the insulating layer 20 at the shortest distance. In addition, it is possible to greatly reduce the parasitic capacitance generated between patterns when patterning is performed using thin film wiring. Therefore, the reliability of the capacitive sensor 1 can be improved.

また、可動電極5が形成された領域と対向する絶縁層20上に配線を引き出すことができるため、可動電極5が形成された領域外へと配線を引き回す場合などと比較して静電容量式センサ1を小型化することができる。   Further, since the wiring can be drawn out on the insulating layer 20 facing the region where the movable electrode 5 is formed, the capacitance type is compared with the case where the wiring is routed outside the region where the movable electrode 5 is formed. The sensor 1 can be reduced in size.

さらに、図1に示すように、絶縁層20に設ける貫通孔24を、静電容量式センサ1に形成された固定電極6の対称性より、当該固定電極6の中心である位置A乃至位置Dに設けることでデバイス全体としての応力バランスを最適化するとともに、温度特性も向上させることができる。   Further, as shown in FIG. 1, the through hole 24 provided in the insulating layer 20 is positioned at positions A to D which are the centers of the fixed electrode 6 due to the symmetry of the fixed electrode 6 formed in the capacitive sensor 1. In addition to optimizing the stress balance of the entire device, the temperature characteristics can also be improved.

また、この貫通孔24を絶縁層21に設け、同じように電極部23を形成して、半導体層2の裏面より固定電極6の電位を取り出すようにしてもよい。   Alternatively, the through hole 24 may be provided in the insulating layer 21 and the electrode portion 23 may be formed in the same manner so that the potential of the fixed electrode 6 is taken out from the back surface of the semiconductor layer 2.

図1に示すように、ストッパ部7は、可動電極5の動作により、可動電極5と固定電極6とが衝突して損傷することを防止するために設けられている。ストッパ部7は、可動電極5と対向する面に突起7aを設けることで衝突による影響を最小限に抑制している。なお、ストッパ部7は、可動電極5、固定電極6と電気的に絶縁されている。   As shown in FIG. 1, the stopper portion 7 is provided to prevent the movable electrode 5 and the fixed electrode 6 from colliding and being damaged by the operation of the movable electrode 5. The stopper portion 7 is provided with a protrusion 7 a on the surface facing the movable electrode 5, thereby minimizing the influence of the collision. The stopper portion 7 is electrically insulated from the movable electrode 5 and the fixed electrode 6.

[可動電極5の構成]
続いて、図3に示す静電容量式センサ1の検出部8を中心に可動電極5、固定電極6を拡大した平面図を用いて、可動電極5の詳細な構成について説明をする。
[Configuration of movable electrode 5]
Next, a detailed configuration of the movable electrode 5 will be described using a plan view in which the movable electrode 5 and the fixed electrode 6 are enlarged with the detection unit 8 of the capacitive sensor 1 shown in FIG. 3 as the center.

図3に示すように、検出部8は、可動電極5の検出可動電極5aと、固定電極6の検出固定電極6aとの間の間隙10を検知ギャップ(電極ギャップ)として検出可動電極5a、検出固定電極6a間の静電容量を検出する。検出可動電極5aと検出固定電極6aとは、加速度の検出方向である主軸方向と垂直に、互いに平行となるように対向配置されている。   As shown in FIG. 3, the detection unit 8 detects the detection movable electrode 5a and the detection using the gap 10 between the detection movable electrode 5a of the movable electrode 5 and the detection fixed electrode 6a of the fixed electrode 6 as a detection gap (electrode gap). The capacitance between the fixed electrodes 6a is detected. The detection movable electrode 5a and the detection fixed electrode 6a are arranged to face each other so as to be parallel to each other perpendicular to the main axis direction, which is the acceleration detection direction.

また、可動電極5は、検出可動電極5aと検出固定電極6aとの検知ギャップを介した対向配置関係を保ちながら固定電極6の周囲を囲む構造を有している。   Moreover, the movable electrode 5 has a structure surrounding the periphery of the fixed electrode 6 while maintaining the opposing arrangement relationship through the detection gap between the detection movable electrode 5a and the detection fixed electrode 6a.

