JP2004050074A - Method and apparatus for drying and thermal decomposition of organic waste - Google Patents

Method and apparatus for drying and thermal decomposition of organic waste Download PDF

Info

Publication number
JP2004050074A
JP2004050074A JP2002211826A JP2002211826A JP2004050074A JP 2004050074 A JP2004050074 A JP 2004050074A JP 2002211826 A JP2002211826 A JP 2002211826A JP 2002211826 A JP2002211826 A JP 2002211826A JP 2004050074 A JP2004050074 A JP 2004050074A
Authority
JP
Japan
Prior art keywords
pyrolysis
organic waste
gas
drying
rotary cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002211826A
Other languages
Japanese (ja)
Inventor
Takusen Ito
伊藤 拓仙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance KK
Original Assignee
Advance KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance KK filed Critical Advance KK
Priority to JP2002211826A priority Critical patent/JP2004050074A/en
Publication of JP2004050074A publication Critical patent/JP2004050074A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Abstract

<P>PROBLEM TO BE SOLVED: To make dry degree control or operation for moisture adjustment no need at all, make any optional heat source usable, and make a burner or the like as heat source also no need. <P>SOLUTION: Organic wastes are dried by leading a high temperature exhaust gas burned for gas reforming in a gas reforming chamber to a heating pipe for drying which is disposed in a rotary cylinder for drying and thereby radiating heat of the heating pipe. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は水分の多い下水汚泥、し尿汚泥、食品汚泥、生ごみ等の有機性廃棄物を乾燥、熱分解、改質の工程を経て有機性廃棄物から燃料ガスを製造する方法及び装置に関する。
【0002】
【従来の技術】
有機性廃棄物を乾燥する方法としては、燃焼排ガスや熱風炉にて熱風を作り、これを乾燥機に導入し接触乾燥する方法があった。
【0003】
【発明が解決しようとする課題】
この方法は、乾燥機出口での排ガス量が多くなるばかりでなく、排ガスの温度が低くなり臭気が問題になるため脱臭炉(ガス燃焼炉)で700℃以上に上げる必要があり多大の燃料を消費している。
【0004】
脱臭炉での燃費を下げる方法として熱分解用回転筒体から発生する乾留ガス(可燃ガス)と一緒に燃焼させる方法が採られている。
【0005】
この方法は、乾留ガスの燃焼によって生成するダイオキシン類の発生が免れないため、この種の脱臭炉を付設した熱分解用回転筒体は焼却炉としての範疇で法規制がなされている。
【0006】
焼却によって発生する猛毒のダイオキシン類は、塩化水素、未燃カ−ボン、空気の三要素によって生成されると考えられている。そこで、ダイオキシン類対策としては熱分解ガス中の塩化水素を除去する方法、未燃カ−ボンの主体であるタ−ル、煤、炭化水素を除去する方法が講じられている。
【0007】
しかしダイオキシン類を完全に除去できる装置、方法は存在しない。ダイオキシン類の発生を抑制するには、熱分解ガスをタ−ル、煤、炭化水素の含まないガスに改質する以外にない。
【0008】
熱分解後の残渣は、炭や活性炭として有効可能なものもあるが、通常の廃棄物は有機物だけでなく、重金属、金属、ガラス等が含まれており、これらが残渣に残るため、このまま廃棄物処分場に投棄した場合、有害物質が地中に溶出する恐れがあり、溶出しないよう、これらを溶融・固化して処分いる。
【0009】
有機物を熱分解した後の残渣は、炭素が主成分であるため、これを溶かすには室内を約3000℃以上に保つ必要があるが、この温度に耐える炉材は非常に高価であり又、燃費が嵩むことから、灰化室にて炭素分を燃焼させ、溶け易い無機質の灰にした後、室温、約1200〜1500℃の溶融・固化室に送り、プラズマ加熱により溶融し、溶融後、水冷や空冷により固化している。
【0010】
有機性廃棄物の熱分解残渣は灰化室にて炭化物を燃焼させることからダイオキシン類の発生は免れない。
【0011】
【課題を解決するための手段】
請求項1記載の発明は、ガス改質室にてガス改質のために燃焼した高温排ガスを乾燥用回転筒体に内装した乾燥用加熱管内に流し、加熱管の輻射熱によって有機性廃棄物を乾燥するというものである。
【0012】
請求項2記載の発明は、有機性廃棄物を一端から受け入れ他端から排出する乾燥用回転筒体に高温排ガスを内部に通した乾燥用加熱管を内内装し、加熱管の輻射熱を利用し有機性廃棄物を乾燥する装置である。
【0013】
ガス改質室の高温排ガスを利用するが故に乾燥用回転筒体の燃料消費を低減することが可能になるのである。
【0014】
乾燥用回転筒体で乾燥した有機性廃棄物は、熱分解用回転筒体に送られ熱分解されるが、熱分解用の熱源はガス改質室にて改質された高温改質ガスを熱分解用回転筒体に内装した熱分解用加熱管内に流し、熱分解用加熱管の輻射熱によって熱分解し、ここで不足する熱は、熱分解用回転筒体に内装した改質ガスを燃料としたバ−ナによって補なわれる。従って、乾燥用回転筒体では、乾燥の度合い、水分調整等の操作は全く不要であり、熱源は成り行きでよいことからバ−ナ等の熱源は不要となる。
【0015】
請求項3の発明は、請求項1.請求項2の乾燥用回転筒体と熱分解用回転筒体及びガス改質室との組み合わせにより、省エネルギ−化と操作性の改善を計った有機性廃棄物の熱分解装置である。
【0016】
請求項4の発明は、約1200〜1500℃の室(炉とも言う)に熱分解後の残渣を投入し、この残渣に高温蒸気を吹き付けることにより、下記の表1記載の水性ガス反応が起こり、残渣中の炭素はCO+Hに分解し、残った残渣は灰分、重金属、金属、ガラス等の無機質が主成分となり1200〜1500℃の室温においてプラズマ加熱で容易に溶融することができる。
【0017】
【表1】

