JP2007292623A - Material evaluation device - Google Patents

Material evaluation device Download PDF

Info

Publication number
JP2007292623A
JP2007292623A JP2006121538A JP2006121538A JP2007292623A JP 2007292623 A JP2007292623 A JP 2007292623A JP 2006121538 A JP2006121538 A JP 2006121538A JP 2006121538 A JP2006121538 A JP 2006121538A JP 2007292623 A JP2007292623 A JP 2007292623A
Authority
JP
Japan
Prior art keywords
sample
ray
rays
irradiation
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006121538A
Other languages
Japanese (ja)
Inventor
Akitoshi Ishizaka
彰利 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006121538A priority Critical patent/JP2007292623A/en
Publication of JP2007292623A publication Critical patent/JP2007292623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quantitatively measure the charge flaw in the material that is a target of evaluation, by analyzing the charge phenomenon of X-ray photoelectric spectroscopy. <P>SOLUTION: In a process 1, a plurality of operation diaphragms, having different pore sizes, are provided to the front of a sample, in order to vary the irradiation area of X rays applied to the sample; in a process 2, the operation diaphragm are used so as to uniformize the intensity distribution of the X rays, applied to the sample, to perform measurements; and in a process 3, the start and completion of the irradiation of the sample with X rays are performed by a high-speed shutter provided between the X-ray source and the sample using X rays radiated from the X-ray source, in a steady state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、バンドギャップを有する材料(半導体材料、蛍光体材料、機能性絶縁体材料、等)の特性に重大な影響を及ぼすそれらの材料中の正孔トラップや電子トラップを評価する装置に関する。   The present invention relates to an apparatus for evaluating hole traps and electron traps in materials having a band gap (semiconductor material, phosphor material, functional insulator material, etc.) having a significant effect on the characteristics of the material.

半導体材料、蛍光体材料、機能性絶縁体材料は構造敏感材料で、極くわずかの不純物や欠陥がその特性を決める。これらの欠陥濃度や欠陥への捕獲緩和時間や欠陥のエネルギー準位の評価には、様々評価手法が開発されている。   Semiconductor materials, phosphor materials, and functional insulator materials are structurally sensitive materials, and very few impurities and defects determine their characteristics. Various evaluation methods have been developed to evaluate the defect concentration, the trapping relaxation time for the defect, and the energy level of the defect.

Si-MOS型半導体素子では、CV(電気容量・電圧)法というMOS構造の容量と印加電圧との関係を測定する方法が広く用いられてきた。この手法はSi-MOS構造の界面トラップや酸化膜中の欠陥を評価できる。しかしながら、CV法は実際の素子を作るより簡単とはいっても、評価用の素子を形成する必要があり、また電極も付ける必要がある。   In the Si-MOS type semiconductor device, a method of measuring the relationship between the capacitance of the MOS structure and the applied voltage, called CV (electric capacity / voltage) method, has been widely used. This method can evaluate interface traps in Si-MOS structures and defects in oxide films. However, although the CV method is simpler than making an actual device, it is necessary to form a device for evaluation and attach an electrode.

また、Si単結晶やGaAs単結晶中の結晶欠陥の観察にはx線トポグラフィー技術が用いられることが多い。この手法は、SiウエハーやGaAsウエハーを非破壊で、ウエハーを割ったり削ったりすることなく、結晶欠陥を観察できる。しかしながら、単結晶基板に限られる。
DLTSは熱励起により容量の過渡過程を計測する手法で、Si, GaAs, InP等、様々な半導体中のトラップ解析に用いられるが、この手法も、簡単な素子構造と電極を形成する必要がある。
Further, an x-ray topography technique is often used for observing crystal defects in a Si single crystal or a GaAs single crystal. This method can observe crystal defects without breaking or scraping the Si wafer or GaAs wafer without breaking it. However, it is limited to a single crystal substrate.
DLTS is a technique for measuring the transient process of capacitance by thermal excitation, and is used for trap analysis in various semiconductors such as Si, GaAs, InP, etc. This technique also needs to form a simple device structure and electrodes. .

