JP2005083972A - Capacitance type sensor and its manufacturing method - Google Patents

Capacitance type sensor and its manufacturing method Download PDF

Info

Publication number
JP2005083972A
JP2005083972A JP2003318264A JP2003318264A JP2005083972A JP 2005083972 A JP2005083972 A JP 2005083972A JP 2003318264 A JP2003318264 A JP 2003318264A JP 2003318264 A JP2003318264 A JP 2003318264A JP 2005083972 A JP2005083972 A JP 2005083972A
Authority
JP
Japan
Prior art keywords
mass
electrode
sensor according
fixed electrode
capacitive sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003318264A
Other languages
Japanese (ja)
Other versions
JP4436096B2 (en
Inventor
Hidekazu Furukubo
英一 古久保
Koji Sakai
浩司 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003318264A priority Critical patent/JP4436096B2/en
Publication of JP2005083972A publication Critical patent/JP2005083972A/en
Application granted granted Critical
Publication of JP4436096B2 publication Critical patent/JP4436096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitance type sensor and its manufacturing method which enhance detection sensitivity of a physical quantity without enlarging the size of the whole sensor. <P>SOLUTION: A beam part 4 is formed in a thin belt shape having the narrow width, and the other end part thereof is connected to an inside corner part of a frame part 2 on a position reached by making approximately three-quarter round of a box part 3 through a clearance between an electrode support part 7 of fixed electrodes 6X, 6Y and the frame part 2. Since a portion excepting both end parts of the beam part 4 is arranged between the fixed electrodes 6X, 6Y disposed around the box part 3 and the frame part 2, the length dimension of the beam part 4 is elongated and the displacement of the box part 3 is enlarged without enlarging the dimension of the whole acceleration sensor 1, to thereby enhance the detection sensitivity of the physical quantity (acceleration). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固定電極と可動電極の間の静電容量から加速度や角速度を検出する静電容量式センサおよびその製造方法に関するものである。   The present invention relates to a capacitance type sensor that detects acceleration and angular velocity from capacitance between a fixed electrode and a movable electrode, and a method for manufacturing the same.

従来より、固定電極と、固定電極に対向する可動電極と、可動電極を支持し且つ物理量によって変位するマス部と、撓み自在に形成されて一端部でマス部と連結される1乃至複数のビーム部と、固定電極、可動電極、マス部およびビーム部を囲む枠状に形成されてビーム部の他端部が連結されるフレーム部とが半導体基板を加工して形成される静電容量式センサが種々提案されている(例えば、特許文献1参照)。   Conventionally, a fixed electrode, a movable electrode opposed to the fixed electrode, a mass portion that supports the movable electrode and is displaced by a physical quantity, and one or more beams that are flexibly formed and are connected to the mass portion at one end. Sensor that is formed by processing a semiconductor substrate, and a frame portion that is formed in a frame shape surrounding the fixed electrode, the movable electrode, the mass portion, and the beam portion and to which the other end portion of the beam portion is connected Have been proposed (see, for example, Patent Document 1).

図12は従来の静電容量式加速度センサの平面図である。矩形枠状に形成されたフレーム部30の内側にマス部31、ビーム部32、固定電極33並びに可動電極34が配置されている。マス部31は大略四角形状であって、その四辺にそれぞれ可動電極34が櫛歯状に形成されている。ビーム部32は幅細で葛折れ形に形成され、一端部がフレーム部30の内側角部に連結されるとともに、他端部がマス部31の四隅に連結されて撓み自在にマス部31を支持している。また、固定電極33も櫛歯状に形成され、マス部31の各辺とフレーム部30との間に配置されて各可動電極34と互い違いに並んで対向している。   FIG. 12 is a plan view of a conventional capacitive acceleration sensor. A mass portion 31, a beam portion 32, a fixed electrode 33, and a movable electrode 34 are arranged inside a frame portion 30 formed in a rectangular frame shape. The mass portion 31 has a substantially quadrangular shape, and movable electrodes 34 are formed in a comb shape on each of the four sides. The beam portion 32 is narrow and formed in a bent shape, and one end portion is connected to the inner corner portion of the frame portion 30 and the other end portion is connected to the four corners of the mass portion 31 so that the mass portion 31 can be bent freely. I support it. Further, the fixed electrode 33 is also formed in a comb-like shape, and is disposed between each side of the mass portion 31 and the frame portion 30 and alternately faces each movable electrode 34.

而して、加速度が印加されるとマス部31が変位して可動電極34と固定電極33の間のギャップが変化することから、固定電極33と可動電極34の間の静電容量も変化し、その容量変化を図示しない外部回路で測定するにより加速度の印加方向およびその大きさが検出できる。尚、このような構造の加速度センサは、一般にシリコンなどの半導体基板をエッチング等の半導体微細加工技術により加工することで形成される。
特許第3327595号公報
Thus, when acceleration is applied, the mass portion 31 is displaced and the gap between the movable electrode 34 and the fixed electrode 33 changes, so that the capacitance between the fixed electrode 33 and the movable electrode 34 also changes. By measuring the change in capacitance with an external circuit (not shown), the direction and magnitude of acceleration can be detected. The acceleration sensor having such a structure is generally formed by processing a semiconductor substrate such as silicon by a semiconductor fine processing technique such as etching.
Japanese Patent No. 3327595

ところで、静電容量式センサで物理量(上記従来例であれば、加速度)の検出感度を高くするには、物理量に対するマス部の変位量を大きくすればよい。しかしながら、上記従来例では4つのビーム部32がそれぞれマス部31の四隅と、当該四隅に対向するフレーム部30の内側角部との間に配置された構成であるため、葛折れ形としても十分な長さを確保することが困難であり、センサ全体の寸法を大きくせずにマス部31の変位量を大きくするには限界があった。   By the way, in order to increase the detection sensitivity of a physical quantity (acceleration in the case of the above-described conventional example) with an electrostatic capacitance sensor, the displacement amount of the mass portion relative to the physical quantity may be increased. However, in the above conventional example, the four beam portions 32 are arranged between the four corners of the mass portion 31 and the inner corner portion of the frame portion 30 facing the four corners. It is difficult to ensure a sufficient length, and there is a limit to increasing the displacement of the mass portion 31 without increasing the overall dimensions of the sensor.

本発明は上記事情に鑑みて為されたものであり、その目的は、センサ全体の寸法を大きくしなくても物理量の検出感度を高めることが可能な静電容量式センサおよびその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a capacitance type sensor capable of increasing the detection sensitivity of a physical quantity without increasing the overall size of the sensor and a method for manufacturing the same. There is to do.