Figure 2004050074
【0018】
請求項5の発明は、水性ガス反応の促進剤として高温水蒸気に空気、或は酸素を添加することによって熱分解速度の短縮を計り、熱分解速度をプラズマ加熱による溶融速度に近づけることによって処理時間の短縮を計ったことを特徴とする。
【0019】
請求項6の発明は、同一室内にプラズマト−チ、水蒸気吹き込みノズル及び空気吹き込みノズルを装備し、熱分解残渣を水性ガス反応によって灰化しながら、炭化物の溶融を可能にした残渣の熱分解・溶融装置である。
【0020】
請求項7の発明は、乾燥用回転筒体出口の乾燥用加熱管に一次ボイラ−を設け、廃熱を利用して蒸気を作り、更に熱分解用回転筒体出口の熱分解用加熱管に設けた二次ボイラ−に導入し、500℃以上の超高温蒸気とし、これを熱分解用回転筒体内の有機性廃棄物及び熱分解・溶融室の熱分解残渣に吹き付け、水性ガス反応は蒸気温度が高ければ高いほど反応が進むことを利用してH,COを主体とする良質な燃料を製造する。
【0021】
請求項8の発明は、熱分解用回転筒体の熱分解ガス出口及びガス改質室排ガス出口部に集塵用サイクロンを設置し、加熱管に入る前にタ−ルや粉塵を捕捉し、捕捉したタ−ルや粉塵を、それぞれのスクリュ−コンベアに戻し、再投入することによりタ−ルや粉塵をを系外に排出しないことを特徴とした集塵サイクロンの構造である。
【0022】
請求項9の発明は、熱分解用回転筒体の熱分解ガス出口部に水蒸気エゼクタ−を設け、加熱した作動水蒸気を導入することにより随伴する熱分解ガスの一部が蒸縮し、系外に漏れ出るトラブルや集塵サイクロンでの閉塞、火災等を防止すると共にエゼクタ−水蒸気量を調整することにより熱分解用回転筒体の内圧を一定に保つようにした有機性廃棄物の熱分解装置である。
【0023】
【発明の実施の形態】
以下、本発明の一実施の形態を図に基づいて説明する。
【0024】
図1は、本発明に係る水分の多い有機性廃棄物の熱分解方法とその装置を示すフロ−図である。
【0025】
図1において、コンベア等で運ばれた有機性廃棄物は乾燥用回転筒体1に設けられた原料ホッパ−2に投入され、原料二重ダンパ−の上段ダンパ−3の上面に落し込まれる。このとき、下段ダンパ−4は閉じた状態にある。上段ダンパ−3を開き、有機性廃棄物を下段ダンパ−4の上面に落し込む。この後、上段ダンパ−3を閉じ、下段ダンパ−4を開き、有機性廃棄物は二重ダンパ−の下部に設けられた原料スクリュ−コンベア5に落し込まれる。この二重ダンパ−動作は外気からの空気の侵入をできるだけ防ぐ目的で行われる。
【0026】
有機性廃棄物が乾燥用回転筒体1に投入される前に、熱分解用回転筒体6及びガス改質室7の内部はバ−ナ加熱管19、ガス改質バ−ナ9によって予熱されており、熱分解用回転筒体6の内部は300〜750℃の温度に、ガス改質室7は800〜1300℃に設定されている。熱分解・溶融室10もプラズマト−チ11が起動しており、プラズマ加熱により室内は成り行きで1200〜1500℃に昇温された状態にある。
【0027】
又、一次ボイラ−12、二次ボイラ−13も立ち上がっており、両ボイラ−で作られた高温蒸気は既に熱分解用回転筒体6及び熱分解・溶融室10に導入された状態にある。
【0028】
又、有機性廃棄物が乾燥用回転筒体1に入る前には排ガス誘因通風機14を含め装置の全てが起動しており、乾燥用回転筒体1に投入された有機性廃棄物は乾燥用回転筒体1の出口端部に行くまでに乾燥用回転筒体1の内部に装備した乾燥用加熱管15によって適度に乾燥され、乾物二重ダンパ−16を経て、乾物スクリュ−コンベア17により熱分解用回転筒体6に送り込まれる。
【0029】
熱分解用回転筒体6に送り込まれた乾燥有機性廃棄物は熱分解用回転筒体6の出口端部に行くまでに内部に装備した熱分解用加熱管18とバ−ナを内装したバ−ナ加熱管19によって熱分解される。
【0030】
熱分解後の残渣は熱分解用回転筒体6の出口端部より熱分解・溶融室10に直接落し込まれる。熱分解・溶融室10に落し込まれた残渣は先に起動している
プラズマト−チ11及び高温蒸気、反応促進剤の空気、或は酸素によって残渣中の炭素は水性ガス反応によってガス化し、更に残った残渣はプラズマト−チ11のア−クに曝され溶融する。溶融した残渣は固化室20に自然に滴下し、水冷或は空冷により固化する。
【0031】
乾燥用回転筒体1において乾燥時に発生した水蒸気は多少の臭気を含むためガス改質室7に導入し、ガス改質バ−ナ9によって温度を700℃以上に上げ酸化脱臭された後、ガス改質バ−ナ9の燃焼排ガスと共にガス改質室7を出る。
【0032】
ガス改質室7を出た水蒸気と燃焼排ガスは排ガスサイクロン8で除塵された後、乾燥用回転筒体1の内部に配置した乾燥用加熱管15の中を流れ、乾燥用の熱源として熱を放出した後、乾燥用回転筒体1を出る。
【0033】
乾燥用回転筒体1を出た水蒸気と燃焼排ガスは一次ボイラ−12にて更に熱を放出し、冷却塔22にて排ガス誘引通風機14の耐熱温度以下に下げた後、排気筒25より大気中に放出する。
【0034】
熱分解用回転筒体6において熱分解時に発生した熱分解ガスは水蒸気エゼクタにおいて吸引され、乾物集塵サイクロン33で除塵された後、ガス改質室7に送られ、ガス改質室7ではガス改質バ−ナ9と加熱された水蒸気によってガス改質加熱管21の外側から加熱し、ガス改質加熱管21の中を流れる熱分解ガスに熱を加え、熱分解ガスを水素及び一酸化炭素を主成分とした良質ガスに改質する。
【0035】
ガス改質室7にて改質された改質ガスは熱分解用回転筒体6の内部に配置した熱分解用加熱管18の中を流れ、熱分解用の熱源として熱を放出した後、熱分解用回転筒体6を出る。
【0036】
熱分解用回転筒体6を出た改質ガスは二次ボイラ−13及び空気加熱器23で熱を放出した後、冷却器24にてガス誘引通風機25の耐熱温度以下に下げ、気液分離ドラム26に送られる。冷却水の戻り水はク−リングタワ−36で冷却された後、循環水ポンプ37によって再び冷却器24に送られる。
【0037】
気液分離ドラム26においてガスと水分に分離し、ガスはガス圧縮機27等で昇圧し、ガス改質バ−ナ9及びバ−ナ加熱管19の燃料として供給する。又、余剰の改質ガスは発電機28や燃料電池の燃料とする。
【0038】
気液分離ドラム26で分離された水分はドレンドラム29に回収され、冷却水ポンプ31によって冷却塔22の水噴霧ノズル32に送られる。冷却塔22で噴霧した水はガス改質室7から出た水蒸気と燃焼排ガスによって蒸発し、水蒸気、燃焼排ガスと共に排気筒30より大気中に放出する。
【0039】
【発明の効果】
ガス改質室の高温排ガスを利用するが故に乾燥用回転筒体の燃料消費を低減することが可能になる。
【0040】
乾燥用回転筒体では、乾燥の度合い、水分調整等の操作は全く不要であり、熱源は成り行きでよいことからバ−ナ等の熱源は不要となる。
【0041】
乾燥用回転筒体と熱分解用回転筒体及びガス改質室との組み合わせにより、省エネルギ−化と操作性の改善を計った。
【0042】
残った残渣は灰分、重金属、金属、ガラス等の無機質が主成分となり1200〜1500℃の室温においてプラズマ加熱で容易に溶融することができる。
【0043】
熱分解速度の短縮を計り、熱分解速度をプラズマ加熱による溶融速度に近づけることによって処理時間の短縮を計った。
【0044】
熱分解残渣を水性ガス反応によって灰化しながら、炭化物の溶融を可能にした。
【0045】
水性ガス反応は蒸気温度が高ければ高いほど反応が進むことを利用してH,COを主体とする良質な燃料を製造できる。
【0046】
熱分解用回転筒体の熱分解ガス出口及びガス改質室排ガス出口部に集塵用サイクロンを設置し、加熱管に入る前にタ−ルや粉塵を捕捉し、捕捉したタ−ルや粉塵を、それぞれのスクリュ−コンベアに戻し、再投入することによりタ−ルや粉塵をを系外に排出しない。
【0047】
熱分解用回転筒体の熱分解ガス出口部に水蒸気エゼクタ−を設け、加熱した作動水蒸気を導入することにより随伴する熱分解ガスの一部が蒸縮し、系外に漏れ出るトラブルや集塵サイクロンでの閉塞、火災等を防止すると共にエゼクタ−水蒸気量を調整することにより熱分解用回転筒体の内圧を一定に保つようにした。
【図面の簡単な説明】
【図1】本発明による水分の多い有機性廃棄物の熱分解の方法と、その装置を示すフロ−図である。
【符号の説明】
1 乾燥用回転筒体 6 熱分解用回転筒体 7 ガス改質室
10 熱分解・溶融室 11 プラズマト−チ 12 一次ボイラ−
13 二次ボイラ− 15 乾燥用加熱管 18 熱分解用加熱管
33 乾物集塵サイクロン 34 水蒸気エゼクタ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for producing a fuel gas from an organic waste such as sewage sludge, human waste sludge, food sludge, garbage and the like through a process of drying, thermal decomposition, and reforming.
[0002]
[Prior art]
