JP2007294144A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2007294144A
JP2007294144A JP2006118141A JP2006118141A JP2007294144A JP 2007294144 A JP2007294144 A JP 2007294144A JP 2006118141 A JP2006118141 A JP 2006118141A JP 2006118141 A JP2006118141 A JP 2006118141A JP 2007294144 A JP2007294144 A JP 2007294144A
Authority
JP
Japan
Prior art keywords
tension plate
stress
opening
plate
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006118141A
Other languages
English (en)
Inventor
Takeshi Harada
岳 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006118141A priority Critical patent/JP2007294144A/ja
Publication of JP2007294144A publication Critical patent/JP2007294144A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】テンションプレートの強度を維持したまま、テンションプレートを従来に比べて軽量化することにより、全体として軽量な燃料電池を提供する。
【解決手段】積層されたセルの両端に設置されたエンドプレート間に掛け渡されて、該エンドプレート間の間隔を規定する締結部材を有する燃料電池であって、前記締結部材は、締結部材に加わる応力が平均的な応力よりも低い箇所の強度が、締結部材の平均的な強度よりも低くなるように構成されている。
【選択図】図5

Description

本発明は、燃料電池に関し、特に車両等に使用される固体高分子型燃料電池に関する。
燃料電池は、水素ガスなどの燃料ガスと、酸素を含む酸化剤ガスとを電解質を介して電気化学的に反応させ、電解質両面に設けた電極間から電気エネルギーを取り出す発電システムである。特に固体高分子電解質を用いた固体高分子型燃料電池は、動作温度が低く、取り扱いが容易なことから電動車両用の電源として注目されている。
固体高分子電解質型燃料電池は、イオン交換膜からなる電解質膜と、この電解質膜の一面に配置されたアノード電極および電解質膜の他面に配置されたカソード電極とからなる膜/電極接合体(MEA:Membrane-Electrode Assembly)と、セパレータとで構成され、通常は、前記構成からなるセルを複数層重ねた燃料電池スタックとして利用される。
通常の燃料電池スタックにおいては、積層されたセルを積層方向に締め付けるため、エンドプレートと、テンションプレートが使用される(例えば特許文献1)。エンドプレートは、積層されたセルの両端に設置される。また、テンションプレートは、セルの積層方向に沿って、一方のエンドプレートから他方のエンドプレートに延伸するように設置され、テンションプレートとエンドプレートとは、例えばボルト等で固定される(特許文献2)。
特開2004−327065号公報 特開2001−110439号公報
燃料電池の発電時には、化学反応によって熱が生じ、セルが膨張するため、各エンドプレートは、セル積層方向に沿って互いに遠ざかる方向に応力を受ける。従ってテンションプレートには、主としてこの応力に起因するセル積層方向に沿った圧縮応力が生じることになる。
しかしながら、実際にテンションプレートに加わる応力は、このような単純なものではない。例えば、あるタイプの燃料電池では、一方のエンドプレートに、燃料電池内に反応ガス等を供給したり、燃料電池から排気されるガスを排出するための各種配管等が配設される。一方、他方のエンドプレートには、このような配管が配設されていないため、このようなタイプの燃料電池では、両エンドプレートの剛性(変形のし易さ)が異なることになる。また、エンドプレートと積層されたセルとの固定方式は、両端で異なる場合が多い。例えば、一方のエンドセルは、積層されたセルと面内全体で密着する。これに対して、他方のエンドプレートは、積層セルの位置レベルの調整を可能にするため、積層されたセルとは面状には密着されない。例えば、他方のエンドプレートは、このエンドプレートと積層セルの間に設置された皿バネ等によって、端部セルと「点状に」密着される。従ってこの場合も、両エンドプレートの剛性に差異が生じることになる。
従って実際には、テンションプレートには、セルの膨張による応力の他、前述のような両エンドプレートの剛性の差異、燃料電池の温度分布等の様々な因子に起因して、面内で非対称で複雑な応力が生じる。このようなテンションプレートに生じる応力分布は、実験あるいは解析によっても容易に求めることはできない。そこで通常は、テンションプレートの各部分が局部的に応力限界を超えないように、比較的厚みのあるテンションプレートが、略四角形状のまま、あるいは、中央部近傍に比較的小さな開口を左右上下対称に設置した形状で使用されている。このような形状では、テンションプレートを軽量化することは難しく、従って燃料電池全体の軽量化を図ることができないという問題があった。
本発明では、燃料電池使用時に発生する応力に対して、テンションプレートのような締結部材の強度を維持しつつ、締結部材を従来に比べて軽量化することにより、全体として軽量な燃料電池を提供することを課題とする。
本発明では、積層されたセルの両端に設置されたエンドプレート間に掛け渡されて、該エンドプレート間の間隔を規定する締結部材を有する燃料電池であって、前記締結部材は、締結部材に加わる応力が平均的な応力よりも低い箇所の強度が、締結部材の平均的な強度よりも低くなるように構成されていることを特徴とする燃料電池が提供される。このように、締結部材に加わる応力が平均的な応力よりも低い箇所の強度が、締結部材の平均的な強度よりも低くなるように締結部材を構成した場合、材料の局部的な低強度化、例えば肉厚の減少、軽量な材質への材質変更等が可能となる。従って、必要な強度を確保したまま、締結部材を軽量化することが可能となる。
このような締結部材は、板状のテンションプレートであっても良い。テンションプレートに加わる応力が平均的な応力よりも低い箇所の強度が、テンションプレートの平均的な強度よりも低くなるようにテンションプレートを構成することにより、面内各領域において必要な強度を確保したまま、テンションプレートを軽量化することが可能となる。
例えばテンションプレートは、該テンションプレートに加わる応力が平均的な応力よりも低い面内位置に、開口を有しても良い。このような開口を設けることにより、テンションプレートを容易に軽量化することが可能となる。
またテンションプレートは、面内に複数の開口を有し、テンションプレートに加わる応力が平均的な応力よりも低い複数の箇所の強度が、テンションプレートの平均的な強度よりも低くなるように構成されても良い。この場合、テンションプレートをよりいっそう軽量化することが可能となる。
また、前記テンションプレートには、セル積層方向および/またはセル積層方向と垂直な方向に沿って、複数の開口が設けられ、セル積層方向またはセル積層方向と垂直な方向に沿って設けられた複数の開口は、形状が異なっていても良い。
さらに前記セル積層方向およびセル積層方向と垂直な方向のいずれかの方向に沿って設けられた複数の開口は、形状が等しくなっていても良い。
セル積層方向またはセル積層方向と垂直な方向に沿って設けられる複数の開口の形状を変えることにより、テンションプレートに必要な強度を保持したまま、テンションプレートをさらに軽量化することが可能となる。また、テンションプレートに生じる応力を、セル積層方向およびセル積層方向と垂直な方向のいずれかに着目して解析した場合、テンションプレート全面での応力分布を予測するよりも解析が容易になるため、テンションプレートに設けられる開口の、より詳細な形状を定めることが可能になる。
本発明の燃料電池は、締結部材に必要な強度を維持したまま、締結部材を軽量化することができるため、使用時に締結部材に亀裂等が生じることのない、軽量な燃料電池が提供される。
以下図面により本発明の一形態を説明する。なお以下の例では、締結部材として板状のテンションプレートを使用する場合について説明する。
図1には、本発明による燃料電池1を構成するスタック10の斜視図を示す。また図2には、図1に示すスタックの概略的なA−A’断面図を示す。スタック10は、単位電池としてのセル100を所定数だけ積層することにより構成される。セル100は、それぞれが固体高分子型燃料電池として形成されており、各セルで1V強の起電力を生じる。本実施例では、一例として、約100Vの起電力が得られるよう、100枚のセルを積層している。スタック10は、一端からエンドプレート12、絶縁板16、集電板18、複数のセル100、集電板20、絶縁板22、エンドプレート14の順に積層されて構成されている。また、スタック10には、セル100の対向する2つの側面に沿って、セル積層方向(Y方向)に延伸した2枚のテンションプレート170、172が設置される。テンションプレート170、172は、ボルト等(図1には示されていない)によって、エンドプレート14、12と上下(図1のY方向)の端部が固定されており、テンションプレート170、172、およびエンドプレート14、12によって、スタックが固定されている。
図2に示すように、エンドプレート12と絶縁板16の間には、皿バネ50が設置されており、この皿バネ50の弾性力により、セル同士の密着が助長される。なお皿バネは、図1には示されていない。また、皿バネ50の位置ずれを防止するため、エンドプレート12の皿バネと当接する箇所には、皿バネ50が収まる程度の窪みが設けられても良い。このように、エンドプレート14は、積層セルと全面にわたって密着されるのに対して、エンドプレート12は、積層セルと「点」状に密着されている。
エンドプレート12、14には、剛性を確保するため、鋼等の金属が使用される。集電板18、20は、緻密質カーボンまたは鋼板等、ガス不透過性の導電性部材によって形成され、絶縁板16、22は、ゴムまたは樹脂のような絶縁性部材によって形成される。テンションプレート170、172は、例えば鋼等の金属で構成される。スタック10で生じた電力は、集電板18、20を介して出力される。なお、図では、テンションプレート170、172は、積層されたセル100のテンションプレート170、172が設置される側の面形状とほぼ等しい寸法形状を有するが、テンションプレート170、172の寸法形状は、これに限られるものではなく、例えば、積層方向と垂直な方向の幅が、積層されたセル100の同方向の幅よりも小さくなっていても良い。
一方のエンドプレート14には、燃料ガス供給口35、燃料ガス排出口36、酸化ガス供給口33、酸化ガス排気口34、冷却水供給口31、冷却水排出口32が設けられている。燃料ガス供給口35からスタック10に供給された燃料ガスは、エンドプレート12に向かって流通しながら、各セル100に分配される。各セル100に分配された燃料ガスは、セル100の流路を通り、図の左側から右側に流れ、エンドプレート14の方向に戻り、燃料ガス排気口36から排出される。酸化ガスも同様に、酸化ガス供給口33から供給された後、エンドプレート12に向かって流通する途中で、各セル100に分配され、各セル100内の流路を図の上方から下方に進行した後、エンドプレート14に向かって流通し、酸化ガス排出口34から排出される。冷却水は、冷却水供給口31から供給されて、各セルを冷却した後、冷却水排出口32から排出される。
図3には、本発明の燃料電池1の斜視図を示す。燃料電池1は、上述のスタックを2つ並設して構成される(これらの一方を第1のスタック10、他方を第2のスタック10’と称する)。ただしこの構成は一例であって、燃料電池1は、3つ以上のスタックで構成されても良い。図の構成の場合、テンションプレートは、4枚使用される。すなわち第1のスタック10の上下のテンションプレート170、172と、第2のスタック10’の上下のテンションプレート170’、172’である。また図の構成では、前述のエンドプレート12、14の代わりに、第1および第2のスタック10、10’に対して共通のエンドプレート12’、14’が使用される。従って一方のエンドプレート14’には、前述のエンドプレート14に設けられている、燃料ガス供給口35、燃料ガス排出口36、酸化ガス供給口33、酸化ガス排気口34、冷却水供給口31、冷却水排出口32が、それぞれ2つずつ設置される。なお、エンドプレート14’に設けられたこれらの供給口および排気口は、明確化のため図には示されていない。
次に本発明の特徴的部分である、テンションプレート170、172、170’および172’(以下単にテンションプレート170と称する)について説明する。
本発明は、テンションプレートに加わる応力が平均的な応力よりも低い箇所の強度が、テンションプレートの平均的な強度よりも低くなるようにテンションプレートが構成されていることを特徴とする。
テンションプレートは、燃料電池の発電時に生じる応力によって、面内で非対称な応力を受ける。例えば、前述のように、一方のエンドプレート14または14’には、燃料電池内に反応ガス等を供給したり、燃料電池から排気されるガスを排出するための各種配管等が配設される。これに対して、他方のエンドプレート12または12’には、このような配管が配設されていないため、両エンドプレートの剛性(発生応力に対する変形のし易さ)は、異なることになる。さらに、前述のように、両エンドプレートにおいて、エンドプレートと積層されたセルとの密着状態は異なっており、これによっても、両エンドプレートの剛性は変化する。従って、このようなエンドプレートに両端が拘束されているテンションプレートには、スタック10、10’に生じる応力によって、Y方向に非対称な応力が発生することになる。
また、複数のスタックおよび複数のテンションプレートを共通のエンドプレートで締結した燃料電池(図3)の場合、各テンションプレートには、セル積層方向と垂直な方向(X方向)においても非対称な応力が生じ得る。
このように、テンションプレートに生じる応力は、X方向、Y方向のいずれにおいても非対称であり、使用中のテンションプレートの面内の応力分布を実験や経験によって正確に把握することは難しい。従って、従来、テンションプレートの形状(例えば、厚さ、開口位置、材質等)を定める際には、テンションプレートの面内の各位置が限界応力を超えないように、極めて安全側に設計されている。例えば、通常は、必要以上に厚いテンションプレートまたは必要以上の強度を有する材料が使用されたり、比較的生じる応力が低いと予想される面内中央付近に、図4に示すような同一形状の開口209を、左右上下対称となるように配置したテンションプレートが使用される。しかしながら、これらの方法では、テンションプレートの軽量化を行うことは難しい。
これに対して本発明では、前述のように、テンションプレートに加わる応力が平均的な応力よりも低い箇所の強度が、テンションプレートの平均的な強度よりも低くなるようにテンションプレートが構成される。例えば、応力の低い箇所の厚さを連続的にまたは段階的に薄くしたり、応力の低い箇所に開口が設けられる。あるいは、応力の低い箇所の材料を局部的に軽量材料に変更しても良い。このようにテンションプレートを構成することにより、面内各領域において必要な強度を確保したまま、テンションプレートを軽量化することが可能となる。
なお、このようなテンションプレートの設計は、例えば、コンピュータによるCAE応力解析によってテンションプレートの面内に生じる応力分布を予測することにより、行うことができる。
なお、以上の説明では、締結部材として板状のテンションプレートを使用する場合について示したが、本発明では、締結部材として、棒状の締結部材を使用することもできる。この場合、例えば、締結部材に加わる応力が平均的な応力よりも低い箇所の断面積を小さくすることにより、当該箇所の強度が締結部材の平均的な強度よりも低くなるようにすることで、前述の効果を得ることができる。
以下、図面を参照して、本発明の実施例について説明する。なお以下の実施例では、テンションプレート170に開口を設けることにより、テンションプレートを軽量化する方法を例に説明する。また、以下の実施例では、コンピュータによるCAE応力解析によってテンションプレートに生じる応力分布を予測し、この応力分布の予測結果に基づいて、テンションプレートの開口形状を定めた。ただし、通常の方法では、コンピュータを用いても、テンションプレートに生じる応力分布を予測するには、膨大な時間がかかってしまう。そこで、テンションプレートに生じる複雑な応力を、セル積層方向と垂直な方向(各図におけるX方向)およびセル積層方向(各図におけるY方向)の2パターンに分けて解析することにより、コンピュータによる応力解析を行っている。
図5は、本発明によるテンションプレート170の形状の一例を概略的に示したものである。
本発明のテンションプレート170は、4つの開口210、220、230、240を有する。開口210、220は、エンドプレート12’に近い方から開口220、210の順に、テンションプレート170のセル積層方向(図のY方向)に沿って設置されている。同様に、開口230、240は、エンドプレート12’に近い方から開口240、230の順に、Y方向に沿って設置されている。また、開口210、230は、テンションプレート170のセル積層方向と垂直な方向(図のX方向)に沿って設置されている。同様に、開口220、240は、X方向に沿って設置されている。開口220、240の列は、開口210、230の列に比べて、エンドプレート12’に近い方にある。開口210と開口220は同一形状であり、開口230と開口240は同一形状であるが、開口210(あるいは開口220)と開口230または開口240は、形状が異なっている。具体的には、開口210のX方向の幅W210と開口220のX方向の幅W220は等しく、開口210のY方向の長さL210と開口220のY方向の長さL220は、等しくなっている。同様に開口230のX方向の幅W230と開口240のX方向の幅W240は等しく、開口230のY方向の長さL230と開口240のY方向の長さL240は、等しくなっている。またL210(またはL220)とL230およびL240は等しくなっている。しかしW210(またはW220)とW230およびW240は異なっている。なお各開口210、220、230、240において、コーナー部のR(R210、R220、R230、R240)は、全て等しくなっている。
このような4つの開口の形状および配置は、以下のように定めることができる。X方向に着目したテンションプレート170の面内応力解析の結果、テンションプレート170には、X方向に沿って不均一な応力が生じる。例えば、図6において、テンションプレート170の両端側の領域A、Dにおいては、平均を超える応力が生じるのに対して、中央側の領域B、Cでは、平均よりも小さな応力が生じる(なお、テンションプレートのY方向上下端部は、通常、領域A〜Dに関わらず、応力が極めて大きくなるため、この箇所は、比較の対象から除外される)。また、領域Cでは、領域Bに比べてより小さな応力が生じる。このような応力分布は、例えば、図2に示すような2連式のスタックを使用した場合に、スタックの熱膨張および温度分布等によって生じ得る。このような応力分布が生じる場合、領域BおよびCに、それぞれ開口220、240を設けて、テンションプレート170を軽量化することができる。さらに、開口240の幅W240は、限界応力を超えない範囲で、開口220の幅W220に比べて大きくすることができる。開口210の幅W210と、開口230の幅W230の関係についても同様に考えることができる。そこで例えば、開口220と開口240の形状を求める場合、W220、L220、R220、W240、L240、R240を設計変数とし、発生応力<限界強度の関係を制約条件として、有限要素法による最適化計算を実施する。開口210と開口230の最適形状についても同様の解析を行った結果、最終的に図5に示す開口形状が最適構造として得られた。
なお、図5に示す形状配置で開口を設けた場合、テンションプレート170の重量は、図4に示すような同形状の開口209を4つ有する従来のテンションプレートに比べて、3%軽量化できることがわかった。(従来のテンションプレートの開口幅W209、開口長さL209および開口R209は、全ての開口において、W209=2.15mm、L209=6.295mm、R209=0.625mmであるのに対して、本発明のテンションプレートでは、開口幅W210=2.43mm、開口幅W230=3.165mm、開口長さL210= L230=5.03mm、開口R210= R230=0.625mmである。)また、有限要素法を用いた強度解析により、図5に示す開口を有するテンションプレート170の強度を評価したところ、図7に示すように、本実施例のテンションプレート170は、最大の応力が生じると予想される箇所(図の黒くなっている箇所)でも、限界強度を超えないことが確認された(すなわち、限界強度を1とした場合、最大発生応力は0.94であった)。
図8には、テンションプレート170の別の形状を示す。この図の例では、開口210と開口230は同一形状であり、開口220と開口240は同一形状であるが、開口210(あるいは開口230)と開口220または開口240は、形状が異なっている。具体的には、開口210の幅W210と開口230の幅W230は等しく、開口210の長さL210と開口230の長さL230は、等しくなっている。同様に開口220の幅W220と開口240の幅W240は等しく、開口220の長さL220と開口240の長さL240は、等しくなっている。またL210(またはL230)とL220およびL240は等しくなっている。しかしW210(またはW230)とW220およびW240は異なっている。なお各開口210、220、230、240において、R210、R220、R230、R240は、全て等しくなっている。
このような4つの開口の形状および配置は、以下のように定めることができる。Y方向に着目したテンションプレート170の面内応力解析の結果、テンションプレート170には、Y方向に沿って不均一な応力が生じる。例えば、図9において、テンションプレート170の両端側の領域A’、D’においては、平均を超える応力が生じ、中央側の領域B’、C’では、平均よりも小さな応力が生じる(なお、テンションプレートのX方向左右端部は、通常、領域A’〜D’に関わらず、応力が極めて大きくなるため、この箇所は、比較の対象から除外される)。また、領域B’では、領域C’に比べてより小さな応力が生じる。このような応力分布は、例えば、前述のように、2つのエンドプレートの剛性が異なること等によって生じ得る。このような応力分布が生じる場合、領域B’およびC’には、それぞれ開口210、220を設けて、テンションプレート170を軽量化することができる。さらに、開口210の幅W240は、限界応力を超えない範囲で、開口220の長さL220に比べて大きくすることができる。開口230の幅W230と、開口240の幅W240の関係についても同様である。そこで例えば、開口210と開口220の形状を求める場合、W210、L210、R210、W220、L220、R220を設計変数とし、発生応力<限界強度の関係を制約条件として、有限要素法による最適化計算を実施する。開口230と開口240の最適形状についても同様の解析を行った結果、最終的に図8に示す開口形状が最適構造として得られた。
なお、テンションプレート170に図8に示す形状配置で開口を設けた場合、テンションプレート170の重量は、図5に示す従来のテンションプレートに比べて、19%軽量化できることがわかった。(従来のテンションプレートの開口幅W209、開口長さL209および開口R209は、全ての開口において、W209=2.15mm、L209=6.295mm、R209=0.625mmであるのに対して、本発明のテンションプレートでは、開口幅W210=2.80mm、開口幅W220=2.05mm、開口長さL210= L220=8.0mm、開口R210= R220=0.25mmである。)また、有限要素法を用いた強度解析により、図8に示す開口を有するテンションプレート170の強度を評価したところ、図10に示すように、本実施例のテンションプレート170は、最大の応力が生じると予想される箇所(図の黒くなっている箇所)でも、限界強度を超えないことが確認された(すなわち、限界強度を1とした場合、発生応力は0.78であった)。
なお、本発明の燃料電池に使用されるテンションプレートの開口形状は、図5および図8に示すものに限られない。すなわち、本発明では、テンションプレートの各領域に生じる応力分布を予測し、各領域が限界応力を超えない範囲内で、テンションプレートに生じる応力が平均的な応力よりも低い少なくとも1箇所の強度が、テンションプレートの平均的な強度よりも低くなるように、開口形状を定めることを特徴としており、図に示した開口形状以外にも、様々な開口形状を定形することができことに留意する必要がある。
本発明は、例えば燃料電池自動車等に適用することができる。
スタックの構成例の概略斜視図である。 図1のA−A’線に沿った概略断面図である。 図1のスタックを並設して構成される、本発明の燃料電池の概略図である。 従来のテンションプレートの概略図である。 本発明の実施例によるテンションプレートの概略図である。 テンションプレートのX方向に生じる応力分布を説明するための説明図である。 図5に示すテンションプレートに生じる最大応力の予測図である。 本発明の別の実施例によるテンションプレートの概略図である。 テンションプレートのY方向に生じる応力分布を説明するための説明図である。 図8に示すテンションプレートに生じる最大応力の予測図である。
符号の説明
1 燃料電池
10、10’ スタック
12、14 エンドプレート
12’、14’ エンドプレート
100 セル
170、172 テンションプレート
170’、172’ テンションプレート
209、210,220,230,240 開口。

Claims (6)

  1. 積層されたセルの両端に設置されたエンドプレート間に掛け渡されて、該エンドプレート間の間隔を規定する締結部材を有する燃料電池であって、
    前記締結部材は、締結部材に加わる応力が平均的な応力よりも低い箇所の強度が、締結部材の平均的な強度よりも低くなるように構成されていることを特徴とする燃料電池。
  2. 前記締結部材は、板状のテンションプレートであることを特徴とする請求項1に記載の燃料電池。
  3. テンションプレートは、該テンションプレートに加わる応力が平均的な応力よりも低い面内位置に、開口を有することを特徴とする請求項2に記載の燃料電池。
  4. テンションプレートは、面内に複数の開口を有し、テンションプレートに加わる応力が平均的な応力よりも低い複数の箇所の強度が、テンションプレートの平均的な強度よりも低くなるように構成されていることを特徴とする請求項2に記載の燃料電池。
  5. テンションプレートには、セル積層方向および/またはセル積層方向と垂直な方向に沿って、複数の開口が設けられ、
    セル積層方向またはセル積層方向と垂直な方向に沿って設けられた複数の開口は、形状が異なることを特徴とする請求項4に記載の燃料電池。
  6. セル積層方向およびセル積層方向と垂直な方向のいずれかの方向に沿って設けられた複数の開口は、形状が等しいことを特徴とする請求項5に記載の燃料電池。
JP2006118141A 2006-04-21 2006-04-21 燃料電池 Pending JP2007294144A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006118141A JP2007294144A (ja) 2006-04-21 2006-04-21 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006118141A JP2007294144A (ja) 2006-04-21 2006-04-21 燃料電池

Publications (1)

Publication Number Publication Date
JP2007294144A true JP2007294144A (ja) 2007-11-08

Family

ID=38764565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006118141A Pending JP2007294144A (ja) 2006-04-21 2006-04-21 燃料電池

Country Status (1)

Country Link
JP (1) JP2007294144A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095920A (ja) * 2014-11-12 2016-05-26 トヨタ自動車株式会社 燃料電池、および燃料電池システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016095920A (ja) * 2014-11-12 2016-05-26 トヨタ自動車株式会社 燃料電池、および燃料電池システム

Similar Documents

Publication Publication Date Title
US7531265B2 (en) Fuel cell
US7691511B2 (en) Fuel cell having coolant flow field wall
US9525182B2 (en) Fuel cell separator and fuel cell stack including the same
US20100055540A1 (en) Fuel cell stack
US7846613B2 (en) Fuel cell with separator having a ridge member
US9614239B2 (en) Fuel cell and separator
JP6101253B2 (ja) 腐食を抑制した燃料電池
US20040023093A1 (en) Fluid passages for power generation equipment
JP2014086131A (ja) 燃料電池システム
JP4516403B2 (ja) 燃料電池
JP2007294144A (ja) 燃料電池
JP2012099382A (ja) 燃料電池用セパレータ、燃料電池
JP5714432B2 (ja) 燃料電池スタック
US20040038099A1 (en) Fluid passages for power generation equipment
JP5351003B2 (ja) 燃料電池スタック及びその始動方法
KR101823207B1 (ko) 막전극 접합체 및 연료 전지
JP2007048609A (ja) 燃料電池システム
JP2007149358A (ja) 燃料電池用セパレータ
JP5366793B2 (ja) 燃料電池システム
JP5449848B2 (ja) 燃料電池スタック
JP2007134089A (ja) 燃料電池
JP5744671B2 (ja) 燃料電池
JP5550961B2 (ja) 燃料電池スタック
JP2008243499A (ja) 燃料電池
JP7174680B2 (ja) セパレータ、発電セル、燃料電池スタック及び液体検出装置