請求項1の発明は、上記目的を達成するために、加速度や角速度のような物理量を可動電極と固定電極の間の静電容量によって検出する静電容量式センサであって、固定電極と、固定電極に対向する可動電極と、可動電極を支持し且つ物理量によって変位するマス部と、撓み自在に形成されて一端部でマス部と連結され且つ他端部が固定される1乃至複数のビーム部とが半導体基板を加工して形成される静電容量式センサにおいて、ビーム部の両端部を除く部位の少なくとも一部が、固定電極に対してマス部と反対側に配置されたことを特徴とする。   In order to achieve the above object, the invention of claim 1 is a capacitance type sensor that detects a physical quantity such as acceleration or angular velocity by a capacitance between the movable electrode and the fixed electrode, the fixed electrode; A movable electrode that faces the fixed electrode, a mass portion that supports the movable electrode and is displaced by a physical quantity, and one or a plurality of beams that are formed so as to be flexible and are connected to the mass portion at one end and fixed at the other end. In a capacitive sensor formed by processing a semiconductor substrate, at least a part of a portion excluding both ends of the beam portion is disposed on the opposite side to the mass portion with respect to the fixed electrode. And

この発明によれば、センサ全体の寸法を大きくせずにビーム部の長さ寸法を伸ばしてマス部の変位量を大きくすることができ、物理量の検出感度を高めることが可能な静電容量式センサが提供できる。   According to this invention, it is possible to increase the displacement of the mass part by increasing the length of the beam part without increasing the overall dimension of the sensor, and it is possible to increase the detection sensitivity of the physical quantity. A sensor can be provided.

請求項2の発明は、請求項1の発明において、ビーム部は、マス部および固定電極の回りを周回する形状に形成されたことを特徴とする。   The invention of claim 2 is characterized in that, in the invention of claim 1, the beam portion is formed in a shape that circulates around the mass portion and the fixed electrode.

この発明によれば、ビーム部の長さ寸法をさらに伸ばして物理量の検出感度を一層高めることができる。   According to the present invention, it is possible to further increase the physical dimension detection sensitivity by further extending the length of the beam portion.

請求項3の発明は、請求項1又は2の発明において、マス部は、周縁から中央に向かう溝が設けられ、ビーム部は、溝の中央側の端部でマス部と連結されて一部が溝内に配置されることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the mass portion is provided with a groove from the peripheral edge toward the center, and the beam portion is connected to the mass portion at an end portion on the center side of the groove. Is arranged in the groove.

この発明によれば、ビーム部の長さ寸法をさらに伸ばして物理量の検出感度を一層高めることができる。   According to the present invention, it is possible to further increase the physical dimension detection sensitivity by further extending the length of the beam portion.

請求項4の発明は、請求項1又は2又は3の発明において、2つのビーム部を備えたことを特徴とする。   The invention of claim 4 is characterized in that in the invention of claim 1, 2 or 3, two beam portions are provided.

この発明によれば、4つのビーム部を備える場合に比較してマス部の変位量が大きくなり物理量の検出感度が高くなる。   According to the present invention, the displacement amount of the mass portion is increased and the detection sensitivity of the physical quantity is increased as compared with the case where four beam portions are provided.

請求項5の発明は、請求項1又は2又は3の発明において、4つのビーム部を備えたことを特徴とする。   The invention of claim 5 is characterized in that, in the invention of claim 1, 2 or 3, four beam portions are provided.

この発明によれば、2つのビーム部を備える場合に比較して振動に対するマス部の安定性が増し、検出精度が向上する。   According to the present invention, the stability of the mass portion with respect to vibration is increased and the detection accuracy is improved as compared with the case where two beam portions are provided.

請求項6の発明は、請求項1〜5の発明において、ビーム部の撓み量を規制する規制手段を備えたことを特徴とする。   According to a sixth aspect of the present invention, in the first to fifth aspects of the present invention, there is provided a regulating means for regulating the amount of deflection of the beam portion.

この発明によれば、過大な物理量が印加されたときに規制手段でビーム部の撓み量が規制されてビーム部の破損等が防止できる。   According to this invention, when an excessive physical quantity is applied, the amount of deflection of the beam portion is restricted by the restricting means, and damage to the beam portion can be prevented.

請求項7の発明は、請求項1〜6の何れかの発明において、マス部およびビーム部とともに半導体基板を加工して形成される肉厚部が、ビーム部とビーム部の周囲に設けられる構造物との距離が相対的に大きい部位に配置されることを特徴とする。   A seventh aspect of the present invention is the structure according to any one of the first to sixth aspects, wherein the thick portion formed by processing the semiconductor substrate together with the mass portion and the beam portion is provided around the beam portion and the beam portion. It is characterized by being arranged at a part having a relatively large distance from the object.

この発明によれば、ビーム部とビーム部の周囲に設けられる構造物との距離が大きい部位では、半導体基板を加工(エッチング)する際にビーム部が必要以上にエッチングされてしまう虞があるが、そのような部位に肉厚部を配置することでビーム部が必要以上にエッチングされるのを防ぎ、検出感度にばらつきが生じるのを防止することができる。   According to the present invention, there is a possibility that the beam portion may be etched more than necessary when the semiconductor substrate is processed (etched) at a portion where the distance between the beam portion and the structure provided around the beam portion is large. By arranging the thick part in such a part, it is possible to prevent the beam part from being etched more than necessary, and to prevent the detection sensitivity from varying.

請求項8の発明は、請求項1〜7の何れかの発明において、固定電極と可動電極は、マス部およびビーム部の並び方向と略平行に対向し、当該並び方向と直交する方向におけるマス部の少なくとも片側に可動電極と対向する第2の固定電極が配設されたことを特徴とする。   According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the fixed electrode and the movable electrode face each other substantially in parallel with the arrangement direction of the mass portion and the beam portion, and the mass in a direction orthogonal to the arrangement direction. A second fixed electrode facing the movable electrode is disposed on at least one side of the portion.

この発明によれば、固定電極と可動電極の間の静電容量の変化により3次元直交座標系のx軸およびy軸の各方向の加速度を検出するとともに、第2の固定電極と可動電極の間の静電容量の変化によりz軸方向の加速度も検出することが可能な加速度センサが実現できる。   According to the present invention, acceleration in each direction of the x-axis and y-axis of the three-dimensional orthogonal coordinate system is detected by a change in capacitance between the fixed electrode and the movable electrode, and the second fixed electrode and the movable electrode are detected. An acceleration sensor that can also detect acceleration in the z-axis direction due to a change in capacitance between the two can be realized.

請求項9の発明は、請求項8の発明において、ビーム部は、前記並び方向と直交する方向の厚みがマス部の厚みよりも小さく形成されたことを特徴とする。   A ninth aspect of the invention is characterized in that, in the eighth aspect of the invention, the beam portion is formed such that a thickness in a direction orthogonal to the arrangement direction is smaller than a thickness of the mass portion.

この発明によれば、z軸方向におけるマス部の変位量を増やして当該方向の加速度の検出感度を高めることができる。   According to the present invention, it is possible to increase the amount of displacement of the mass portion in the z-axis direction and increase the detection sensitivity of acceleration in that direction.

