JP2007297527A - Method and apparatus for electric power generating using waste material - Google Patents

Method and apparatus for electric power generating using waste material Download PDF

Info

Publication number
JP2007297527A
JP2007297527A JP2006127270A JP2006127270A JP2007297527A JP 2007297527 A JP2007297527 A JP 2007297527A JP 2006127270 A JP2006127270 A JP 2006127270A JP 2006127270 A JP2006127270 A JP 2006127270A JP 2007297527 A JP2007297527 A JP 2007297527A
Authority
JP
Japan
Prior art keywords
gas
waste
water
dry distillation
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006127270A
Other languages
Japanese (ja)
Other versions
JP4378360B2 (en
Inventor
Takusen Ito
拓仙 伊藤
Shigeki Terajima
成喜 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAMI KENSETSU KK
Original Assignee
OSAMI KENSETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAMI KENSETSU KK filed Critical OSAMI KENSETSU KK
Priority to JP2006127270A priority Critical patent/JP4378360B2/en
Publication of JP2007297527A publication Critical patent/JP2007297527A/en
Application granted granted Critical
Publication of JP4378360B2 publication Critical patent/JP4378360B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method and apparatus in which electric power is generated from waste materials. <P>SOLUTION: The dry distillation of waste materials is carried out using water vapor. Dry distilled gas and dry distillation residue (charcoal) are refined into hydrogen and a gas mainly comprising carbon monoxide by water gas reaction and activation with water vapor while the dust removal and washing are carried out, and are converted into a high quality gas fuel which can be used for a fuel cell, a gas engine, and a gas turbine and are used as a power generation fuel. On the other hand, the residue (charcoal) caught as a dust is activated with water vapor simultaneously with the water gas reaction to form a high quality activated charcoal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、有機性廃棄物である食品残渣、食品汚泥、し尿・下水汚泥、蓄糞、プラスチック、紙くず、木屑等あるいはこれら含んだ混合廃棄物を熱分解(乾留)し、そこから発生する乾留ガス及び残渣(炭)を燃料化すると共に、この燃料を用いて発電する方法及び装置に関するものである。   This invention is an organic waste, such as food residue, food sludge, human waste / sewage sludge, feces, plastic, waste paper, wood waste, etc., or mixed waste containing them, and pyrolysis generated from them. The present invention relates to a method and an apparatus for generating gas and residue (charcoal) as fuel and generating electric power using this fuel.

従来、廃棄物による発電は、廃棄物を燃焼焼却させる際発生する燃焼熱を利用して発電する方法が取られていた。しかし近年になって燃焼焼却によるダイオキシン類発生が社会問題となり、燃焼焼却に変わる方法とし廃棄物のガス化発電の開発が進められている。廃棄物のガス化(乾留)による発電には下記の二つの方法がある。   Conventionally, for power generation using waste, a method of generating power using combustion heat generated when the waste is burned and incinerated has been employed. However, in recent years, the generation of dioxins by combustion incineration has become a social problem, and the development of gasification power generation of waste as a method to replace combustion incineration is being promoted. There are the following two methods for power generation by waste gasification (dry distillation).

1.乾留ガスをそのままガス燃料として用いる方法
2.乾留ガスを冷却し、液体燃料として用いる方法
1.乾留ガスをそのままガス燃料として用いる方法
有機性廃棄物及び混合物には塩素が含有しており、これら廃棄物より回収した乾留ガスにも当然、塩化水素が含まれることになる。また、乾留ガスには乾留残渣(炭)、油分(タール分)が含まれることから当然回収したガス燃料にもそれらが含有することになる。
1. 1. Method using dry distillation gas as a gas fuel as it is Method of cooling dry distillation gas and using it as liquid fuel Method of using dry distillation gas as gas fuel as it is
Organic wastes and mixtures contain chlorine, and naturally the carbonization gas recovered from these wastes also contains hydrogen chloride. In addition, since the carbonization gas contains carbonization residue (charcoal) and oil (tar content), they are naturally included in the recovered gas fuel.

また、廃棄物の投入時や装置の洩れなどによって空気が侵入した場合には、乾留ガスに酸素が含まれることになり、つまりは乾留ガスは爆発混合気体となり爆発の危険が伴う。
現時点において回収したガス燃料に含有した塩化水素、炭を取り除くことは可能であるが油分(タール分)や酸素を取り除く方法がなく、回収したガス燃料を利用する発電装置は皆無である。
Further, when air enters when waste is introduced or equipment leaks, oxygen is contained in the dry distillation gas, that is, the dry distillation gas becomes an explosive gas mixture, and there is a risk of explosion.
At present, it is possible to remove hydrogen chloride and charcoal contained in the recovered gas fuel, but there is no method for removing oil (tar) and oxygen, and there is no power generation device that uses the recovered gas fuel.

2.乾留ガスを冷却し、液体燃料として用いる方法
乾留ガスをそのままガス燃料として用いる場合と同様に、液体燃料にも塩化水素、炭が含有することになるがこれらを取り除く方法がなく、回収した液体燃料を使用できる発電装置も皆無である。
2. Method of cooling dry distillation gas and using it as liquid fuel Like the case of using dry distillation gas as gas fuel as it is, liquid fuel contains hydrogen chloride and charcoal, but there is no way to remove them, and recovered liquid fuel There is no power generator that can be used.

前記1,2の問題から乾留ガスは液化せずそのままの状態でガス燃焼炉で焼却し、乾留残渣(炭)のみ回収しているのが現状である。   Due to the problems 1 and 2, the dry distillation gas is not liquefied but incinerated in a gas combustion furnace as it is, and only the dry distillation residue (charcoal) is recovered.

ところが上述のように 乾留ガスには残渣(炭)や油分が含まれる。それゆえガス燃焼炉で乾留ガスを焼却する際は、そこに含まれる炭や油分も一緒に燃焼するため、この炉での新たなダイオキシン類発生の恐れがある。法律でも、ガス燃焼炉で乾留ガスを燃焼する場合は焼却処理施設と同一施設と見なされ規制されている。   However, as mentioned above, carbonization gas contains residues (charcoal) and oil. Therefore, when incinerating dry distillation gas in a gas combustion furnace, charcoal and oil contained therein are combusted together, and there is a risk that new dioxins will be generated in this furnace. The law also regulates the combustion of dry distillation gas in a gas-fired furnace as the same incineration facility.