このように、可動電極5で固定電極6の周囲を囲むようにすると、図3に示すように、可動電極5の検出可動電極5aを固定電極6の検出固定電極6aよりも長手方向に常に長くすることができる。   When the movable electrode 5 surrounds the periphery of the fixed electrode 6 as described above, the detection movable electrode 5a of the movable electrode 5 is always longer in the longitudinal direction than the detection fixed electrode 6a of the fixed electrode 6, as shown in FIG. can do.

これにより、加速度の検出方向である主軸方向と垂直な他軸方向である検出固定電極6aの長手方向へと可動電極5が変位したとしても、検出固定電極6aの対向面6sが、検出可動電極5aの対向面5sと、対向面積を変えることなく対向関係を保つため、他軸方向の静電容量の変化を検出することがない。つまり、本発明の実施の形態として示す静電容量式センサ1は、可動電極5に変位の自由度を与えながら、他軸方向の検出感度を抑制することができる構成となっている。   Thereby, even if the movable electrode 5 is displaced in the longitudinal direction of the detection fixed electrode 6a which is the other axis direction perpendicular to the main axis direction which is the acceleration detection direction, the opposing surface 6s of the detection fixed electrode 6a becomes the detection movable electrode. Since the facing relationship with the facing surface 5s of 5a is maintained without changing the facing area, a change in capacitance in the direction of the other axis is not detected. That is, the capacitive sensor 1 shown as an embodiment of the present invention is configured to be able to suppress detection sensitivity in the other axis direction while giving the movable electrode 5 a degree of freedom of displacement.

したがって、検出部8は、他軸方向の検出感度を大幅に低減することができ、常に主軸方向の加速度を良好に検出することができる。これにより、静電容量式センサ1は、誤動作することなく目的とする検出方向に発生する加速度を確実に検出することができる。   Therefore, the detection unit 8 can greatly reduce the detection sensitivity in the other axis direction, and can always detect the acceleration in the main axis direction well. Thereby, the capacitive sensor 1 can reliably detect the acceleration generated in the target detection direction without malfunctioning.

また、固定電極6の周囲を可動電極5で囲むことで、可動電極5の近傍に、当該可動電極5と同電位とするビーム部4を形成できるため、ビーム部4間に発生する寄生容量を抑制できる。これにより、静電容量式センサ1の信頼性を向上させることができる。   In addition, by surrounding the fixed electrode 6 with the movable electrode 5, the beam part 4 having the same potential as the movable electrode 5 can be formed in the vicinity of the movable electrode 5, so that the parasitic capacitance generated between the beam parts 4 is reduced. Can be suppressed. Thereby, the reliability of the capacitive sensor 1 can be improved.

なお、可動電極5が有する固定電極6の周囲を囲む構造は、必ずしも閉じていなくてもよく、可動電極5の動作によるたわみなどを考慮して、可動電極5の動作によって対向面積に変化を与えないような、例えば、結合部5cの一部を開放するように形成してもよい。但し、このように、固定電極6の周囲を略囲む構造とした場合よりも、図1、図3に示すように固定電極6の周囲を完全に囲む構造とした場合の方が、可動電極5の強度を高くできるという利点がある。   Note that the structure surrounding the fixed electrode 6 included in the movable electrode 5 does not necessarily have to be closed. In consideration of the deflection due to the operation of the movable electrode 5, the opposing area is changed by the operation of the movable electrode 5. For example, you may form so that a part of coupling | bond part 5c may be open | released. However, the movable electrode 5 has a structure in which the periphery of the fixed electrode 6 is completely surrounded as shown in FIGS. 1 and 3 rather than the structure in which the periphery of the fixed electrode 6 is substantially surrounded. There is an advantage that the strength of can be increased.

[検知ギャップの位置]
また、検出可動電極5a、検出固定電極6a間の間隙10である検知ギャップの位置は、可動電極5の中心よりできるだけ離れた位置(最大限離れた位置)に設けるようにする。
[Detection gap position]
In addition, the position of the detection gap, which is the gap 10 between the detection movable electrode 5a and the detection fixed electrode 6a, is provided at a position as far as possible from the center of the movable electrode 5 (a position farthest away).

