JP2007296706A - Inkjet recording head - Google Patents

Inkjet recording head Download PDF

Info

Publication number
JP2007296706A
JP2007296706A JP2006125844A JP2006125844A JP2007296706A JP 2007296706 A JP2007296706 A JP 2007296706A JP 2006125844 A JP2006125844 A JP 2006125844A JP 2006125844 A JP2006125844 A JP 2006125844A JP 2007296706 A JP2007296706 A JP 2007296706A
Authority
JP
Japan
Prior art keywords
electrode
conversion element
electrothermal conversion
recording head
jet recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006125844A
Other languages
Japanese (ja)
Inventor
Ikutomo Watabe
育朋 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006125844A priority Critical patent/JP2007296706A/en
Publication of JP2007296706A publication Critical patent/JP2007296706A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and high-performance inkjet heater board configuration. <P>SOLUTION: Penetration electrodes 610 and 620 of a metal such as Cu, Al or Au which is a material of a greatly good thermal conductivity are formed immediately below or near a heater. Heat generated at an electrothermal converting element 300 is directly radiated to a base material 100 via the penetration electrodes 610 and 620, whereby thermal storage of a substrate can be made minimum. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、インクジェット記録技術特に高精細高速を要求されるインクジェット記録ヘッドに適用される。   The present invention is applied to an ink jet recording technique, particularly an ink jet recording head that requires high definition and high speed.

インクジェット記録技術は、近年、印刷技術のカラー化、パーソナル化に伴い急速に普及し、いまや電子写真技術とともにオフィスおよびホームにおいてもスタンダートとなってきている。   In recent years, inkjet recording technology has rapidly spread along with colorization and personalization of printing technology, and is now becoming a standard in offices and homes as well as electrophotographic technology.

また、印字品位もその液滴の小液滴化やさまざまな画像処理技術により急速に高画質化しいまや銀塩写真をしのぐ品位を得るようになってきた。   In addition, the quality of printing has been rapidly improved by making the droplets smaller and various image processing technologies, and now the quality that surpasses silver halide photography has come to be obtained.

又、別の従来例としては、特許文献1をあげることが出来る。
特開2003-072079号公報
As another conventional example, Patent Document 1 can be cited.
JP 2003-072079 A

しかしながら、現状、インクジェット記録方式で主流となっているインク液の相変化を利用するサーマルインクジェット記録方式では、相変化させるための熱により、インクおよび記録ヘッドの記録ユニット部の温度変化により、さまざまな悪影響を発生していた。   However, in the thermal ink jet recording method that utilizes the phase change of the ink liquid that is currently the mainstream in the ink jet recording method, there are various types due to the heat for changing the phase and the temperature change of the recording unit portion of the ink and recording head An adverse effect occurred.

すなわち主要な課題としては以下が挙げられる。   That is, the main issues include the following.

1.電気熱変換素子から発生する熱が、主に基体に蓄熱し基体が温度変化することで、吐出するインク滴の特性が変化し、印字品位に大きな影響を及ぼす。   1. The heat generated from the electrothermal conversion element is mainly stored in the substrate and the temperature of the substrate changes, so that the characteristics of the ink droplets to be discharged change, and the print quality is greatly affected.

2.従来は電気熱変換素子である抵抗体と該抵抗体に通電するための電極は、同一平面上に形成されている。また、上記電極は電気抵抗を下げるために一般にはコスト等を考慮してALを用いるのが一般である。またその厚みは配線抵抗を下げるために、最低でも0.2μ程度、厚い場合は0.6〜1μ程度形成するのが一般である。ところが、こうした厚みを有するために、AL配線部では、上記のような厚みの段差が生じ、配線上に被覆されるべき保護膜が、上記AL配線を完全に被覆できない場合があった。   2. Conventionally, a resistor which is an electrothermal conversion element and an electrode for energizing the resistor are formed on the same plane. Further, in order to reduce the electrical resistance, the electrode generally uses AL in consideration of cost and the like. Further, in order to reduce the wiring resistance, the thickness is generally about 0.2 μm at the minimum, and when it is thick, it is generally formed about 0.6 to 1 μm. However, since it has such a thickness, the AL wiring portion has a thickness difference as described above, and the protective film to be coated on the wiring may not be able to completely cover the AL wiring.

3.さらには、一般的に使用されている薄膜の保護膜の場合、その製造工程上の理由により、ある確率でパーティクルが存在する。これらのパーティクルは上記保護膜の被覆性を著しく悪化させるが、前述、ALの段差部に該パーティクルが存在した場合、その被覆性を著しく悪化させ、ピンホールを生じた場合には、インク液によるALの腐食を招く。   3. Furthermore, in the case of a generally used protective film of a thin film, particles are present with a certain probability for reasons of the manufacturing process. These particles remarkably deteriorate the covering property of the protective film. However, when the particles are present in the stepped portion of the above-described AL, the covering property is remarkably deteriorated, and when a pinhole is generated, the ink liquid is used. Causes corrosion of AL.

4.上記AL配線による薄膜配線の場合、その厚みに工程上の制限があるため、配線抵抗を下げることが極めて困難である。配線抵抗による電力の消費は、通常10%〜30%以上にも及ぶことがあり、まったく無駄な電力として消費されるばかりでなく、昇温によりインクジェット記録の特性に多大な悪影響を及ぼす。   4). In the case of the thin film wiring using the AL wiring, it is extremely difficult to reduce the wiring resistance because the thickness of the thin film wiring is limited in the process. The power consumption due to the wiring resistance is usually 10% to 30% or more, and is not only consumed as wasted power, but also has a great adverse effect on the characteristics of ink jet recording due to the temperature rise.

5.さらに、現状のインクジェット記録ヘッドにおいては、抵抗体で発生する熱は、概略、基体から基体を接着している有機接着剤を介して、基体を接着している基材に放熱している。しかしながら、上記構成の場合、まず基体自身に熱が拡散するため、基体の温度上昇を招き、基体上に形成されている抵抗体の温度を上昇させ、その電気熱変換素子としての特性に変化を及ぼすことがあった。また、上記有機接着剤は、非常に熱伝導性が悪いため基体に蓄熱する原因ともなっていた。すなわち、抵抗体で発生する熱をいかに他に影響を与えないで基材に放熱するかが、非常に重要である。   5. Furthermore, in the current ink jet recording head, the heat generated by the resistor is generally dissipated from the substrate to the substrate to which the substrate is bonded via the organic adhesive bonding the substrate. However, in the case of the above configuration, first, since heat is diffused to the substrate itself, the temperature of the substrate is increased, the temperature of the resistor formed on the substrate is increased, and the characteristics as the electrothermal conversion element are changed. There was an effect. In addition, the organic adhesive has a very poor thermal conductivity, and has been a cause of heat storage on the substrate. That is, it is very important how the heat generated by the resistor is radiated to the base material without affecting the other.

6.また、最近のインクジェット記録装置の高画質化を達成するためには、微小なインク液滴を吐出させる必要があるが、そのためには、インクを電気熱変換素子に導くインク流路の微細化が必須である。ところが、微細化するに伴って、同インク流路の液抵抗が増大するため、十分な流体としての特性が得られないという重大な課題があった。これを解決するためには、電気熱変換素子とインク供給口との間のインク流路を最短で形成することが必要であるが、従来、電気熱変換素子の駆動、給電のための配線等が電気熱変換素子の近傍にあったため、蒸気インク流路との距離を縮めることが困難であった。   6). In addition, in order to achieve high image quality in recent ink jet recording apparatuses, it is necessary to eject minute ink droplets. To that end, the ink flow path that leads ink to the electrothermal conversion element has been miniaturized. It is essential. However, since the liquid resistance of the ink flow path increases with miniaturization, there has been a serious problem that sufficient fluid characteristics cannot be obtained. In order to solve this problem, it is necessary to form the ink flow path between the electrothermal conversion element and the ink supply port in the shortest time. However, it was difficult to reduce the distance from the vapor ink flow path.

なお、図4は、従来例を示す図である。   FIG. 4 is a diagram showing a conventional example.

本発明は以上のような課題に対し解決策を見出したものである。   The present invention has found a solution to the above problems.

本発明を解決するための手段、および作用は以下のとおりである。   Means and actions for solving the present invention are as follows.

1.ヒーター直下もしくは近傍に極めて良熱伝導性の材料であるCu、Al、Au等の金属の貫通電極を形成することにより、電気熱変換素子で発生した熱を該貫通電極を介して基材に直接放熱することにより、基体の蓄熱を最小限にすることが可能となる。   1. By forming a through electrode of a metal such as Cu, Al, or Au, which is an extremely good heat conductive material, directly under or in the vicinity of the heater, the heat generated by the electrothermal conversion element is directly applied to the substrate through the through electrode. By dissipating heat, it is possible to minimize the heat storage of the substrate.

2.従来、電気熱変換素子と同一面に形成していた導電電極を貫通電極として、電気熱変換素子形成面と対向する面に導通させることにより、平面的な面積を大幅に減らすことが可能となり、きわめて大きなコストダウンが可能となる。   2. Conventionally, a conductive electrode formed on the same surface as the electrothermal conversion element can be used as a penetrating electrode and conducted to a surface facing the electrothermal conversion element formation surface, thereby greatly reducing the planar area. An extremely large cost reduction is possible.

3.上記項目2で述べたような、導電電極をなくす、もしくは最小限に形成することが可能となるので、従来、電気熱変換素子周りで問題となっていた電極の信頼性を飛躍的に向上させることが可能となる。具体的には、導電電極は、一般にはALで形成されているが、ALはインク液に対して、耐食性を持たないため、電極の保護膜に一箇所でもクラック、ピンホール等の欠損があった場合、きわめて早期に上記配線電極は腐食し、用をなさなくなってしまう。そのため、配線電極の信頼性向上は、インクジェットヘッドの信頼性向上にとって、非常に有効である。   3. As described in item 2 above, the conductive electrode can be eliminated or formed to a minimum, so that the reliability of the electrode, which has conventionally been a problem around the electrothermal transducer, is dramatically improved. It becomes possible. Specifically, although the conductive electrode is generally formed of AL, since AL does not have corrosion resistance to the ink liquid, the protective film of the electrode has defects such as cracks and pinholes even at one location. In such a case, the wiring electrodes corrode very quickly and can no longer be used. Therefore, improving the reliability of the wiring electrode is very effective for improving the reliability of the inkjet head.

4.上記項目3で述べた、配線電極は、通常、その電気抵抗を下げるため、可能な限りその厚みを厚くする設計を行う。ところが、配線電極を厚くしていくと、該配線の端部で段差を生じ、その保護膜の被覆性の悪い部分で上記、信頼性に障害を起こす可能性がある。本発明では配線電極を該段差部を生じることなく、かつ、配線の低抵抗化を実現できる。   4). The wiring electrode described in item 3 above is usually designed to be as thick as possible in order to reduce its electrical resistance. However, when the wiring electrode is made thicker, a step is generated at the end of the wiring, and there is a possibility that the above-described reliability may be hindered in a portion where the protective film has poor coverage. According to the present invention, it is possible to reduce the resistance of the wiring electrode without causing the step portion.

5.これまで述べた配線電極を電気熱変換素子と対向する面に形成することで、電気熱変換素子近傍の配線がなくなり、インク供給口を電気熱変換素子の極近傍に形成することが可能となった。この為、上記インク流路の流抵抗は極低く抑えることが可能となり、従来のインクジェットヘッドでは成しえなかった低抵抗のインク流路を可能とした。   5. By forming the wiring electrode described so far on the surface facing the electrothermal conversion element, there is no wiring in the vicinity of the electrothermal conversion element, and the ink supply port can be formed in the immediate vicinity of the electrothermal conversion element. It was. Therefore, the flow resistance of the ink flow path can be kept extremely low, and a low resistance ink flow path that cannot be achieved by a conventional inkjet head is made possible.

従来のインクジェットヘッドでは成しえなかった低抵抗のインク流路を可能とする。   A low-resistance ink flow path that cannot be achieved by a conventional inkjet head is made possible.

次に、本発明の詳細を実施例の記述に従って説明する。   Next, details of the present invention will be described in accordance with the description of the embodiments.

本発明の第1の実施例を図1に示す。   A first embodiment of the present invention is shown in FIG.

図1aは本発明の上面図、断面図、下面図を示す。   FIG. 1a shows a top view, a cross-sectional view, and a bottom view of the present invention.

また、図1bではインク流路、吐出口を含む断面図を示す。   FIG. 1b shows a cross-sectional view including the ink flow path and the discharge port.

基材100上に絶縁膜と、電気熱変換素子300と、保護膜400と、貫通電極610,620と、インクを供給するための貫通穴800,810と、電気熱変換素子300と貫通電極610,620を導通させるためのヴィアホール210,220とが形成されている。   In order to electrically connect the insulating film, the electrothermal conversion element 300, the protective film 400, the through electrodes 610 and 620, the through holes 800 and 810 for supplying ink, and the electrothermal conversion element 300 and the through electrodes 610 and 620 on the substrate 100 Via holes 210 and 220 are formed.

また、貫通穴800,810に連通してインクを吐出工に教習するためのインク供給路と吐出口を形成したオリフィスが、電気熱変換素子300上に形成されている。   In addition, an orifice is formed on the electrothermal conversion element 300 so as to communicate with the through holes 800 and 810 and form an ink supply path and a discharge port for teaching ink to a discharger.

ここで基材100はSiなどの半導体基板、あるいは、アルミナ等の絶縁性の基板のどちらでも可能であるが、半導体基板では、貫通電極610,620と基材100とを、電気的に絶縁するための絶縁層200が、該貫通電極610,620と基材100との間で必須である。   Here, the base material 100 can be either a semiconductor substrate such as Si or an insulating substrate such as alumina. However, in the semiconductor substrate, the through electrodes 610 and 620 and the base material 100 are electrically insulated. The insulating layer 200 is essential between the through electrodes 610 and 620 and the substrate 100.

貫通電極610,620および貫通穴800,810を形成するために、腐食性のガスによるドライエッチング、あるいは腐食性の液体によるウェットエッチング、または、レーザーアブレーションによるレーザー法等の方法があり、精度よく穴を開けられればどのような方法でも可能である。   There are methods such as dry etching with corrosive gas, wet etching with corrosive liquid, or laser method by laser ablation to form through electrodes 610,620 and through holes 800,810. Any method is possible.

ちなみに、貫通電極610,620は基材100裏面より突状に形成すると外部電極への接続に好都合である。   Incidentally, if the through electrodes 610 and 620 are formed so as to protrude from the back surface of the substrate 100, it is convenient for connection to an external electrode.

図2に第2の実施例を示す。   FIG. 2 shows a second embodiment.

本実施例は、貫通穴800,810を貫通電極610,620と別方向に形成したもので、貫通電極610,620から外部電極への電極接続が容易になる可能性がある。   In this embodiment, the through holes 800 and 810 are formed in a different direction from the through electrodes 610 and 620, and there is a possibility that the electrode connection from the through electrodes 610 and 620 to the external electrode becomes easy.

図3に第3の実施例を示す。   FIG. 3 shows a third embodiment.

本実施例では、電気熱変換素子300からの電極取り出しを一端部は貫通電極620で行い、もう一方の端部は電気熱変換素子300面側の一般的な配線で行ったものである。本例では、裏面側で接続する電極が1つだけであるため、電気多岐な接続が容易になる可能性がある。   In this embodiment, the electrode is taken out from the electrothermal conversion element 300 at one end by the through electrode 620 and the other end by a general wiring on the electrothermal conversion element 300 surface side. In this example, since only one electrode is connected on the back surface side, there is a possibility that a variety of electrical connections can be facilitated.

(a)実施例1、(b)オリフィスを含めた第1の実施例の断面図。(A) Example 1, (b) Sectional drawing of 1st Example including an orifice. 第2の実施例。Second embodiment. 第3の実施例。3rd Example. 従来例。Conventional example.

符号の説明Explanation of symbols

100 基材
200 絶縁層
210,220 ヴィアホール
300 電気熱変換素子
400 保護膜
610,620 貫通電極
700 配線電極
800,810 貫通穴(インク供給路)
DESCRIPTION OF SYMBOLS 100 Base material 200 Insulating layer 210,220 Via hole 300 Electrothermal conversion element 400 Protective film 610,620 Through electrode 700 Wiring electrode 800,810 Through hole (ink supply path)

Claims (4)

インクを吐出するための電気熱変換素子とそれに接続する電極とが少なくとも形成された基体とからなるインクジェット記録ヘッドにおいて、
該基体の一平面に上記電気熱変換素子が形成され、該基体の電気熱変換素子側から対向する平面に貫通して形成された電極と該基体の電気熱変換素子側から対抗する平面に貫通して形成された貫通穴とを有することを特徴とするインクジェット記録ヘッド。
In an inkjet recording head comprising an electrothermal conversion element for ejecting ink and a substrate on which at least electrodes connected thereto are formed.
The electrothermal conversion element is formed on one plane of the base, and the electrode formed so as to penetrate from the electrothermal conversion element side of the base to the opposite plane and penetrates the plane opposite from the electrothermal conversion element side of the base An ink jet recording head comprising a through hole formed as described above.
請求項1に記載のインクジェット記録ヘッドにおいて、前述した貫通穴は吐出液を電気熱変換素子に吐出液を供給するための液路であることを特徴とするインクジェット記録ヘッド。   2. The ink jet recording head according to claim 1, wherein the through hole is a liquid path for supplying the discharge liquid to the electrothermal conversion element. 請求項2に記載のインクジェット記録ヘッドにおいて、基体がSiからなり、かつ、電気熱変換素子を形成する面に、予め、絶縁性膜を形成してから、上記、貫通電極を形成するための貫通穴と、吐出液流路のための貫通穴を同時に形成し、かつ、該貫通電極を形成する際、絶縁性膜を形成してから、導電体を形成すると共に、上記、絶縁性膜が、該貫通電極と貫通穴とを隔離することを特徴とするインクジェット記録ヘッド。   3. The ink jet recording head according to claim 2, wherein the base is made of Si, and an insulating film is formed in advance on a surface on which the electrothermal conversion element is formed, and then the through hole for forming the through electrode is formed. When forming the hole and the through hole for the discharge liquid flow path at the same time and forming the through electrode, the insulating film is formed, and then the conductor is formed. An ink jet recording head characterized in that the through electrode and the through hole are isolated. 請求項3に記載のインクジェット記録ヘッドにおいて、電気熱変換素子は抵抗体であり、該抵抗体に通電するための電極の少なくとも1つが貫通電極であって、概貫通電極は、上記抵抗体と直接接触しているか、若しくは、抵抗体と同一平面上に形成された別の電極を介して電気的に接続しており、かつ、抵抗体と該貫通電極はほぼ均一の厚みを有する膜で電気的に絶縁されたことを特徴とするインクジェット記録ヘッド。   4. The ink jet recording head according to claim 3, wherein the electrothermal conversion element is a resistor, and at least one of electrodes for energizing the resistor is a through electrode, and the almost through electrode is directly connected to the resistor. They are in contact with each other or are electrically connected via another electrode formed on the same plane as the resistor, and the resistor and the through electrode are electrically connected by a film having a substantially uniform thickness. An ink jet recording head characterized by being insulated.
JP2006125844A 2006-04-28 2006-04-28 Inkjet recording head Withdrawn JP2007296706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125844A JP2007296706A (en) 2006-04-28 2006-04-28 Inkjet recording head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125844A JP2007296706A (en) 2006-04-28 2006-04-28 Inkjet recording head

Publications (1)

Publication Number Publication Date
JP2007296706A true JP2007296706A (en) 2007-11-15

Family

ID=38766614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125844A Withdrawn JP2007296706A (en) 2006-04-28 2006-04-28 Inkjet recording head

Country Status (1)

Country Link
JP (1) JP2007296706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024337A (en) * 2015-07-24 2017-02-02 キヤノン株式会社 Substrate for liquid discharge head and method for production of substrate for liquid discharge head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024337A (en) * 2015-07-24 2017-02-02 キヤノン株式会社 Substrate for liquid discharge head and method for production of substrate for liquid discharge head

Similar Documents

Publication Publication Date Title
JP5312202B2 (en) Liquid discharge head and manufacturing method thereof
US20030112294A1 (en) Ink-jet print head and method thereof
US8943690B2 (en) Method for manufacturing substrate for liquid ejection head and method for manufacturing liquid ejection head
JPH08219900A (en) Platinum-based temperature sensor
US6530649B1 (en) Hermetic seal in microelectronic devices
JP2009043513A (en) Chip fuse, and manufacturing method thereof
JP2010023480A (en) Inkjet print head substrate, method for manufacturing inkjet print head substrate, inkjet print head, and inkjet recording apparatus
JP2010000632A (en) Substrate for inkjet head, and inkjet head equipped with substrate
JP7214409B2 (en) liquid ejection head
JP2009016791A (en) Chip resistor and method for fabricating the same
JP2007296706A (en) Inkjet recording head
JP2021100826A (en) Thermal print head
JP2008265164A (en) Substrate for ink jet recording head and its production process
JP5430121B2 (en) Wiring board and probe card using the same
JP2007296705A (en) Inkjet recording head, and inkjet recorder
JP2010162870A (en) Substrate for liquid discharge head, and liquid discharge head, and manufacturing methods for them
JP6500210B2 (en) Metal plate resistor
JP2008143132A (en) Inkjet recording head
JP2017001217A (en) Liquid discharge head, manufacturing method of liquid discharge head
US20060187267A1 (en) Printed conductive connectors
JP2006027108A (en) Element substrate and its manufacturing method
JP2007035909A (en) Electronic device and manufacturing method thereof
JP2005280179A (en) Substrate for inkjet head and inkjet head
US11318744B2 (en) Liquid ejection head substrate and manufacturing method of the same
CN214449563U (en) Heating substrate for thin-film thermosensitive printing head

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707