As a method of drying organic waste, there has been a method of producing hot air in a combustion exhaust gas or a hot blast stove, introducing the hot air into a dryer, and contact drying.
[0003]
[Problems to be solved by the invention]
This method not only increases the amount of exhaust gas at the outlet of the dryer, but also lowers the temperature of the exhaust gas and causes odor. Therefore, it is necessary to raise the temperature to 700 ° C. or more in a deodorizing furnace (gas combustion furnace). Is consuming.
[0004]
As a method of reducing fuel consumption in a deodorizing furnace, a method of burning together with a dry distillation gas (combustible gas) generated from a rotary cracking body for thermal decomposition has been adopted.
[0005]
In this method, since the generation of dioxins generated by the combustion of the carbonization gas is unavoidable, the rotary cylinder for thermal decomposition provided with this kind of deodorizing furnace is regulated in the category of an incinerator.
[0006]
It is believed that the highly toxic dioxins generated by incineration are produced by three factors: hydrogen chloride, unburned carbon, and air. Therefore, as a measure against dioxins, a method of removing hydrogen chloride in the pyrolysis gas and a method of removing tar, soot, and hydrocarbon, which are the main components of unburned carbon, have been taken.
[0007]
However, there is no apparatus or method capable of completely removing dioxins. The only way to suppress the generation of dioxins is to reform the pyrolysis gas into a gas that does not contain tar, soot or hydrocarbons.
[0008]
Residues after pyrolysis can be effective as charcoal or activated carbon, but ordinary wastes include not only organic matter but also heavy metals, metals, glass, etc. Hazardous substances may be eluted into the ground if they are dumped at a landfill, and these are melted and solidified to prevent elution.
[0009]
Since the residue after the thermal decomposition of organic matter is mainly composed of carbon, it is necessary to maintain the room at about 3000 ° C. or higher in order to dissolve it, but furnace materials that can withstand this temperature are very expensive, Because the fuel efficiency is high, the carbon content is burned in the incineration chamber to make the inorganic ash easy to melt, then sent to the melting and solidification chamber at room temperature, about 1200 to 1500 ° C, and melted by plasma heating. Solidified by water cooling or air cooling.
[0010]
Since the pyrolysis residue of organic waste burns carbide in the incineration chamber, generation of dioxins is inevitable.
[0011]
[Means for Solving the Problems]
According to the first aspect of the present invention, high-temperature exhaust gas burned for gas reforming in a gas reforming chamber is caused to flow into a drying heating pipe provided inside a drying rotary cylinder, and organic waste is generated by radiant heat of the heating pipe. It is to dry.
[0012]
The invention according to claim 2 is characterized in that a drying rotary pipe body that receives organic waste from one end and discharges it from the other end is internally provided with a drying heating pipe through which high-temperature exhaust gas is passed, and uses radiant heat of the heating pipe. It is a device for drying organic waste.
[0013]
Since the high temperature exhaust gas from the gas reforming chamber is used, it is possible to reduce the fuel consumption of the rotating rotary cylinder.
[0014]
The organic waste dried by the drying rotary cylinder is sent to the pyrolysis rotary cylinder to be thermally decomposed.The heat source for the pyrolysis is the high-temperature reformed gas reformed in the gas reforming chamber. It flows into the heating pipe for thermal decomposition provided inside the rotary cylinder for thermal decomposition, and is thermally decomposed by the radiant heat of the heating pipe for thermal decomposition. It is supplemented by a burner. Accordingly, in the drying rotary cylinder, operations such as the degree of drying and moisture adjustment are not required at all, and a heat source such as a burner is not required since a heat source may be used.