請求項10の発明は、請求項1〜9の何れかの発明において、固定電極、可動電極、マス部およびビーム部を囲む枠状に形成されてビーム部の他端部が連結されるフレーム部を備え、該フレーム部は、マス部およびビーム部との並び方向に直交する方向において両側から絶縁体からなる一対の基板に固定され、一方の基板は、1乃至複数の角部が切り欠かれてなる開口部を有し、該開口部を通して外部に露出する位置に固定電極と電気的に接続された電極パッドが設けられたことを特徴とする。   The invention of claim 10 is the frame part according to any one of claims 1 to 9, wherein the frame part is formed in a frame shape surrounding the fixed electrode, the movable electrode, the mass part and the beam part, and the other end part of the beam part is connected. The frame portion is fixed to a pair of substrates made of an insulator from both sides in a direction orthogonal to the arrangement direction of the mass portion and the beam portion, and one substrate has one or more corner portions cut out. An electrode pad electrically connected to the fixed electrode is provided at a position exposed to the outside through the opening.

この発明によれば、一枚のウェハから多数の静電容量式センサを製造する場合に隣接する複数のセンサに跨る形で開口部が配置され、基板の一箇所を切り欠けば複数のセンサの開口部を同時に形成することが可能で製造が容易になる。   According to the present invention, when a large number of capacitive sensors are manufactured from a single wafer, the openings are arranged so as to straddle a plurality of adjacent sensors. The openings can be formed at the same time, which facilitates manufacturing.

請求項11の発明は、請求項10の発明において、前記基板は2つの開口部を有することを特徴とする。   The invention of claim 11 is characterized in that, in the invention of claim 10, the substrate has two openings.

この発明によれば、開口部による基板の強度低下を抑えることができる。   According to this invention, it is possible to suppress a decrease in the strength of the substrate due to the opening.

請求項12の発明は、請求項10又は11の発明において、開口部の輪郭が直線のみで形成されたことを特徴とする。   The invention of claim 12 is characterized in that, in the invention of claim 10 or 11, the outline of the opening is formed only by a straight line.

この発明によれば、開口部の輪郭が曲線で形成される場合に比較して開口部を除く部位の面積を大きくすることができ、製造時において開口部を通して埃等の異物がマス部やビーム部などに付着し難くなる。   According to the present invention, the area of the portion excluding the opening can be increased as compared with the case where the outline of the opening is formed in a curved line, and foreign matters such as dust pass through the opening at the time of manufacture. It becomes difficult to adhere to parts.

請求項13の発明は、請求項1〜12の何れかの発明において、固定電極並びに可動電極が櫛歯状に形成され、ビーム部と固定電極並びに可動電極が半導体基板を反応性イオンエッチングによりエッチングして形成されることを特徴とする。   The invention of claim 13 is the invention according to any one of claims 1 to 12, wherein the fixed electrode and the movable electrode are formed in a comb-like shape, and the beam portion, the fixed electrode and the movable electrode etch the semiconductor substrate by reactive ion etching. It is characterized by being formed.

この発明によれば、固定電極と可動電極の対向面積を拡げることが可能で物理量の検出感度をさらに高めることができる。   According to the present invention, it is possible to increase the facing area between the fixed electrode and the movable electrode, and the physical quantity detection sensitivity can be further increased.

請求項14の発明は、請求項10又は11又は12の静電容量式センサを製造する製造方法であって、複数のセンサブロックがウェハに形成され、該ウェハから個々のセンサブロックを切り出して静電容量式センサを製造する製造方法において、基板を構成する絶縁体に複数の孔を貫設し、該孔がウェハにおいて隣接するセンサブロックの境界に跨るように絶縁体をウェハに接合した後に個々のセンサブロックを絶縁体とともにウェハから切り出すことを特徴とする。   A fourteenth aspect of the invention is a manufacturing method for manufacturing the capacitive sensor according to the tenth, eleventh or twelfth aspect of the invention, wherein a plurality of sensor blocks are formed on a wafer, and individual sensor blocks are cut out from the wafer to statically. In a manufacturing method for manufacturing a capacitive sensor, a plurality of holes are formed in an insulator constituting a substrate, and the insulator is bonded to the wafer so that the holes straddle the boundary of adjacent sensor blocks in the wafer. The sensor block is cut out from the wafer together with the insulator.

この発明によれば、絶縁体の必要箇所のみに開口部を設けることが可能で、しかもウェハから切り出されたセンサブロックにおいては隣接する他のセンサブロックとの境界部分で開口部が開放されているため、開口部を通して電極パッドにワイヤをボンディングする作業が容易に行える。   According to the present invention, it is possible to provide an opening only at a necessary portion of the insulator, and in addition, in the sensor block cut out from the wafer, the opening is opened at a boundary portion with another adjacent sensor block. Therefore, the operation of bonding the wire to the electrode pad through the opening can be easily performed.

本発明によれば、センサ全体の寸法を大きくせずにビーム部の長さ寸法を伸ばしてマス部の変位量を大きくすることができ、物理量の検出感度を高めることが可能な静電容量式センサが提供できるという効果がある。   According to the present invention, it is possible to increase the displacement amount of the mass portion by extending the length of the beam portion without increasing the overall size of the sensor, and to increase the detection sensitivity of the physical quantity. There is an effect that a sensor can be provided.

以下、本発明を静電容量式の半導体加速度センサに適用した実施形態について図面を参照して詳細に説明する。但し、本発明の静電容量式センサは加速度センサに限定されるものではなく、加速度以外にも角速度や圧力等の物理量を検出する静電容量式センサにも本発明の技術思想が適用可能であることはいうまでもない。   Embodiments in which the present invention is applied to a capacitive semiconductor acceleration sensor will be described in detail below with reference to the drawings. However, the capacitive sensor of the present invention is not limited to an acceleration sensor, and the technical idea of the present invention can be applied to a capacitive sensor that detects physical quantities such as angular velocity and pressure in addition to acceleration. Needless to say.

図1は本実施形態の静電容量式半導体加速度センサ(以下、単に「加速度センサ」という)1を示し、同図(a)は平面図、同図(b)は同図(a)におけるA−A線断面矢視図である。フレーム部2は、図1(a)に示すように縦横の寸法がほぼ等しい略正方形の扁平な枠状に形成されている。マス部3は略菱形の扁平な形状に形成され、その四辺にはそれぞれ櫛歯状の可動電極5X,5Yが形成されている。固定電極6X,6Yも可動電極5X,5Yと同様に櫛歯状に形成され、マス部3の各辺とフレーム部2との間に配置されて各可動電極5X,5Yと互い違いに並んで対向している。尚、固定電極6X,6Yは固定電極6X,6Yよりも幅の太い電極支持部7によって支持されている。   FIG. 1 shows a capacitance type semiconductor acceleration sensor (hereinafter simply referred to as “acceleration sensor”) 1 of the present embodiment, where FIG. 1 (a) is a plan view and FIG. 1 (b) is A in FIG. 1 (a). FIG. As shown in FIG. 1 (a), the frame portion 2 is formed in a substantially square flat frame shape having substantially the same vertical and horizontal dimensions. The mass portion 3 is formed in a substantially rhombic flat shape, and comb-like movable electrodes 5X and 5Y are formed on the four sides, respectively. The fixed electrodes 6X and 6Y are also formed in a comb-like shape like the movable electrodes 5X and 5Y, and are arranged between the sides of the mass portion 3 and the frame portion 2 so as to be alternately opposed to the movable electrodes 5X and 5Y. doing. The fixed electrodes 6X and 6Y are supported by an electrode support portion 7 having a width wider than that of the fixed electrodes 6X and 6Y.