一方回収された残渣(炭)は燃料や土壌改良剤、水質浄化剤、家屋調湿剤等として使用可能である。しかし現実には土壌改良剤、水質浄化剤、家屋調湿剤等としての需要は少ない。燃料として使用する場合も残渣(炭)は固体燃料であるがゆえに火力発電所、セメントキルン炉などに用途が限定され、需要が少ない。かような理由により残渣(炭)の大部分は廃棄物として埋め立て処分されているのが現状である。
特開2005−247930号公報
On the other hand, the collected residue (charcoal) can be used as a fuel, a soil conditioner, a water purification agent, a house moisture conditioner, or the like. However, in reality, there is little demand as a soil conditioner, water purification agent, house humidity control agent and the like. Even when used as fuel, the residue (charcoal) is a solid fuel, so its use is limited to thermal power plants, cement kiln furnaces, etc., and demand is low. For these reasons, most of the residue (charcoal) is landfilled as waste.
JP 2005-247930 A

環境問題から太陽光発電、風力発電等、エネルギーの多様化が求められ、廃棄物発電においてもバイオ発電等の開発が進めらている。ところがバイオ発電の原料は有機性廃棄物の中で腐敗・発酵可能なものに限定され、また腐敗・発酵のための広大な敷地と臭気の問題から設置場所も大きく限定されてしまう。それゆえ全ての廃棄物に対応しえ、設置場所もあまり限定されない廃棄物発電の開発がもとめられている。   Due to environmental issues, diversification of energy, such as solar power generation and wind power generation, is required, and development of bio power generation and the like is being promoted in waste power generation. However, raw materials for bioelectric power generation are limited to those that can be rotted and fermented among organic wastes, and the installation site is greatly limited due to the vast site for rot and fermentation and the problem of odor. Therefore, the development of waste power generation that can deal with all wastes and the installation location is not limited.

本発明は上記の要望に応えることができる廃棄物を利用した発電方法及びこの方法を実施するための装置を提供することを目的とする。   An object of the present invention is to provide a power generation method using waste that can meet the above-described demand and an apparatus for carrying out this method.

本発明に係る発電方法は、有機性廃棄物を排熱を利用して製造した水蒸気を用いて安全に乾留する。   In the power generation method according to the present invention, organic waste is safely dry-distilled using water vapor produced using exhaust heat.

次に水蒸気と乾留ガスの混合物を温度を900゜C以上に上げる。これにより同伴された油分及び炭を化1に示す水性ガス反応によりにCOとH転換する。 Next, the temperature of the mixture of water vapor and dry distillation gas is raised to 900 ° C or higher. Thus, the entrained oil and charcoal are converted to CO and H 2 by the water gas reaction shown in Chemical Formula 1.

Figure 2007297527
Figure 2007297527

又、乾留ガス中に含有する酸素は化2及び化3で示される酸化反応によりCO及びHOに転換する。 Further, oxygen contained in the dry distillation gas is converted into CO 2 and H 2 O by the oxidation reaction shown in Chemical Formula 2 and Chemical Formula 3.

Figure 2007297527
Figure 2007297527

Figure 2007297527
Figure 2007297527

さらに乾留後の残渣(炭)は、20ミクロン以下に粉砕し、前記、乾留ガスと同じ化1で示される工程を経てCOとHに転換する。 Furthermore, the residue (charcoal) after dry distillation is pulverized to 20 microns or less, and is converted into CO and H 2 through the process shown in the same chemical formula 1 as the dry distillation gas.

さらに残った残渣(炭)は水蒸気により賦活された状態でガス中に含有するが、この固形分は集塵機により捕捉し集塵機下部より取り出し活性炭として再利用される。また塩化水素ガス等の有害ガスは、ガス洗浄塔にて苛性ソーダを用いて洗浄する。   Further, the remaining residue (charcoal) is contained in the gas activated by water vapor, but this solid content is captured by the dust collector and taken out from the lower portion of the dust collector and reused as activated carbon. In addition, harmful gases such as hydrogen chloride gas are washed with caustic soda in a gas washing tower.

以上の工程を経て、燃料電池、ガスエンジン、ガスタービン等に用いることが可能な良質なガス燃料を得ることが可能となる。   Through the above steps, it is possible to obtain a high-quality gas fuel that can be used for fuel cells, gas engines, gas turbines, and the like.

本発明による廃棄物発電装置は、ガス発生装置、発電装置、緊急放散塔、の三つの装置で構成する。   The waste power generation apparatus according to the present invention is composed of three apparatuses: a gas generation apparatus, a power generation apparatus, and an emergency diffusion tower.

ガス発生装置には、廃棄物の温度を上げガス化する乾留室と水性ガス反応を促す高温反応塔を具備している。また高温反応室内部には反応促進剤として、熱伝導の良い小石状のセラミック材を充填したことを特徴とする。   The gas generator includes a dry distillation chamber that raises the temperature of waste and gasifies it, and a high-temperature reaction tower that promotes a water gas reaction. Further, the inside of the high-temperature reaction chamber is filled with a pebble-like ceramic material having good heat conductivity as a reaction accelerator.

高温反応塔の後流には、ガスを精製し、ガス燃料にするための冷却塔、集塵機、ガス洗浄塔及びガスをガス貯蔵タンクに送るための誘引通風機が設けられる。   The downstream of the high-temperature reaction tower is provided with a cooling tower for purifying gas and making it into gas fuel, a dust collector, a gas washing tower, and an induction fan for sending gas to the gas storage tank.

回収されたガス燃料は、乾留用、反応用熱源としても使用可能であり当然電気に転換した後でも同様である。   The recovered gas fuel can be used as a heat source for dry distillation and reaction, and of course the same is true even after conversion to electricity.

可燃性ガスを装置外に漏らすことは危険であり、装置内は若干の負圧で運転する必要がある。ところが不圧状態にすると外部の空気が装置内に侵入する恐れがある。廃棄物の投入時に入る空気、廃棄物に含まれている空気、装置のシール等から洩れ込む空気などである。そして係る空気の侵入を避けることは不可避である。   Leaking flammable gas outside the apparatus is dangerous, and it is necessary to operate the apparatus at a slight negative pressure. However, there is a risk that outside air may enter the device if it is in a non-pressure state. Air entering when waste is introduced, air contained in waste, air leaking from a device seal or the like. And it is inevitable to avoid such air intrusion.

可燃性ガスの爆発は空気の濃度が高過ぎても、低過ぎてる起こらない。   A flammable gas explosion does not occur if the air concentration is too high or too low.

可燃性ガスの爆発限界は通常下表で表される。   The explosion limits for combustible gases are usually expressed in the table below.

Figure 2007297527
Figure 2007297527

上記の爆発限界は、不活性ガス(イナート・ガス)の介在によって大きく変わり、不活性ガス/可燃ガスの比が大きくなるに従って爆発限界は狭まり、窒素/水素=16、炭酸ガス/水素=10、窒素/一酸化炭素=4、炭酸ガス/一酸化炭素=2において爆発限界は0となり、いくら空気が漏れ込んでも可燃ガスの爆発は起こらない。また、不活性ガスの爆発阻止能力はCO、HO、N の順に高く、水蒸気は炭酸ガスと窒素の間にあり、可燃性ガス2種以上の混合ガスはルシャテリエ(Le Cha.terier)の下記法則から計算できる。 The explosion limit is greatly changed by the presence of an inert gas (inert gas), and the explosion limit is narrowed as the ratio of inert gas / combustible gas increases. Nitrogen / hydrogen = 16, carbon dioxide / hydrogen = 10, In the case of nitrogen / carbon monoxide = 4 and carbon dioxide / carbon monoxide = 2, the explosion limit becomes 0, and no matter how much air leaks, no explosion of combustible gas occurs. In addition, the inert gas explosion prevention capability is higher in the order of CO 2 , H 2 O, and N 2 , the water vapor is between carbon dioxide and nitrogen, and the mixed gas of two or more flammable gases is Le Chaterier (Le Cha. Terier). ) Can be calculated from the following law.