上述したように、静電容量式センサ1は、他軸方向の加速度をほとんど検出することがなく、主軸方向の加速度を良好に検出できることが保証されているため、静電容量式センサ1のサイズで規定される範囲内で検知ギャップの位置を可動電極5の中心よりできるだけ離れた位置に設けることで、検出固定電極6aの長手方向の距離L1を最大とし、検出可動電極5a、検出固定電極6aの対向する対向面5s、対向面6sの面積を最大限確保することができる。   As described above, since the capacitance type sensor 1 hardly detects acceleration in the other axis direction, and it is guaranteed that the acceleration in the main axis direction can be detected satisfactorily, the size of the capacitance type sensor 1 is guaranteed. The distance L1 in the longitudinal direction of the detection fixed electrode 6a is maximized, and the detection movable electrode 5a and the detection fixed electrode 6a are provided at a position as far as possible from the center of the movable electrode 5 within the range defined by The opposing areas 5s and 6s facing each other can be maximized.

本発明の実施の形態として示す静電容量式センサ1のように可動電極5を正方形状とし、検出可動電極5aを正方形の各辺とすると、静電容量式センサ1のサイズで規定される範囲内で正方形を拡大すれば、必然的に検知ギャップの位置を可動電極5の中心より最大限離れた位置とすることができる。   A range defined by the size of the capacitive sensor 1 when the movable electrode 5 is square and the detection movable electrode 5a is each square side as in the capacitive sensor 1 shown as an embodiment of the present invention. If the square is enlarged, the position of the detection gap can be inevitably set farthest from the center of the movable electrode 5.

このように、対向面積を広げると主軸方向の静電容量を検出する際の感度を向上させることができるため、可動電極5の変位量が小さい場合であっても対応する加速度を確実に検出することができる。   Thus, since the sensitivity at the time of detecting the electrostatic capacitance in the principal axis direction can be improved by increasing the facing area, the corresponding acceleration is reliably detected even when the displacement amount of the movable electrode 5 is small. be able to.

また、静電容量をC、対向面積をS、検知ギャップ間の距離をd、誘電率をεとした場合の静電容量Cの基本式である“C=εS/d ”からも分かるように、反比例の関係にあることから非直線性を示す静電容量Cと検知ギャップ間の距離dとの関係を、可動電極5の変位量が小さくても十分な感度がある場合には直線的に捉えて処理することができるため、極めて単純なアルゴリズムで加速度の検出処理を実行することができる。   Further, as can be seen from “C = εS / d” which is a basic expression of the capacitance C when the capacitance is C, the facing area is S, the distance between the detection gaps is d, and the dielectric constant is ε. Since the relationship is inversely proportional, the relationship between the non-linear capacitance C and the distance d between the detection gaps is linear if there is sufficient sensitivity even if the displacement of the movable electrode 5 is small. Since it can be captured and processed, the acceleration detection process can be executed with a very simple algorithm.

[検出可動電極5a、検出固定電極6aの別な形状]
また、検出可動電極5a、検出固定電極6aを、図5に示すように、それぞれ櫛歯状とし、櫛歯状とした各検出可動電極5aと、櫛歯状とした各検出固定電極6aとをそれぞれ1対1で相互に間隙10を介して対向配置させるようにしてもよい。
[Another shape of detection movable electrode 5a and detection fixed electrode 6a]
Further, as shown in FIG. 5, each of the detection movable electrode 5a and the detection fixed electrode 6a is comb-shaped, and each detection movable electrode 5a is comb-shaped and each detection fixed electrode 6a is comb-shaped. You may make it arrange | position with a gap | interval 10 mutually by 1 to 1, respectively.

図5に示すように、固定電極6には、その中央部6bから左右に、検出可動電極5aと平行になるように細長く伸びる帯状の検出固定電極6aを形成する。検出固定電極6aは、所定のピッチで、互いに平行となるように櫛歯状に複数形成される。   As shown in FIG. 5, the fixed electrode 6 is formed with a band-shaped detection fixed electrode 6a extending from the central portion 6b to the left and right so as to be parallel to the detection movable electrode 5a. A plurality of detection fixed electrodes 6a are formed in a comb shape so as to be parallel to each other at a predetermined pitch.