マス部3には4つの頂点からそれぞれ中央部に向かって幅細の溝8が設けられており、各溝8の中央側の端部で4つのビーム部4の一端部がそれぞれマス部3と連結されている。各ビーム部4は、溝8よりも幅細の薄い帯状に形成され、溝8の頂点側端部の外で円弧状に湾曲し、固定電極6X,6Yに対してマス部3と反対側(すなわち、固定電極6X,6Yの電極支持部7とフレーム部2の間の隙間)を通ってマス部3の周囲を略4分の3周した位置においてフレーム部2の内側角部に他端部が連結されている。薄い帯状に形成されたビーム部4は少なくともその幅方向に撓み自在であり、フレーム部2の内側で4つのビーム部4によって支持されているマス部3が図1(a)におけるx軸方向並びにy軸方向に変位可能となっている。なお、本実施形態ではビーム部4の端部を固定する構造物として矩形枠状のフレーム部2を備えているが、必ずしもフレーム部2を備える必要はなく、ビーム部4の端部が固定できる構造であれば構わない。   The mass portion 3 is provided with narrow grooves 8 from the four apexes toward the center portion, and one end portion of each of the four beam portions 4 is connected to the mass portion 3 at the center end portion of each groove 8. It is connected. Each beam portion 4 is formed in a thin band shape that is narrower than the groove 8, is curved in an arc shape outside the apex side end portion of the groove 8, and is opposite to the mass portion 3 with respect to the fixed electrodes 6X and 6Y ( That is, the other end portion is formed at the inner corner portion of the frame portion 2 at a position where the periphery of the mass portion 3 passes through the gap between the electrode support portion 7 and the frame portion 2 of the fixed electrodes 6X and 6Y. Are connected. The beam portion 4 formed in a thin belt shape is at least flexible in the width direction, and the mass portion 3 supported by the four beam portions 4 inside the frame portion 2 is arranged in the x-axis direction in FIG. It can be displaced in the y-axis direction. In the present embodiment, the frame portion 2 having a rectangular frame shape is provided as a structure for fixing the end portion of the beam portion 4. However, the frame portion 2 is not necessarily provided, and the end portion of the beam portion 4 can be fixed. Any structure is acceptable.

ここで、マス部3の対向する一対の頂点近傍において可動電極5X,5Yと並行する切り欠き3aが溝8を挟んで対向する位置に設けられ、マス部3が大きく変位したときにマス部3と干渉するストッパ部20が切り欠き3a内に設けられている。すなわち、外部から衝撃が加わったときにストッパ部20が切り欠き3a内においてマス部3と干渉し、マス部3が過度に変位することを防ぐことができる。   Here, a notch 3a parallel to the movable electrodes 5X and 5Y is provided in the vicinity of the pair of apexes of the mass portion 3 facing each other with the groove 8 therebetween, and the mass portion 3 is displaced when the mass portion 3 is largely displaced. Is provided in the notch 3a. That is, when an impact is applied from the outside, it is possible to prevent the stopper portion 20 from interfering with the mass portion 3 in the notch 3a and the mass portion 3 from being excessively displaced.

そして、加速度が印加されることでマス部3がxy平面内で変位し、x軸方向の変位量に応じて固定電極6Xと可動電極5Xの間のギャップが変化して両者間の静電容量も変化し、同じくy軸方向の変位量に応じて固定電極6Yと可動電極5Yの間のギャップが変化して両者間の静電容量も変化するから、これら2つの静電容量の変化の大きさを測定することで印加された加速度の方向とその大きさが検出できるのである。但し、このような加速度の検出原理は従来の静電容量式センサと共通であるから詳細な説明は省略する。   Then, when the acceleration is applied, the mass portion 3 is displaced in the xy plane, and the gap between the fixed electrode 6X and the movable electrode 5X changes according to the amount of displacement in the x-axis direction, and the capacitance between the two is changed. Similarly, the gap between the fixed electrode 6Y and the movable electrode 5Y changes according to the amount of displacement in the y-axis direction, and the capacitance between the two also changes. By measuring the length, the direction and magnitude of the applied acceleration can be detected. However, the principle of acceleration detection is the same as that of a conventional capacitive sensor, and thus detailed description thereof is omitted.

而して本実施形態では、ビーム部4の両端部を除く部位を固定電極6X,6Yに対してマス部3と反対側に配置しているため、加速度センサ1全体の寸法を大きくせずにビーム部4の長さ寸法を伸ばしてマス部3の変位量を大きくすることができ、物理量(加速度)の検出感度を高めることが可能である。また、ビーム部4をマス部3および固定電極6X,6Yの回りを周回する螺旋形状に形成することでその長さ寸法を伸ばしており、このことによってもマス部3の変位量を大きくして加速度の検出感度を高めることができる。さらに、マス部3の周縁から中央に向かう溝8を設け、この溝8の中央側の端部で一端部をマス部3と連結してビーム部4の一部を溝8内に配置しているから、溝8内に配置されている分だけビーム部4の長さ寸法を伸ばすことが可能であり、このことによってもマス部3の変位量を大きくして加速度の検出感度を高めることができる。   Thus, in the present embodiment, since the portions excluding both ends of the beam portion 4 are arranged on the opposite side of the mass portion 3 with respect to the fixed electrodes 6X and 6Y, the size of the entire acceleration sensor 1 is not increased. It is possible to increase the amount of displacement of the mass portion 3 by extending the length of the beam portion 4 and to increase the detection sensitivity of the physical quantity (acceleration). The length of the beam portion 4 is increased by forming the beam portion 4 in a spiral shape that circulates around the mass portion 3 and the fixed electrodes 6X and 6Y. This also increases the amount of displacement of the mass portion 3. Acceleration detection sensitivity can be increased. Further, a groove 8 extending from the peripheral edge of the mass portion 3 toward the center is provided, and one end of the groove 8 is connected to the mass portion 3 at the central end portion, and a part of the beam portion 4 is disposed in the groove 8. Therefore, it is possible to extend the length of the beam portion 4 by the amount disposed in the groove 8, and this also increases the displacement amount of the mass portion 3 and increases the detection sensitivity of acceleration. it can.