Figure 2007297527
Figure 2007297527

本発明は、上記の混合ガスの法則から、成分ガスの爆発限界が0になる時の不活性ガス/可燃性ガスの比を求め、安全率を見込みこの値の2倍以上の蒸気量を導入し、燃焼・爆発の危険を回避したことを特徴とする。   The present invention calculates the ratio of inert gas / flammable gas when the explosion limit of the component gas reaches 0 from the above-mentioned mixed gas law, and introduces a vapor amount more than twice this value in anticipation of the safety factor. It is characterized by avoiding the danger of combustion and explosion.

また火種からの逆火を回避する目的で、装置からガス貯蔵タンクに繋がる配管に気液分離機能を持つ水封ドラムを装備したことを特徴とする。   In addition, for the purpose of avoiding a backfire from a fire type, a water seal drum having a gas-liquid separation function is provided in a pipe connected from the apparatus to a gas storage tank.

安定した電力を確保するために発電機に致る配管に熱量計、ガス流量計、ミキサー、ガス流量調節弁を具備することが好ましい。すなわち廃棄物の成分は不安定であり、当然回収したガス燃料の成分、熱量も不安定である。そこで熱量計とガス流量計により全熱量を計測し、これを基にガス流量調節弁により発電機に導入するガス量をコントロールすることが望まれるのである。発電装置に入るガスの全熱量が不足する場合には、市販のLPGやLNGガスと発生するガスとをミキサーにて自動的に混合し発電機に導入することが必要である。   In order to ensure stable electric power, it is preferable to provide a calorimeter, a gas flow meter, a mixer, and a gas flow rate control valve in a pipe that matches the generator. In other words, the components of the waste are unstable, and naturally the components of the recovered gas fuel and the amount of heat are also unstable. Therefore, it is desired to measure the total amount of heat with a calorimeter and a gas flow meter, and to control the amount of gas introduced into the generator with a gas flow rate control valve based on this. When the total heat quantity of the gas entering the power generation device is insufficient, it is necessary to automatically mix commercially available LPG or LNG gas and the generated gas with a mixer and introduce the gas into the generator.

緊急放散塔は、火災、地震等の災害時あるいは停電時等にガスを燃焼後安全に大気に放出するためのものである。   The emergency radiation tower is used to safely release gas to the atmosphere after combustion in the event of a disaster such as a fire or an earthquake, or during a power failure.

乾留は、熱源を止めても装置内の廃棄物の温度が下がるまで続くので緊急放散塔は不可欠になる。   Since the carbonization continues until the temperature of the waste in the apparatus drops even if the heat source is turned off, an emergency dispersal tower becomes indispensable.

水蒸気は、廃棄物に含まれている水分と発電機及び装置の廃熱を利用し製造する。   Steam is produced by utilizing the moisture contained in the waste and the waste heat of the generator and apparatus.

水蒸気は、先ず乾留室に導入し、乾留室内での燃焼・爆発を抑制する。水蒸気の温度は高ければ高いほど好ましく、乾留室温度より高い温度の水蒸気を導入することによって乾留が促進されると共に熱回収が計られることになる。   Steam is first introduced into the carbonization chamber to suppress combustion and explosion in the carbonization chamber. The higher the temperature of the steam, the better. The introduction of steam having a temperature higher than the temperature of the dry distillation chamber promotes dry distillation and measures heat recovery.

系内の水は、好ましくは水蒸気に転換し、装置で余剰となった水蒸気は緊急放散塔に導入し、常時、塔内のドラフトを確保することによりガスの燃焼空気用送風機を不要とした。   The water in the system was preferably converted into water vapor, and the water vapor surplus in the apparatus was introduced into the emergency diffusion tower, and the draft in the tower was always secured to eliminate the need for a gas combustion air blower.

上記により、本発明は、系外に排水を出さないクローズドシステムとしたことを特徴とする。   Based on the above, the present invention is characterized in that it is a closed system that does not discharge wastewater outside the system.

水蒸気は廃棄物の水分を利用して製造するが、これらの水は、好ましくは塩素分は苛性ソーダにて中和し、水に浮く固形分及び油分は、油水分離器を通して除去した後、クーリングタワーへ戻されボイラー等に供給する。
上記構成の機器は、ガス洗浄塔、苛性ソーダ槽、苛性ソーダポンプ、循環水ポンプを具備することが好ましい。
Steam is produced using waste water, but these waters are preferably neutralized with caustic soda for chlorine, and solids and oil floating in the water are removed through an oil / water separator and then sent to a cooling tower. It is returned and supplied to the boiler.
It is preferable that the apparatus of the said structure comprises a gas washing tower, a caustic soda tank, a caustic soda pump, and a circulating water pump.

水中の固形分、油分を除去する油水分離器を設けており、排水を集めて冷却し、再利用するためのクーリングタワーと循環ポンプを具備した廃棄物発電装置
クーリングタワーから供給されるボイラー水は、好ましくは発電装置の排気熱を利用した一次ボイラーを経由し、さらにガス発生装置の排熱を利用した二次、三次ボイラーにて温度600゜C以上の過熱蒸気にして乾留室に供給される。
Waste water generator equipped with a cooling tower and a circulation pump for collecting and cooling the waste water, cooling it, and reusing it is provided with an oil-water separator that removes solids and oil in the water. Boiler water supplied from the cooling tower is preferably Is supplied to the dry distillation chamber as superheated steam having a temperature of 600 ° C. or more through secondary boilers and tertiary boilers using exhaust heat of the gas generator through a primary boiler using exhaust heat of the power generator.

一次ボイラーは発電装置の排気ライン、二次、三次ボイラーは高温反応器出口ガスラインに具備している。   The primary boiler is provided in the exhaust line of the power generator, and the secondary and tertiary boilers are provided in the high-temperature reactor outlet gas line.