[0015]
The invention of claim 3 is the invention of claim 1. An organic waste pyrolysis apparatus in which energy is saved and operability is improved by combining the rotary cylinder for drying, the rotary cylinder for thermal decomposition, and the gas reforming chamber according to claim 2.
[0016]
According to the invention of claim 4, the residue after pyrolysis is charged into a chamber (also referred to as a furnace) at about 1200 to 1500 ° C., and high-temperature steam is sprayed on the residue to cause a water gas reaction described in Table 1 below. The carbon in the residue is decomposed into CO + H 2 , and the remaining residue is mainly composed of inorganic substances such as ash, heavy metals, metals, and glass, and can be easily melted by plasma heating at a room temperature of 1200 to 1500 ° C.
[0017]
[Table 1]
Figure 2004050074
[0018]
The invention of claim 5 is to reduce the thermal decomposition rate by adding air or oxygen to the high-temperature steam as an accelerator for the water gas reaction, and to reduce the thermal decomposition rate to the melting rate by plasma heating to reduce the processing time. It is characterized by shortening the time.
[0019]
According to a sixth aspect of the present invention, a plasma torch, a steam blowing nozzle and an air blowing nozzle are provided in the same chamber, and the pyrolysis residue is incinerated by a water gas reaction while the carbide can be melted. It is a melting device.
[0020]
In the invention of claim 7, a primary boiler is provided in the drying heating tube at the outlet of the drying rotary cylinder, steam is generated by using waste heat, and the steam is further provided to the pyrolysis heating tube at the outlet of the thermal decomposition rotary cylinder. Introduced into the provided secondary boiler and made into ultra-high temperature steam of 500 ° C. or more, and sprayed it onto organic waste in the rotary cylinder for pyrolysis and the pyrolysis residue in the pyrolysis / melting chamber. By utilizing the fact that the higher the temperature is, the more the reaction proceeds, a good quality fuel mainly composed of H 2 and CO is produced.
[0021]
In the invention of claim 8, a cyclone for dust collection is installed at a pyrolysis gas outlet and a gas reforming chamber exhaust gas outlet portion of a rotary cylinder for pyrolysis, and traps tar and dust before entering a heating pipe. The dust collecting cyclone is characterized in that the captured tar and dust are returned to the respective screw conveyors and re-input so that the tar and dust are not discharged out of the system.
[0022]
According to a ninth aspect of the present invention, a steam ejector is provided at a pyrolysis gas outlet of a pyrolysis rotary cylinder, and a portion of a pyrolysis gas accompanying the steam is introduced by introducing heated working steam, so that the system is out of the system. Pyrolysis equipment for organic waste that prevents the leakage of water to the air, blockage in the dust collection cyclone, fire, etc., and keeps the internal pressure of the rotary cylinder for thermal decomposition constant by adjusting the amount of steam with the ejector. It is.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
[0024]
FIG. 1 is a flow chart showing a method and apparatus for thermally decomposing organic waste having a high water content according to the present invention.
[0025]
In FIG. 1, organic waste conveyed by a conveyor or the like is put into a raw material hopper 2 provided in a rotary rotating cylinder 1 for drying, and is dropped on the upper surface of an upper damper 3 of a raw material double damper. At this time, the lower damper-4 is in a closed state. The upper damper-3 is opened, and the organic waste is dropped on the upper surface of the lower damper-4. Thereafter, the upper damper-3 is closed and the lower damper-4 is opened, and the organic waste is dropped into the raw material screw conveyor 5 provided below the double damper. This double damper operation is performed for the purpose of minimizing the intrusion of air from outside air.
[0026]
Before the organic waste is put into the drying rotary cylinder 1, the interiors of the thermal decomposition rotary cylinder 6 and the gas reforming chamber 7 are preheated by the burner heating pipe 19 and the gas reforming burner 9. The temperature inside the thermal decomposition rotary cylinder 6 is set at 300 to 750 ° C., and the temperature inside the gas reforming chamber 7 is set at 800 to 1300 ° C. The plasma torch 11 is also activated in the thermal decomposition / melting chamber 10, and the interior of the chamber is heated to 1200 to 1500 ° C by plasma heating.
[0027]
Also, the primary boiler 12 and the secondary boiler 13 have been started up, and the high-temperature steam produced by both boilers has already been introduced into the thermal decomposition rotary cylinder 6 and the thermal decomposition / melting chamber 10.
[0028]
Before the organic waste enters the drying rotary cylinder 1, all of the devices including the exhaust gas inducing ventilator 14 are activated, and the organic waste put into the drying rotary cylinder 1 is dried. By the drying heating pipe 15 provided inside the drying rotary cylinder 1 before reaching the outlet end of the rotary cylinder 1 for drying, it is appropriately dried, passes through the dry double damper 16, and is dried by the dry screw conveyor 17. It is sent into the rotary cylinder 6 for thermal decomposition.
[0029]
The dried organic waste sent into the rotary cylinder 6 for thermal decomposition is provided with a heating pipe 18 for thermal decomposition and a burner provided inside the burner before reaching the outlet end of the rotary cylinder 6 for thermal decomposition. Pyrolysis by a heating tube 19;
[0030]
The residue after the thermal decomposition is directly dropped into the thermal decomposition / melting chamber 10 from the outlet end of the rotary cylinder 6 for thermal decomposition. The residue dropped into the pyrolysis / melting chamber 10 is gasified by the plasma torch 11 and the high temperature steam, the reaction accelerator air or oxygen, and the carbon in the residue is gasified by the water gas reaction. Further, the remaining residue is exposed to the arc of the plasma torch 11 and melted. The melted residue is naturally dropped into the solidification chamber 20 and solidified by water cooling or air cooling.
[0031]
The water vapor generated during drying in the drying rotary cylinder 1 contains some odor and is introduced into the gas reforming chamber 7, the temperature is raised to 700 ° C. or more by the gas reforming burner 9, and the gas is oxidized and deodorized. The gas leaves the gas reforming chamber 7 together with the combustion exhaust gas from the reforming burner 9.
[0032]
After the steam and the combustion exhaust gas that have exited the gas reforming chamber 7 are removed by the exhaust gas cyclone 8, the steam and the combustion exhaust gas flow through the drying heating tube 15 arranged inside the drying rotary cylinder 1, and heat is used as a drying heat source. After being discharged, the drying rotary cylinder 1 exits.
[0033]
The steam and the combustion exhaust gas that have flowed out of the drying rotary cylinder 1 further emit heat in the primary boiler 12, and the cooling tower 22 lowers the temperature below the heat-resistant temperature of the exhaust gas induction ventilator 14. Release into.
[0034]
The pyrolysis gas generated during the pyrolysis in the pyrolysis rotary cylinder 6 is sucked by the steam ejector, and is removed by the dry matter collection cyclone 33, and then sent to the gas reforming chamber 7, where the gas is removed. The gas is heated from the outside of the gas reforming heating tube 21 by the reformer burner 9 and the heated steam, and heat is applied to the pyrolysis gas flowing in the gas reforming heating tube 21 to convert the pyrolysis gas into hydrogen and monoxide. Reform into high quality gas containing carbon as a main component.
[0035]
The reformed gas reformed in the gas reforming chamber 7 flows through a pyrolysis heating pipe 18 disposed inside the pyrolysis rotary cylinder 6, and emits heat as a heat source for pyrolysis. The pyrolysis rotary cylinder 6 exits.
[0036]
After the reformed gas that has exited from the thermal decomposition rotary cylinder 6 emits heat in the secondary boiler 13 and the air heater 23, it is cooled in the cooler 24 to a temperature lower than the heat resistant temperature of the gas induction ventilator 25, It is sent to the separation drum 26. The return water of the cooling water is cooled by the cooling tower 36 and then sent to the cooler 24 again by the circulating water pump 37.
[0037]
The gas is separated into gas and moisture in the gas-liquid separation drum 26, and the gas is pressurized by a gas compressor 27 or the like and supplied as fuel for the gas reforming burner 9 and the burner heating pipe 19. The surplus reformed gas is used as fuel for the generator 28 and the fuel cell.
[0038]
The water separated by the gas-liquid separation drum 26 is collected by a drain drum 29 and sent to a water spray nozzle 32 of the cooling tower 22 by a cooling water pump 31. The water sprayed in the cooling tower 22 evaporates with the steam and the combustion exhaust gas discharged from the gas reforming chamber 7 and is discharged into the atmosphere from the exhaust stack 30 together with the steam and the combustion exhaust gas.
[0039]
【The invention's effect】
Since the high-temperature exhaust gas from the gas reforming chamber is used, it is possible to reduce the fuel consumption of the drying rotary cylinder.
[0040]
In the rotating cylinder for drying, operations such as the degree of drying and moisture adjustment are not required at all, and a heat source such as a burner is unnecessary since a heat source may be used.
[0041]
Energy saving and improvement in operability were achieved by combining the rotary cylinder for drying, the rotary cylinder for thermal decomposition, and the gas reforming chamber.
[0042]
The remaining residue is mainly composed of inorganic substances such as ash, heavy metal, metal and glass, and can be easily melted by plasma heating at room temperature of 1200 to 1500 ° C.
[0043]
The thermal decomposition rate was reduced, and the processing time was reduced by approaching the thermal decomposition rate to the melting rate by plasma heating.
[0044]
While the pyrolysis residue was incinerated by the water gas reaction, the carbide was allowed to melt.
[0045]
The water gas reaction can produce a high quality fuel mainly composed of H 2 and CO by utilizing the fact that the higher the steam temperature is, the more the reaction proceeds.
[0046]
A cyclone for dust collection is installed at the pyrolysis gas outlet of the pyrolysis rotary cylinder and the exhaust gas outlet of the gas reforming chamber, and captures tar and dust before entering the heating tube, and captures the captured tar and dust. Is returned to the respective screw conveyors and re-input so that tar and dust are not discharged out of the system.
[0047]
A steam ejector is provided at the outlet of the pyrolysis gas of the pyrolysis rotary cylinder, and the introduction of heated working steam causes some of the pyrolysis gas accompanying it to evaporate, causing trouble and dust collection to leak out of the system. The internal pressure of the rotary cylinder for thermal decomposition was kept constant by preventing clogging with a cyclone, fire, and the like, and adjusting the amount of steam in the ejector.
[Brief description of the drawings]
FIG. 1 is a flow chart showing a method for thermally decomposing organic waste having a high moisture content according to the present invention and an apparatus therefor.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 rotary cylinder for drying 6 rotary cylinder for pyrolysis 7 gas reforming chamber 10 pyrolysis / melting chamber 11 plasma torch 12 primary boiler
13 Secondary Boiler 15 Heating Tube for Drying 18 Heating Tube for Pyrolysis 33 Cyclone for Dry Dust Collection 34 Steam Ejector

Claims (9)

有機性廃棄物を燃焼排ガスを内部に通した加熱管の輻射熱により加熱し、乾燥する有機性廃棄物の乾燥方法。A method for drying organic waste, in which organic waste is heated by radiant heat of a heating tube through which combustion exhaust gas is passed, and dried. 燃焼排ガスを内部に通した加熱管を内部に装備し、有機性廃棄物を一端から受け入れて他端から排出する間に有機性廃棄物を乾燥する乾燥用回転筒体とから成る有機性廃棄物の乾燥装置。An organic waste comprising a heating pipe through which the combustion exhaust gas is passed, and a rotating rotary body for drying the organic waste while receiving the organic waste from one end and discharging the organic waste from the other end. Drying equipment. 前記乾燥装置と熱分解用回転筒体及びガス改質室とから成る有機性廃棄物の熱分解装置。An organic waste pyrolysis apparatus comprising the drying device, a rotary cylinder for pyrolysis, and a gas reforming chamber. 高温にした室に熱分解後の残渣を投入し、この残渣に高温水蒸気を吹き付け、水性ガス反応によりガス化し、更に残った残渣をプラズマ加熱により溶融する有機性廃棄物の熱分解方法。A method for thermally decomposing organic waste, in which a residue after pyrolysis is charged into a chamber at a high temperature, high-temperature steam is sprayed on the residue, gasified by a water gas reaction, and the remaining residue is melted by plasma heating. 水性ガス反応の促進剤として高温水蒸気と一緒に空気、或は酸素を吹き付け、又は高温水蒸気と空気、或は酸素を混合した状態で吹き付けてガス化し、更に残った残渣をプラズマ加熱により溶融する有機性廃棄物の熱分解方法。Air or oxygen is sprayed together with high-temperature steam as an accelerator for the water gas reaction, or gas is sprayed by mixing high-temperature steam with air or oxygen, and the remaining residue is further melted by plasma heating. Pyrolysis method for municipal waste. 耐火断熱材を内張りした室内に最終残渣を溶融するプラズマト−チと熱分解残渣をガス化する高温水蒸気の吹き込みノズル、或は高温水蒸気の吹き込みノズルと空気吹き込みノズル、或は酸素吹き込みノズルの両方を装備した残渣の熱分解・溶融装置。A plasma torch for melting the final residue and a high-temperature steam blowing nozzle for gasifying the pyrolysis residue, or both a high-temperature steam blowing nozzle and an air blowing nozzle, or an oxygen blowing nozzle in a room lined with refractory insulation Residue pyrolysis / melting equipment equipped with 前記加熱管の廃熱を利用してボイラを加熱し、該廃熱ボイラから発生した高温水蒸気を前記熱分解用回転筒体及び熱分解・溶融装置に導入し、有機性廃棄物及び残渣の熱分解の促進と水性ガス反応により良質な熱分解ガスを製造することを特徴とする有機性廃棄物の熱分解方法。The boiler is heated by using the waste heat of the heating tube, and the high-temperature steam generated from the waste heat boiler is introduced into the thermal decomposition rotary cylinder and the thermal decomposition / melting device, and the heat of the organic waste and the residue is removed. A method for thermally decomposing organic waste, characterized in that high-quality pyrolysis gas is produced by accelerating decomposition and water gas reaction. 改質室の排ガス出口部及び熱分解用回転筒体の熱分解ガス出口部に集塵用サイクロンを設けたことを特徴とする有機性廃棄物の熱分解装置。A pyrolysis apparatus for organic waste, wherein a cyclone for dust collection is provided at an exhaust gas outlet of a reforming chamber and a pyrolysis gas outlet of a thermal decomposition rotary cylinder. 熱分解用回転筒体の熱分解ガス出口部に水蒸気エゼクタを設け、エゼクタ水蒸気により室内の圧力を制御し、作動ガスに高温水蒸気を用いることにより集塵サイクロン入口のタ−ルの付着を防止した有機性廃棄物の熱分解装置。A steam ejector is provided at the pyrolysis gas outlet of the rotary cylinder for pyrolysis, the pressure in the room is controlled by the ejector steam, and high-temperature steam is used as the working gas to prevent the adhesion of tar at the dust collection cyclone inlet. Organic waste pyrolysis equipment.
JP2002211826A 2002-07-19 2002-07-19 Method and apparatus for drying and thermal decomposition of organic waste Pending JP2004050074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211826A JP2004050074A (en) 2002-07-19 2002-07-19 Method and apparatus for drying and thermal decomposition of organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211826A JP2004050074A (en) 2002-07-19 2002-07-19 Method and apparatus for drying and thermal decomposition of organic waste