ところで、本実施形態では4つのビーム部4によってマス部3を揺動自在に支持する構造としているが、図2に示すように例えば対角の位置にある2つのビーム部4のみでマス部3を支持する構造とすれば、4つのビーム部4で支持する場合に比較してマス部3の変位量が大きくなり、加速度の検出感度をさらに高めることが可能である。但し、4つのビーム部4でマス部3を支持する構造には、2つのビーム部4でマス部4を支持する構造に比較して、検出対象でない加速度以外の振動に対するマス部3の安定性が増し、本来検出すべき加速度の検出精度が向上するという利点がある。   By the way, in the present embodiment, the mass portion 3 is swingably supported by the four beam portions 4. However, as shown in FIG. 2, for example, the mass portion 3 is composed of only two beam portions 4 at diagonal positions. If the structure is used, the amount of displacement of the mass portion 3 is increased as compared with the case where it is supported by the four beam portions 4, and the acceleration detection sensitivity can be further increased. However, the structure in which the mass unit 3 is supported by the four beam units 4 is more stable than the structure in which the mass unit 4 is supported by the two beam units 4 with respect to vibrations other than acceleration that is not a detection target. There is an advantage that the detection accuracy of the acceleration that should be detected is improved.

尚、過大な加速度が印加された場合にビーム部4の撓み量が大きくなり過ぎて破損等の不具合が生じる虞があるから、ビーム部4の撓み量を規制する規制手段を設けることが望ましい。例えば、図3に示すようにビーム部4との間に所定の隙間を空けて対向する複数の突起状のビームストッパ9を形成すればよく、過大な加速度が印加されたときにビーム部4がビームストッパ9に当たって撓み量が規制されてビーム部4の破損等が防止できるものである。   Note that, when an excessive acceleration is applied, the amount of bending of the beam portion 4 becomes too large, and there is a possibility that problems such as breakage may occur. Therefore, it is desirable to provide a restricting means for restricting the amount of bending of the beam portion 4. For example, as shown in FIG. 3, it is only necessary to form a plurality of protruding beam stoppers 9 facing each other with a predetermined gap between them, and when the excessive acceleration is applied, The amount of deflection is restricted by hitting the beam stopper 9, and damage to the beam portion 4 can be prevented.

ここで、本実施形態におけるビーム部4や可動電極5X,5Yおよび固定電極6X,6Yは、半導体基板(例えば、シリコン基板)をドライエッチング、例えば誘導結合プラズマ式の反応性イオンエッチング(ICP−RIE)でエッチングすることによって形成されるが、ビーム部4のように長さと幅の寸法比(アスペクト比)が高い構造を形成する場合、その周囲のエッチング領域が大きいと当該エッチング領域のエッチング後にガスが入り込みやすくなり、本来エッチングされるべきでない領域まで過剰にエッチングされてビーム部4が細くなってしまう虞がある。そのために本実施形態では、図1および図4に示すようにビーム部4とビーム部4の周囲に設けられる構造物(例えば、フレーム部2やストッパ部20など)との距離が相対的に大きい部位、すなわち、ビーム部4の円弧状に湾曲した部分の近傍にエッチングされない肉厚部10を配置することによってエッチング領域を縮小している。このように肉厚部10を配置することでビーム部4の近傍のエッチング領域が縮小されるため、ビーム部4が必要以上にエッチングされるのを防ぐことができ、ビーム部4の細りによって検出感度にばらつきが生じるのを防止している。なお、ビーム部4と、ビーム部4の周囲に設けられる構造物とは何れも本実施形態に限定されるものではなく、如何なる構成においても、ビーム部4とビーム部4の周囲に設けられる構造物との距離が相対的に大きい部位に肉厚部を設けることでビーム部4の細りが抑えられるものである。   Here, the beam part 4, the movable electrodes 5X and 5Y and the fixed electrodes 6X and 6Y in the present embodiment are dry-etched on a semiconductor substrate (for example, a silicon substrate), for example, inductively coupled plasma type reactive ion etching (ICP-RIE). In the case where a structure having a high dimensional ratio (aspect ratio) between the length and the width is formed as in the beam portion 4, if the surrounding etching region is large, the gas is etched after etching the etching region. May easily enter, and the beam portion 4 may be thinned due to excessive etching up to a region that should not be etched. Therefore, in this embodiment, as shown in FIGS. 1 and 4, the distance between the beam portion 4 and a structure (for example, the frame portion 2 and the stopper portion 20) provided around the beam portion 4 is relatively large. The etching region is reduced by disposing the thick portion 10 that is not etched in the vicinity of the portion, that is, the portion of the beam portion 4 that is curved in an arc shape. By arranging the thick portion 10 in this way, the etching area in the vicinity of the beam portion 4 is reduced, so that the beam portion 4 can be prevented from being etched more than necessary, and the detection is made by the narrowness of the beam portion 4. This prevents variations in sensitivity. The beam portion 4 and the structure provided around the beam portion 4 are not limited to the present embodiment, and the structure provided around the beam portion 4 and the beam portion 4 in any configuration. By providing a thick portion at a portion where the distance from the object is relatively large, thinning of the beam portion 4 can be suppressed.

ところで、図5に示すようにマス部3およびビーム部4との並び方向(図5における左右方向)に直交する方向(図5における上下方向)において両側から絶縁体(例えば、ガラス)からなる一対の基板11,12がフレーム部2に接合され、基板11,12によってフレーム部2を補強する構造とするのが一般的である。このような構造において、各基板11,12の可動電極5X,5Yとの対向面に第2の固定電極15を形成すれば、第2の固定電極15と可動電極5X,5Yとの間の静電容量の変化により、図5における上下方向、すなわち、z軸方向の加速度を検出することができ、3軸方向の加速度が検出可能な加速度センサが実現できる。但し、z軸方向における加速度の検出感度を高めるために、図6に示すようにz軸に沿ったビーム部4の厚みがマス部3の厚みよりも小さくなるように形成し、ビーム部4がz軸方向に容易に撓むようにしてz軸方向におけるマス部3の変位量を増やすことが望ましい。   Incidentally, as shown in FIG. 5, a pair of insulators (for example, glass) from both sides in a direction (vertical direction in FIG. 5) orthogonal to the arrangement direction of the mass part 3 and the beam part 4 (horizontal direction in FIG. 5). In general, the substrates 11 and 12 are joined to the frame portion 2 and the frame portions 2 are reinforced by the substrates 11 and 12. In such a structure, if the second fixed electrode 15 is formed on the surface of each of the substrates 11 and 12 facing the movable electrodes 5X and 5Y, the static electricity between the second fixed electrode 15 and the movable electrodes 5X and 5Y is formed. The acceleration in the vertical direction in FIG. 5, that is, the acceleration in the z-axis direction can be detected by the change in the capacitance, and an acceleration sensor capable of detecting the acceleration in the 3-axis direction can be realized. However, in order to increase the acceleration detection sensitivity in the z-axis direction, the beam portion 4 is formed so that the thickness of the beam portion 4 along the z-axis is smaller than the thickness of the mass portion 3 as shown in FIG. It is desirable to increase the amount of displacement of the mass portion 3 in the z-axis direction so as to be easily bent in the z-axis direction.