この発明の効果は次のとおりである。
廃棄物に含まれる水分を回収し、回収水分を装置の排熱を利用して過熱蒸気を作り廃棄物に吹き付け乾留し、この過熱蒸気を基に、高温反応室でさらに温度を上げ乾留ガス中の炭、油分および乾留残渣(炭)を水性ガス反応によりガス化する共に、乾留ガスに同伴した空気を、過熱蒸気により爆発を抑制しながら酸化反応によりCO,HOに転換し、さらにこのガスを除塵、アルカリ洗浄し、廃棄物から燃料電池、ガスエンジン 、ガスタービン等に使用可能な良質ガス燃料が回収できる。また、残渣(炭)は水 蒸気賦活により良質な活性炭として回収できる。
The effects of the present invention are as follows.
The water contained in the waste is recovered, and the recovered water is used to generate superheated steam using the exhaust heat of the equipment, blown to the waste and dry-distilled. Based on this superheated steam, the temperature is further raised in the high-temperature reaction chamber, The charcoal, oil, and carbonization residue (charcoal) are gasified by water gas reaction, and the air accompanying the carbonization gas is converted to CO 2 and H 2 O by oxidation reaction while suppressing explosion by superheated steam, This gas is dedusted and washed with alkali, and good quality gas fuel that can be used in fuel cells, gas engines, gas turbines, etc. can be recovered from waste. Residue (charcoal) can be recovered as high-quality activated carbon by water vapor activation.

ここで実例として、し尿汚泥400kg/時間、水分30%での例を挙げると下記のようになる。   Here, as an actual example, an example with human waste sludge 400 kg / hour and moisture 30% is as follows.

Figure 2007297527
Figure 2007297527

回収したガス燃料は装置の乾留用、反応用の熱源として使用可能であり、電気に転換した際は、装置に必要な大部分の用役を廃棄物から賄うことができる。   The recovered gas fuel can be used as a heat source for dry distillation and reaction of the apparatus, and when converted to electricity, most of the utility necessary for the apparatus can be provided from waste.

現在、埋め立て処分されている乾留残渣から良質なガス燃料が回収できる。   Currently, good quality gas fuel can be recovered from dry distillation residue that is disposed of in landfill.

現在の主流である焼却処理の場合、廃棄物1に対し10〜20倍の燃焼空気を必要とし、当然燃焼排ガスも廃棄物1に対し10〜20倍以上となり、膨大な排ガス量と燃焼によるダイオキシン類対策と相まって、排ガスの処理設備に焼却炉本体の数倍の費用を要している。一方本発明による廃棄物発電は、乾留ガス化方式で、乾留ガス量は焼却方式による排ガス量の約1/20〜1/10であり、またダイオキシン類の対策も不要であり、装置建設費のコストダウンが達成できる。   In the case of the current mainstream incineration treatment, 10 to 20 times as much combustion air as waste 1 is required. Naturally, the combustion exhaust gas is 10 to 20 times or more than waste 1, and a huge amount of exhaust gas and dioxin due to combustion Combined with other measures, the waste gas treatment facility requires several times the cost of the incinerator body. On the other hand, the waste power generation according to the present invention is a dry distillation gasification method, and the amount of dry distillation gas is about 1/20 to 1/10 of the exhaust gas amount by the incineration method. Cost reduction can be achieved.

処理物中の水分を冷却凝縮して回収した水を、装置の排熱を利用して過熱蒸気とし、これを乾留用の補助熱源に用いて、主熱源の節減を計ると共に、水蒸気の熱伝導率の良いことを利用し、過熱蒸気を廃棄物に直接吹き付ける構造としたことにより乾留ガス化の促進が計られ、同一乾留温度で水蒸気がない場合と比較すると約1/3〜1/4の時間、約30分で乾留ガス化が可能であり、乾留室のコンパクト化が達成できる。   Water collected from the processed water after cooling and condensing is converted into superheated steam using the exhaust heat of the equipment, and this is used as an auxiliary heat source for dry distillation to reduce the main heat source and to conduct heat of water vapor. Utilizing the good rate, the structure in which superheated steam is blown directly onto waste promotes dry distillation gasification, which is about 1/3 to 1/4 compared with the case where there is no steam at the same dry distillation temperature. Dry distillation gasification is possible in about 30 minutes, and a compact distillation chamber can be achieved.

さらに余剰水蒸気を緊急放散塔に導入することにより、緊急放散塔内のドラフトが確保され、緊急時においても乾留ガスが装置から吹き出すことなく安全に処理されるだけでなく、回収した水を全量蒸気化し利用することにより排水処理装置を不要とした。  Furthermore, by introducing surplus water vapor into the emergency stripping tower, a draft in the emergency stripping tower is secured, and not only is the carbonized gas safely processed without being blown out of the device even in an emergency, but the recovered water is completely vaporized. By using it, wastewater treatment equipment is no longer needed.

先ず、この発明による廃棄物をガス燃料に転換し発電する廃棄物発電装置について、図1に基づいて説明する。 First, a waste power generation apparatus that generates power by converting waste into gas fuel according to the present invention will be described with reference to FIG.

この発明に係る廃棄物発電装置は、廃棄物をガス燃料に転換するガス発生装置1と、このガス燃料により発電する発電装置2と、安全装置としての緊急放散塔3の三つの装置により構成される。   The waste power generation device according to the present invention is composed of three devices: a gas generation device 1 that converts waste into gas fuel, a power generation device 2 that generates power using the gas fuel, and an emergency diffusion tower 3 as a safety device. The

この発明によるガス発生装置1は、廃棄物を乾留する乾留室4と、乾留室から出た乾留ガスと水蒸気の混合物及び乾留室から出た乾留残渣(炭)と水蒸気の混合物を導入し、水性ガス反応により炭と油分をガス化すると共に同伴するOを酸化反応によりCO、HOに転換する高温反応室5と、発電機53の排気を利用して水蒸気を製造する一次ボイラー25と、この水蒸気を過熱するための二次ボイラー6、三次ボイラー7と、更にこれらのガスを除塵、洗浄するための冷却塔8、集塵機9、ガス洗浄塔10と、ガスを排出するための誘引通風機11と、発電装置2からの逆火を阻止するための気液分離器を備えた水封ドラム12と、排水から固形分や油分を除去すための油水分離器16、排水を回収、冷却し、再利用するためのクーリングタワー17、給水ポンプ18と 乾留残渣(炭)を回収するための水冷コンベア19、不燃物と乾留残渣(炭)を分別するための分別装置50、乾留残渣(炭)を粉砕する粉砕機20、粉砕した乾留残渣(炭)を回収する集塵機21、粉砕した炭を高温反室に導入するための蒸気エゼクタ22、緊急時にガスを安全に逃がすための放散ライン23、緊急解放弁24、事前に緊急放散塔3内のドラフトを確保するための蒸気弁26とから主として構成されている。 A gas generator 1 according to the present invention introduces a carbonization chamber 4 for carbonizing waste, a mixture of carbonization gas and water vapor coming out of the carbonization chamber, and a mixture of carbonization residue (charcoal) and water vapor coming out of the carbonization chamber, A high temperature reaction chamber 5 that gasifies charcoal and oil by gas reaction and converts the accompanying O 2 into CO 2 and H 2 O by oxidation reaction, and a primary boiler 25 that produces steam using the exhaust of the generator 53. A secondary boiler 6 and a tertiary boiler 7 for superheating the water vapor, a cooling tower 8 for removing and cleaning these gases, a dust collector 9 and a gas cleaning tower 10, and an attraction for discharging the gas. A ventilator 11, a water-sealed drum 12 equipped with a gas-liquid separator for preventing backfire from the power generation device 2, an oil-water separator 16 for removing solids and oil from the wastewater, and collecting the wastewater, For cooling and reuse A ring tower 17, a water supply pump 18, a water-cooled conveyor 19 for recovering carbonization residue (charcoal), a separation device 50 for separating incombustibles and carbonization residue (charcoal), a pulverizer 20 for pulverizing the carbonization residue (charcoal), A dust collector 21 that collects pulverized carbonization residue (charcoal), a steam ejector 22 for introducing the pulverized charcoal into the high-temperature chamber, a diffusion line 23 for escaping gas safely in an emergency, an emergency release valve 24, an emergency in advance It mainly comprises a steam valve 26 for securing a draft in the stripping tower 3.