Publications (1)

Publication Number Publication Date
JP2004050074A true JP2004050074A (en) 2004-02-19

Family

ID=31934918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211826A Pending JP2004050074A (en) 2002-07-19 2002-07-19 Method and apparatus for drying and thermal decomposition of organic waste

Country Status (1)

Country Link
JP (1) JP2004050074A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502348B1 (en) * 2014-06-10 2015-03-16 이영희 Drying Apparatus For Sludge Having Odor Removal Function
KR101796354B1 (en) * 2015-08-19 2017-11-09 한국기초과학지원연구원 Waste dry and odor removal apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101502348B1 (en) * 2014-06-10 2015-03-16 이영희 Drying Apparatus For Sludge Having Odor Removal Function
WO2015190720A1 (en) * 2014-06-10 2015-12-17 이영희 Sludge drying apparatus having function of removing obnoxious odor
KR101796354B1 (en) * 2015-08-19 2017-11-09 한국기초과학지원연구원 Waste dry and odor removal apparatus

Similar Documents

Publication Publication Date Title
EA023478B1 (en) Waste management system
JP2011080664A (en) Method and device for thermal-decomposing, carbonizing, and gasifying waste
JP4378360B2 (en) Power generation method and apparatus using waste
JP2015224795A (en) Generator for fuel gas from organic materials and utilization of heat of same
JP2002276925A (en) Method for treating exhaust gas of gasifying furnace and exhaust gas treating facility
JP2013164226A (en) Waste material incinerator and waste material incinerating method
JP2004050074A (en) Method and apparatus for drying and thermal decomposition of organic waste
JP2003320359A (en) Method and apparatus for pyrolyzing organic waste
CN210035509U (en) Vehicle-mounted movable anaerobic garbage cracking treatment device
HUT76073A (en) Method for pirollitic treatment of wastes and pipe-still thereof
JP2000283427A (en) Reaction type refuse incinerating furnace and method for incinerating refuse using the same
JPH10339416A (en) Waste disposing apparatus
JPH11118124A (en) Fluidized gassifying/melting apparatus, and method thereof
JP2002235913A (en) Method and apparatus for mixing wastes with sludge
CN219283341U (en) Domestic waste high temperature carbonization device
RU2711422C1 (en) Unit for recycling solid medical wastes
JPH102519A (en) Waste pyrolysis drum and method of pyrolysis
JP2005211719A (en) Organic matter treatment method and system therefor
JP3015266B2 (en) Waste melting equipment
JP3921765B2 (en) Waste pyrolysis gasification melting equipment
JPH11287416A (en) Kiln type gasification incinerator
JPH09178134A (en) Apparatus and method for processing waste
JPH102526A (en) Pyrolysis reactor for waste disposing apparatus
JP3454576B2 (en) Waste treatment apparatus and method
JP2021010851A (en) Device for producing hydrogen from waste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050104