また、上述のようにフレーム部2を一対の基板11,12で補強する場合、図7に示すように各電極支持部7の表面に形成されている固定電極用の電極パッド13、並びにフレーム部2の表面に形成されている可動電極用の電極パッド14にワイヤボンディングするために、フレーム部2の表面側に接合される基板12にそれぞれ開口部12aを設ける必要がある。一方、本実施形態の加速度センサ1のように半導体基板を加工して形成するものにおいては、半導体基板(ウェハ)の裏面に一方の基板11を接合し、ウェハの表面にエッチング等の加工を行うことで多数の加速度センサ1を縦横に並べて形成し、さらにウェハの表面に他方の基板12を接合した後、個々の加速度センサ1をウェハから切り出すという製造方法が採用されている。従って、ウェハから切り出される前の加速度センサ1(以下、説明を簡単にするために切り出す前のものを「センサブロック」と呼ぶ)は縦横に斜めに合計8個のセンサブロック1と隣接しており、加速度センサ1の4つの角部に形成される開口部12aが各々隣接する4つのセンサブロック1に跨って配置されることになるから、隣接する4つのセンサブロック1の角部に相当する箇所の基板12を切り欠けば、一箇所について4つのセンサブロック1の基板12に同時に開口部12aを形成することが可能であり、個々のセンサブロック1について個別に開口部12aを形成する場合に比較して開口部12aの製造が容易に行えるという利点がある。   When the frame portion 2 is reinforced by the pair of substrates 11 and 12 as described above, as shown in FIG. 7, the electrode pads 13 for fixed electrodes formed on the surface of each electrode support portion 7 and the frame portion. In order to perform wire bonding to the electrode pad 14 for the movable electrode formed on the surface 2, it is necessary to provide openings 12 a on the substrates 12 to be bonded to the surface side of the frame portion 2. On the other hand, in the case where the semiconductor substrate is processed and formed like the acceleration sensor 1 of the present embodiment, one substrate 11 is bonded to the back surface of the semiconductor substrate (wafer), and processing such as etching is performed on the surface of the wafer. Thus, a manufacturing method is adopted in which a large number of acceleration sensors 1 are formed side by side, and the other substrate 12 is bonded to the surface of the wafer, and then the individual acceleration sensors 1 are cut out from the wafer. Accordingly, the acceleration sensor 1 before being cut out from the wafer (hereinafter, the one before being cut out for the sake of simplicity is referred to as a “sensor block”) is adjacent to a total of eight sensor blocks 1 diagonally in the vertical and horizontal directions. Since the openings 12a formed at the four corners of the acceleration sensor 1 are arranged across the four adjacent sensor blocks 1, the portions corresponding to the corners of the four adjacent sensor blocks 1 If the substrate 12 is cut out, it is possible to simultaneously form the openings 12a in the four substrates 12 of the sensor block 1 at one place, compared with the case where the openings 12a are individually formed for each sensor block 1. Thus, there is an advantage that the opening 12a can be easily manufactured.

ここで、基板12の4つの角部にそれぞれ開口部12aを形成すると基板12の強度が低下すると考えられるから、図8に示すように対角線上にある2つの角部にだけ開口部12aを形成し、各開口部12aにより露出する範囲に4つの固定電極用の電極パッド13並びに可動電極用の電極パッド14を配置し、開口部12aによる基板12の強度低下を抑えることが望ましい。また、図7および図8に示すように開口部12aの輪郭を直線のみで形成することにより、輪郭を曲線で形成する場合に比較して基板12の開口部12aを除く部位の面積を大きくすることができ、製造時において開口部12aを通して埃等の異物がマス部3やビーム部4などに付着し難くなる。   Here, since it is considered that the strength of the substrate 12 decreases when the openings 12a are formed at the four corners of the substrate 12, respectively, the openings 12a are formed only at the two corners on the diagonal line as shown in FIG. In addition, it is desirable that four fixed electrode electrode pads 13 and movable electrode electrode pads 14 are arranged in a range exposed by each opening 12a to suppress a decrease in strength of the substrate 12 due to the opening 12a. Further, as shown in FIGS. 7 and 8, by forming the outline of the opening 12a only by a straight line, the area of the portion excluding the opening 12a of the substrate 12 is made larger than when the outline is formed by a curve. This makes it difficult for foreign matters such as dust to adhere to the mass portion 3 and the beam portion 4 through the opening 12a during manufacturing.

最後に本実施形態の加速度センサ1の製造方法について説明する。まず、ウェハの裏面に基板11となる絶縁体を接合し、ICP−RIEによってウェハの表面からエッチングを行ってマス部3、ビーム部4、可動電極5X,5Y、固定電極6X,6Yなどを形成する。ここで、ICP−RIEのような反応性イオンエッチングでエッチングすることにより、ウェハの厚み方向において深い位置まで均一にエッチングすることができるから、可動電極5X,5Y並びに固定電極6X,6Yの深さ方向の寸法、すなわち、両者の対向面積を大きくとることができ、結果的に加速度の検出感度の向上が図れるものである。   Finally, a method for manufacturing the acceleration sensor 1 of the present embodiment will be described. First, an insulator to be the substrate 11 is bonded to the back surface of the wafer, and etching is performed from the front surface of the wafer by ICP-RIE to form the mass portion 3, the beam portion 4, the movable electrodes 5X and 5Y, the fixed electrodes 6X and 6Y, and the like. To do. Here, by etching by reactive ion etching such as ICP-RIE, it is possible to etch uniformly to a deep position in the thickness direction of the wafer. Therefore, the depth of the movable electrodes 5X and 5Y and the fixed electrodes 6X and 6Y. The size of the direction, that is, the opposing area of both can be increased, and as a result, the acceleration detection sensitivity can be improved.

一方、基板12となる絶縁体に平面視八角形の複数の孔を貫設し、各孔の中心が隣接する4つのセンサブロック1の角が集まる点と重なるように位置あわせしてウェハの表面に絶縁体を接合する(図10参照)。そして、図10に破線で示した位置で個々のセンサブロック1を絶縁体(基板11,12)とともにウェハから切り出せば、図11に示すように表裏両面に基板11,12が接合された加速度センサ1が得られる。尚、図11ではフレーム部2やマス部3、ビーム部4等の細部の図示は省略している。   On the other hand, a plurality of octagonal holes in plan view are formed through the insulator serving as the substrate 12, and the center of each hole is aligned with the point where the corners of the four adjacent sensor blocks 1 are gathered to align the surface of the wafer. An insulator is joined to (see FIG. 10). And if each sensor block 1 is cut out from a wafer with an insulator (board | substrates 11 and 12) in the position shown with the broken line in FIG. 10, the acceleration sensor with which board | substrates 11 and 12 were joined to both front and back as shown in FIG. 1 is obtained. In FIG. 11, details of the frame portion 2, the mass portion 3, the beam portion 4 and the like are not shown.