一方、可動電極5には、正方形をなす可動電極5の1辺を形成する検出可動電極5a以外に、固定電極6の中央部6bに向けて、検出固定電極6aと平行に細長く伸びる帯状の検出可動電極5aを形成する。検出可動電極5aは、上述した櫛歯状の複数の検出固定電極6aの間に、検出固定電極6aと1対1で平行に対向するように、所定のピッチ(例えば、検出固定電極6aと同一のピッチ)で櫛歯状に複数形成される。   On the other hand, in addition to the detection movable electrode 5a that forms one side of the square movable electrode 5, the movable electrode 5 has a strip-like detection that extends in the direction parallel to the detection fixed electrode 6a toward the central portion 6b of the fixed electrode 6. The movable electrode 5a is formed. The detection movable electrode 5a has a predetermined pitch (for example, the same as the detection fixed electrode 6a) so as to face the detection fixed electrode 6a in a one-to-one parallel relationship between the plurality of comb-shaped detection fixed electrodes 6a. Are formed in a comb-teeth shape.

このように、櫛歯状の検出固定電極6aは、固定電極6の中央部6bの左右方向に対称に形成されているため、他軸方向の加速度に対して対向面積の増減がキャンセルされることになる。したがって、静電容量式センサ1は、上述したように他軸方向の加速度をほとんど検出することなく、主軸方向の加速度を良好に検出できることを保証しながら、検出可動電極5aと検出固定電極6aとの対向面積を増加するため主軸方向の静電容量を検出する際の感度を向上させることができる。   Thus, since the comb-shaped detection fixed electrode 6a is formed symmetrically in the left-right direction of the central portion 6b of the fixed electrode 6, the increase or decrease in the facing area is canceled with respect to the acceleration in the other axis direction. become. Therefore, the capacitive sensor 1 can detect the acceleration in the main axis direction with little detection of the acceleration in the other axis direction as described above, while ensuring that the acceleration in the main axis direction can be satisfactorily detected. Therefore, the sensitivity when detecting the electrostatic capacitance in the main axis direction can be improved.

また、上述したように、可動電極5の変位量が小さくても十分な感度がある場合には、非直線性を示す静電容量と検知ギャップ間の距離との関係を、直線的に捉えて処理することができるため、極めて単純なアルゴリズムで加速度の検出処理を実行することができる。   Further, as described above, if there is sufficient sensitivity even when the displacement amount of the movable electrode 5 is small, the relationship between the non-linear capacitance and the distance between the detection gaps can be grasped linearly. Therefore, the acceleration detection process can be executed with a very simple algorithm.

[結合部5cの構成]
可動電極5において、検出可動電極5aと中心部5bとを結合する部材である結合部5cには、例えば、図3に示すように角部5dが形成されている。このように、角部5dがあると、応力集中により結合部5cの強度が低下してしまう虞がある。
[Configuration of Coupling Unit 5c]
In the movable electrode 5, for example, a corner 5 d is formed in the coupling portion 5 c that is a member coupling the detection movable electrode 5 a and the central portion 5 b as shown in FIG. 3. As described above, when the corner portion 5d is present, the strength of the coupling portion 5c may be reduced due to stress concentration.

また、静電容量式センサ1を、半導体層2の厚み30μm以上にした、いわゆるバルクマイクロマシニング技術により形成すると、質量要素(マス)である可動電極5が重くなり、加速度に対する可動電極5の変位量が大きくなるため、固定電極6に衝突してしまった際の衝撃が大きくなってしまう。したがって、このような角部5dが存在すると、角部5dにおいて、可動電極5が破損してしまう可能性が非常に高くなってしまう。可動電極5が破損した場合、質量要素のバランスが崩れてしまうため加速度を良好に検出することができなくなってしまう。   When the capacitive sensor 1 is formed by a so-called bulk micromachining technique in which the thickness of the semiconductor layer 2 is 30 μm or more, the movable electrode 5 that is a mass element becomes heavy, and the displacement of the movable electrode 5 with respect to acceleration is increased. Since the amount becomes large, the impact when it collides with the fixed electrode 6 becomes large. Therefore, when such a corner portion 5d exists, the possibility that the movable electrode 5 is damaged at the corner portion 5d becomes very high. If the movable electrode 5 is damaged, the balance of the mass elements is lost, so that the acceleration cannot be detected satisfactorily.

そこで、図6に示すような、角部5dといった、結合部5cに存在する凹凸を平坦化してストレートにする。これにより、応力集中による強度の低下を回避するとともに、可動電極5の破損の可能性も大幅に低減させることができる。   Therefore, as shown in FIG. 6, the unevenness existing in the coupling portion 5c, such as the corner portion 5d, is flattened and straightened. As a result, a decrease in strength due to stress concentration can be avoided, and the possibility of damage to the movable electrode 5 can be greatly reduced.

また、静電容量式センサ1を上述したようなバルクマイクロマシニング技術ではなく、半導体層2の厚みを30μmよりも薄くした表面マイクロマシニング技術により形成した場合には、半導体層2の上下の層である絶縁層20,21に可動電極5が衝突してしまう可能性が高い。このような場合、角部5dが結合部5cに存在すると、可動電極5の厚みの薄さから角部5dに応力が集中し可動電極5が破損してしまう可能性が高い。   In addition, when the capacitive sensor 1 is formed not by the bulk micromachining technology as described above but by the surface micromachining technology in which the thickness of the semiconductor layer 2 is made thinner than 30 μm, the upper and lower layers of the semiconductor layer 2 are used. There is a high possibility that the movable electrode 5 will collide with certain insulating layers 20 and 21. In such a case, if the corner portion 5d exists in the coupling portion 5c, stress is concentrated on the corner portion 5d due to the thin thickness of the movable electrode 5 and the movable electrode 5 is likely to be damaged.

したがって、バルクマイクロマシニング技術により静電容量式センサ1を形成した場合ばかりではなく、表面マイクロマシング技術により静電容量式センサ1を形成した場合においても、角部5dといった結合部5cに存在する凹凸を、平坦化してストレートにすることで、可動電極5の破損を回避することができる。   Therefore, not only when the capacitive sensor 1 is formed by the bulk micromachining technique, but also when the capacitive sensor 1 is formed by the surface micromachining technique, the unevenness present in the coupling portion 5c such as the corner 5d. By flattening and straightening, it is possible to avoid damage to the movable electrode 5.

なお、本発明の実施の形態として示す静電容量式センサ1は、X軸方向、Y軸方向といった互いに垂直な2軸方向の加速度を検出するように構成しているが、本発明は、これに限定されるものではなく、1軸方向の加速度を検出するセンサ、2軸以上の加速度を検出するセンサにも適用することができる。   The capacitance type sensor 1 shown as the embodiment of the present invention is configured to detect accelerations in two axis directions perpendicular to each other such as the X axis direction and the Y axis direction. However, the present invention can be applied to a sensor that detects acceleration in one axis direction and a sensor that detects acceleration in two or more axes.

また、本発明の実施の形態として示す静電容量式センサ1は、加速度を検出するが、本発明は、これに限定されるものではなく、静電容量方式のセンサであればどのような物理量を検出するものにも適用することができる。   Moreover, although the capacitance type sensor 1 shown as embodiment of this invention detects an acceleration, this invention is not limited to this, What kind of physical quantity will be if it is a capacitance type sensor? It is applicable also to what detects.

なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実施の形態に限定されることはなく、この実施の形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。   The above-described embodiment is an example of the present invention. For this reason, the present invention is not limited to the above-described embodiment, and according to the design or the like, as long as the technical idea according to the present invention is not deviated from other embodiments. Of course, various modifications are possible.

本発明の実施の形態として示す静電容量式センサの半導体層の構成について示す図である。It is a figure shown about the structure of the semiconductor layer of the electrostatic capacitance type sensor shown as embodiment of this invention. 前記静電容量式センサを図1に示すE−E線で切断した様子について説明するための図である。It is a figure for demonstrating a mode that the said electrostatic capacitance type sensor was cut | disconnected by the EE line | wire shown in FIG. 前記静電容量式センサの可動電極、固定電極の構成について説明するための図である。It is a figure for demonstrating the structure of the movable electrode of the said electrostatic capacitance type sensor, and a fixed electrode. 前記静電容量式センサの検知ギャップの位置について説明するための図である。It is a figure for demonstrating the position of the detection gap of the said electrostatic capacitance type sensor. 前記静電容量式センサの検出可動電極と検出固定電極の別な構成について説明するための図である。It is a figure for demonstrating another structure of the detection movable electrode and detection fixed electrode of the said electrostatic capacitance type sensor. 前記静電容量式センサの可動電極が備える結合部を平坦化した様子を示した図である。It is the figure which showed a mode that the coupling | bond part with which the movable electrode of the said capacitance-type sensor was equipped was planarized.

符号の説明Explanation of symbols

1 静電容量式センサ
2 半導体層
3 フレーム部
4 ビーム部
5 可動電極
5a 検出可動電極
5c 結合部
5d 角部
5s 対向面
6 固定電極
6a 検出固定電極
6b 中央部
6s 対向面
8 検出部
10 間隙
20 絶縁層
23 電極部
24 貫通孔
DESCRIPTION OF SYMBOLS 1 Capacitance type sensor 2 Semiconductor layer 3 Frame part 4 Beam part 5 Movable electrode 5a Detection movable electrode 5c Coupling part 5d Corner | angular part 5s Opposing surface 6 Fixed electrode 6a Detection fixed electrode 6b Center part 6s Opposing surface 8 Detection part 10 Gap 20 Insulating layer 23 Electrode 24 Through hole

Claims (3)

物理量の変位に応じて動作する可動電極と、固定電極とを相互に間隙を介して対向配置し、前記固定電極と前記可動電極との間隙の大きさに応じて検出される静電容量に基づき前記物理量を検出する静電容量式センサにおいて、
前記可動電極は、前記固定電極との前記間隙を介した対向配置関係を保ちながら前記固定電極の周囲を囲むとともに、当該可動電極の動作を受け止めるストッパ部を囲む構造を有しており、
前記可動電極の中心から最大限離れた前記可動電極の端部と平行に、前記固定電極を前記間隙を介して対向配置させるとともに、前記可動電極を正方形状とし、正方形状とした前記可動電極の1辺に対して、前記固定電極を内側から平行に対向配置させており、
前記可動電極は、正方形状とした可動電極中央部と、当該可動電極中央部の外側を囲う正方形状の検出可動電極と、前記可動電極中央部の4隅から対角線上にそれぞれ伸びて前記検出可動電極の4隅を結合する4つの結合部と、を有し、
前記固定電極は、前記検出可動電極の内側に沿って延びる検出固定電極と、当該検出固定電極の中央部から前記可動電極の中心に向けて突出する突出部を有したT字状に形成されており、
前記ストッパ部を、前記突出部の両脇に配置するとともに、当該ストッパ部の前記可動電極中央部の対向面に凸状の突起を設け、前記物理量が入力された際に前記突起で前記可動電極中央部を受け止めるようにしたことを特徴とする静電容量式センサ。
  A movable electrode that operates in accordance with a displacement of a physical quantity and a fixed electrode are arranged to face each other via a gap, and based on a capacitance that is detected according to the size of the gap between the fixed electrode and the movable electrode. In the capacitive sensor that detects the physical quantity,
  The movable electrode has a structure that surrounds the periphery of the fixed electrode while maintaining an opposing arrangement relationship with the fixed electrode through the gap, and surrounds a stopper portion that receives the operation of the movable electrode.And
The fixed electrode is disposed opposite to the movable electrode in parallel with the end of the movable electrode farthest from the center of the movable electrode through the gap.WithThe movable electrode is formed in a square shape, and the fixed electrode is arranged in parallel to face from one side of the square-shaped movable electrode.And
The movable electrode has a square movable electrode central portion;A square shape that surrounds the center of the movable electrodeA detection movable electrode;Four coupling portions extending diagonally from the four corners of the movable electrode central portion to couple the four corners of the detection movable electrode;Have
  The fixed electrode is formed in a T shape having a detection fixed electrode extending along the inner side of the detection movable electrode, and a protrusion protruding from the center of the detection fixed electrode toward the center of the movable electrode. And
  Place the stopper on both sides of the protrusionIn addition, a convex protrusion is provided on the opposing surface of the movable electrode central portion of the stopper portion, and the protrusion is formed when the physical quantity is input.A capacitance type sensor characterized by receiving the central portion of the movable electrode.
前記固定電極を櫛歯状の複数の検出固定電極とし、
前記可動電極に、前記複数の検出固定電極とそれぞれ相互に間隙を介して対向配置する櫛歯状の複数の検出可動電極を設けること
を特徴とする請求項に記載の静電容量式センサ。
The fixed electrode is a plurality of comb-shaped detection fixed electrodes,
The capacitive sensor according to claim 1 , wherein the movable electrode is provided with a plurality of comb-like detection movable electrodes that are arranged to face each other with a gap between the plurality of detection fixed electrodes.
前記固定電極と前記可動電極とが形成された半導体層の表面に接合された絶縁層に貫通孔を設け、
前記貫通孔を介して前記固定電極の電位を前記絶縁層上で取り出すようにしたこと
を特徴とする請求項1または2に記載の静電容量式センサ。
Providing a through hole in an insulating layer bonded to the surface of the semiconductor layer in which the fixed electrode and the movable electrode are formed;
The electrostatic capacity sensor according to claim 1 or 2 , wherein a potential of the fixed electrode is taken out on the insulating layer through the through hole.
JP2006089217A 2006-03-28 2006-03-28 Capacitive sensor Expired - Fee Related JP4595864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089217A JP4595864B2 (en) 2006-03-28 2006-03-28 Capacitive sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089217A JP4595864B2 (en) 2006-03-28 2006-03-28 Capacitive sensor