この発明による発電装置2は、ガス発生装置1で発生したガスを貯蔵するガス貯蔵タンク51と、このガスを用いて発電する発電機53により構成されている。またガス貯蔵タンク51と発電機53の間には、熱量計13、ガス流量計14、ミキサー52を備えている。   The power generator 2 according to the present invention includes a gas storage tank 51 that stores the gas generated by the gas generator 1 and a generator 53 that generates power using the gas. A calorimeter 13, a gas flow meter 14, and a mixer 52 are provided between the gas storage tank 51 and the generator 53.

この発明による緊急放散塔3内には、飽和蒸気を過熱蒸気にするコイル管27及びパイロットバーナ46を内装している。   In the emergency radiation tower 3 according to the present invention, a coil tube 27 and a pilot burner 46 for converting saturated steam into superheated steam are provided.

乾留室4入口には廃棄物投入装置28、乾留ガス出口には集塵機29と、乾留室4内部には加熱管若しくは電気ヒータ30、下側向けて多数の孔が開いた蒸気管31と内部温度を測定してコントロールする温度制御装置32、内部圧力を測定してコントロールする圧力制御装置33が設けられている。
高温反応室5の内部には加熱管若しくは電気ヒータ34、反応促進剤35と内部温を測定してコントロールする温度制御装置36が設けられている。
A waste input device 28 is provided at the inlet of the carbonization chamber 4, a dust collector 29 is provided at the gas distillation outlet, a heating tube or an electric heater 30 is provided inside the carbonization chamber 4, a steam pipe 31 having a large number of holes downward and an internal temperature. A temperature control device 32 for measuring and controlling the pressure and a pressure control device 33 for measuring and controlling the internal pressure are provided.
Inside the high temperature reaction chamber 5, a heating tube or electric heater 34, a reaction accelerator 35 and a temperature control device 36 for measuring and controlling the internal temperature are provided.

冷却塔8の下部には、固形分を自動的に排出するロータリーバルブ37と、冷却塔8内部には噴霧ノズル38と、出口排ガス温度を測定してコントロールする温度制御装置39と、この温度制御装置によって 開閉する水量調節弁40が設けられている。   In the lower part of the cooling tower 8, a rotary valve 37 for automatically discharging the solid content, in the cooling tower 8, a spray nozzle 38, a temperature control device 39 for measuring and controlling the exhaust gas temperature at the outlet, and this temperature control A water amount adjustment valve 40 that is opened and closed by the device is provided.

集塵機9の下部には、固形分を自動的に排出するロータリーバルブ41が設けられている。   A rotary valve 41 that automatically discharges the solid content is provided below the dust collector 9.

ガス洗浄塔10には、苛性ソーダ槽42、苛性ソーダ注入ポンプ43、循環水配管48、循環水ポンプ44が設けられている。   The gas cleaning tower 10 is provided with a caustic soda tank 42, a caustic soda injection pump 43, a circulating water pipe 48, and a circulating water pump 44.

誘引通風機11の入口には、乾留室4の室内の圧力をコンロールする圧力調節弁45が設けられている。   At the inlet of the induction fan 11, a pressure control valve 45 that controls the pressure in the dry distillation chamber 4 is provided.

水冷コンベア19の出口にはロータリーバルブ49が設けられている。   A rotary valve 49 is provided at the outlet of the water cooling conveyor 19.

粉砕機20には、窒素ガスの循環ファン47が設けられている。   The pulverizer 20 is provided with a nitrogen gas circulation fan 47.

上記構成の廃棄物発電装置において、乾留室4内は加熱管若しくは電気ヒータ30によって所定室内温度400゜C〜500゜Cに保たれた後、廃棄物は廃棄物投入装置28によって連続的に乾留室4内に投入されると共に、乾留室4内に具備された蒸気管31より所定温度(500゜C〜600゜C)の過熱蒸気を廃棄物に噴射し乾留する。  In the waste power generation apparatus configured as described above, the inside of the dry distillation chamber 4 is kept at a predetermined room temperature of 400 ° C. to 500 ° C. by a heating tube or an electric heater 30, and then the waste is continuously dry distilled by the waste input device 28. While being put into the chamber 4, superheated steam having a predetermined temperature (500 ° C. to 600 ° C.) is injected into the waste from the steam pipe 31 provided in the dry distillation chamber 4, and dry distillation is performed.

乾留室4を出た乾留ガスと水蒸気は集塵機29を経由して大きな固形分、油分を除去した後、高温反応室5に導入される。高温反応室5内は加熱管若しくは電気ヒータ34によって所定温度(900゜C〜1000゜C)に保たれており同伴した炭、油分は水蒸気との水性ガス反応によってガス化される。  The dry distillation gas and water vapor coming out of the dry distillation chamber 4 are introduced into the high temperature reaction chamber 5 after removing large solids and oil via the dust collector 29. The inside of the high temperature reaction chamber 5 is maintained at a predetermined temperature (900 ° C. to 1000 ° C.) by a heating tube or an electric heater 34, and the accompanying charcoal and oil are gasified by a water gas reaction with water vapor.

さらに、乾留室4に侵入し、乾留ガスと水蒸気に同伴した空気は、高温反応室5にて、酸化反応により、不活性の大量の水蒸気雰囲気下において安全にCO、HOに転換する。 Further, the air that has entered the dry distillation chamber 4 and is accompanied by the dry distillation gas and water vapor is safely converted into CO 2 and H 2 O in the high temperature reaction chamber 5 by an oxidation reaction in an inert and large amount of water vapor atmosphere. .

また乾留残渣(炭)は水冷コンベア19、ロータリバルブ49により自動的に排出し、分別装置50にて不燃物と乾留残渣(炭)に分別され、乾留残渣(炭)は粉砕機20により20ミクロン以下に粉砕された後、集塵機21によって回収され、蒸気エゼクタ22によって高温反応室5に 導入され、乾留ガスに同伴した炭、油分と同様に水性ガス反応によりガス化される。   Further, the carbonization residue (charcoal) is automatically discharged by the water-cooled conveyor 19 and the rotary valve 49, and is separated into non-combustible material and carbonization residue (charcoal) by the separation device 50. The carbonization residue (charcoal) is 20 microns by the pulverizer 20. After being pulverized below, it is recovered by the dust collector 21, introduced into the high-temperature reaction chamber 5 by the steam ejector 22, and gasified by the water gas reaction in the same manner as charcoal and oil accompanying the dry distillation gas.