而して、上述のように基板12を構成する絶縁体に予め開口部12aを構成するための孔を貫設すれば、絶縁体(基板12)の必要箇所のみに開口部12aを設けることが可能で、しかもウェハから切り出されたセンサブロック(加速度センサ)1においては隣接する他のセンサブロック(加速度センサ)1との境界部分で開口部12aが開放されているため、キャピラリなどのボンディング用工具が四方を基板12で囲まれるというようなことがなく、開口部12aを通して電極パッド13,14にワイヤをボンディングする作業が容易に行えるという利点がある。   Thus, if a hole for forming the opening 12a is previously provided in the insulator constituting the substrate 12 as described above, the opening 12a can be provided only in a necessary portion of the insulator (substrate 12). In addition, in the sensor block (acceleration sensor) 1 cut out from the wafer, the opening 12a is opened at the boundary with the other adjacent sensor block (acceleration sensor) 1, so that a bonding tool such as a capillary is used. However, there is an advantage that the work of bonding wires to the electrode pads 13 and 14 through the opening 12a can be easily performed without being surrounded by the substrate 12 on all sides.

本発明の実施形態を示し、(a)は平面図、(b)は同図(a)のA−A線断面矢視図である。The embodiment of this invention is shown, (a) is a top view, (b) is the AA sectional view taken on the line in FIG. 同上の他の構成を示す平面図である。It is a top view which shows the other structure same as the above. 同上の要部の平面図である。It is a top view of the principal part same as the above. 同上の要部の平面図である。It is a top view of the principal part same as the above. 同上の他の構成を示す断面図である。It is sectional drawing which shows the other structure same as the above. 同上のさらに他の構成を示す断面図である。It is sectional drawing which shows other structure same as the above. 同上の基板を接合した状態の平面図である。It is a top view of the state which joined the board | substrate same as the above. 同上の基板を接合した状態の平面図である。It is a top view of the state which joined the board | substrate same as the above. 図8のB−B線断面矢視図である。FIG. 9 is a sectional view taken along line B-B in FIG. 8. 同上の製造方法を説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method same as the above. 同上の一部省略した斜視図である。It is a perspective view in which a part was omitted. 従来例の平面図である。It is a top view of a prior art example.

符号の説明Explanation of symbols

1 加速度センサ
2 フレーム部
3 マス部
4 ビーム部
5X,5Y 可動電極
6X,6Y 固定電極
7 電極支持部
8 溝
DESCRIPTION OF SYMBOLS 1 Acceleration sensor 2 Frame part 3 Mass part 4 Beam part 5X, 5Y Movable electrode 6X, 6Y Fixed electrode 7 Electrode support part 8 Groove

Claims (14)

加速度や角速度のような物理量を可動電極と固定電極の間の静電容量によって検出する静電容量式センサであって、固定電極と、固定電極に対向する可動電極と、可動電極を支持し且つ物理量によって変位するマス部と、撓み自在に形成されて一端部でマス部と連結され且つ他端部が固定される1乃至複数のビーム部とが半導体基板を加工して形成される静電容量式センサにおいて、ビーム部の両端部を除く部位の少なくとも一部が、固定電極に対してマス部と反対側に配置されたことを特徴とする静電容量式センサ。   A capacitance type sensor that detects a physical quantity such as acceleration or angular velocity by a capacitance between a movable electrode and a fixed electrode, and supports the fixed electrode, the movable electrode facing the fixed electrode, the movable electrode, and Capacitance formed by processing a semiconductor substrate with a mass portion that is displaced by a physical quantity, and one or more beam portions that are flexibly formed and connected to the mass portion at one end and fixed at the other end In the capacitive sensor, at least a part of a portion excluding both ends of the beam portion is disposed on the opposite side of the mass portion with respect to the fixed electrode. ビーム部は、マス部および固定電極の回りを周回する形状に形成されたことを特徴とする請求項1記載の静電容量式センサ。   2. The capacitive sensor according to claim 1, wherein the beam portion is formed in a shape that circulates around the mass portion and the fixed electrode. マス部は、周縁から中央に向かう溝が設けられ、ビーム部は、溝の中央側の端部でマス部と連結されて一部が溝内に配置されることを特徴とする請求項1又は2記載の静電容量式センサ。   The mass portion is provided with a groove from the periphery toward the center, and the beam portion is connected to the mass portion at an end portion on the center side of the groove, and a part thereof is disposed in the groove. 2. The capacitive sensor according to 2. 2つのビーム部を備えたことを特徴とする請求項1又は2又は3記載の静電容量式センサ。   The electrostatic capacity type sensor according to claim 1, comprising two beam portions. 4つのビーム部を備えたことを特徴とする請求項1又は2又は3記載の静電容量式センサ。   4. The capacitive sensor according to claim 1, comprising four beam portions. ビーム部の撓み量を規制する規制手段を備えたことを特徴とする請求項1〜5の何れかに記載の静電容量式センサ。   The electrostatic capacity sensor according to claim 1, further comprising a restricting unit that restricts a deflection amount of the beam portion. マス部およびビーム部とともに半導体基板を加工して形成される肉厚部が、ビーム部とビーム部の周囲に設けられる構造物との距離が相対的に大きい部位に配置されることを特徴とする請求項1〜6の何れかに記載の静電容量式センサ。   A thick portion formed by processing a semiconductor substrate together with a mass portion and a beam portion is disposed at a portion where a distance between the beam portion and a structure provided around the beam portion is relatively large. The capacitive sensor according to claim 1. 固定電極と可動電極は、マス部およびビーム部の並び方向と略平行に対向し、当該並び方向と直交する方向におけるマス部の少なくとも片側に可動電極と対向する第2の固定電極が配設されたことを特徴とする請求項1〜7の何れかに記載の静電容量式センサ。   The fixed electrode and the movable electrode are opposed substantially parallel to the arrangement direction of the mass portion and the beam portion, and a second fixed electrode is arranged on at least one side of the mass portion in a direction orthogonal to the arrangement direction. The capacitance type sensor according to any one of claims 1 to 7, wherein ビーム部は、前記並び方向と直交する方向の厚みがマス部の厚みよりも小さく形成されたことを特徴とする請求項8記載の静電容量式センサ。   9. The capacitive sensor according to claim 8, wherein the beam portion is formed so that a thickness in a direction orthogonal to the arrangement direction is smaller than a thickness of the mass portion. 固定電極、可動電極、マス部およびビーム部を囲む枠状に形成されてビーム部の他端部が連結されるフレーム部を備え、該フレーム部は、マス部およびビーム部との並び方向に直交する方向において両側から絶縁体からなる一対の基板に固定され、一方の基板は、1乃至複数の角部が切り欠かれてなる開口部を有し、該開口部を通して外部に露出する位置に固定電極と電気的に接続された電極パッドが設けられたことを特徴とする請求項1〜9の何れかに記載の静電容量式センサ。   The frame part is formed in a frame shape surrounding the fixed electrode, the movable electrode, the mass part, and the beam part, and the other end part of the beam part is connected, and the frame part is orthogonal to the arrangement direction of the mass part and the beam part. Fixed to a pair of substrates made of an insulator from both sides in one direction, and one substrate has an opening formed by notching one or more corners, and is fixed to a position exposed to the outside through the opening. The capacitive sensor according to claim 1, further comprising an electrode pad electrically connected to the electrode. 前記基板は2つの開口部を有することを特徴とする請求項10記載の静電容量式センサ。   The capacitive sensor according to claim 10, wherein the substrate has two openings. 開口部の輪郭が直線のみで形成されたことを特徴とする請求項10又は11記載の静電容量式センサ。   12. The capacitance type sensor according to claim 10, wherein the outline of the opening is formed by only a straight line. 固定電極並びに可動電極が櫛歯状に形成され、ビーム部と固定電極並びに可動電極が半導体基板を反応性イオンエッチングによりエッチングして形成されることを特徴とする請求項1〜12の何れかに記載の静電容量式センサ。   The fixed electrode and the movable electrode are formed in a comb shape, and the beam portion, the fixed electrode, and the movable electrode are formed by etching a semiconductor substrate by reactive ion etching. The capacitance type sensor described. 請求項10又は11又は12の静電容量式センサを製造する製造方法であって、複数のセンサブロックがウェハに形成され、該ウェハから個々のセンサブロックを切り出して静電容量式センサを製造する製造方法において、基板を構成する絶縁体に複数の孔を貫設し、該孔がウェハにおいて隣接するセンサブロックの境界に跨るように絶縁体をウェハに接合した後に個々のセンサブロックを絶縁体とともにウェハから切り出すことを特徴とする静電容量式センサの製造方法。   13. A manufacturing method for manufacturing a capacitive sensor according to claim 10, 11 or 12, wherein a plurality of sensor blocks are formed on a wafer, and each sensor block is cut out from the wafer to manufacture a capacitive sensor. In a manufacturing method, a plurality of holes are formed in an insulator constituting a substrate, and after bonding the insulator to the wafer so that the holes straddle the boundary of adjacent sensor blocks in the wafer, the individual sensor blocks are combined with the insulator. A method of manufacturing a capacitive sensor, characterized by cutting out from a wafer.
JP2003318264A 2003-09-10 2003-09-10 Capacitive sensor and manufacturing method thereof Expired - Fee Related JP4436096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003318264A JP4436096B2 (en) 2003-09-10 2003-09-10 Capacitive sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003318264A JP4436096B2 (en) 2003-09-10 2003-09-10 Capacitive sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005083972A true JP2005083972A (en) 2005-03-31
JP4436096B2 JP4436096B2 (en) 2010-03-24