様々な材料中のトラップを電極や素子構造を形成せず、簡便に評価できる手法の開発が望まれていた。そのような手法の一つとして、本発明者により、時間分解x線光電子分光法が提案されている。まず、通常のx線光電子分光法と時間分解x線光電子分光法の違いについて述べる。   Development of a technique that can easily evaluate traps in various materials without forming electrodes or element structures has been desired. As one of such techniques, the present inventor has proposed time-resolved x-ray photoelectron spectroscopy. First, the difference between normal x-ray photoelectron spectroscopy and time-resolved x-ray photoelectron spectroscopy will be described.

試料にx線を照射し発生する光電子スペクトルを評価するx線光電子分光法は様々な材料の表面の組成分析や化学結合状態の分析法として広く用いられている。材料が半導体や絶縁体の場合、光電子の放出により試料に帯電現象を生じることも良く知られている。この帯電現象は光電子スペクトルのエネルギー値を変えるため、化学結合状態の評価が困難になる。これまでは、x線光電子分光の計測中の帯電現象をおさえるため、計測中に電子やイオンなどを試料に照射して、帯電量を補償する中和処理を行うことが、主であった。   X-ray photoelectron spectroscopy, which evaluates a photoelectron spectrum generated by irradiating a sample with x-rays, is widely used as a composition analysis on the surface of various materials and an analysis method of chemical bonding states. In the case where the material is a semiconductor or an insulator, it is also well known that a charging phenomenon occurs in a sample due to emission of photoelectrons. This charging phenomenon changes the energy value of the photoelectron spectrum, making it difficult to evaluate the chemical bonding state. Until now, in order to suppress the charging phenomenon during measurement by x-ray photoelectron spectroscopy, it has been mainly performed to perform neutralization treatment to compensate the charge amount by irradiating the sample with electrons or ions during the measurement.

これに対して、本発明者は帯電現象も物理現象であり、帯電現象を半導体や絶縁体中の電荷欠陥の評価に利用することを提案してきた。すなわち、本発明の骨子である。帯電現象が半導体や絶縁体の欠陥への電荷捕獲によることは、既に本発明者によりJournal Applied Physics (Applied Physics Reviews)、79(1996)、pp.6653-6713にて報告されている 〔非特許文献1〕。すなわち、バンドギャップを有する材料にx線照射により材料中に電子や正孔などの電荷を発生させることが出来る。照射により発生した電荷は、材料内に欠陥があると、それらに捕獲される。この電荷捕獲現象は、欠陥の密度、あるいは捕獲されやすさ(捕獲断面積、あるいは1/捕獲緩和時間)、欠陥の持つエネルギー状態により影響を受ける。従って電荷の捕獲過程、すなわち帯電過程を観察することにより、バンドギャップを有する材料の内部にある様々な欠陥を評価できる( 〔特許文献1〕特開平9-162253)。なお、金属ではバンドギャップを有しないので、欠陥はあっても帯電は生じないので、本手法の対象外である。   On the other hand, the present inventor has proposed that the charging phenomenon is also a physical phenomenon, and that the charging phenomenon is used for evaluating charge defects in semiconductors and insulators. That is, the gist of the present invention. It has already been reported by the present inventor in Journal Applied Physics (Applied Physics Reviews), 79 (1996), pp.6653-6713 that the charging phenomenon is due to charge trapping on defects in semiconductors and insulators. Reference 1]. That is, charges such as electrons and holes can be generated in the material by x-ray irradiation on the material having a band gap. Charges generated by irradiation are trapped by defects in the material. This charge trapping phenomenon is affected by the density of defects, the ease of trapping (capturing cross section or 1 / capture relaxation time), and the energy state of the defects. Accordingly, by observing the charge trapping process, that is, the charging process, various defects in the material having the band gap can be evaluated (Patent Document 1). Since metal does not have a band gap, charging does not occur even if there is a defect.

このx線光電子分光法の帯電現象を利用したバンドギャップを有する材料の内部にある様々な欠陥の評価では、前期の様々な電気的な手法に比べて、評価のための素子構造を形成する必要は無く、電極形成も不要である、という利点を有している。   In the evaluation of various defects inside a material having a band gap using the charging phenomenon of this x-ray photoelectron spectroscopy, it is necessary to form an element structure for evaluation as compared with various electrical methods in the previous period. There is an advantage that electrode formation is unnecessary.

しかしながら、定量分析という観点からは、これまでの方法では、照射するx線の強度の均一性、照射面積の不確定さ、x線強度の時間安定性、特に、照射開始直後のx線強度の安定性に問題があった。   However, from the viewpoint of quantitative analysis, in the conventional methods, the uniformity of the intensity of the irradiated x-ray, the uncertainty of the irradiation area, the temporal stability of the x-ray intensity, particularly the x-ray intensity immediately after the start of irradiation. There was a problem with stability.

特開平9−162253号公報JP-A-9-162253 S.Iwata & A. Ishizaka; Journal Applied Physics (Applied Physics Reviews)、79(1996)、pp.6653-6713S. Iwata & A. Ishizaka; Journal Applied Physics (Applied Physics Reviews), 79 (1996), pp.6653-6713

解決しようとする問題点の第一は、x線光電子分光の帯電現象の解析により評価対象の材料中の電荷欠陥を評価する場合のx線照射面積を制御して、定量解析を可能ならしむること。そのために、所望の照射面積に均一な強度のx線を照射できるようにすること。解決しようとする問題点の第二は、電子材料物性に最も影響を与える電荷のトラップ欠陥への捕獲現象の初期、すなわち帯電現象の初期を計測できるようにすること、である。x線発生初期にx線の強度が変動すると、x線強度の変動の影響と試料中の電荷トラップへの捕獲過程による変化が重なって生じるので、定量的な解析が困難となる。課題は、計測の極初期から時間変動の少ない一定強度のx線を照射可能とならしむること。帯電現象の初期を高速で計測するため、試料電流を計測すること。   The first problem to be solved is to control the x-ray irradiation area when evaluating charge defects in the material to be evaluated by analyzing the charging phenomenon of x-ray photoelectron spectroscopy, thereby enabling quantitative analysis. thing. For that purpose, it is possible to irradiate a desired irradiation area with x-rays of uniform intensity. The second problem to be solved is to make it possible to measure the initial stage of the trapping phenomenon of the electric charge trap defect that has the greatest influence on the physical properties of the electronic material, that is, the initial stage of the charging phenomenon. If the intensity of x-rays fluctuates in the early stage of x-ray generation, the effect of fluctuations in the x-ray intensity and changes due to the trapping process in the charge traps in the sample overlap, making quantitative analysis difficult. The challenge is to be able to irradiate x-rays with a constant intensity with little time fluctuation from the very beginning of measurement. To measure the initial stage of charging phenomenon at high speed, measure the sample current.

1 試料にあたっているx線の照射面積を可変とするため、孔径の異なった稼動絞りをx線源と試料の間に設ける。
2 試料に当たっているx線の強度分布が均一である条件で計測できるように、上記1の稼動絞りを用いて、最適の絞り径で計測する手法。
3 x線を発生させ、定常状態に保った後、x線の試料への照射開始、終了はx線源と試料の間に設けた高速シャッターで行う。
4 帯電現象の初期を高速で計測するため、高速シャッターを開けx線照射開始と同期して、試料電流を高速で計測する。
1 In order to make the irradiation area of x-rays applied to the sample variable, an operating aperture having a different hole diameter is provided between the x-ray source and the sample.
2. A method of measuring with an optimum aperture diameter using the operating aperture of 1 above so that the intensity distribution of the x-rays hitting the sample can be measured uniformly.
3 After generating x-rays and keeping them in a steady state, the start and end of irradiation of the x-ray sample are performed with a high-speed shutter provided between the x-ray source and the sample.
4 In order to measure the initial stage of the charging phenomenon at high speed, the high speed shutter is opened and the sample current is measured at high speed in synchronization with the start of x-ray irradiation.

均一な強度のx線を定まった面積で試料に照射できるので、定量的なx線光電子分光が可能となる。また、これまで時間分解x線光電子分光では困難であった電荷蓄積過程の最も変化の激しい初期過程を解析できるようになる。本発明の評価装置は、バンドギャップを有する材料の評価に適用できる。   Since the sample can be irradiated with a uniform area of x-rays with a fixed area, quantitative x-ray photoelectron spectroscopy is possible. In addition, it is possible to analyze an initial process with the most drastic change in the charge accumulation process, which has been difficult with time-resolved x-ray photoelectron spectroscopy. The evaluation apparatus of the present invention can be applied to the evaluation of a material having a band gap.

x線光電子分光装置のx線源と試料との間にしぼり型のマスク、および高速シャッターを設置する。   A squeezed mask and a high-speed shutter are installed between the x-ray source of the x-ray photoelectron spectrometer and the sample.

図1は、本発明装置の1実施例の断面図である。
従来のx線光電子分光装置に異なった孔径を有する稼動絞り機構と高速シャッター機構を設置した評価装置である。
FIG. 1 is a cross-sectional view of one embodiment of the apparatus of the present invention.
This is an evaluation apparatus in which a conventional aperture mechanism and a high-speed shutter mechanism having different hole diameters are installed in a conventional x-ray photoelectron spectrometer.

図2は絞りマスクの面積を変えた時のx線照射面積と、x線照射に伴って試料から放出される光電子強度を補償するため試料からアースに流れる試料電流を本実施例の評価装置で計測した結果との関係を示したものである。しぼりの孔径を変えて、x線の照射面積を20,40,60,75,85,100mm2と変えた。この孔径は任意に設定できるものである。一般に試料が金属の場合、帯電現象は起きず、放出される光電子の強度はx線強度に比例し、試料電流は光電子強度に比例することが知られている。試料として、清浄表面処理を施したAuを用いた。試料がAuのような清浄表面を有した金属の場合、電荷が試料に蓄積して帯電することはないので、本発明におけるx線光電子分光装置の高速シャッターと稼動絞りの性能を検討するのに適している。絞りの面積が大きいときは、x線照射の中心部に比して周辺部でx線の強度が減少しているため、試料電流と絞り面積との関係が直線からずれている。したがって、x線光電子分光の定量解析には、図1の直線関係を保っている部分で評価を行った(本図ではx線照射の面積が75mm2以下)。 FIG. 2 shows the x-ray irradiation area when the aperture mask area is changed and the sample current flowing from the sample to the ground in order to compensate for the photoelectron intensity emitted from the sample with the x-ray irradiation. It shows the relationship with the measurement results. By changing the diameter of the aperture, the irradiation area of x-rays was changed to 20, 40, 60, 75, 85, 100 mm 2 . This hole diameter can be set arbitrarily. In general, when the sample is a metal, it is known that the charging phenomenon does not occur, the intensity of the emitted photoelectrons is proportional to the x-ray intensity, and the sample current is proportional to the photoelectron intensity. As a sample, Au subjected to a clean surface treatment was used. If the sample is a metal with a clean surface such as Au, the charge will not accumulate in the sample and will not be charged, so we will investigate the performance of the high-speed shutter and operating aperture of the x-ray photoelectron spectrometer in the present invention. Is suitable. When the aperture area is large, the intensity of x-rays is reduced in the peripheral area as compared with the central area of x-ray irradiation, so that the relationship between the sample current and the aperture area deviates from the straight line. Therefore, in the quantitative analysis of the x-ray photoelectron spectroscopy, evaluation was performed in the portion maintaining the linear relationship in FIG. 1 (in this figure, the area of x-ray irradiation is 75 mm 2 or less).

図3にx線の照射初期の試料電流の時間変化を示す。図3中の11は従来行われていたx線の電源をオンした場合の試料電流の変化の初期の時間変化を示す。図3中の12はx線を発生させ定常状態に保った状態で、シャッターを開けて試料にx線を照射した場合の試料電流の変化の初期の時間変化を示す。シャッター開閉に要する時間は4ms(1/250s)であった。このシャッタの開閉は装置の制御部によるものでも良いし、オペレータが手動で行っても良い。図3中の11と12を比較して、12はx線の照射開始初期から強度が一定の状態でx線が照射されていることが示された。   FIG. 3 shows the time variation of the sample current at the initial stage of x-ray irradiation. Reference numeral 11 in FIG. 3 represents the initial time change of the change in the sample current when the x-ray power supply is turned on. Reference numeral 12 in FIG. 3 represents an initial time change of the change in the sample current when the x-ray is generated and kept in a steady state, and the shutter is opened and the sample is irradiated with the x-ray. The time required to open and close the shutter was 4ms (1 / 250s). The opening / closing of the shutter may be performed by a control unit of the apparatus, or may be manually performed by an operator. Comparing 11 and 12 in FIG. 3, it was shown that 12 was irradiated with x-rays at a constant intensity from the beginning of x-ray irradiation start.

ZnSにAlを200ppm、Cuを100ppm添加した緑色蛍光体の使用中の輝度の経時劣化現象を明らかにするため、実施例1で示した時間依存x線光電子分光法による評価を行った。その結果、上記蛍光体に電子線を照射して輝度の経時変化が大きく輝度劣化が大きい試料ほど、x線光電子分光の計測中の帯電量も大きいことがわかった。特に、x線光電子分光の計測開始初期の帯電量が輝度劣化した蛍光体試料では輝度劣化前の試料に比して極めて大きい事が判明した。図4は試料電流の時間依存性を示したものである。図4の13は輝度劣化前の蛍光体試料の場合を示し、14は45%輝度劣化した蛍光体試料の場合を示す。蛍光体試料中の正孔トラップに正電荷が捕獲されていることが図4よりわかる。図5は図4を正電荷の捕獲数の時間依存に整理しなおした結果を示す。図5より、正孔トラップ濃度の飽和値は輝度劣化した蛍光体と輝度劣化前の蛍光体とでほとんど同じであるが、トラップへの捕獲されやすさが蛍光体の使用時間(=電子線照射累積時間:例えばテレビジョンの使用時間)と共に変化し、輝度の劣化した蛍光体試料中のトラップは、電子線照射により捕獲されやすいトラップに変化したことが判明した。すなわち輝度劣化した蛍光体の場合(16)、輝度劣化前の蛍光体試料の場合(15)に比べ、x線照射開始とともに、電荷は急速に正孔に捕獲されている。Si半導体中のトラップ評価では、素子形状に加工した後、電極を付けてアバランシェ電荷注入などによって電気的な評価を行っている。しかしながら、蛍光体のような粉体試料では、素子形状に加工することも、電極を形成することも極めて難しい。本発明で示した時間依存x線光電子分光法では、素子形状へ加工することも不必要で、電極を形成する必要もない。また、本発明により、従来の時間依存x線光電子分光法に比べ、定量的な検討も可能となった。   The time-dependent x-ray photoelectron spectroscopy shown in Example 1 was evaluated in order to clarify the temporal deterioration phenomenon of luminance during use of a green phosphor in which 200 ppm of Al and 100 ppm of Cu were added to ZnS. As a result, it was found that the amount of charge during the measurement of the x-ray photoelectron spectroscopy was larger for a sample that was irradiated with an electron beam to the phosphor and the luminance change with time was large and the luminance was greatly deteriorated. In particular, it was found that a phosphor sample whose luminance was deteriorated at the beginning of measurement of x-ray photoelectron spectroscopy was extremely large as compared with a sample before luminance deterioration. FIG. 4 shows the time dependence of the sample current. 4 in FIG. 4 shows the case of the phosphor sample before the luminance deterioration, and 14 shows the case of the phosphor sample whose luminance is deteriorated by 45%. It can be seen from FIG. 4 that positive charges are trapped in the hole traps in the phosphor sample. FIG. 5 shows the result of rearranging FIG. 4 according to the time dependence of the number of positive charge traps. From FIG. 5, the saturation value of the hole trap concentration is almost the same for the phosphor with degraded luminance and the phosphor before luminance degradation, but the trapping time in the trap is equal to the usage time of the phosphor (= electron beam irradiation). It has been found that the traps in the phosphor sample having deteriorated brightness changed to traps that are easily captured by electron beam irradiation. That is, in the case of the phosphor with deteriorated luminance (16), as compared with the case of the phosphor sample before the luminance deterioration (15), the charges are rapidly captured by the holes with the start of the x-ray irradiation. In trap evaluation in a Si semiconductor, after processing into an element shape, an electrode is attached and electrical evaluation is performed by avalanche charge injection or the like. However, with a powder sample such as a phosphor, it is extremely difficult to process into an element shape and to form an electrode. In the time-dependent x-ray photoelectron spectroscopy shown in the present invention, processing into an element shape is unnecessary and it is not necessary to form an electrode. In addition, the present invention enables quantitative examination as compared with the conventional time-dependent x-ray photoelectron spectroscopy.

バンドギャップを有して、帯電現象を生じる物質であれば、本発明で示した時間依存x線光電子分光法を適用することが出来る。
不揮発性のメモリー素子の電荷保持膜として用いられる材料であるSi3N4、Si-MOS型半導体素子のゲート絶縁膜として使用されるSiO2膜、実施例2で示したZnS;Al,Cu蛍光体、等、様々な物質に本発明で示した時間依存x線光電子分光法を適用した。
図6に上述の物質の正孔トラップの捕獲緩和時間を計測した結果を示す。
As long as the substance has a band gap and causes a charging phenomenon, the time-dependent x-ray photoelectron spectroscopy shown in the present invention can be applied.
Si3N4, which is a material used as a charge retention film of a nonvolatile memory element, SiO2 film used as a gate insulating film of a Si-MOS type semiconductor element, ZnS; Al, Cu phosphor shown in Example 2, etc. The time-dependent x-ray photoelectron spectroscopy shown in the present invention was applied to various materials.
FIG. 6 shows the result of measuring the trap relaxation time of the hole trap of the above substances.

本発明の基本構成のブロック図である。(実施例1)It is a block diagram of the basic composition of the present invention. Example 1 x線照射面積と試料電流の関係図である。(実施例1)FIG. 6 is a relationship diagram between an x-ray irradiation area and a sample current. Example 1 x線照開始初期の試料電流の時間依存性の図である。(実施例1)It is a figure of the time dependence of the sample current at the beginning of x-ray irradiation. Example 1 試料電流のx線照射時間依存性の図である。(実施例2)It is a figure of x-ray irradiation time dependence of sample current. (Example 2) x線照射面積と捕獲正孔濃度の関係図である。(実施例2)FIG. 6 is a relationship diagram between an x-ray irradiation area and a trapped hole concentration. (Example 2) 様々な物質の正孔トラップへの捕獲緩和時間を示した表である。(実施例3)It is the table | surface which showed the capture relaxation time to the hole trap of various substances. (Example 3)

符号の説明Explanation of symbols

1 x線源。
2 試料。
3 試料保持台。
4 電子分光器。
5 データー集積、解析装置。
6 電流計。
7 可動しぼり。
8 高速シャッター。
9 x線照射により試料から放出された光電子。
10 真空チャンバー。
11 x線源をオンした場合の試料電流(∝x線強度)の初期時間変動。
12 高速シャッターを使用したときの試料電流(∝x線強度)の初期時間変動。
13 輝度劣化前の蛍光体(ZnS;Al,Cu)のx線光電子分光計測中の試料電流のx線照射時間依存性。
14 電子線照射による経時変化で45%輝度劣化した蛍光体(ZnS;Al,Cu)のx線光電子分光計測中の試料電流のx線照射時間依存性。
15 輝度劣化前の蛍光体(ZnS;Al,Cu)中の正孔トラップへのx線光電子分光計測中の捕獲濃度のx線照射時間依存性。
16 電子線照射による経時変化で45%輝度劣化した蛍光体(ZnS;Al,Cu)中の正孔トラップへのx線光電子分光計測中の捕獲濃度のx線照射時間依存性。
1 X-ray source.
2 Sample.
3 Sample holder.
4 Electron spectrometer.
5 Data collection and analysis equipment.
6 Ammeter.
7 Movable squeezing.
8 High-speed shutter.
9 Photoelectrons emitted from the sample by x-ray irradiation.
10 Vacuum chamber.
11 Initial time variation of sample current (∝ x-ray intensity) when the x-ray source is turned on.
12 Initial time fluctuation of sample current (∝ x-ray intensity) when using high-speed shutter.
13 Dependence of sample current on x-ray irradiation time during x-ray photoelectron spectroscopy measurement of phosphor (ZnS; Al, Cu) before luminance degradation.
14 Dependence of sample current on x-ray irradiation time during x-ray photoelectron spectroscopic measurement of a phosphor (ZnS; Al, Cu) whose luminance has been degraded by 45% due to aging with electron beam irradiation.
15 Dependence of trap concentration during x-ray photoelectron spectroscopy on hole traps in phosphor (ZnS; Al, Cu) before luminance degradation on x-ray irradiation time.
16 Dependence of trap concentration during x-ray photoelectron spectroscopic measurement on hole trap in phosphor (ZnS; Al, Cu) whose luminance has deteriorated by 45% due to time-dependent change due to electron beam irradiation.

Claims (6)

X線を試料に照射するX線照射部と、
当該X線が前記試料に照射される面積を制限する複数の面積の異なる孔部を有する絞りと、
照射面積の制限された前記X線を前記試料に照射して、前記試料からアースに流れる試料電流を計測する手段と、
前記試料への前記X線の照射を遮断するシャッタとを備え、
当該シャッタの動作を制御する制御手段を備えることを特徴とする評価装置。
An X-ray irradiation unit for irradiating the sample with X-rays;
A diaphragm having a plurality of holes with different areas that limit the area irradiated with the sample by the X-ray,
Means for irradiating the X-ray with a limited irradiation area to the sample and measuring a sample current flowing from the sample to the ground;
A shutter for blocking the irradiation of the X-rays to the sample,
An evaluation apparatus comprising control means for controlling the operation of the shutter.
x線を発生する機構を有し、x線照射により半導体材料、蛍光体材料、機能性絶縁体材料内で電子や正孔を発生させ、それらの発生量の時間変化、あるいはそれらが発生することによる試料表面の電位変化の時間変化により、バンドギャップを有する材料(半導体材料、蛍光体材料、機能性絶縁体材料、等の電子材料)中の欠陥トラップを定量的に評価する機能を有した評価装置。   It has a mechanism to generate x-rays, and electrons and holes are generated in semiconductor materials, phosphor materials, and functional insulator materials by x-ray irradiation, and their generation amount changes over time or they are generated. Evaluation with the function to quantitatively evaluate defect traps in band gap materials (electronic materials such as semiconductor materials, phosphor materials, functional insulator materials, etc.) by changing the potential change of the sample surface due to time. apparatus. 請求項2においてx線照射部分の面積を定めることを可能にし、x線強度分布も均一な状態で照射できるようにしたことを特徴とする評価装置。   3. The evaluation apparatus according to claim 2, wherein the area of the x-ray irradiation portion can be determined, and the x-ray intensity distribution can be irradiated in a uniform state. 請求項2において半導体材料、蛍光体材料、機能性絶縁体材料にx線を照射する際、照射の極初期から強度変動を抑えたx線を照射できるようにしたことを特徴とする評価装置。   3. The evaluation apparatus according to claim 2, wherein when irradiating the semiconductor material, the phosphor material, and the functional insulator material with x-rays, the x-rays with suppressed intensity fluctuation can be irradiated from the very initial stage of irradiation. 請求項2から請求項4において、x線照射により発生した電子や正孔の発生し、光電子が放出された際、試料中の電荷欠陥への電荷の捕獲過程を試料からアースに流れる試料電流の変化として求めることを特徴とする評価装置。   5. The sample current flowing from the sample to the ground in the charge trapping process in the charge defect in the sample when electrons and holes generated by x-ray irradiation are generated and photoelectrons are emitted. An evaluation device characterized by obtaining as a change. 請求項2から請求項4において、x線照射により発生した電子や正孔の発生した際の試料表面の電位変化の時間変化を、x線照射により試料から発生した光電子スペクトルピークのエネルギー位置の時間変化として求めることを特徴とする評価装置。
5. The time change of the potential change of the sample surface when electrons and holes generated by x-ray irradiation are generated according to claims 2 to 4, wherein the time of the energy position of the photoelectron spectrum peak generated from the sample by x-ray irradiation. An evaluation device characterized by obtaining as a change.
JP2006121538A 2006-04-26 2006-04-26 Material evaluation device Pending JP2007292623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121538A JP2007292623A (en) 2006-04-26 2006-04-26 Material evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121538A JP2007292623A (en) 2006-04-26 2006-04-26 Material evaluation device

Publications (1)

Publication Number Publication Date
JP2007292623A true JP2007292623A (en) 2007-11-08

Family

ID=38763372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121538A Pending JP2007292623A (en) 2006-04-26 2006-04-26 Material evaluation device

Country Status (1)

Country Link
JP (1) JP2007292623A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112873A (en) * 2008-11-07 2010-05-20 Jeol Ltd Spectroscopic analyzer
JP2015222190A (en) * 2014-05-22 2015-12-10 国立研究開発法人産業技術総合研究所 Immersion history estimation method of glass piece
JP2021071401A (en) * 2019-10-31 2021-05-06 パルステック工業株式会社 X-ray diffraction measurement device
JP2021071400A (en) * 2019-10-31 2021-05-06 パルステック工業株式会社 X-ray diffraction measurement device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112873A (en) * 2008-11-07 2010-05-20 Jeol Ltd Spectroscopic analyzer
JP2015222190A (en) * 2014-05-22 2015-12-10 国立研究開発法人産業技術総合研究所 Immersion history estimation method of glass piece
JP2021071401A (en) * 2019-10-31 2021-05-06 パルステック工業株式会社 X-ray diffraction measurement device
JP2021071400A (en) * 2019-10-31 2021-05-06 パルステック工業株式会社 X-ray diffraction measurement device

Similar Documents

Publication Publication Date Title
US8610059B2 (en) Method and system for non-destructive distribution profiling of an element in a film
JP2010060559A (en) Method and system for partial discharge testing of an insulation component
CN110187251B (en) Method for analyzing displacement damage defect energy level by adopting frequency noise
JP2007292623A (en) Material evaluation device
US7161147B1 (en) Biological whole cell mass spectrometer
US9664564B2 (en) Method and device for measuring unoccupied states of solid
US20230243766A1 (en) Work function measurements for surface analysis
Krile et al. DC flashover of a dielectric surface in atmospheric conditions
KR20010018057A (en) Method of noticing charge-up induced by plasma used in manufacturing semiconductor device and apparatus used therein
JP6605386B2 (en) Metal contamination concentration analysis method
US7205539B1 (en) Sample charging control in charged-particle systems
Li et al. Spectroscopic observations of surface flashover across an insulator in vacuum under pulsed excitation
Winchester et al. Methodology and implementation of a tunable deep-ultraviolet laser source for photoemission electron microscopy
US6855569B1 (en) Current leakage measurement
JP2609728B2 (en) MIS interface evaluation method and apparatus
JP2009252995A (en) Semiconductor inspection method
WO2024029060A1 (en) Sample measuring device
JP6867627B2 (en) Interface level density measuring device
Aponte A fundamental study DC/RF breakdown and corona of atmospheric air
Zhang et al. Characteristics of the single-gap pseudospark discharge under nanosecond pulsed voltages
Iyasu et al. Experimental studies of secondary electron emission of TiO2 and Ti
US7148478B2 (en) Electrical measurements in samples
Kim et al. Direct observation of x-ray radiation-induced damage to SiO2/Si interface using multiwavelength room temperature photoluminescence
Zhang et al. Optical and illuminant characteristics of microsecond-pulse diffuse discharges in a point-to-point gap
Oda et al. Observation of photo-stimulated detrapping currents of FEP teflon electrets