高温反応室5を出たガス(水蒸気を含む)は冷却塔8にて水によって所定温度(次に繋がる集塵機濾布の耐火温度以下200゜C)に保たれる。   The gas (including water vapor) exiting the high temperature reaction chamber 5 is kept at a predetermined temperature (200 ° C. or less below the refractory temperature of the dust collector filter cloth connected next) with water in the cooling tower 8.

塔内で分離した固形分は塔下部のロータリーバルブ37を経て系外に排出される。   The solid content separated in the tower is discharged out of the system through a rotary valve 37 at the bottom of the tower.

冷却塔8を出たガスは集塵機9に導入され、ここで捕捉された固形分は下部のロータリーバルブ41を経て系外に排出される。この固形分は高温反応室での水蒸気賦活により活性炭として排出する。   The gas exiting the cooling tower 8 is introduced into the dust collector 9, and the solid content captured here is discharged out of the system through the lower rotary valve 41. This solid content is discharged as activated carbon by steam activation in the high temperature reaction chamber.

集塵機9を出たガスはガス洗浄塔10に導入され、苛性ソーダ水により洗浄され、塩化水素(Hcl)は苛性ソーダ(NaOH)とにより中和して食塩(Nacl)として多量の水と共にクーリングタワー17に戻される。   The gas exiting the dust collector 9 is introduced into a gas washing tower 10 and washed with caustic soda water. Hydrogen chloride (Hcl) is neutralized with caustic soda (NaOH) and returned to the cooling tower 17 together with a large amount of water as sodium chloride (Nacl). It is.

ガスは洗浄水により約50゜C程度に冷却されるため、ガス中の多量の水は冷却凝縮し、前記のNaclと共にクーリングタワー17に戻る。クーリングタワー17に戻る際、水に同伴した若干の固形分や油分は油水分離器16にて取り除かれた後にクーリングタワー17に戻される。   Since the gas is cooled to about 50 ° C. by the washing water, a large amount of water in the gas is cooled and condensed and returned to the cooling tower 17 together with the Nacl. When returning to the cooling tower 17, some solids and oil accompanying the water are removed by the oil / water separator 16 and then returned to the cooling tower 17.

ガス洗浄塔で塩化水素及び有害ガスを取り除かれたガスは誘引通風機11に導入される。   The gas from which hydrogen chloride and harmful gases have been removed in the gas washing tower is introduced into the induction fan 11.

誘引通風機11は前後圧、前圧−200mmHO、後圧500mmHOで運転され、乾留室4から繋がる誘引通風機11までのガスを吸い出し、発電装置2に送る役目をなす。 The induction fan 11 is operated at a front-rear pressure, a front pressure of −200 mmH 2 O, and a rear pressure of 500 mmH 2 O, and sucks out the gas from the dry distillation chamber 4 to the induction fan 11 and sends it to the power generation device 2.

誘引通風機11の前には、ガス払い出し量をコントロールする圧力調節弁45が設けられている。   In front of the induction fan 11, a pressure control valve 45 for controlling the gas discharge amount is provided.

乾留室4内の圧力が正圧になると乾留ガスが吹き出す恐れがあり、また負圧になると空気を引き込むことになる。よって乾留室4の空気の漏れ込み易いシール部は蒸気シール等の対策を採るとして通常は若干の負圧(±0〜−5mmHO)に保つように圧力制御装置33と圧力調節弁45によってコントロールされる。 When the pressure in the dry distillation chamber 4 becomes positive, dry distillation gas may blow out, and when negative pressure is reached, air is drawn. Accordingly, the pressure control device 33 and the pressure control valve 45 normally maintain a slight negative pressure (± 0 to -5 mmH 2 O) so that the seal portion in the dry distillation chamber 4 where air easily leaks is taken as a measure such as a steam seal. Controlled.

誘引通風機11によって送り出されたガスは水封ドラム12に導入される。   The gas sent out by the induction fan 11 is introduced into the water sealing drum 12.

水封ドラム12は、着火源となる発電装置2からの逆火を阻止する役目をなす。   The water seal drum 12 serves to prevent backfire from the power generation device 2 serving as an ignition source.

また、水封ドラム12はガス貯蔵タンク51に同伴する水分を極力少なくするための気液分離装置の機能も有している。   The water-sealed drum 12 also has a function of a gas-liquid separator for reducing the amount of water accompanying the gas storage tank 51 as much as possible.

ガス貯蔵タンク51出口には、熱量計13、ガス流量計14、ガス流量調節弁15、ミキサー52が設けられている。   At the outlet of the gas storage tank 51, a calorimeter 13, a gas flow meter 14, a gas flow control valve 15, and a mixer 52 are provided.

ガスの熱量、ガスの流量を熱量計13、ガス流量計14にて、それぞれ測定し、全熱量が規定以下であればミキサー52にて市販のLPG或いはLNG54を混合し、規定の全熱量にして発電機53に送る。   Gas calorific value and gas flow rate are measured with calorimeter 13 and gas flow meter 14, respectively, and if the total calorific value is less than specified, commercially available LPG or LNG 54 is mixed with mixer 52 to obtain the specified total calorific value. Send to generator 53.

緊急放散塔3にはパイロットバーナ46が常時点火されており、また余剰水蒸気によつてドラフトが確保されており、緊急時のガスは燃焼されて安全に大気放出される。   The emergency burner tower 3 is always ignited by a pilot burner 46, and a draft is secured by surplus water vapor. The gas in an emergency is burned and safely released into the atmosphere.

緊急時には緊急開放弁24が開き、放散ライン23によって緊急放散塔3に送られ、燃焼されて安全に大気に放出される。   In an emergency, the emergency release valve 24 is opened, sent to the emergency radiation tower 3 by the radiation line 23, burned and safely released to the atmosphere.

クーリングタワー17の水は給水ポンプ18によって冷却塔8、水冷コンベア19、一次ボイラ25に送られ、冷却塔8に送られた水は塔頂部の噴霧ノズル38により塔内のガスに噴射される。水の噴霧量はガス出口温度が所定の温度(200゜C)になるよう温度制御装置39と水量調節弁40によってコントロールされる。また、一次ボイラ5に送られた水は飽和蒸気として二次ボイラ6を経由して、三次ボイラ7に送られ、500〜600゜Cの過熱蒸気として、乾留室4に装備した蒸気管31に送られ廃棄物に噴射される。   Water in the cooling tower 17 is sent to the cooling tower 8, the water cooling conveyor 19, and the primary boiler 25 by the feed pump 18, and the water sent to the cooling tower 8 is sprayed to the gas in the tower by the spray nozzle 38 at the top of the tower. The spray amount of water is controlled by the temperature control device 39 and the water amount adjusting valve 40 so that the gas outlet temperature becomes a predetermined temperature (200 ° C.). The water sent to the primary boiler 5 is sent as saturated steam to the tertiary boiler 7 via the secondary boiler 6, and as superheated steam of 500 to 600 ° C. to the steam pipe 31 equipped in the dry distillation chamber 4. Sent to the waste.