Family

ID=34417590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003318264A Expired - Fee Related JP4436096B2 (en) 2003-09-10 2003-09-10 Capacitive sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4436096B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840581A1 (en) * 2006-03-28 2007-10-03 Matsushita Electric Works, Ltd. Capacitive sensor
JP2007263746A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Capacitance type sensor
JP2007263742A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Capacitance type sensor
JP2009133827A (en) * 2007-10-30 2009-06-18 Rohm Co Ltd Semiconductor device
JP2010190848A (en) * 2009-02-20 2010-09-02 Panasonic Electric Works Co Ltd Semiconductor physical quantity sensor
KR101482400B1 (en) 2013-04-29 2015-01-13 삼성전기주식회사 Micro Electro Mechanical Systems Component
CN105823906A (en) * 2015-01-09 2016-08-03 深迪半导体(上海)有限公司 Triaxial capacitive accelerometer with sharing of detection capacitors

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840581A1 (en) * 2006-03-28 2007-10-03 Matsushita Electric Works, Ltd. Capacitive sensor
JP2007263741A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Capacitance type sensor
JP2007263746A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Capacitance type sensor
JP2007263742A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Capacitance type sensor
US7554340B2 (en) 2006-03-28 2009-06-30 Panasonic Electric Works Co., Ltd. Capacitive sensor
JP4595864B2 (en) * 2006-03-28 2010-12-08 パナソニック電工株式会社 Capacitive sensor
JP4595862B2 (en) * 2006-03-28 2010-12-08 パナソニック電工株式会社 Capacitive sensor
JP2009133827A (en) * 2007-10-30 2009-06-18 Rohm Co Ltd Semiconductor device
JP2010190848A (en) * 2009-02-20 2010-09-02 Panasonic Electric Works Co Ltd Semiconductor physical quantity sensor
KR101482400B1 (en) 2013-04-29 2015-01-13 삼성전기주식회사 Micro Electro Mechanical Systems Component
CN105823906A (en) * 2015-01-09 2016-08-03 深迪半导体(上海)有限公司 Triaxial capacitive accelerometer with sharing of detection capacitors

Also Published As

Publication number Publication date
JP4436096B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4216525B2 (en) Acceleration sensor and manufacturing method thereof
US9791472B2 (en) Acceleration sensor
JPWO2005062060A1 (en) Semiconductor type 3-axis acceleration sensor
JP2006214743A (en) Semiconductor acceleration sensor
JP5186885B2 (en) Mask pattern correction method and acceleration sensor and angular velocity sensor manufacturing method using the same
JP4436096B2 (en) Capacitive sensor and manufacturing method thereof
US7062970B2 (en) Electrostatic vibration device
JP2009236877A (en) Acceleration sensor device
JP5817841B2 (en) Acceleration sensor
JP2005337874A (en) Semiconductor acceleration sensor
US8329491B2 (en) Mechanical quantity sensor and method of manufacturing the same
JP2011247714A (en) Semiconductor physical quantity sensor
JP2007322149A (en) Method for manufacturing semiconductor device
JP4073731B2 (en) Force sensor and acceleration sensor using resistance element and manufacturing method thereof
JP4073729B2 (en) Force sensor and acceleration sensor using capacitive element, and manufacturing method thereof
JP2005098891A (en) Electrostatic capacity type sensor
WO2016117289A1 (en) Physical quantity sensor and manufacturing method therefor
US9964561B2 (en) Acceleration sensor
JP2007101203A (en) Angular velocity sensor
JP4665733B2 (en) Sensor element
JP5821158B1 (en) Compound sensor device
JP2011152592A (en) Mems structure
JP2011245584A (en) Mems structure
JP2000028634A (en) Capacitive physical quantity detector
JP2006250829A (en) Static capacitance type sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071130

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees