JP2015222190A - Immersion history estimation method of glass piece - Google Patents

Immersion history estimation method of glass piece Download PDF

Info

Publication number
JP2015222190A
JP2015222190A JP2014106011A JP2014106011A JP2015222190A JP 2015222190 A JP2015222190 A JP 2015222190A JP 2014106011 A JP2014106011 A JP 2014106011A JP 2014106011 A JP2014106011 A JP 2014106011A JP 2015222190 A JP2015222190 A JP 2015222190A
Authority
JP
Japan
Prior art keywords
glass piece
glass
immersion
evaluated
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014106011A
Other languages
Japanese (ja)
Other versions
JP6367609B2 (en
Inventor
敏尚 富江
Toshihisa Tomie
敏尚 富江
知明 石塚
Tomoaki Ishizuka
知明 石塚
明石 肇
Hajime Akashi
肇 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Nisshin Seifun Group Inc
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seifun Group Inc, National Institute of Advanced Industrial Science and Technology AIST filed Critical Nisshin Seifun Group Inc
Priority to JP2014106011A priority Critical patent/JP6367609B2/en
Publication of JP2015222190A publication Critical patent/JP2015222190A/en
Application granted granted Critical
Publication of JP6367609B2 publication Critical patent/JP6367609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an immersion history estimation method of a glass piece.SOLUTION: The estimation method of an immersion history of a glass piece of the present invention includes a process of evaluating a behavior of the electrification of a surface of the glass piece immersed in a liquid, and estimating the immersion history of the glass piece on the basis of the evaluation result. Preferably, the behavior of the electrification is one or more selected from the group consisting of the magnitude of the electrification, excitation power dependency, discharge time constant, temperature dependence of the magnitude of the electrification, and the temperature dependence of the discharge time constant. Preferably, the behavior of the electrification is evaluated using a photoelectron spectrometer.

Description

本発明は、液中に浸漬したガラス片、あるいは液中に浸漬したとされているがその浸漬事実の確認がとれていないガラス片について、時間に関する情報である浸漬履歴を推定する方法に関する。   The present invention relates to a method for estimating a dipping history, which is information relating to time, for a glass piece immersed in a liquid or a glass piece which is assumed to be immersed in a liquid but whose immersion fact has not been confirmed.

液中に浸漬するガラス片について、浸漬期間や浸漬時期などの浸漬履歴の推定が必要ないくつかの場合がある。例えば、酒類、飲料水、酢、醤油、ソース、ドレッシング、レトルト食品などの食品中に異物が混入する事故は少なくない。そして、混入物の5%程度がガラス片であるという報告がある(非特許文献1)。異物混入事故の再発を防いで、食品の安全性を向上させるには、異物の混入段階の特定が極めて重要である。特にガラス片は怪我を生じさせる危険性があり、混入は根絶が必要であり、このために、ガラス片の混入事故があった場合には、液中の浸漬履歴が推定できることが重要である。また、何らかの事故により破砕されたガラス片が、たまり水、湖水、河川、海水に散乱され、その浸漬履歴を推定することが必要な場合も想定される。   There are some cases where it is necessary to estimate the immersion history such as the immersion period and the immersion period for the glass piece immersed in the liquid. For example, there are many accidents in which foreign substances are mixed in foods such as alcoholic beverages, drinking water, vinegar, soy sauce, sauces, dressings, and retort foods. There is a report that about 5% of the contaminants are glass pieces (Non-patent Document 1). In order to prevent the recurrence of a foreign matter accident and improve the safety of food, it is extremely important to identify the foreign matter contamination stage. In particular, there is a risk of causing injuries to glass pieces, and mixing requires eradication. For this reason, in the event of a glass piece mixing accident, it is important to be able to estimate the immersion history in the liquid. In addition, it is assumed that a piece of glass that has been crushed by some accident is scattered in pooled water, lake water, rivers, seawater, and it is necessary to estimate its immersion history.

世界でも特異的に清潔性を求める我が国では、食品製造企業は細心の注意を払い、製造工程等における異物の混入を防止する対策を種々講じている。それにも拘わらず、食品中への異物混入のクレームは近年増大している(非特許文献2)。このため、混入異物の検査法は進歩しており、十分に確立されているとも考えられる。しかしながら、液中に浸漬するガラス片の浸漬履歴を推定する方法は存在しない。   In Japan, where cleanliness is specifically required in the world, food manufacturing companies are paying close attention and taking various measures to prevent contamination by foreign substances in the manufacturing process. In spite of this, the number of complaints about foreign matter contamination in food has increased in recent years (Non-Patent Document 2). For this reason, the inspection method of the contaminated foreign matter has progressed and is considered to be well established. However, there is no method for estimating the immersion history of a glass piece immersed in the liquid.

異物検査として行われている従来技術は、光学顕微鏡による形態観察、赤外分光分析による物質の同定、蛍光X線分析による元素分析、電子顕微鏡による微細構造観察、などである(非特許文献3)。単色光を照射した試料から真空中に放出される光電子のエネルギースペクトルを測定する、光電子分光法と呼ばれる分析法(非特許文献4)では、光電子スペクトルのピーク位置から、試料を構成する元素及びその価数の情報が得られるため、未知の物質の同定などに威力を発揮するので、混入異物の検査法としても有力である。しかし、これらの分析法は、付着異物の組成などの特定に威力を発揮するものの、どれも、ガラス片が液に浸漬していた「時間」に関する情報(浸漬履歴)を与えない。   Conventional techniques used as foreign matter inspection include morphological observation with an optical microscope, identification of a substance with infrared spectroscopic analysis, elemental analysis with fluorescent X-ray analysis, and microstructural observation with an electron microscope (Non-patent Document 3). . In an analysis method (non-patent document 4) called photoelectron spectroscopy, which measures the energy spectrum of photoelectrons emitted from a sample irradiated with monochromatic light into a vacuum, the elements constituting the sample and their elements are determined from the peak position of the photoelectron spectrum. Since valence information can be obtained, it can be used for identification of unknown substances, so it is also effective as a method for inspecting contaminants. However, although these analysis methods are effective for specifying the composition of the adhered foreign matter, none of them gives information (immersion history) on the “time” during which the glass piece has been immersed in the liquid.

混入樹脂片に関しては、赤外分光分析により熱変形を検出し、熱変形温度を越える温度以上に加熱された樹脂の熱履歴が推定できる(特許文献1)。しかし、熱変形温度が極めて高く、且つ、赤外分光分析で検出できるような変化が生じがたいガラス片などには、この分析法はできない。このため、X線、紫外線などによる照射後に、温度を上昇させながら、ガラス片からの蛍光発光量を測定する手法が提案されている(特許文献2)。しかし、この分析法で得られるのは熱履歴のみであって、浸漬時間に関する情報は得られない。   Regarding the mixed resin piece, thermal deformation is detected by infrared spectroscopic analysis, and the thermal history of the resin heated to a temperature exceeding the thermal deformation temperature can be estimated (Patent Document 1). However, this analysis method cannot be applied to a glass piece or the like that has a very high heat distortion temperature and is unlikely to change as detected by infrared spectroscopic analysis. For this reason, there has been proposed a method of measuring the amount of fluorescence emitted from a glass piece while raising the temperature after irradiation with X-rays, ultraviolet rays, or the like (Patent Document 2). However, this analysis method provides only the heat history and does not provide information on the immersion time.

具体的に、特許文献2は、加熱による発光強度の振る舞いが、殺菌などの目的で行われる121℃、15分の加熱を行ったガラス片と、加熱を行わなかったガラス片とで異なった、という実施例を紹介しており、高温に加熱された履歴の有無については一定の情報を与える。しかし、類似温度への加熱が、時間を置いて複数回行われた場合には、どの加熱前にガラス片が混入したかの情報は与えない。例えば、工場で製造された段階で混入し100℃で数分間の殺菌処理を受けたガラス片と、消費者の不注意でガラス片が混入した調理容器内に食品あるいは食材を投入して100℃で数分間の調理をすることで浸漬するガラス片との区別はできない。   Specifically, in Patent Document 2, the behavior of emission intensity due to heating was different between a glass piece that was heated for 121 minutes at 121 ° C. for the purpose of sterilization and a glass piece that was not heated, Examples are given, and certain information is given regarding the presence or absence of a history of heating to high temperatures. However, when heating to a similar temperature is performed a plurality of times over time, information on which glass piece has been mixed before heating is not given. For example, a glass piece that has been mixed at the stage of manufacture at the factory and sterilized at 100 ° C. for several minutes, and a food or foodstuff is put into a cooking container in which the glass piece has been mixed inadvertently by the consumer. With a few minutes of cooking, it cannot be distinguished from a glass piece to be immersed.

異物内への食品成分の浸透度合いを、元素分析などが可能な、蛍光X線分析、元素濃度分析、赤外吸収分析、染色濃度分析、揮発成分濃度分析法の何れかを用いて分析して、異物が食品中に混入していた時間を推定する方法も提案されている(特許文献3)。しかし、この方法は、食品成分が浸透する異物、具体的には毛髪、木片、紙、プラスチック、虫などにしか適用できず、食品成分が浸透しない金属やガラスには適用できない。   Analyze the degree of penetration of food components into foreign bodies using any of X-ray fluorescence analysis, element concentration analysis, infrared absorption analysis, staining concentration analysis, and volatile component concentration analysis, which enables elemental analysis, etc. There has also been proposed a method for estimating the time during which foreign matter has been mixed in food (Patent Document 3). However, this method can be applied only to foreign substances, such as hair, wood chips, paper, plastics, insects, etc., through which food components penetrate, and not to metals or glass that do not penetrate food components.

ところで、最も一般的に用いられるガラス材料であるソーダ石灰ガラスにおいては、Naイオン濃度は、表面から数十nmの深さまでの表層部の方が、該表層部よりも内部に比して低いことが明らかになっている(非特許文献5)。また、ガラスを液に浸漬することで、主成分である珪素が該液中に溶出することが知られている(非特許文献6)。   By the way, in soda lime glass which is the most commonly used glass material, the Na ion concentration is lower in the surface layer portion from the surface to a depth of several tens of nm than in the surface layer portion. (Non-patent Document 5). Further, it is known that silicon, which is a main component, is eluted in the liquid by immersing glass in the liquid (Non-patent Document 6).

また、前述した光電子分光法に関し、光電子分光装置の1つとしてEUPS装置が開発されている(非特許文献7)。このEUPS装置は、光電子分光装置として一般的に利用されている、光子エネルギーが1〜2keVのX線で励起する「XPS」及び光子エネルギーが20〜40eVのUV光で励起する「UPS」にはない、いくつかの特色を持っている。その特色とは例えば、i)励起光の光子エネルギーが255eVであるため、試料の最表面原子層の情報が得られること、ii)絶縁物の帯電を精度良く評価できる、などである。   Further, regarding the above-described photoelectron spectroscopy, an EUPS apparatus has been developed as one of the photoelectron spectrometers (Non-patent Document 7). This EUPS apparatus is generally used as a photoelectron spectrometer, “XPS” excited by X-rays having a photon energy of 1 to 2 keV and “UPS” excited by UV light having a photon energy of 20 to 40 eV. Not have some features. For example, i) The photon energy of the excitation light is 255 eV, so that information on the outermost surface atomic layer of the sample can be obtained, and ii) the charging of the insulator can be evaluated with high accuracy.

独立行政法人 国民生活センター、「こんなものが入っている」、[online]、1997年3月28日、[2014年4月30日検索]、インターネット<http://www.kokusen.go.jp/news/data/a_W_NEWS_034.html>Incorporated administrative agency National Life Center, "Such things are in", [online], March 28, 1997, [April 30, 2014 search], Internet <http://www.kokusen.go.jp /news/data/a_W_NEWS_034.html> イカリ消毒株式会社、「特集 プロフェッショナルに訊く2−1 食品製造現場における総合的な異物混入対策の考え方と進め方」、[online]、[2014年4月30日検索]、インターネット<http://www.ikari.co.jp/topics/professional6.html>Ikari Sanitization Co., Ltd., “Special feature: Professionals 2-1 Thinking and proceeding with comprehensive measures to prevent foreign substances in food manufacturing”, [online], [Search April 30, 2014], Internet <http: // www .ikari.co.jp / topics / professional6.html> 一般財団法人 日本食品分析センター、「異物検査のご案内」、[online]、[2014年4月30日検索]、インターネット<http://www.jfrl.or.jp/item/abnormal/abnormal1.html>Japan Food Analysis Center, “Foreign substance inspection guide”, [online], [Search April 30, 2014], Internet <http://www.jfrl.or.jp/item/abnormal/abnormal1. html> Stefan Hufner、「Photoelectron Spectroscopy: Principles and Applications」、(Berlin)、Springer、2003年Stefan Hufner, `` Photoelectron Spectroscopy: Principles and Applications '' (Berlin), Springer, 2003 鈴木俊夫、関根朋美、小林大介、山本雄一、「ガラス表面分析技術の展開」、「旭硝子研究報告」、Vol. 63、2013年、p.11Toshio Suzuki, Tomomi Sekine, Daisuke Kobayashi, Yuichi Yamamoto, “Development of Glass Surface Analysis Technology”, “Asahi Glass Research Report”, Vol. 63, 2013, p.11 土屋博之、「ミニファイル 実験器具に用いられる素材の特徴」、[online]、[2014年4月30日検索]、インターネット<http://www.jsac.or.jp/bunseki/pdf/bunseki2011/201101minifile.pdf> (土屋博之、「ぶんせき」、Vol.1、2011年、p.32)Hiroyuki Tsuchiya, “Characteristics of materials used in mini-file laboratory instruments”, [online], [searched April 30, 2014], Internet <http://www.jsac.or.jp/bunseki/pdf/bunseki2011/ 201101minifile.pdf> (Hiroyuki Tsuchiya, “Bunseki”, Vol.1, 2011, p.32) Toshihisa Tomie、Tomoaki Ishitsuka、Teruhisa Ootsuka、Hiroyuki Ota、「Observation of Work Functions, Metallicity, Band Bending, Interfacial Dipoles by EUPS for Characterizing HighkMetal Interfaces」、AIP Conf Proc.、1395、148、2011年Toshihisa Tomie, Tomoaki Ishitsuka, Teruhisa Ootsuka, Hiroyuki Ota, `` Observation of Work Functions, Metallicity, Band Bending, Interfacial Dipoles by EUPS for Characterizing HighkMetal Interfaces '', AIP Conf Proc., 1395, 148, 2011

特開2012−255692号公報JP 2012-255692 A 特開2005−62107号公報JP 2005-62107 A 特開2005−83804号公報JP 2005-83804 A

本発明の課題は、ガラス片の浸漬履歴推定方法を提供することに関する。即ち、本発明の課題は、食品中に混入する異物となり得るガラス片に関し、該ガラス片の内部に浸透する食品成分の検出は試みず、該ガラス片が液に浸漬することで起きるであろう、ガラス表層部での化学反応変化を捉えることで、該ガラス片の浸漬期間や浸漬時期などの浸漬履歴を推定する方法を提供することである。   The subject of this invention is related with providing the immersion log | history estimation method of a glass piece. That is, the problem of the present invention relates to a glass piece that can be a foreign substance mixed in food, and does not try to detect food components that penetrate into the glass piece, but will occur when the glass piece is immersed in a liquid. It is to provide a method for estimating the immersion history such as the immersion period and immersion period of the glass piece by capturing the chemical reaction change in the glass surface layer.

本発明者らは、非特許文献5及び6に開示された情報から、ガラスを液中に浸漬することによって、該ガラスの表面を含む、厚みがナノメーターオーダーの極めて薄いガラス表層部では、該ガラス中のNaイオンの液中への溶出という既知の変化以外に、ガラス分子の構造変化が起きているに違いない、と考えた。そして、その構造変化の大きさ及び構造変化が起きる部位は、ガラスが浸漬する液の種類、温度及び浸漬期間などによって異なると予想した。また、ガラスの浸漬によりガラス分子の構造変化が生じるとしても、その構造変化が生じる部位は、ガラス表層部のみに限定されることが予想されるので、その構造変化の検出には、表面感度の高い装置の利用が必須になると考えられる。そこで、本発明者らは、ガラスの構造変化などを観察する手段としては、あらゆる分析法の中で最も表面感度の高いEUPS装置が適切と考えた。   From the information disclosed in Non-Patent Documents 5 and 6, the present inventors have immersed the glass in a liquid, so that the surface of the glass including the surface of the glass has a very thin thickness on the order of nanometers. In addition to the known change of elution of Na ions in the glass into the liquid, the structural change of the glass molecules must have occurred. And the magnitude | size of the structural change and the site | part which a structural change generate | occur | produced differed with the kind of liquid which glass immerses, temperature, an immersion period, etc. Moreover, even if the glass molecular structure changes due to the immersion of the glass, the region where the structural change occurs is expected to be limited to the glass surface layer only. It is considered that the use of expensive equipment is essential. Therefore, the present inventors considered that an EUPS apparatus having the highest surface sensitivity among all analytical methods is appropriate as a means for observing the structural change of the glass.

本発明者らは、このような着想に基づき、浸漬させたガラス片をEUPS装置で詳細に分析したところ、予想通りに、ガラス分子の構造変化が起きていることを示唆する実験データが得られ、その構造変化はガラス片の浸漬条件により異なる結果となった。そして、本発明者らは斯かる知見を、食品への異物としてのガラス片の混入実態の分析に応用できることを見出した。特許文献3には、異物が食品中に混入していた時間を推定する方法が開示されているが、この方法は、異物中に浸透する食品成分を検出する方法であり、本発明者らが見出した知見に基づく方法、即ち、食品成分を検出することなく、異物としてのガラス片の構造の変化を検出して、該ガラス片の浸漬履歴を推定する方法とは全く異なる。   Based on such an idea, the present inventors analyzed the immersed glass pieces in detail with an EUPS apparatus, and as a result, obtained experimental data suggesting that the structural change of the glass molecules occurred as expected. The structural change was different depending on the immersion conditions of the glass pieces. Then, the present inventors have found that such knowledge can be applied to the analysis of the actual condition of mixing glass pieces as foreign substances in food. Patent Document 3 discloses a method for estimating the time during which a foreign substance has been mixed in food, but this method is a method for detecting a food component that penetrates into a foreign substance. This method is completely different from the method based on the found knowledge, that is, the method of detecting the change of the structure of the glass piece as a foreign substance without detecting food components and estimating the immersion history of the glass piece.

本発明は、前記知見に基づきなされたもので、液中に浸漬したガラス片の表面の帯電の振る舞いを評価し、その評価結果に基づいて該ガラス片の浸漬履歴を推定する工程を有する、ガラス片の浸漬履歴推定方法である。   The present invention has been made on the basis of the above knowledge, and has a step of evaluating the charging behavior of the surface of the glass piece immersed in the liquid and estimating the immersion history of the glass piece based on the evaluation result. It is the immersion history estimation method of a piece.

また本発明は、前記知見に基づきなされたもので、食品中に異物として混入していたガラス片について、前記浸漬履歴推定方法を適用して該ガラス片の該食品への混入履歴を推定する、異物の混入履歴推定方法である。   Further, the present invention was made based on the above knowledge, and for the glass piece mixed as a foreign substance in food, applying the immersion history estimation method to estimate the mixing history of the glass piece into the food, This is a foreign matter contamination history estimation method.

本発明のガラス片の浸漬履歴推定方法によれば、ガラス片の浸漬時間や浸漬時期などの浸漬履歴に関する情報が得られる。この情報は、清酒類やレトルト食品などの食品中に異物として混入していたガラス片の混入時期や混入期間の推定方法として応用が可能である。また、本発明のガラス片の浸漬履歴推定方法は、何らかの理由で破砕され、たまり水、湖水、河川、海水などに散乱され浸漬されたガラス片の、浸漬時期や浸漬期間の推定方法としても応用が可能であり、さらには、大気を含む種々のガス雰囲気への暴露時期や暴露期間の推定方法としての応用も期待できる。   According to the glass piece immersion history estimation method of the present invention, information on the immersion history such as the immersion time and the immersion time of the glass piece can be obtained. This information can be applied as a method for estimating the mixing time and mixing period of glass pieces that have been mixed as foreign substances in foods such as sake and retort foods. The glass piece immersion history estimation method of the present invention is also applied as a method for estimating the immersion time and immersion period of glass pieces that have been crushed for some reason and scattered and immersed in pool water, lake water, rivers, seawater, etc. Furthermore, it can be expected to be applied as a method for estimating the exposure time and exposure period to various gas atmospheres including the atmosphere.

図1(a)〜図1(c)は、それぞれ、実施例1で得られた、ガラス片についてのSi2p内殻準位の光電子スペクトルであり、ガラス片の表面の「帯電の振る舞い」としての「帯電の大きさ」と、その「温度依存」を示すグラフである。1 (a) to 1 (c) are photoelectron spectra of Si2p core levels of the glass piece obtained in Example 1, respectively, as “charging behavior” on the surface of the glass piece. It is a graph which shows "the magnitude | size of charging" and its "temperature dependence". 図2は、実施例1で得られた、ガラス片の表面の「帯電の振る舞い」としての「励起パワー依存」と、その「温度依存」を示すグラフであり、ガラス片が浸漬される液の温度100℃、浸漬時間5分間の場合のグラフである。FIG. 2 is a graph showing “excitation power dependence” and “temperature dependence” as “charging behavior” of the surface of the glass piece, obtained in Example 1, and the liquid in which the glass piece is immersed. It is a graph in case temperature is 100 degreeC and immersion time is 5 minutes. 図3(a)及び図3(b)は、それぞれ、実施例1で得られた、ガラス片の表面の「帯電の振る舞い」としての「励起パワー依存」と、その「温度依存」を示すグラフであり、図3(a)は、ガラス片が浸漬される液の温度100℃、浸漬時間1時間の場合のグラフ、図3(b)は、ガラス片が浸漬される液の温度が室温、浸漬時間11日間の場合のグラフである。FIG. 3A and FIG. 3B are graphs showing “excitation power dependence” and “temperature dependence” as “charging behavior” of the surface of the glass piece obtained in Example 1, respectively. 3 (a) is a graph when the temperature of the liquid into which the glass piece is immersed is 100 ° C. and the immersion time is 1 hour, and FIG. 3 (b) is a temperature at which the liquid into which the glass piece is immersed is room temperature, It is a graph in the case of immersion time 11 days.

本発明のガラス片の浸漬履歴推定方法(以下、単に、浸漬履歴推定方法ともいう)において、評価対象となるのは液中に浸漬したガラス片である。本発明が適用可能なガラス片は、ケイ酸塩を主成分とする硬い物質であり、その種類は特に制限されず、例えば、ソーダガラス(ソーダ石灰ガラス、ソーダライムガラス)、クリスタルガラス、硼珪酸ガラス等が挙げられる。また、ガラス片の大きさは特に制限されず、本発明が適用可能なガラス片には、缶、袋などの包装容器に密封された食品中に異物として混入し得る程度の大きさのガラス片が含まれる。   In the glass piece immersion history estimation method of the present invention (hereinafter, also simply referred to as the immersion history estimation method), an evaluation object is a glass piece immersed in a liquid. The glass piece to which the present invention can be applied is a hard substance mainly composed of silicate, and the kind thereof is not particularly limited. For example, soda glass (soda lime glass, soda lime glass), crystal glass, borosilicate Glass etc. are mentioned. Further, the size of the glass piece is not particularly limited, and the glass piece to which the present invention can be applied is a glass piece having a size that can be mixed as a foreign substance in food sealed in a packaging container such as a can or a bag. Is included.

評価対象のガラス片が浸漬する液としては、典型的には、2種以上の物質が拡散混合して均一な液相を形成している「溶液」が挙げられるが、本発明の浸漬履歴推定方法においては該液の種類は特に制限されず、流動性を有する物質を1種以上含むものであれば良く、液体と固体との混合物(液体中に固体が分散している流動物)であっても良く、酸性でも中性でもアルカリ性でも構わない。   The liquid in which the glass piece to be evaluated is immersed typically includes a “solution” in which two or more substances are diffusely mixed to form a uniform liquid phase. In the method, the kind of the liquid is not particularly limited, and may be one containing at least one substance having fluidity, and is a mixture of a liquid and a solid (a fluid in which a solid is dispersed in a liquid). It may be acidic, neutral or alkaline.

本発明の浸漬履歴推定方法においては、評価対象のガラス片の表面を帯電させる。ガラス片の表面を帯電させる方法としては、公知の帯電方法を用いることができ、例えば、紫外線などの光、X線、イオンビーム、電子ビーム、などをガラス片に照射する方法の他、放電プラズマを浴びせる方法が挙げられる。   In the immersion history estimation method of the present invention, the surface of the glass piece to be evaluated is charged. As a method of charging the surface of the glass piece, a known charging method can be used. For example, in addition to the method of irradiating the glass piece with light such as ultraviolet rays, X-rays, ion beams, electron beams, etc., discharge plasma The method of bathing is mentioned.

本発明の浸漬履歴推定方法においては、評価対象のガラス片の表面を帯電させた後、その帯電の振る舞いを評価する。ここでいう「帯電の振る舞い」とは、帯電状態あるいは帯電に関する特性であり、より具体的には、「帯電の大きさ」、「帯電の大きさの励起パワー依存」、「帯電が放電する時定数」、「帯電の大きさの温度依存」、「放電時定数の温度依存」が挙げられる。ここに挙げた5つの「帯電の振る舞い」に関し、後述する実施例では光励起時における「帯電の振る舞い」を評価しているが、本発明の浸漬履歴推定方法において「帯電の振る舞い」は光励起時に限らない。ガラス片の表面の「帯電の振る舞い」を評価するに際しては、これら5つ全部を評価しても良く、一部を評価しても良い。これら5つの「帯電の振る舞い」の評価方法としては、公知の評価方法を用いることができ、例えばプローブ顕微鏡を含む様々な電気的手法による表面電位の測定法を利用することが可能である。   In the immersion history estimation method of the present invention, after charging the surface of the glass piece to be evaluated, the charging behavior is evaluated. The “charging behavior” here is a characteristic relating to a charged state or charging. More specifically, “charging magnitude”, “excitation power dependence of charging magnitude”, “when charging is discharged” Constant ”,“ temperature dependence of charge magnitude ”, and“ temperature dependence of discharge time constant ”. With respect to the five “charging behaviors” listed here, the “charge behavior” at the time of photoexcitation is evaluated in the examples described later. Absent. In evaluating the “charging behavior” of the surface of the glass piece, all of these five may be evaluated, or a part of them may be evaluated. As these five “charging behavior” evaluation methods, known evaluation methods can be used. For example, surface potential measurement methods using various electric methods including a probe microscope can be used.

ここで、「帯電の振る舞い」としての「励起パワー依存」と「温度依存」について説明する。ガラスの如き絶縁物は、電気が流れにくい物質であるが、抵抗値は有限であり、長時間放置するとたまった電荷が失われる。このたまった電荷が失われる現象を、帯電が「放電する」と呼ぶ。電気の流れにくさは、温度に大きく依存し、一般的に、温度が高くなると電気が流れやすくなり、放電の時定数が短くなる。帯電量は、電荷の供給速度が大きいほど、つまり「励起パワー」が大きいほど大きく、放電の速さが大きいほど、つまり、放電時定数が短いほど、帯電量が小さくなる。そこで、本発明は、「帯電の振る舞い」の重要な評価法として、帯電の大きさの「励起パワー依存」と「放電の時定数」、及び、帯電の大きさと放電時定数の「温度依存」を評価する手段を提示する。   Here, “excitation power dependence” and “temperature dependence” as “charging behavior” will be described. An insulator such as glass is a substance that does not allow electricity to flow, but has a finite resistance value. If it is left for a long time, the accumulated charge is lost. This phenomenon in which the accumulated charge is lost is referred to as “discharging” the charge. The difficulty of the flow of electricity greatly depends on the temperature. In general, the higher the temperature, the easier the flow of electricity and the shorter the discharge time constant. The charge amount increases as the charge supply rate increases, that is, the “excitation power” increases, and as the discharge speed increases, that is, as the discharge time constant decreases, the charge amount decreases. Therefore, the present invention provides, as an important evaluation method of “charging behavior”, “excitation power dependence” of charge magnitude and “time constant of discharge”, and “temperature dependence” of charge magnitude and discharge time constant. Presents a means to evaluate

本発明の浸漬履歴推定方法の好ましい一実施態様として、評価対象のガラス片の表面の「帯電の振る舞い」の評価を、光電子分光装置(光電子分光法)を用いて行う態様が挙げられる。光電子分光法においては、励起光の照射により、試料(ガラス片)外に大量の電子が放出されるので、光電子分光法は、ガラス片を帯電させる手法として利用可能である。また、光電子分光法においては、光電子スペクトルのピーク位置のシフトの大きさから、「帯電の振る舞い」の一例である「帯電の大きさ」(帯電量)の評価が可能であるので、光電子分光法は、帯電の大きさの評価手法としても利用可能である。光電子分光法としては、X線光電子分光法(XPS)、紫外光電子分光法(UPS)と呼ばれる公知の方法を用いることができる。   As a preferable embodiment of the immersion history estimation method of the present invention, there is an embodiment in which the “charge behavior” of the surface of the glass piece to be evaluated is evaluated using a photoelectron spectrometer (photoelectron spectroscopy). In photoelectron spectroscopy, a large amount of electrons are emitted outside the sample (glass piece) by irradiation with excitation light, so photoelectron spectroscopy can be used as a method for charging the glass piece. In photoelectron spectroscopy, the magnitude of charge (charge amount), which is an example of “behavior of charging”, can be evaluated from the magnitude of the shift of the peak position of the photoelectron spectrum. Can also be used as a method for evaluating the magnitude of charging. As the photoelectron spectroscopy, a known method called X-ray photoelectron spectroscopy (XPS) or ultraviolet photoelectron spectroscopy (UPS) can be used.

ただし、XPS及びUPSにおいては、ガラス片の如き絶縁試料の帯電の影響を排除することが1つの重要な装置技術になっており、ガラス片の表面の帯電量の定量的な評価は容易ではない。本発明者らの知見によれば、ガラス片の表面の「帯電の振る舞い」を評価するのに適した光電子分光法はEUPSである。即ち、本発明の浸漬履歴推定方法の好ましい一実施態様として、評価対象のガラス片の表面の「帯電の振る舞い」を、EUPSを採用した光電子分光装置であるEUPS装置を用いて行う態様が挙げられる。EUPS装置は、極端紫外(EUV)光を光源とする公知の光電子分光装置であり、詳細は例えば非特許文献7に記載されている。EUPS装置においては波長4.86nm、パルス幅3nsのEUV光を試料(ガラス片)に照射するが、そのEUV光源の繰り返し率を変えることによって、容易に平均励起パワーを変えることができる。また、EUPS装置では、試料(ガラス片)を保持するキャリアの温度(測定温度)を変更できるので、この測定温度を適宜変更することで測定中の試料温度を変更することができる。   However, in XPS and UPS, eliminating the influence of charging of an insulating sample such as a glass piece is one important apparatus technology, and quantitative evaluation of the charge amount on the surface of the glass piece is not easy. . According to the knowledge of the present inventors, a photoelectron spectroscopy suitable for evaluating the “charging behavior” of the surface of a glass piece is EUPS. That is, as a preferred embodiment of the immersion history estimation method of the present invention, there is an embodiment in which the “charging behavior” of the surface of the glass piece to be evaluated is performed using an EUPS apparatus that is a photoelectron spectrometer employing EUPS. . The EUPS device is a known photoelectron spectrometer that uses extreme ultraviolet (EUV) light as a light source, and is described in detail in Non-Patent Document 7, for example. In the EUPS device, the sample (glass piece) is irradiated with EUV light having a wavelength of 4.86 nm and a pulse width of 3 ns. By changing the repetition rate of the EUV light source, the average excitation power can be easily changed. In the EUPS apparatus, since the temperature (measurement temperature) of the carrier holding the sample (glass piece) can be changed, the sample temperature during measurement can be changed by appropriately changing the measurement temperature.

本発明の浸漬履歴推定方法においては、評価対象のガラス片の表面の「帯電の振る舞い」を評価した後、その評価結果に基づいて該ガラス片の浸漬履歴、より具体的には液の種類、液の温度、浸漬期間などを推定する。「帯電の振る舞い」は、評価対象のガラス片を構成するガラスの種類、該ガラス片が浸漬していた液の種類や液温などによって異なるため、浸漬履歴を正しく推定するために、評価対象のガラス片とは別に、標準試料を準備すると良い。即ち、評価対象のガラス片とは別に、評価対象のガラス片と同一組成の対照ガラス片(標準試料)を用意し、対照ガラス片及び評価対象のガラス片それぞれの「帯電の振る舞い」を互いに比較することで、評価対象のガラス片の浸漬履歴を推定することができる。   In the immersion history estimation method of the present invention, after evaluating the “charge behavior” of the surface of the glass piece to be evaluated, the immersion history of the glass piece based on the evaluation result, more specifically the type of liquid, Estimate liquid temperature, immersion period, etc. `` Charging behavior '' varies depending on the type of glass constituting the glass piece to be evaluated, the type of liquid in which the glass piece was immersed, the liquid temperature, etc., so in order to correctly estimate the immersion history, A standard sample may be prepared separately from the glass piece. In other words, separately from the glass piece to be evaluated, a control glass piece (standard sample) having the same composition as the glass piece to be evaluated is prepared, and the “charging behavior” of the control glass piece and the glass piece to be evaluated is compared with each other. By doing, the immersion history of the glass piece of evaluation object can be estimated.

前記対照ガラス片を用いた浸漬履歴推定方法の一実施態様として、対照ガラス片を評価対象のガラス片が浸漬していた液と同一組成液中に所定時間浸漬させて標準試料を得、該標準試料及び評価対象のガラス片それぞれの「帯電の振る舞い」を互いに比較することで、評価対象のガラス片の浸漬履歴を推定する方法が挙げられる。この標準試料としては、必要に応じ、ガラス片を浸漬させる液の種類、液温、浸漬時間の何れか1つ以上が異なる複数の標準試料を用意することができる。   As one embodiment of the immersion history estimation method using the control glass piece, a standard sample is obtained by immersing the control glass piece in the same composition liquid as the liquid in which the glass piece to be evaluated is immersed for a predetermined time. There is a method of estimating the immersion history of the glass piece to be evaluated by comparing the “charging behavior” of the sample and the glass piece to be evaluated. As this standard sample, a plurality of standard samples differing in any one or more of the kind of liquid in which the glass piece is immersed, the liquid temperature, and the immersion time can be prepared as necessary.

前記対照ガラス片を用いた浸漬履歴推定方法において、「帯電の振る舞い」として「帯電の大きさ」に着目しても良い。即ち、評価対象のガラス片とは別に、評価対象のガラス片と同一組成の対照ガラス片を用意し、対照ガラス片及び評価対象のガラス片それぞれについて、表面の帯電量を評価し、それらの帯電量の値を互いに比較することで、評価対象のガラス片の浸漬履歴を推定することもできる。   In the immersion history estimation method using the control glass piece, “charge magnitude” may be focused on as “charge behavior”. That is, separately from the glass piece to be evaluated, a control glass piece having the same composition as that of the glass piece to be evaluated is prepared, and the charge amount of the surface is evaluated for each of the control glass piece and the glass piece to be evaluated, The immersion history of the glass pieces to be evaluated can also be estimated by comparing the values of the amounts with each other.

本発明者らの知見によれば、液中に浸漬されたガラス片は、液中に一度も浸漬されたことのないガラス片に比して、表面の帯電の大きさ(帯電量)が小さい。この知見に基づくガラス片の浸漬履歴推定方法として、評価対象のガラス片とは別に、評価対象のガラス片と同一組成で且つ液中に存在したことの無い対照ガラス片(以下、「無浸漬対照ガラス片」ともいう)を用意し、該無浸漬対照ガラス片及び評価対象のガラス片それぞれについて、表面の帯電量を評価し、それらの帯電量の値を互いに比較する方法を例示できる。この方法では、評価対象のガラス片の帯電量V1と、無浸漬対照ガラス片の帯電量V2とを比較して、帯電量V1が帯電量V2よりも小さい場合に、評価対象のガラス片が過去に液中に存在していたことがあると推定することができる。   According to the knowledge of the present inventors, the glass piece immersed in the liquid has a smaller surface charge (charge amount) than the glass piece that has never been immersed in the liquid. . As a method for estimating the immersion history of a glass piece based on this finding, a control glass piece having the same composition as the glass piece to be evaluated and never existing in the liquid, separately from the glass piece to be evaluated (hereinafter referred to as “no immersion control”). For example, a method of evaluating the charge amount of the surface of each of the non-immersed control glass piece and the glass piece to be evaluated and comparing the values of the charge amounts with each other can be exemplified. In this method, when the charge amount V1 of the glass piece to be evaluated is compared with the charge amount V2 of the non-immersed control glass piece, if the charge amount V1 is smaller than the charge amount V2, the glass piece to be evaluated is past. It can be presumed that they were present in the liquid.

前記の無浸漬対照ガラス片を用いる方法は、例えば、食品中に異物として混入されていたとされる、評価対象のガラス片について、調理後に食品中に混入したかを確認するのに利用することができる。消費者などから、食品中に異物としてガラス片が混入していた旨指摘された場合、先ずは、評価対象のガラス片と無浸漬対照ガラス片とについて「帯電の振る舞い」の比較を行う。評価対象のガラス片の帯電の振る舞いが、無浸漬対照ガラス片のそれと一致すれば、消費者などでの段階で、加熱調理後に食品中に異物として混入した、と判定される。仮に、評価対象のガラス片が無浸漬対照ガラス片とは異なる「帯電の振る舞い」を示せば、次に、加熱調理を模した、対象液内での短時間の加熱を行った対照ガラス片を準備し、それと評価対象のガラス片との比較を行う。両者の「帯電の振る舞い」が一致すれば、食品開封後に何らかの原因で食品中にガラス片が混入し、その混入状態のまま加熱調理された、と判定される。前記の手順で、評価対象のガラス片が食品開封以前に食品中に混入したと判定されれば、次に、混入段階の特定を行うことになる。種々の浸漬条件で作製した多くの対照ガラス片の「帯電の振る舞い」と評価対象のガラス片の「帯電の振る舞い」とを比較しながら、混入段階の推定を行い、工場内での品質管理の改善が図られることになる。評価対象のガラス片との比較を行う、前記無浸漬対照ガラス片などの種々の対照ガラス片について、予めそれらの「帯電の振る舞い」を評価しておき、その評価結果のデータを取得しておくことができる。その場合、複数の対照ガラス片の「帯電の振る舞い」が記憶されている、データベースが得られるので、評価対象のガラス片の「帯電の振る舞い」の評価結果をこのデータベースと照合することで、評価対象のガラス片の食品への混入履歴などを推定することが可能となる。   The method using the non-immersed control glass piece can be used, for example, to confirm whether or not the glass piece to be evaluated is mixed in the food after cooking with respect to the glass piece to be evaluated. it can. When a consumer or the like points out that a glass piece is mixed as a foreign substance in food, first, the “charged behavior” is compared between the glass piece to be evaluated and the non-immersed control glass piece. If the charging behavior of the glass piece to be evaluated matches that of the non-immersed control glass piece, it is determined at the consumer's stage that it has been mixed as a foreign substance in the food after cooking. If the glass piece to be evaluated shows a different “charging behavior” from the non-immersed control glass piece, then the control glass piece that has been heated for a short time in the target liquid, imitating cooking, is used. Prepare and compare it with the piece of glass to be evaluated. If the “charge behavior” of the two coincides, it is determined that the glass piece is mixed in the food for some reason after the food is opened, and the food is cooked in the mixed state. If it is determined in the above procedure that the glass piece to be evaluated has been mixed in the food before the food is opened, then the mixing stage is specified. While comparing the “charging behavior” of many control glass pieces produced under various immersion conditions with the “charging behavior” of the glass piece to be evaluated, the mixing stage is estimated and quality control in the factory is performed. Improvement will be achieved. For various control glass pieces such as the non-immersed control glass piece to be compared with the glass piece to be evaluated, the “charge behavior” is evaluated in advance, and data of the evaluation result is obtained. be able to. In this case, a database is obtained in which the “charging behavior” of multiple control glass pieces is stored. Therefore, the evaluation result of the “charging behavior” of the glass piece to be evaluated is checked against this database. It is possible to estimate the mixing history of the target glass piece into the food.

本発明の浸漬履歴推定方法は、食品中に異物として混入していたガラス片について、該ガラス片の該食品への混入履歴(混入時期、混入期間など)を推定する、異物の混入履歴推定方法に適用することができる。即ち、本発明の浸漬履歴推定方法は、食品中に浸漬したガラス片を評価対象とすることもできる。本発明が適用可能な食品は、液を含んでいれば良く、熱処理の有無は問わない。本発明が適用可能な食品の具体例としては、スープ、パスタソース、カレー、シチューなどのレトルト製品、ドレッシング、マヨネーズなどの調味料製品、お茶、コーヒー、果実飲料などの飲料製品などを挙げることができる。   The immersion history estimation method of the present invention estimates the contamination history (mixing time, mixing period, etc.) of the glass piece into the food for the glass piece mixed as a foreign matter in the food. Can be applied to. That is, the immersion history estimation method of the present invention can also evaluate a glass piece immersed in food. The food to which the present invention is applicable only needs to contain a liquid, and it does not matter whether heat treatment is performed. Specific examples of foods to which the present invention can be applied include retort products such as soup, pasta sauce, curry and stew, seasoning products such as dressing and mayonnaise, and beverage products such as tea, coffee and fruit drinks. it can.

以下、実施例を挙げて本発明を更に詳細に説明するが、帯電のさせ方、評価法、評価試料、浸漬条件などなど、本発明はこれらの実施例により制限されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not restrict | limited by these Examples, such as a charging method, an evaluation method, an evaluation sample, immersion conditions.

〔実施例1〕
市販の3mm厚のソーダ石灰ガラス板を砕き、一辺が10mm程度のガラス片を複数個用意し、このガラス片を、所定の液温に調整された0.1M酢酸緩衝液(pH4.5)中に所定時間浸漬した。所定の浸漬時間経過後、酢酸緩衝液からガラス片を取り出してイオン交換水ですすぎ、さらにペーパータオル上に置いて該ガラス片に付着した水分を除去し乾燥させた。こうして乾燥状態となったガラス片の表面の「帯電の振る舞い」、具体的には「帯電の大きさ」、「励起パワー依存」及びそれらの「温度依存」を、EUPS装置を用いて評価した。酢酸緩衝液の液温として、室温(約20℃)及び100℃の2種類を用意し、ガラス片の浸漬時間として、室温浸漬の場合は11日間、100℃浸漬の場合は5分間及び1時間を用意した。
[Example 1]
A commercially available 3 mm thick soda-lime glass plate is crushed, a plurality of glass pieces each having a side of about 10 mm are prepared, and the glass pieces are placed in a 0.1 M acetate buffer (pH 4.5) adjusted to a predetermined liquid temperature. For a predetermined time. After a predetermined soaking time, a glass piece was taken out from the acetate buffer, rinsed with ion-exchanged water, and further placed on a paper towel to remove moisture adhering to the glass piece and dried. The “charge behavior”, specifically “charge magnitude”, “excitation power dependence”, and “temperature dependence” of the surface of the glass piece thus dried were evaluated using an EUPS apparatus. As the temperature of the acetate buffer solution, two types of room temperature (about 20 ° C.) and 100 ° C. are prepared, and the immersion time of the glass piece is 11 days for room temperature immersion, 5 minutes and 1 hour for 100 ° C. immersion. Prepared.

実施例1で、ガラス片を浸漬する液として、異なる温度の液を準備した理由を説明する。液に浸漬するガラスが受ける化学変化で知られている影響は、ガラスに含まれるNaイオンの液中への溶出である。一般的に、温度が10℃高くなると化学変化の速度が倍になると言われている。その温度依存がガラスの化学変化に適用できると仮定した場合、温度が80℃異なると化学反応速度が2の8乗=256倍異なることになるので、室温=20℃とした場合、液温が室温の液中にガラス片を11日間浸漬するのと、液温が100℃の液中にガラス片を1時間浸漬するのとが、等価と言うことになる。液温100℃の液中での、浸漬時間5分間と1時間との比較で、ガラス片の化学反応が10倍異なると予想され、液温が室温の液中で11日間浸漬のガラス片と、液温が100℃の液中で1時間浸漬のガラス片とが等価になると予想して、実験を行った。結果は、以下に示すように、浸漬時間5分間と1時間とでははっきりと差異がみられ、そして、室温で11日間浸漬と、100℃で1時間浸漬とは等価ではなかった。   The reason why liquids having different temperatures were prepared as liquids for immersing glass pieces in Example 1 will be described. A known effect of chemical changes experienced by glass immersed in the liquid is the elution of Na ions contained in the glass into the liquid. In general, it is said that the rate of chemical change doubles when the temperature increases by 10 ° C. Assuming that the temperature dependence can be applied to the chemical change of the glass, if the temperature is different by 80 ° C., the chemical reaction rate is different to the power of 2 = 256 times. Soaking a glass piece in a liquid at room temperature for 11 days is equivalent to immersing the glass piece in a liquid having a liquid temperature of 100 ° C. for 1 hour. Compared with the immersion time of 5 minutes and 1 hour in the liquid at a liquid temperature of 100 ° C., the chemical reaction of the glass piece is expected to be 10 times different, and the glass piece immersed for 11 days in the liquid at room temperature. The experiment was conducted assuming that a glass piece immersed for 1 hour in a liquid having a liquid temperature of 100 ° C. would be equivalent. As shown below, the difference was clearly seen between the immersion time of 5 minutes and 1 hour, and the immersion for 11 days at room temperature and the immersion for 1 hour at 100 ° C. were not equivalent.

各条件におけるガラス片の表面の「帯電の振る舞い」の評価結果を図1〜図3に示す。EUPSを用いて、どのようにしてガラス片の帯電の大きさを評価するかを、図に示す。図1は、ガラス片のSi2p内殻準位の光電子スペクトルである。横軸は光電子の運動エネルギーで、縦軸は信号強度である。EUV光源の繰り返し率は10Hzであった。図1(a)〜図1(c)それぞれにおいて、符号Aで示すグラフは、液温100℃の酢酸緩衝液にガラス片を5分間浸漬したガラス片の場合、符号Bで示すグラフは、液温100℃の酢酸緩衝液にガラス片を1時間浸漬した場合である。光電子は130Vの減速をして観測した。励起光の光子エネルギーは255.2eVで、測定器の仕事関数は3.4eV程度であるので、運動エネルギー17eVは、結合エネルギー105eV程度に相当する。   The evaluation results of the “charging behavior” of the surface of the glass piece under each condition are shown in FIGS. The figure shows how to evaluate the magnitude of the charge on a glass piece using EUPS. FIG. 1 is a photoelectron spectrum of the Si2p core level of a glass piece. The horizontal axis is the kinetic energy of photoelectrons, and the vertical axis is the signal intensity. The repetition rate of the EUV light source was 10 Hz. In each of FIGS. 1 (a) to 1 (c), the graph indicated by symbol A is a glass piece obtained by immersing a glass piece in an acetic acid buffer solution at a liquid temperature of 100 ° C. for 5 minutes. This is a case where a glass piece is immersed in an acetic acid buffer solution at a temperature of 100 ° C. for 1 hour. Photoelectrons were observed with a deceleration of 130V. Since the photon energy of the excitation light is 255.2 eV and the work function of the measuring instrument is about 3.4 eV, the kinetic energy 17 eV corresponds to a binding energy of about 105 eV.

図1(a)に示す通り、測定温度、即ち、EUPS装置における試料(ガラス片)を保持するキャリアの温度が室温の場合、符号Aで示すグラフのピークは11.5eV程度、符号Bで示すグラフのピークは13eV程度であった。これに対し、測定温度が55℃の場合は、図1(b)に示す通り、符号Aで示すグラフのピークは16.5eV程度、符号Bで示すグラフのピークは17.5eV程度であり、測定温度が100℃の場合は、図1(c)に示す通り、符号Aで示すグラフ及び符号Bで示すグラフの何れもピークは17.5eV程度であった。当初の予想通り、ピーク位置は若干異なるものの、符号Aと符号B両方の試料ともに、測定温度が高くなると、Si2p内殻準位の光電子スペクトルのピーク位置が高くなり、ガラス片の表面の帯電量が小さくなることが分かる。   As shown in FIG. 1 (a), when the measurement temperature, that is, the temperature of the carrier holding the sample (glass piece) in the EUPS apparatus is room temperature, the peak of the graph indicated by the symbol A is about 11.5 eV and indicated by the symbol B The peak of the graph was about 13 eV. On the other hand, when the measurement temperature is 55 ° C., the peak of the graph indicated by the symbol A is about 16.5 eV and the peak of the graph indicated by the symbol B is about 17.5 eV, as shown in FIG. When the measurement temperature was 100 ° C., the peak was about 17.5 eV in both the graph indicated by the symbol A and the graph indicated by the symbol B as shown in FIG. Although the peak positions are slightly different as originally expected, the peak position of the photoelectron spectrum of the Si2p core level increases as the measurement temperature increases for both samples A and B, and the amount of charge on the surface of the glass piece increases. It turns out that becomes small.

前述の説明のように、測定温度が高くなるとガラス片の如き絶縁物は帯電しにくくなるところ、ガラス片の表面が帯電しなくなったことは、繰り返し率(励起パワー)依存を見ることで判断できる。図2に、実施例1で得られた、ガラス片の表面の「帯電の振る舞い」としての「励起パワー依存」を示す。このグラフは、酢酸緩衝液の液温100℃、浸漬時間5分間の場合のグラフである。図2の縦軸は、図1に示したガラス片のSi2p内殻準位スペクトルのピーク位置である。横軸は励起光(EUV光)の繰り返し率である。試料を励起するEUV光の平均励起パワーは繰り返し率に比例し、10Hz測定は2Hz測定での5倍である。測定温度、即ち、EUPS装置における試料(ガラス片)を保持するキャリアの温度が室温の場合、励起光の繰り返し率が2Hzではピーク位置14.5eV、励起光の繰り返し率が5Hzではピーク位置11.5eV、励起光の繰り返し率が10Hzではピーク位置8.5eVであり、励起パワーの小さい2Hzと励起パワーの大きい10Hzとで、ピーク位置に6eVも差があったが、測定温度を55℃にすると、2Hzと10Hzとのピーク位置の差は1.5eVに格段に小さくなった。測定温度70℃の場合でも、2Hzと10Hzとのピーク位置の差は1.5eVであったが、測定温度100℃の場合は、2Hzと10Hzとのピーク位置は略一致したので、測定温度100℃以上では、ガラス片の表面は帯電しなくなったと判断できる。   As described above, when the measurement temperature is high, an insulator such as a glass piece becomes difficult to be charged. However, the fact that the surface of the glass piece is no longer charged can be determined by looking at the repetition rate (excitation power) dependence. . FIG. 2 shows “excitation power dependence” as “charging behavior” of the surface of the glass piece obtained in Example 1. This graph is a graph when the temperature of the acetate buffer solution is 100 ° C. and the immersion time is 5 minutes. The vertical axis in FIG. 2 is the peak position of the Si2p core level spectrum of the glass piece shown in FIG. The horizontal axis represents the repetition rate of excitation light (EUV light). The average excitation power of the EUV light that excites the sample is proportional to the repetition rate, and the 10 Hz measurement is five times the 2 Hz measurement. When the measurement temperature, that is, the temperature of the carrier holding the sample (glass piece) in the EUPS apparatus is room temperature, the peak position is 14.5 eV when the repetition rate of excitation light is 2 Hz, and the peak position is 11 when the repetition rate of excitation light is 5 Hz. When the repetition rate of excitation light is 5 eV and 10 Hz, the peak position is 8.5 eV, and there is a difference of 6 eV in the peak position between 2 Hz where the excitation power is small and 10 Hz where the excitation power is large, but when the measurement temperature is 55 ° C. The difference in peak position between 2 Hz and 10 Hz was significantly reduced to 1.5 eV. Even when the measurement temperature was 70 ° C., the difference in peak position between 2 Hz and 10 Hz was 1.5 eV. However, when the measurement temperature was 100 ° C., the peak positions of 2 Hz and 10 Hz almost coincided with each other. It can be determined that the surface of the glass piece is no longer charged at a temperature of ℃ or higher.

図3は、100℃で1時間浸漬したガラス片と室温で11日間浸漬したガラス片との測定結果の比較である。両者で、化学変化の大きさは等価であること予想されたが、帯電の振る舞いは、大きく異なった。ガラス片を液温100℃の酢酸緩衝液中に1時間浸漬した場合(図3(a))は、測定温度が室温の場合、励起光の繰り返し率が10Hzではピーク位置10eVだったが、液温が室温の酢酸緩衝液中にガラス片を11日間浸漬した場合(図3(b))は、ピーク位置14.5eVだった。そして、図3(a)では、測定温度が55℃でも、ハッキリと繰り返し率(励起パワー)依存があったが、図3(b)では、繰り返し率依存がほとんど見られず、ガラス片の表面はほとんど帯電しなくなった。   FIG. 3 is a comparison of measurement results between a glass piece immersed for 1 hour at 100 ° C. and a glass piece immersed for 11 days at room temperature. In both cases, the magnitude of the chemical change was expected to be equivalent, but the charging behavior was very different. When the glass piece was immersed in an acetic acid buffer solution at a liquid temperature of 100 ° C. for 1 hour (FIG. 3A), when the measurement temperature was room temperature, the peak position was 10 eV when the excitation light repetition rate was 10 Hz. When the glass piece was immersed for 11 days in an acetate buffer having a temperature of room temperature (FIG. 3B), the peak position was 14.5 eV. In FIG. 3 (a), there was a clear dependence on the repetition rate (excitation power) even at a measurement temperature of 55 ° C., but in FIG. 3 (b), almost no dependence on the repetition rate was observed, and the surface of the glass piece. Became almost uncharged.

図2と図3(a)とを比べると、100℃の酢酸緩衝液にガラス片を浸漬する時間が5分間と1時間とで、帯電の振る舞いが異なることが分かる。つまり、測定温度が室温の場合、浸漬時間5分間(図2)では、2Hz励起の場合に14.5eV、10Hzの場合に8.5eVだったが、浸漬時間1時間(図3(a))では、2Hz励起の場合に16eV、10Hzの場合に10eVだった。   Comparing FIG. 2 and FIG. 3 (a), it can be seen that the charging behavior differs depending on whether the time for immersing the glass piece in the 100 ° C. acetate buffer is 5 minutes or 1 hour. In other words, when the measurement temperature is room temperature, the immersion time is 5 minutes (FIG. 2), 14.5 eV in the case of 2 Hz excitation, and 8.5 eV in the case of 10 Hz, but the immersion time is 1 hour (FIG. 3 (a)). Then, it was 16 eV in the case of 2 Hz excitation and 10 eV in the case of 10 Hz.

ここで、帯電評価時の温度と、液浸漬時の液の温度の、試料(ガラス片)への影響の違いを説明しておく。ガラスの構成元素であるNaイオンの液への溶出は、ガラス片が液に浸漬しているときに起きる。ガラスの帯電の振る舞いのEUPSでの評価は真空中で行うので、ガラスの温度を上げても、Naイオンがガラスの外部に出ていくことは考えられない。しかし、測定のために温度を高くすることで、ガラスの表面と内部ではNaイオンの移動が起きることが考えられる。そのことにより、帯電の振る舞いに、測定の履歴が反映される可能性が考えられる。この変化は不可逆であり、温度依存の測定は一回限りになる可能性がある。そして、測定のための「真空中での加熱」が、「液中浸漬」の履歴により引き起こされたガラス片表面の「構造変化」に影響を及ぼす可能性もある。これらの可能性を検証するために、図2と図3に示した測定で、まず室温で測定し、次に、徐々に温度を上げ100℃迄の測定を行った後で、再度、室温での測定を行ったところ、最初と同じ結果が得られた。つまり、「帯電の振る舞い」を評価するための「真空中」での測定での温度の履歴の、「帯電の振る舞い」への影響は、顕著でなかった。一方、液に浸漬して液中にいったん溶出したNaイオンは、ガラスに戻ることはない、と考えられる。浸漬時の温度の履歴は、消えることがないと考えられる。   Here, the difference in influence on the sample (glass piece) between the temperature at the time of charging evaluation and the temperature of the liquid at the time of liquid immersion will be described. Elution of Na ions, which are constituent elements of glass, into the liquid occurs when the glass piece is immersed in the liquid. Since the EUPS evaluation of the charging behavior of the glass is performed in a vacuum, it is unlikely that Na ions will come out of the glass even if the temperature of the glass is raised. However, it is conceivable that Na ions move on the surface and inside of the glass by raising the temperature for measurement. As a result, the measurement history may be reflected in the charging behavior. This change is irreversible and temperature-dependent measurements can be one-time. And “heating in vacuum” for measurement may affect “structural change” of the glass piece surface caused by the history of “immersion in liquid”. In order to verify these possibilities, the measurements shown in FIGS. 2 and 3 are first measured at room temperature, then the temperature is gradually increased to 100 ° C., and then again at room temperature. As a result of the measurement, the same result as the first was obtained. That is, the influence of the temperature history in the “in-vacuum” measurement for evaluating the “charge behavior” on the “charge behavior” was not significant. On the other hand, it is considered that Na ions immersed in the liquid and once eluted in the liquid do not return to the glass. It is considered that the temperature history during immersion does not disappear.

図1〜図3に示す結果から、ガラス片の液中への浸漬時間の違いにより、該ガラス片の表面の「帯電の振る舞い」、より具体的には、帯電の大きさ及び励起パワー依存が顕著に異なり、これを評価測定することにより、ガラス片の浸漬条件を推定することが可能であることがわかる。   From the results shown in FIG. 1 to FIG. 3, due to the difference in the immersion time of the glass piece in the liquid, the “charge behavior” of the surface of the glass piece, more specifically, the magnitude of the charge and the excitation power dependence It is remarkably different, and it can be seen that the immersion condition of the glass piece can be estimated by evaluating and measuring this.

〔実施例2〕
市販の3mm厚のソーダ石灰ガラス板を砕き、一辺が10mm程度のガラス片を複数個用意した。0.1M酢酸緩衝液(pH4.5)を加熱して液温100℃に調整し、その100℃の酢酸緩衝液中にガラス片全体を所定時間浸漬させた。ガラス片の浸漬中、酢酸緩衝液の液温(浸漬温度)を100℃に維持した。所定の浸漬時間経過後、酢酸緩衝液からガラス片を取り出してイオン交換水ですすぎ、さらにペーパータオル上に置いて該ガラス片に付着した水分を除去し乾燥させた。こうして乾燥状態となったガラス片の表面の「帯電の振る舞い」としての帯電量を、EUPS装置を用いて評価した。ガラス片の浸漬時間として、5分間及び1時間の2種類を用意し、各条件におけるガラス片の表面の帯電量を評価した。また別途、酢酸緩衝液中に浸漬させていないガラス片(前記無浸漬対照ガラス片に相当)を用意し、その表面の帯電量を、EUPS装置を用いて評価した。評価結果を下記表1に示す。
[Example 2]
A commercially available 3 mm thick soda-lime glass plate was crushed, and a plurality of glass pieces each having a side of about 10 mm were prepared. A 0.1 M acetate buffer solution (pH 4.5) was heated to adjust the solution temperature to 100 ° C., and the entire glass piece was immersed in the acetate buffer solution at 100 ° C. for a predetermined time. During the immersion of the glass piece, the temperature of the acetate buffer (immersion temperature) was maintained at 100 ° C. After a predetermined soaking time, a glass piece was taken out from the acetate buffer, rinsed with ion-exchanged water, and further placed on a paper towel to remove moisture adhering to the glass piece and dried. The amount of charge as “charging behavior” of the surface of the glass piece thus dried was evaluated using an EUPS device. Two types of immersion time of 5 minutes and 1 hour were prepared as the glass piece immersion time, and the amount of charge on the surface of the glass piece under each condition was evaluated. Separately, a glass piece that was not immersed in an acetate buffer solution (corresponding to the non-immersed control glass piece) was prepared, and the amount of charge on the surface was evaluated using an EUPS device. The evaluation results are shown in Table 1 below.

Figure 2015222190
Figure 2015222190

表1において対照ガラス片と評価対象のガラス片(サンプルNo.1及び2)との対比から明らかなように、ガラス片を100℃の酢酸緩衝液中に浸漬させることによって、帯電量が25%以上小さくなった。この結果から、ガラス片の表面の帯電量は、そのガラス片の浸漬履歴、即ち、過去に液中に存在していたことがあったか、を検査する指標となり得ることがわかる。   As apparent from the comparison between the control glass piece and the glass piece to be evaluated (samples No. 1 and 2) in Table 1, the charge amount was 25% by immersing the glass piece in an acetic acid buffer solution at 100 ° C. It became smaller. From this result, it can be seen that the charge amount on the surface of the glass piece can be an index for inspecting the immersion history of the glass piece, that is, whether it has been present in the liquid in the past.

Claims (6)

液中に浸漬したガラス片の表面の帯電の振る舞いを評価し、その評価結果に基づいて該ガラス片の浸漬履歴を推定する工程を有する、ガラス片の浸漬履歴推定方法。   A method for estimating the immersion history of a glass piece, comprising the steps of evaluating the charging behavior of the surface of the glass piece immersed in the liquid and estimating the immersion history of the glass piece based on the evaluation result. 前記帯電の振る舞いは、帯電の大きさ、励起パワー依存、放電時定数、帯電の大きさの温度依存、及び放電時定数の温度依存からなる群から選択される1つ以上である請求項1に記載のガラス片の浸漬履歴推定方法。   The charge behavior is at least one selected from the group consisting of charge magnitude, excitation power dependence, discharge time constant, temperature dependence of charge magnitude, and temperature dependence of discharge time constant. The immersion history estimation method of the glass piece of description. 前記帯電の振る舞いの評価を、光電子分光装置を用いて行う請求項1又は2に記載のガラス片の浸漬履歴推定方法。   The glass piece immersion history estimation method according to claim 1 or 2, wherein the evaluation of the charging behavior is performed using a photoelectron spectrometer. 評価対象のガラス片とは別に、評価対象のガラス片と同一組成の対照ガラス片を用意し、該対照ガラス片を、評価対象のガラス片が浸漬していた液と同一組成の液中に浸漬させ、その液中に浸漬した対照ガラス片及び評価対象のガラス片それぞれについて前記帯電の振る舞いを評価し、それらの評価結果を互いに比較する工程を有する請求項1〜3の何れか一項に記載のガラス片の浸漬履歴推定方法。   Separately from the glass piece to be evaluated, a control glass piece having the same composition as the glass piece to be evaluated is prepared, and the control glass piece is immersed in a liquid having the same composition as the liquid in which the glass piece to be evaluated was immersed. The control glass piece immersed in the liquid and the glass piece to be evaluated are evaluated for the behavior of the charging, and the evaluation results are compared with each other. Of immersion history estimation of glass pieces. 評価対象のガラス片とは別に、評価対象のガラス片と同一組成で且つ液中に存在したことの無い対照ガラス片を用意し、該対照ガラス片及び評価対象のガラス片それぞれについて前記帯電の振る舞いとしてガラス表面の帯電量を評価し、それらの帯電量を互いに比較する工程を有する請求項1又は2に記載のガラス片の浸漬履歴推定方法。   Separately from the glass piece to be evaluated, a control glass piece having the same composition as that of the glass piece to be evaluated and never existing in the liquid is prepared, and the charging behavior for each of the control glass piece and the glass piece to be evaluated is prepared. The glass piece immersion history estimation method according to claim 1, further comprising a step of evaluating a charge amount of the glass surface and comparing the charge amounts with each other. 食品中に異物として混入していたガラス片について、請求項1〜5の何れか一項に記載の推定方法を適用して該ガラス片の該食品への混入履歴を推定する、異物の混入履歴推定方法。   A foreign matter mixing history for estimating a mixing history of the glass piece into the food by applying the estimation method according to any one of claims 1 to 5 for the glass piece mixed as a foreign matter in the food. Estimation method.
JP2014106011A 2014-05-22 2014-05-22 Method for estimating immersion history of glass pieces Active JP6367609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014106011A JP6367609B2 (en) 2014-05-22 2014-05-22 Method for estimating immersion history of glass pieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014106011A JP6367609B2 (en) 2014-05-22 2014-05-22 Method for estimating immersion history of glass pieces

Publications (2)

Publication Number Publication Date
JP2015222190A true JP2015222190A (en) 2015-12-10
JP6367609B2 JP6367609B2 (en) 2018-08-01

Family

ID=54785285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014106011A Active JP6367609B2 (en) 2014-05-22 2014-05-22 Method for estimating immersion history of glass pieces

Country Status (1)

Country Link
JP (1) JP6367609B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207854A (en) * 1981-06-16 1982-12-20 Matsushita Electric Ind Co Ltd Method and apparatus for measuring chemical condition
US4680467A (en) * 1986-04-08 1987-07-14 Kevex Corporation Electron spectroscopy system for chemical analysis of electrically isolated specimens
JP2002156360A (en) * 2000-09-05 2002-05-31 Nippon Paint Co Ltd Method for discriminating hydrophilic film from hydrophobic coating film
JP2007127442A (en) * 2005-11-01 2007-05-24 House Foods Corp Estimation method of history of metal substance
JP2007292623A (en) * 2006-04-26 2007-11-08 Hitachi Ltd Material evaluation device
JP2010243381A (en) * 2009-04-08 2010-10-28 Avanstrate Inc Glass plate evaluation method based on electrification characteristic, glass plate production method using the same, and device for evaluation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207854A (en) * 1981-06-16 1982-12-20 Matsushita Electric Ind Co Ltd Method and apparatus for measuring chemical condition
US4680467A (en) * 1986-04-08 1987-07-14 Kevex Corporation Electron spectroscopy system for chemical analysis of electrically isolated specimens
JP2002156360A (en) * 2000-09-05 2002-05-31 Nippon Paint Co Ltd Method for discriminating hydrophilic film from hydrophobic coating film
JP2007127442A (en) * 2005-11-01 2007-05-24 House Foods Corp Estimation method of history of metal substance
JP2007292623A (en) * 2006-04-26 2007-11-08 Hitachi Ltd Material evaluation device
JP2010243381A (en) * 2009-04-08 2010-10-28 Avanstrate Inc Glass plate evaluation method based on electrification characteristic, glass plate production method using the same, and device for evaluation

Also Published As

Publication number Publication date
JP6367609B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
Mantouvalou et al. Reconstruction of confocal micro-X-ray fluorescence spectroscopy depth scans obtained with a laboratory setup
Karhunen et al. Development of laser-induced breakdown spectroscopy for analyzing deposited layers in ITER
Funk et al. Epoxy‐functionalized surfaces for microarray applications: surface chemical analysis and fluorescence labeling of surface species
Hedwig et al. Application of picosecond laser-induced breakdown spectroscopy to quantitative analysis of boron in meatballs and other biological samples
Sowoidnich et al. Photon migration of Raman signal in bone as measured with spatially offset Raman spectroscopy
Plis et al. Degradation of polyimide under exposure to 90 keV electrons
Risterucci et al. Inelastic background analysis of HAXPES spectra: towards enhanced bulk sensitivity in photoemission
Xilin et al. In‐situ and quantitative analysis of aged silicone rubber materials with laser‐induced breakdown spectroscopy
Hernández et al. Detection and determination of released ions in the presence of nanoparticles: selectivity or strategy?
Conti et al. Contrasting confocal with defocusing microscale spatially offset Raman spectroscopy
JP6367609B2 (en) Method for estimating immersion history of glass pieces
Leani et al. Depth profiling nano-analysis of chemical environments using resonant Raman spectroscopy at grazing incidence conditions
Georgieva et al. Total reflection X-ray fluorescence analysis of trace elements in Bulgarian bottled mineral waters of low and high mineral content
Ivanov et al. Quality control methods based on electromagnetic field-matter interactions
Leani et al. Qualitative microanalysis of calcium local structure in tooth layers by means of micro‐RRS
Ghiara et al. Micro Raman investigation on corrosion of Pb‐based alloy replicas of letters from the museum Plantin‐Moretus, Antwerp
Choi et al. Development of a Paste‐type Certified Reference Material of Tomato for Elemental Analysis: Certification and Long‐term Stability Study
Song et al. The layer‐by‐layer stoichiometry of La0. 7Sr0. 3MnO3/SrTiO3 thin films and interfaces
Ciapponi et al. Study of luminescent defects in hafnia thin films made with different deposition techniques
Zhang et al. Quantitative analysis of Pb in kelp samples and offshore seawater by laser-induced breakdown spectroscopy
DeYoung et al. Comparison of glass fragments using particle‐induced X‐ray emission (PIXE) spectrometry
JP2007248431A (en) Method for measuring hardening degree of hardening resin
Majchrzak et al. A new method for real-time monitoring of volatiles in frying fumes using proton transfer reaction mass spectrometry with time-of-flight analyser
Zhang et al. Study of the photodegradation of epoxy polymers with slow positron annihilation spectroscopy
Li et al. Investigation of Pb in Gannan navel orange with contaminant in controlled conditions by laser-induced breakdown spectroscopy

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180705

R150 Certificate of patent or registration of utility model

Ref document number: 6367609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250