余剰となった蒸気は 蒸気流量調節弁26により、緊急放散塔に内装したコイル管27に送り、温度の高い過熱蒸気にして排気することにより水蒸気の白煙防止対策とした。   The surplus steam was sent to the coil pipe 27 built in the emergency radiation tower by the steam flow rate control valve 26 and exhausted as high temperature superheated steam to prevent white steam.

なお、クーリングタワー17の水が不足すれば、水道水等を自動的に注水するようにした。   In addition, when the water in the cooling tower 17 is insufficient, tap water is automatically poured.

本発明の実施例を示す管系統図。The pipe system diagram which shows the Example of this invention.

符号の説明Explanation of symbols

1 : ガス発生装置
2 : 発電装置
3 : 余剰ガス燃焼装置
4 : 乾留室
5 : 高温反応室
6 : 二次ボイラ
7 : 三次ボイラ
8 : 冷却塔
9 : 集塵機
10 : ガス洗浄塔
11 : 誘引通風機
12 : 水封ドラム
13 : 熱量計
14 : ガス流量計
15 : ガス流量調節弁
16 : 油水分離器
17 : クーリングタワー
18 : 給水ポンプ
19 : 水冷コンベア
20 : 粉砕機
21 : 集塵機
22 : 蒸気エゼクタ
23 : 放散ライン
24 : 緊急開放弁
25 : 一次ボイラ
26 : 蒸気流量調節弁
27 : コイル管
28 : 廃棄物投入装置
29 : 集塵機
30 : 加熱管若しくは電気ヒータ
31 : 蒸気管
32 : 温度制御装置
33 : 圧力制御装
34 : 加熱管若しくは電気ヒータ
35 : 反応促進剤
36 : 温度制御装置
37 : ロータリーバルブ
38 : 噴霧ノズル
39 : 温度制御装置
40 : 水量調節弁
41 : ロータリーバルブ
42 : 苛性ソーダ槽
43 : 苛性ソーダ注入ポンプ
44 : 循環水ポンプ
45 : 圧力調節弁
46 : パイロットバーナ
47 : 循環ファン
48 : 循環水配管
49 : ロータリーバルブ
50 : 分別装置
51 : ガス貯蔵タンク
52 : ミキサー
53 : 発電機
54 : LPG或いはLNG
1: Gas generator 2: Power generation device 3: Surplus gas combustion device 4: Dry distillation chamber 5: High temperature reaction chamber 6: Secondary boiler 7: Tertiary boiler 8: Cooling tower 9: Dust collector 10: Gas cleaning tower 11: Induction fan 12: Water ring drum 13: Calorimeter 14: Gas flow meter 15: Gas flow control valve 16: Oil / water separator 17: Cooling tower 18: Water supply pump 19: Water-cooled conveyor 20: Crusher 21: Dust collector 22: Steam ejector 23: Dissipation Line 24: Emergency release valve 25: Primary boiler 26: Steam flow control valve 27: Coil pipe 28: Waste input device 29: Dust collector 30: Heating pipe or electric heater 31: Steam pipe 32: Temperature control device 33: Pressure control device 34: Heating tube or electric heater 35: Reaction accelerator 36: Temperature controller 37: Rotary valve 38: Spray Nozzle 39: Temperature control device 40: Water flow control valve 41: Rotary valve 42: Caustic soda tank 43: Caustic soda injection pump 44: Circulating water pump 45: Pressure regulating valve 46: Pilot burner 47: Circulating fan 48: Circulating water piping 49: Rotary Valve 50: Sorting device
51: Gas storage tank 52: Mixer 53: Generator 54: LPG or LNG

Claims (7)

冷却凝縮することで廃棄物から水分を回収し、回収した水を装置の排熱を利用して過熱蒸気とし、これを廃棄物に吹き付け乾留する工程、
この工程により発生した過熱蒸気を含む乾留ガス及び乾留残渣(炭)と過熱蒸気を高温反応室に導入し、乾留ガスに同伴した炭、油分及び粉砕した乾留残渣をさらに加熱し、水性ガス反応によってガス化すると共に、乾留ガスに同伴した空気を水蒸気の不活性雰囲気下において爆発反応を抑制し、酸化反応によってCO、HOに転換する工程、
さらにこのガスを除塵、アルカリ洗浄し塩化水素及びその他の有害ガスを除きガス燃料に転換する工程、
このガス燃料を用いて発電する工程、
より成る廃棄物を利用した発電方法。
A process of recovering moisture from waste by cooling and condensing, using the recovered water as superheated steam using the waste heat of the device, spraying this to waste and dry distillation;
Carbonization gas and carbonization residue (charcoal) containing superheated steam generated by this process and superheated steam are introduced into the high-temperature reaction chamber, and the charcoal, oil and pulverized carbonization residue accompanying the carbonization gas are further heated, and water gas reaction is performed. A process of gasifying and suppressing the explosion reaction of air entrained in the dry distillation gas in an inert atmosphere of water vapor and converting it into CO 2 and H 2 O by an oxidation reaction;
In addition, this gas is dust-removed and washed with alkali to remove hydrogen chloride and other harmful gases and convert it to gas fuel,
A process of generating electricity using this gas fuel,
A power generation method using waste comprising
請求項1記載の工程で発生するガス燃料を乾留用及び高温反応室における反応用の熱源とする請求項1記載の廃棄物を利用した発電方法。   The power generation method using waste according to claim 1, wherein the gas fuel generated in the step according to claim 1 is used as a heat source for dry distillation and reaction in a high temperature reaction chamber. 請求項1記載の工程で発生するガス燃料を用いて発電し、これより得た電気を乾留用及び高温反応室における反応用の熱源とする請求項1又は2に記載の廃棄物を利用した発電方法   Electricity generation using the gas fuel generated in the process according to claim 1, and using the electricity obtained therefrom as a heat source for dry distillation and reaction in a high-temperature reaction chamber, power generation using waste according to claim 1 or 2 Method 廃棄物から水分を回収し、回収した水を装置の排熱を利用し、過熱蒸気とし、この蒸気を乾留用補助熱源して乾留室に導入することにより、主熱源の節減を計る請求項1乃至3に記載の廃棄物を利用した発電方法。   The main heat source is saved by recovering moisture from the waste, using the recovered water as superheated steam using the exhaust heat of the apparatus, and introducing this steam into the dry distillation chamber as an auxiliary heat source for dry distillation. A power generation method using the waste according to any one of 3 to 3. 乾留に用いた過熱蒸気と発生した乾留ガスを高温反応室に導入再加熱し、水性ガス反応により、同伴した炭及び油分をガス化しこのガスを発電燃料として用いる請求項1記載の廃棄物を利用した発電方法。   The waste according to claim 1, wherein superheated steam used for dry distillation and generated dry distillation gas are introduced into a high-temperature reaction chamber, reheated, and entrained charcoal and oil are gasified by water gas reaction to use this gas as power generation fuel. Power generation method. 乾留残渣(炭)を粉砕し、過熱蒸気と共に高温反応室に導入し、再加熱し水性ガス反応によりガス化しこのガスを発電燃料として用いる請求項1記載の廃棄物を利用した発電方法。   The power generation method using waste according to claim 1, wherein the carbonization residue (charcoal) is pulverized, introduced into a high-temperature reaction chamber together with superheated steam, reheated and gasified by a water gas reaction, and this gas is used as power generation fuel. 廃棄物を乾留する乾留室と、乾留室から出た乾留ガスと水蒸気の混合物及び乾留室から出た乾留残渣(炭)と水蒸気の混合物を導入し、水性ガス反応により炭と油分をガス化すると共に同伴するOを酸化反応によりCO、HOに転換する高温反応室と、発電機の排気を利用して水蒸気を製造過熱するボイラーとにより成るガス発生装置と、ガス発生装置により製造されるガス燃料により発電する発電装置と、安全装置としての緊急放散塔とにより成る廃棄物を利用した発電装置。 Introduce a carbonization chamber that distills waste, a mixture of carbonization gas and water vapor coming out of the carbonization chamber, and a mixture of carbonization residue (charcoal) and water vapor coming out of the carbonization chamber, and gasify charcoal and oil by water gas reaction. And a gas generator comprising a high-temperature reaction chamber that converts O 2 accompanying the reaction into CO 2 and H 2 O by an oxidation reaction, a boiler that produces and superheats steam using the exhaust of the generator, and a gas generator. Power generation device using waste comprising a power generation device that generates electric power using the gas fuel and an emergency radiation tower as a safety device.
JP2006127270A 2006-05-01 2006-05-01 Power generation method and apparatus using waste Active JP4378360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006127270A JP4378360B2 (en) 2006-05-01 2006-05-01 Power generation method and apparatus using waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006127270A JP4378360B2 (en) 2006-05-01 2006-05-01 Power generation method and apparatus using waste

Publications (2)

Publication Number Publication Date
JP2007297527A true JP2007297527A (en) 2007-11-15
JP4378360B2 JP4378360B2 (en) 2009-12-02

Family

ID=38767294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006127270A Active JP4378360B2 (en) 2006-05-01 2006-05-01 Power generation method and apparatus using waste

Country Status (1)

Country Link
JP (1) JP4378360B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170836A (en) * 2011-02-17 2012-09-10 Yanmar Co Ltd Biogas power generator
CN103224312A (en) * 2013-05-08 2013-07-31 上海市离心机械研究所有限公司 Drilling sludge drying treatment process and special dewatering and drying system
CN104588399A (en) * 2015-01-14 2015-05-06 石家庄新华能源环保科技股份有限公司 Refuse disposal combined power generator
CN107221695A (en) * 2017-06-30 2017-09-29 北京理工大学 A kind of fuel cell system and its electricity-generating method with biomass gasifying hydrogen making
CN111378801A (en) * 2020-03-30 2020-07-07 北京北大先锋科技有限公司 Process method and device for removing hydrogen chloride by powder injection of blast furnace gas pipeline
JP2021010851A (en) * 2019-07-03 2021-02-04 伊藤 拓仙 Device for producing hydrogen from waste

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170836A (en) * 2011-02-17 2012-09-10 Yanmar Co Ltd Biogas power generator
CN103224312A (en) * 2013-05-08 2013-07-31 上海市离心机械研究所有限公司 Drilling sludge drying treatment process and special dewatering and drying system
CN104588399A (en) * 2015-01-14 2015-05-06 石家庄新华能源环保科技股份有限公司 Refuse disposal combined power generator
CN107221695A (en) * 2017-06-30 2017-09-29 北京理工大学 A kind of fuel cell system and its electricity-generating method with biomass gasifying hydrogen making
CN107221695B (en) * 2017-06-30 2023-05-30 北京理工大学 Fuel cell system for producing hydrogen by biomass gasification and power generation method thereof
JP2021010851A (en) * 2019-07-03 2021-02-04 伊藤 拓仙 Device for producing hydrogen from waste
CN111378801A (en) * 2020-03-30 2020-07-07 北京北大先锋科技有限公司 Process method and device for removing hydrogen chloride by powder injection of blast furnace gas pipeline
CN111378801B (en) * 2020-03-30 2021-06-22 北京北大先锋科技有限公司 Process method and device for removing hydrogen chloride by powder injection of blast furnace gas pipeline

Also Published As

Publication number Publication date
JP4378360B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
US20230031504A1 (en) Two-stage plasma process for converting waste into fuel gas and apparatus therefor
US9657941B2 (en) Method and apparatus for gasification of organic waste
US20080222956A1 (en) System for the Conversion of Coal to a Gas of Specified Composition
US20140305043A1 (en) Method of gasification of biomass using gasification island
JP6550567B2 (en) Processing system and processing apparatus
JP4378360B2 (en) Power generation method and apparatus using waste
AU2007247899A1 (en) A gas conditioning system
CN104479743B (en) A kind of rubbish plasma gasification stove with vapor as gasifying medium
CN104006391A (en) Medical waste incinerator applied with oxygen-enriched combustion technology
US20110303134A1 (en) Method and apparatus for treating solid wastes
JP2010043840A (en) Method and apparatus for melting waste
JP6595073B1 (en) Waste treatment method and system
JP2007255844A (en) Fusing equipment and fusing method of gasification fusing system
JP2006231301A (en) Gasification apparatus of waste
TWI642877B (en) Procede et installation de valorisation energetique de dechets
JP2005298783A (en) Solid waste gasification power generation system
JP2002106816A (en) Waste incinerator
JP2021010851A (en) Device for producing hydrogen from waste
CN117304953A (en) Combustible wood base, paper base and other combustible waste treatment systems
CN112094661A (en) Method and apparatus for treating organic solid waste
JP2004050074A (en) Method and apparatus for drying and thermal decomposition of organic waste
JP2005291590A (en) Ultra-high temperature flame generating method, ultra-high temperature combustion furnace, garbage incinerator, and flue gas cooling device
JP2005201620A (en) Refuse gasifying and melting method and apparatus
JPH1054533A (en) Combustion air supply method for combustion melting furnace and waste treatment apparatus
JP2000337623A (en) Dioxin decomposing device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

R150 Certificate of patent or registration of utility model

Ref document number: 4378360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250