Publications (2)

Publication Number Publication Date
JP2007263746A JP2007263746A (en) 2007-10-11
JP4595864B2 true JP4595864B2 (en) 2010-12-08

Family

ID=38636883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089217A Expired - Fee Related JP4595864B2 (en) 2006-03-28 2006-03-28 Capacitive sensor

Country Status (1)

Country Link
JP (1) JP4595864B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189557A (en) * 1995-12-27 1997-07-22 Samsung Electron Co Ltd Microgyroscope
JPH11173851A (en) * 1997-12-08 1999-07-02 Murata Mfg Co Ltd Angular velocity sensor
JP2002340926A (en) * 2001-05-14 2002-11-27 Aisin Seiki Co Ltd Acceleration sensor
JP2003166999A (en) * 2001-12-03 2003-06-13 Denso Corp Semiconductor dynamical quantity sensor
JP2005083872A (en) * 2003-09-08 2005-03-31 Fuji Photo Film Co Ltd Display
JP2005083972A (en) * 2003-09-10 2005-03-31 Matsushita Electric Works Ltd Capacitance type sensor and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189557A (en) * 1995-12-27 1997-07-22 Samsung Electron Co Ltd Microgyroscope
JPH11173851A (en) * 1997-12-08 1999-07-02 Murata Mfg Co Ltd Angular velocity sensor
JP2002340926A (en) * 2001-05-14 2002-11-27 Aisin Seiki Co Ltd Acceleration sensor
JP2003166999A (en) * 2001-12-03 2003-06-13 Denso Corp Semiconductor dynamical quantity sensor
JP2005083872A (en) * 2003-09-08 2005-03-31 Fuji Photo Film Co Ltd Display
JP2005083972A (en) * 2003-09-10 2005-03-31 Matsushita Electric Works Ltd Capacitance type sensor and its manufacturing method

Also Published As

Publication number Publication date
JP2007263746A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP2007298405A (en) Electrostatic capacity type sensor
JP4605087B2 (en) Capacitive sensor
JP5606523B2 (en) Micromachine structure
JP5315350B2 (en) MEMS sensor
KR20060051363A (en) Capacitance type physical quantity sensor having sensor chip and circuit chip
US7216541B2 (en) Capacitive sensor for dynamical quantity
JPH09127151A (en) Acceleration sensor
JP6260063B2 (en) Parallel plate capacitor and acceleration sensor including the same
JP2012163507A (en) Acceleration sensor
JP2008275325A (en) Sensor device
JP4595864B2 (en) Capacitive sensor
CN102507981B (en) Single-sensitive-mass-element silicon micro-two-dimensional acceleration transducer with coupled beam structure
JP4600344B2 (en) Capacitive sensor
US20220144623A1 (en) Micromechanical sensor element
JP6354603B2 (en) Acceleration sensor and acceleration sensor mounting structure
JP2013024765A (en) Capacitance type sensor
JP4775412B2 (en) Semiconductor physical quantity sensor
JP4793050B2 (en) Capacitive sensor
JP2014178218A (en) Semiconductor physical quantity sensor
JP2013217844A (en) Microelectromechanical system (mems) device
JP2008292428A (en) Semiconductor sensor
JP5285540B2 (en) Capacitive sensor
JP2010216842A (en) Dynamic quantity detection sensor
JP5783201B2 (en) Capacitive physical quantity sensor
JP2013228243A (en) Capacitance sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees