JP2007292457A - Steam boiler device - Google Patents

Steam boiler device Download PDF

Info

Publication number
JP2007292457A
JP2007292457A JP2007196802A JP2007196802A JP2007292457A JP 2007292457 A JP2007292457 A JP 2007292457A JP 2007196802 A JP2007196802 A JP 2007196802A JP 2007196802 A JP2007196802 A JP 2007196802A JP 2007292457 A JP2007292457 A JP 2007292457A
Authority
JP
Japan
Prior art keywords
condensate
tank
steam
water
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007196802A
Other languages
Japanese (ja)
Other versions
JP4735615B2 (en
Inventor
Yoshihisa Seriguchi
慶久 芹口
Hitoshi Shiraishi
仁士 白石
Junichi Nakajima
純一 中島
Tetsuo Fujii
哲雄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2007196802A priority Critical patent/JP4735615B2/en
Publication of JP2007292457A publication Critical patent/JP2007292457A/en
Application granted granted Critical
Publication of JP4735615B2 publication Critical patent/JP4735615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress corrosion of a steam boiler condenser pipe without using any chemical agent. <P>SOLUTION: Feed water stored in a feed tank 3 is supplied to a steam boiler 2 through a supply passage 6, wherein it is made into steam and supplied to a heat exchanger 4 through a steam supply pipe 7. The steam passed through the heat exchanger 4 is partially changed to condensed water during passing in a steam recovery pipe 8, and further condensed by separating steam in a steam trap 9. The resulting condensate is stored in a condensate tank 11 through a condenser pipe 10 and supplied to the feed tank 3 through a connection passage 13. Oxygen and carbon dioxide dissolved in the feed water and the condensate stored in the feed tank 3 and the condensate tank 11, respectively, which corrode the steam boiler 2 or the like, raise in the feed water or condensate with an inert gas from an inert gas feeder 21 and discharged out through exhaust ports 3a and 11a. Therefore, the oxygen concentration and carbon dioxide concentration dissolved in the feed water and the condensate are set small. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蒸気ボイラ装置、特に、蒸気ボイラからの蒸気が凝縮して得られる復水を蒸気ボイラ用の供給水として再利用する蒸気ボイラ装置に関する。   The present invention relates to a steam boiler device, and more particularly to a steam boiler device that reuses condensate obtained by condensing steam from a steam boiler as supply water for the steam boiler.

蒸気ボイラからの蒸気が凝縮して得られる復水を蒸気ボイラ用の供給水として再利用するための主として鋼管製の復水配管は、腐食が原因で交換を余儀なくされる場合がある。復水配管の腐食は、主に、復水中の炭酸ガスや溶存酸素の影響により生じるものと理解されている。炭酸ガスを原因とする腐食は、蒸気ボイラ内において炭酸イオンを含む供給水の熱分解により生成する炭酸ガスが復水のpHを低下させることにより生じるものであり、復水と接触している配管の内面部分に均等に進行して配管の減肉をもたらすものであるため、進行速度が比較的遅いという特徴を有している。これに対し、溶存酸素を原因とする腐食は、復水中に溶解している酸素が配管、特に横引き配管の下部など、スラッジの堆積した下部に対して部分的に集中的な腐食作用をもたらし、配管の内側から外側に向かう孔状の腐食(孔食)をもたらすものであるため、進行速度が比較的速く、復水配管に対して短時間で致命的な破損をもたらすという特徴を有している。   The condensate pipe made mainly of steel pipe for reusing the condensate obtained by condensing steam from the steam boiler as supply water for the steam boiler may be forced to be replaced due to corrosion. It is understood that corrosion of condensate piping is mainly caused by the influence of carbon dioxide and dissolved oxygen in the condensate. Corrosion caused by carbon dioxide is caused by lowering the pH of the condensate by the carbon dioxide produced by thermal decomposition of the feed water containing carbonate ions in the steam boiler, and the piping in contact with the condensate Since it progresses equally to the inner surface portion of the pipe and causes the pipe to become thin, it has a feature that the traveling speed is relatively slow. On the other hand, the corrosion caused by dissolved oxygen has a partially concentrated corrosion action on the lower part where sludge is accumulated, such as the lower part of the pipe, especially the lower part of the horizontal pipe. Because it causes pore-like corrosion (pitting corrosion) from the inside to the outside of the piping, it has a relatively fast traveling speed and can cause fatal damage to the condensate piping in a short time. ing.

このため、復水配管の腐食を防止するための方策として、復水中の炭酸ガスを中和するための中和剤や復水配管の内面に防食性の皮膜を形成するための皮膜形成剤などの薬剤(復水処理剤)を用いる方法が提案されている。しかし、これらの薬剤は、蒸気ボイラで生成した蒸気中に添加する必要があるため、蒸気の純度を低下させることになり、また、蒸気を食品分野や医療分野で用いる場合は衛生上の問題もある。   For this reason, as a measure for preventing corrosion of the condensate pipe, a neutralizer for neutralizing carbon dioxide in the condensate, a film forming agent for forming an anticorrosive film on the inner surface of the condensate pipe, etc. A method using a chemical (condensate treatment agent) has been proposed. However, since these chemicals need to be added to the steam generated in the steam boiler, the purity of the steam is lowered, and there is also a sanitary problem when steam is used in the food and medical fields. is there.

なお、復水配管をステンレス製にすると、上述のような薬剤なしで腐食を抑制することができるが、そのような復水配管は非常に高価であり、実用性を欠く。   If the condensate pipe is made of stainless steel, corrosion can be suppressed without the above-mentioned chemicals, but such a condensate pipe is very expensive and lacks practicality.

本発明の目的は、薬剤を用いずに蒸気ボイラ用復水配管の腐食を抑制することにある。   An object of the present invention is to suppress corrosion of a condensing pipe for a steam boiler without using a chemical.

本発明の蒸気ボイラ装置は、蒸気ボイラと、蒸気ボイラへ供給する供給水を貯留するための、排気口を有する給水タンクを有する、蒸気ボイラへ供給水を供給するための供給路と、給水タンクに連絡している、給水タンクに貯留する供給水を補給するための注水路と、蒸気ボイラからの蒸気が凝縮して得られる復水を送るための復水配管と、復水配管からの復水を貯留するための、排気口を有する復水タンクと、復水タンクに貯留した復水を給水タンクへ供給するための連絡路と、給水タンク内に貯留された供給水中および復水タンク内に貯留された復水中において不活性ガスを個別に供給して噴出可能な不活性ガス供給装置とを備えている。   A steam boiler apparatus according to the present invention includes a steam boiler, a water supply tank having an exhaust port for storing supply water supplied to the steam boiler, a supply path for supplying supply water to the steam boiler, and a water supply tank A water injection channel for replenishing the supply water stored in the water supply tank, a condensate pipe for sending condensate obtained by condensing steam from the steam boiler, and a condensate from the condensate pipe A condensate tank having an exhaust port for storing water, a communication path for supplying the condensate stored in the condensate tank to the water supply tank, and the supply water and condensate tanks stored in the water supply tank And an inert gas supply device capable of individually supplying and ejecting the inert gas in the condensate stored in the water.

復水タンクは、例えば、復水配管からの復水を液滴状にして落下させるための網状の充填物層を有している。   The condensate tank has, for example, a net-like packing layer for dropping the condensate from the condensate pipe into droplets.

本発明に係る蒸気ボイラ装置は、給水タンク内に貯留された供給水中および復水タンク内に貯留された復水中において不活性ガスを個別に供給して噴出可能な不活性ガス供給装置を備えているため、薬剤を用いずに復水配管および蒸気発生系の腐食を抑制することができる。   A steam boiler apparatus according to the present invention includes an inert gas supply device capable of individually supplying and ejecting inert gas in supply water stored in a water supply tank and in condensate water stored in a condensate tank. Therefore, corrosion of the condensate piping and the steam generation system can be suppressed without using chemicals.

実施の形態1
図1を参照して、本発明の実施の一形態に係る蒸気ボイラ装置を説明する。図において、蒸気ボイラ装置1は、蒸気ボイラ2、給水タンク3、熱交換器4、復水配管装置20および不活性ガス供給装置21を主に備えている。
Embodiment 1
With reference to FIG. 1, the steam boiler apparatus which concerns on one Embodiment of this invention is demonstrated. In the figure, the steam boiler device 1 mainly includes a steam boiler 2, a water supply tank 3, a heat exchanger 4, a condensate piping device 20, and an inert gas supply device 21.

給水タンク3は、蒸気ボイラ2に対して供給する水(供給水)を貯留するためのタンクであり、蒸気ボイラ2に連絡する供給路6を有している。また、給水タンク3は、供給水を補給するための注水路12が連絡しており、上部に排気口3aが設けられている。熱交換器4は、蒸気ボイラ2からの蒸気を用いて所要の熱交換をするためのもの、すなわち、この蒸気ボイラ装置1における負荷装置であり、蒸気ボイラ2からの蒸気供給管7に連絡している。   The water supply tank 3 is a tank for storing water (supply water) supplied to the steam boiler 2, and has a supply path 6 that communicates with the steam boiler 2. Further, the water supply tank 3 communicates with a water injection path 12 for replenishing the supply water, and an exhaust port 3a is provided at the upper part. The heat exchanger 4 is for performing necessary heat exchange using the steam from the steam boiler 2, that is, a load device in the steam boiler apparatus 1, and communicates with the steam supply pipe 7 from the steam boiler 2. ing.

復水配管装置20は、熱交換器4を通過した蒸気を回収するための蒸気回収管8、蒸気回収管8からの蒸気が凝縮した復水(ドレン水)を得るためのスチームトラップ9を有する復水配管10および復水タンク11を主に備えている。復水タンク11は、スチームトラップ9において得られた復水を復水配管10を通じて回収して貯留するためのものであり、給水タンク3に隣接して配置されている。また、復水タンク11は、貯留した復水を給水タンク3に供給するための連絡路13を有している。さらに、復水タンク11の上部には、排気口11aが設けられている。   The condensate piping device 20 has a steam recovery pipe 8 for recovering steam that has passed through the heat exchanger 4, and a steam trap 9 for obtaining condensate (drain water) in which steam from the steam recovery pipe 8 is condensed. A condensate pipe 10 and a condensate tank 11 are mainly provided. The condensate tank 11 is for collecting and storing the condensate obtained in the steam trap 9 through the condensate pipe 10, and is disposed adjacent to the water supply tank 3. The condensate tank 11 has a communication path 13 for supplying the stored condensate to the water supply tank 3. Further, an exhaust port 11 a is provided in the upper part of the condensate tank 11.

不活性ガス供給装置21は、不活性ガス発生装置14および不活性ガス供給路22を主に備えている。不活性ガス発生装置14は、例えば不活性ガスを充填したボンベや公知の不活性ガス発生装置であり、不活性ガス供給路22に不活性ガスを供給するためのものである。また、不活性ガス供給路22は、二又に分岐しており、一方の供給路22aが給水タンク3内に延び、また、他方の供給路22bが復水タンク11内に延びている。なお、両供給路22a、22bは、両タンク3、11内に貯留された供給水中または復水中において、不活性ガス発生装置14からの不活性ガスを微細な泡状にして噴出可能に設定されている。   The inert gas supply device 21 mainly includes an inert gas generation device 14 and an inert gas supply path 22. The inert gas generator 14 is, for example, a cylinder filled with an inert gas or a known inert gas generator, and supplies the inert gas to the inert gas supply path 22. Further, the inert gas supply path 22 is bifurcated, one supply path 22 a extends into the water supply tank 3, and the other supply path 22 b extends into the condensate tank 11. Both supply passages 22a and 22b are set so that the inert gas from the inert gas generator 14 can be ejected in the form of fine bubbles in the supply water or condensate stored in both tanks 3 and 11. ing.

不活性ガス発生装置14から供給する不活性ガスは、特に限定されるものではなく、窒素、ヘリウム、ネオン、アルゴン、クリプトンおよびキセノンなどの各種のものであるが、量産が容易でありかつ安価な窒素ガスを用いるのが好ましい。因みに、不活性ガスとして窒素を用いる場合、その発生装置としては、例えば、圧力スイング吸収法によるPSA窒素発生装置を用いることができる。   The inert gas supplied from the inert gas generator 14 is not particularly limited, and may be various types such as nitrogen, helium, neon, argon, krypton, and xenon, but is easily mass-produced and inexpensive. Nitrogen gas is preferably used. Incidentally, when nitrogen is used as the inert gas, for example, a PSA nitrogen generator by a pressure swing absorption method can be used as the generator.

なお、上述の蒸気ボイラ装置1を構成する各種部材、特に、供給路6、蒸気供給管7、蒸気回収管8および復水配管10は、主として鋼管を用いて形成されている。   In addition, the various members which comprise the above-mentioned steam boiler apparatus 1, especially the supply path 6, the steam supply pipe 7, the steam collection pipe 8, and the condensate pipe 10 are mainly formed using the steel pipe.

次に、上述の蒸気ボイラ装置1の動作を説明する。
先ず、注水路12から給水タンク3内に補給水を注水する。ここで注水する補給水は、通常、予め軟水器を用いて軟水化処理され、さらに脱気装置を用いて溶存酸素濃度を低下させたものである。なお、補給水中の溶存酸素濃度は、通常、0.5mg/l程度に設定されているのが好ましい。
Next, operation | movement of the above-mentioned steam boiler apparatus 1 is demonstrated.
First, makeup water is poured from the water injection channel 12 into the water supply tank 3. Here, the replenishing water to be poured is usually water softened in advance using a water softener, and the dissolved oxygen concentration is lowered using a degassing device. In addition, it is preferable that the dissolved oxygen concentration in make-up water is normally set to about 0.5 mg / l.

給水タンク3内に注水された補給水は、当該給水タンク3内に供給水として貯留される。そして、給水タンク3内に貯留された供給水は、供給路6を通じて蒸気ボイラ2に対して供給される。蒸気ボイラ2に供給された供給水は、そこで蒸気になり、蒸気供給管7を通じて熱交換器4に供給され、所要の熱交換に利用される。熱交換器4を通過した蒸気は、続けて蒸気回収管8を通過中に潜熱を失って一部が凝縮水に変わり、スチームトラップ9において蒸気と水とが分離されて復水(ドレン水)になる。この復水は、復水配管10を通じて復水タンク11内に貯留される。そして、貯留された復水は、連絡路13を通じて給水タンク3内へ供給される。   The makeup water poured into the water supply tank 3 is stored in the water supply tank 3 as supply water. The supply water stored in the water supply tank 3 is supplied to the steam boiler 2 through the supply path 6. The supply water supplied to the steam boiler 2 becomes steam there and is supplied to the heat exchanger 4 through the steam supply pipe 7 and used for required heat exchange. The steam that has passed through the heat exchanger 4 subsequently loses its latent heat while passing through the steam recovery pipe 8 and is partially converted into condensed water. The steam and water are separated in the steam trap 9 and condensed water (drain water). become. This condensate is stored in the condensate tank 11 through the condensate pipe 10. The stored condensate is supplied into the water supply tank 3 through the communication path 13.

一方、上述のような蒸気ボイラ装置1の動作中においては、不活性ガス発生装置14を作動させ、そこからの不活性ガスを不活性ガス供給路22を通じて給水タンク3内および復水タンク11内に連続的に吹き込む。供給路22aから給水タンク3内に吹き込まれた不活性ガスは、微細な泡状となって噴出しながら給水タンク3内の供給水中を上昇して給水タンク3内の上部(水面上)に放出され、さらに排気口3aから外部に排出される。一方、供給路22bから復水タンク11内に吹き込まれた不活性ガスは、微細な泡状となって噴出しながら貯留された復水中を上昇して復水タンク11内の上部(水面上)に放出され、一部は復水配管10内に流入すると共に、一部は排気口11aから外部に排出される。なお、給水タンク3の排気口3aおよび復水タンク11の排気口11aは、そこから排出される不活性ガスによりシールされ、外気の流入が防止されることになる。したがって、復水配管10、復水タンク11、給水タンク3および供給路6は、外気から隔離された一連の閉鎖環境を形成し、外気の流入が防止されることになる。これにより、復水配管10、給水タンク3、復水タンク11および供給路6内の復水または供給水は、外気との接触が防止され、外気中に含まれる酸素や炭酸ガスが溶解することによる溶存酸素濃度や炭酸ガス濃度の上昇が防止される。   On the other hand, during the operation of the steam boiler apparatus 1 as described above, the inert gas generator 14 is operated, and the inert gas therefrom is supplied into the water supply tank 3 and the condensate tank 11 through the inert gas supply path 22. Blow continuously. The inert gas blown into the water supply tank 3 from the supply passage 22a rises in the supply water in the water supply tank 3 and is discharged to the upper part (on the water surface) in the water supply tank 3 while being ejected as fine bubbles. Further, it is discharged to the outside from the exhaust port 3a. On the other hand, the inert gas blown into the condensate tank 11 from the supply path 22b rises in the condensate stored while being ejected in the form of fine bubbles, and the upper part of the condensate tank 11 (on the water surface). And a part flows into the condensate pipe 10 and a part is discharged to the outside through the exhaust port 11a. In addition, the exhaust port 3a of the water supply tank 3 and the exhaust port 11a of the condensate tank 11 are sealed with the inert gas discharged | emitted from there, and inflow of external air is prevented. Therefore, the condensate pipe 10, the condensate tank 11, the water supply tank 3, and the supply path 6 form a series of closed environments isolated from the outside air, and the inflow of the outside air is prevented. Thereby, the condensate or supply water in the condensate pipe 10, the feed water tank 3, the condensate tank 11, and the supply path 6 is prevented from coming into contact with the outside air, and oxygen and carbon dioxide contained in the outside air are dissolved. This prevents the dissolved oxygen concentration and carbon dioxide concentration from rising.

上述のような蒸気ボイラ装置1の動作中において、給水タンク3内に貯留された供給水および復水タンク11内に貯留された復水中に溶存している酸素および炭酸ガスは、供給路22aおよび供給路22bから噴出する不活性ガスと共に供給水または復水中を上昇し、排気口3a、11aから外部に排出される。以上の結果、供給水および復水は、溶存酸素濃度および炭酸ガス濃度がより小さく設定され、供給路6、蒸気ボイラ2、蒸気供給管7、熱交換器4および蒸気回収管8(以下、総括的に「蒸気発生系」と言う)を腐食させにくくなる。   During the operation of the steam boiler apparatus 1 as described above, the supply water stored in the feed water tank 3 and the oxygen and carbon dioxide dissolved in the condensate stored in the condensate tank 11 are supplied to the supply path 22a and The feed water or the condensate rises together with the inert gas ejected from the supply path 22b, and is discharged to the outside through the exhaust ports 3a and 11a. As a result of the above, the supply water and condensate are set so that the dissolved oxygen concentration and the carbon dioxide concentration are lower, and the supply path 6, the steam boiler 2, the steam supply pipe 7, the heat exchanger 4 and the steam recovery pipe 8 (hereinafter, generalized). This is called “steam generation system”).

また、復水配管10内に流入した不活性ガスは、復水配管10内の気相部において、酸素および炭酸ガスの分圧を低下させることになる。これに伴い、復水配管10内を流れる復水中の溶存酸素や炭酸ガスは、ヘンリーの法則に従って気相部の不活性ガス中に放出される。この結果、復水配管10中を流れる復水中の溶存酸素濃度および炭酸ガス濃度は低下することになる。   Further, the inert gas that has flowed into the condensate pipe 10 lowers the partial pressures of oxygen and carbon dioxide in the gas phase portion within the condensate pipe 10. Along with this, dissolved oxygen and carbon dioxide in the condensate flowing in the condensate pipe 10 are released into the inert gas in the gas phase according to Henry's law. As a result, the dissolved oxygen concentration and the carbon dioxide concentration in the condensate flowing through the condensate pipe 10 are lowered.

以上の通り、不活性ガス供給装置21は、復水配管10内に不活性ガスを供給しているため、復水配管10内の復水中に含まれる腐食因子である溶存酸素や炭酸ガスの濃度を低減することができ、復水による復水配管10の腐食、特に復水配管10の内面の均質な減肉的腐食および孔食を同時に抑制することができる。また、この復水は、外気との接触が防止された状態で復水タンク11に貯留され、供給水の一部として再利用されるが、上述の通り腐食因子の濃度が低減されているため、供給水中の溶存酸素濃度や炭酸ガス濃度を高めにくい。したがって、この復水が混合された供給水は、復水配管10および蒸気発生系を腐食させにくい。   As described above, since the inert gas supply device 21 supplies the inert gas into the condensate pipe 10, the concentration of dissolved oxygen and carbon dioxide, which are corrosion factors contained in the condensate in the condensate pipe 10. Thus, corrosion of the condensate pipe 10 due to condensate, in particular, uniform thinning corrosion and pitting corrosion of the inner surface of the condensate pipe 10 can be suppressed at the same time. In addition, this condensate is stored in the condensate tank 11 in a state in which contact with outside air is prevented, and is reused as part of the supply water. However, as described above, the concentration of the corrosion factor is reduced. It is difficult to increase the dissolved oxygen concentration and carbon dioxide concentration in the feed water. Therefore, the feed water mixed with this condensate is unlikely to corrode the condensate pipe 10 and the steam generation system.

上述のように、この実施の形態に係る蒸気ボイラ装置1は、給水タンク3および復水タンク11に対し、不活性ガス発生装置14からの不活性ガスを個別に供給しているため、両タンク3,11内に貯留された供給水および復水中に含まれる溶存酸素および炭酸ガスを効果的に除去することができ、また、復水配管10内に供給する不活性ガス量を調節し易い。このため、この蒸気ボイラ装置1は、復水配管10および蒸気発生系の腐食を効果的に抑制することができる。   As described above, since the steam boiler apparatus 1 according to this embodiment supplies the inert gas from the inert gas generator 14 to the water supply tank 3 and the condensate tank 11 separately, both tanks The dissolved oxygen and carbon dioxide contained in the supply water and condensate stored in the tanks 3 and 11 can be effectively removed, and the amount of inert gas supplied into the condensate pipe 10 can be easily adjusted. For this reason, this steam boiler apparatus 1 can effectively suppress corrosion of the condensate pipe 10 and the steam generation system.

ところで、水中に含まれる炭酸ガス(CO)は、pHの変化と共に次のように相変化する。 By the way, carbon dioxide (CO 2 ) contained in water changes in phase as follows with a change in pH.

Figure 2007292457
Figure 2007292457

炭酸ガスを含んだ水のpHを高め、炭酸ガスが炭酸水素イオンに一度相変化してしまうと、不活性ガスを吹き込んでも水中から炭酸ガスを除去しにくくなる。この点を考慮して、この実施の形態では、復水タンク11において予め不活性ガスによる処理が施された復水を給水タンク3に供給するようにしている。これによると、復水のpHが低い状態のまま不活性ガスを吹き込むことになり、復水から炭酸ガスが除去され易い。このように処理された復水は、その後に給水タンク3において補給水と混合されるので、炭酸ガスが炭酸水素イオンに変化する量を極めて低く抑えることができ、全体として復水から持ち込まれる炭酸ガスの除去効率が高くなる。したがって、この実施の形態によれば、蒸気ボイラ2に対して供給する供給水中の炭酸ガス濃度をより低減させることができるため、復水配管10および蒸気発生系の腐食をより効果的に抑制することができる。   If the pH of water containing carbon dioxide is increased and the phase of carbon dioxide changes to bicarbonate ions, it becomes difficult to remove the carbon dioxide from the water even if an inert gas is blown. In consideration of this point, in this embodiment, the condensate that has been previously treated with the inert gas in the condensate tank 11 is supplied to the water supply tank 3. According to this, the inert gas is blown in with the pH of the condensate being low, and the carbon dioxide gas is easily removed from the condensate. The condensate thus treated is then mixed with make-up water in the water supply tank 3, so that the amount of carbon dioxide gas converted to hydrogen carbonate ions can be kept very low, and the carbon dioxide brought from the condensate as a whole. Gas removal efficiency is increased. Therefore, according to this embodiment, the concentration of carbon dioxide gas in the feed water supplied to the steam boiler 2 can be further reduced, so that the corrosion of the condensate pipe 10 and the steam generation system is more effectively suppressed. be able to.

なお、蒸気ボイラ装置1の運転停止時は、復水配管10内が温度低下により負圧になる結果、復水タンク11の排気口11aから外気が流入し、その外気が復水配管10内に流入する可能性がある。この場合、復水配管10内の気相部において、酸素および炭酸ガスの分圧が上昇し、それに伴って復水中の溶存酸素濃度および炭酸ガス濃度が高まって復水配管10の腐食が進行する可能性がある。このため、蒸気ボイラ装置1においては、蒸気ボイラ2の運転停止時においても、継続的に不活性ガス発生装置14を作動させておくのが好ましい。このようにすれば、復水タンク11および復水配管10内の気相部には常時不活性ガスが供給され続けるので、排気口11aからの外気の流入が防止され、復水配管10等の腐食がより効果的に抑制され得る。   When the operation of the steam boiler apparatus 1 is stopped, the inside of the condensate pipe 10 becomes negative pressure due to a temperature drop, so that outside air flows from the exhaust port 11a of the condensate tank 11 and the outside air enters the condensate pipe 10. There is a possibility of inflow. In this case, the partial pressure of oxygen and carbon dioxide increases in the gas phase portion in the condensate pipe 10, and accordingly, the dissolved oxygen concentration and carbon dioxide concentration in the condensate increase and corrosion of the condensate pipe 10 proceeds. there is a possibility. For this reason, in the steam boiler apparatus 1, it is preferable to operate the inert gas generator 14 continuously even when the operation of the steam boiler 2 is stopped. In this way, since the inert gas is always supplied to the gas phase portion in the condensate tank 11 and the condensate pipe 10, the inflow of outside air from the exhaust port 11a is prevented, and the condensate pipe 10 Corrosion can be more effectively suppressed.

実施の形態2
本発明の他の実施の形態に係る蒸気ボイラ装置1を図2に示す。この蒸気ボイラ装置1で用いられる復水配管装置30は、実施の形態1における復水配管装置20を変形したものであり、図2において、図1に対応する部位には同じ符号を用いている。
Embodiment 2
A steam boiler apparatus 1 according to another embodiment of the present invention is shown in FIG. The condensate piping device 30 used in the steam boiler device 1 is a modification of the condensate piping device 20 in the first embodiment. In FIG. 2, the same reference numerals are used for the portions corresponding to FIG. .

この蒸気ボイラ装置1で用いられる復水配管装置30は、熱交換器4を通過した蒸気を回収するための蒸気回収管8、蒸気回収管8からの蒸気が凝縮した復水(ドレン水)を得るためのスチームトラップ9を有する復水配管10および脱炭酸塔31(復水タンクの一例)を主に備えている。   The condensate piping device 30 used in the steam boiler device 1 is a steam recovery pipe 8 for recovering steam that has passed through the heat exchanger 4, and condensate (drain water) in which steam from the steam recovery pipe 8 is condensed. A condensate pipe 10 having a steam trap 9 for obtaining and a decarboxylation tower 31 (an example of a condensate tank) are mainly provided.

脱炭酸塔31は、復水配管10からの復水を液滴状にしてその底部に落下させるための網状の充填物層32を内部に有しており、底部において充填物層32から滴下する復水を貯留可能に設定されている。   The decarboxylation tower 31 has a net-like packing layer 32 for dropping the condensate from the condensate pipe 10 into droplets and dropping it to the bottom, and drops from the packing layer 32 at the bottom. Condensate can be stored.

不活性ガス供給装置21の不活性ガス発生装置14から延びる不活性ガス供給路22は、二又に分岐しており、一方の供給路22aが給水タンク3内に延び、また、他方の供給路22bが脱炭酸塔31の底部に延びている。なお、両供給路22a、22bは、給水タンク3内に貯留された供給水中または脱炭酸塔31内に貯留された復水中において、不活性ガスを微細な泡状にして噴出可能に設定されている。   The inert gas supply path 22 extending from the inert gas generator 14 of the inert gas supply apparatus 21 is bifurcated, one supply path 22a extends into the water supply tank 3, and the other supply path. 22 b extends to the bottom of the decarboxylation tower 31. Both supply passages 22a and 22b are set so that the inert gas can be ejected in the form of fine bubbles in the supply water stored in the water supply tank 3 or in the condensate stored in the decarbonation tower 31. Yes.

この復水配管装置30において、復水配管10から脱炭酸塔31内に流れる復水は、充填物層32を通じて液滴状に滴下することになるため、脱炭酸塔31の底部に貯留する前に、供給路22bから排気口11aに向かう不活性ガスの雰囲気中を通過することになる。したがって、滴下中の復水中に溶存している酸素や炭酸ガスは、その過程でさらに不活性ガス中に放出されることになり、脱炭酸塔31の底部には溶存酸素濃度および炭酸ガス濃度がより小さな復水が貯留することになる。このため、この復水配管装置30を用いた蒸気ボイラ装置1は、実施の形態2に係る復水配管装置20を用いた場合に比べ、復水配管10および蒸気発生系の腐食がより効果的に抑制される。   In this condensate piping device 30, the condensate flowing from the condensate piping 10 into the decarbonation tower 31 is dropped in the form of droplets through the packing layer 32, so that it is stored in the bottom of the decarbonation tower 31. In addition, the gas passes through the inert gas atmosphere from the supply path 22b toward the exhaust port 11a. Therefore, oxygen and carbon dioxide dissolved in the dripping condensate are further released into the inert gas in the process, and dissolved oxygen concentration and carbon dioxide concentration are present at the bottom of the decarbonation tower 31. A smaller condensate will be stored. For this reason, the steam boiler apparatus 1 using the condensate piping device 30 is more effective in corroding the condensate piping 10 and the steam generation system than when the condensate piping device 20 according to the second embodiment is used. To be suppressed.

[他の実施の形態]
(1)上述の各実施の形態では、図3に示すように、復水タンク11の内部において上下方向に延びる筒体60を配置し、この筒体60の上端部に復水配管10を気密に連絡すると共に、不活性ガス供給装置21からの不活性ガスを筒体60内にも別途供給するよう設定することもできる。なお、筒体60の下端部は、復水タンク11内に貯留された復水内に配置され、それによってシールされるよう設定する。このようにすれば、復水タンク11内に貯留された復水の大幅な水位変動が生じた場合であっても、復水配管10への外気の流入をより効果的に抑制することができる。
[Other embodiments]
(1) In each of the above-described embodiments, as shown in FIG. 3, a cylindrical body 60 extending in the vertical direction is disposed inside the condensate tank 11, and the condensate pipe 10 is hermetically sealed at the upper end portion of the cylindrical body 60. The inert gas from the inert gas supply device 21 can also be set to be separately supplied into the cylindrical body 60. In addition, the lower end part of the cylindrical body 60 is arrange | positioned in the condensate stored in the condensate tank 11, and it sets so that it may be sealed by it. In this way, even if the condensate stored in the condensate tank 11 undergoes a significant fluctuation in the water level, the inflow of outside air into the condensate pipe 10 can be more effectively suppressed. .

例えば、水位が上昇する場合は復水タンク11内の窒素ガスは排気口11aから外部に排出され、逆に、水位が低下する場合は排気口11aから復水タンク11内に外気が流入する。このため、水位低下時において外気の流入を防止し、上述の閉鎖環境を維持するためには、水位の低下とともに復水タンク11に対して不活性ガス供給装置21から大量の不活性ガスを瞬時に供給し、復水タンク11内の気相部を不活性ガスにより加圧状態に設定する必要がある。   For example, when the water level rises, the nitrogen gas in the condensate tank 11 is discharged to the outside from the exhaust port 11a. Conversely, when the water level falls, outside air flows into the condensate tank 11 from the exhaust port 11a. For this reason, in order to prevent the inflow of outside air when the water level is lowered and maintain the above-described closed environment, a large amount of inert gas is instantaneously supplied from the inert gas supply device 21 to the condensate tank 11 as the water level is lowered. It is necessary to set the gas phase portion in the condensate tank 11 to a pressurized state with an inert gas.

これに対し、上述のように復水配管10からの復水を筒体60を通じて復水タンク11内に貯留するように設定すれば、復水配管10内には外気が流入しにくくなり、復水配管10、復水タンク11、給水タンク3および供給路6は、外気から隔離された一連の閉鎖環境を安定に維持することができる。したがって、この実施の形態の場合、復水配管10並びに蒸気発生系の腐食をさらに効果的に抑制することができる。   On the other hand, if the condensate from the condensate pipe 10 is set to be stored in the condensate tank 11 through the cylindrical body 60 as described above, outside air will not easily flow into the condensate pipe 10, and The water pipe 10, the condensate tank 11, the water supply tank 3, and the supply path 6 can stably maintain a series of closed environments isolated from the outside air. Therefore, in this embodiment, corrosion of the condensate pipe 10 and the steam generation system can be further effectively suppressed.

(2)上述の実施の形態1においては、図4に示すように、復水タンク11を二段に構成することもできる。この場合、第一段復水タンク11bと第二段復水タンク11cとを隣接し、両復水タンク11b、11cを連絡管11dを用いて連絡すると共に、両復水タンク11b、11c間に不活性ガス連絡管11eを配置する。また、第二段復水タンク11cに給水タンク3との連絡路13を接続する。なお、不活性ガスは、実施の形態1の例に従って、第二段復水タンク11c側に供給する。 (2) In the first embodiment described above, the condensate tank 11 can be configured in two stages as shown in FIG. In this case, the first-stage condensate tank 11b and the second-stage condensate tank 11c are adjacent to each other, and both the condensate tanks 11b and 11c are connected using the connecting pipe 11d, and inactive between the both condensate tanks 11b and 11c. A gas communication pipe 11e is arranged. Further, the communication path 13 with the water supply tank 3 is connected to the second stage condensate tank 11c. The inert gas is supplied to the second stage condensate tank 11c side according to the example of the first embodiment.

復水タンク11をこのように二段に構成した場合、復水中に含まれる溶存酸素および炭酸ガスはより効果的に除去されることになるため、復水配管10並びに蒸気発生系の腐食をより効果的に抑制することができる。
なお、復水タンク11は、必要に応じて三段以上の多段に設定することもできる。
When the condensate tank 11 is configured in two stages in this way, the dissolved oxygen and carbon dioxide contained in the condensate are more effectively removed, so that the condensate pipe 10 and the steam generation system are more corroded. It can be effectively suppressed.
In addition, the condensate tank 11 can also be set to the multistage of 3 steps or more as needed.

(3)上述の各実施の形態において、給水タンク3および復水タンク11内には、貯留された供給水や復水の水面において浮遊するフロート材を密に配置するのが好ましい。この場合、給水タンク3や復水タンク11内に外気が流入したとしても、貯留された供給水や復水は外気と直接的に接触しにくくなるので、供給水や復水における溶存酸素濃度や炭酸ガス濃度の上昇を抑制することができる。 (3) In each of the above-described embodiments, it is preferable that the float material floating on the surface of the stored supply water or condensate is densely arranged in the water supply tank 3 and the condensate tank 11. In this case, even if the outside air flows into the water supply tank 3 or the condensate tank 11, the stored supply water or condensate is less likely to come into direct contact with the outside air. An increase in carbon dioxide concentration can be suppressed.

(4)上述の各実施の形態において、給水タンク3および復水タンク11内には、貯留された供給水や復水を攪拌するための攪拌装置を設置することができる。このような攪拌装置を設置した場合、供給水や復水は、不活性ガスとより効率的に接触し、溶存酸素濃度や溶存炭酸ガス濃度が低下するため、復水配管10並びに蒸気発生系の腐食をより効果的に抑制することができる。 (4) In each above-mentioned embodiment, in the feed water tank 3 and the condensate tank 11, the stirring apparatus for stirring the stored supply water and condensate can be installed. When such a stirrer is installed, the feed water and condensate come into more efficient contact with the inert gas, and the dissolved oxygen concentration and the dissolved carbon dioxide gas concentration decrease. Corrosion can be more effectively suppressed.

本発明の実施の形態1に係る蒸気ボイラ装置の概略図。1 is a schematic diagram of a steam boiler apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る蒸気ボイラ装置の概略図。The schematic of the steam boiler apparatus which concerns on Embodiment 2 of this invention. 上記各実施の形態において用いられる復水タンクの変形例の概略図。Schematic of the modification of the condensate tank used in said each embodiment. 上記実施の形態1の蒸気ボイラ装置において用いられる復水タンクの変形例の概略図。Schematic of the modification of the condensate tank used in the steam boiler apparatus of the said Embodiment 1. FIG.

符号の説明Explanation of symbols

1 蒸気ボイラ装置
2 蒸気ボイラ
3 給水タンク
3a 排気口
6 供給路
10 復水配管
11 復水タンク
11a 排気口
12 注水路
13 連絡路
20,30 復水配管装置
21 不活性ガス供給装置
31 脱炭酸塔
32 充填物層
DESCRIPTION OF SYMBOLS 1 Steam boiler apparatus 2 Steam boiler 3 Water supply tank 3a Exhaust port 6 Supply channel 10 Condensate piping 11 Condensate tank 11a Exhaust port 12 Inlet channel 13 Connection channel 20, 30 Condensate piping device 21 Inert gas supply device 31 Decarbonation tower 32 Filling layer

Claims (2)

蒸気ボイラと、
前記蒸気ボイラへ供給する供給水を貯留するための、排気口を有する給水タンクを有する、前記蒸気ボイラへ前記供給水を供給するための供給路と、
前記給水タンクに連絡している、前記給水タンクに貯留する前記供給水を補給するための注水路と、
前記蒸気ボイラからの蒸気が凝縮して得られる復水を送るための復水配管と、
前記復水配管からの前記復水を貯留するための、排気口を有する復水タンクと、
前記復水タンクに貯留した前記復水を前記給水タンクへ供給するための連絡路と、
前記給水タンク内に貯留された前記供給水中および前記復水タンク内に貯留された前記復水中において不活性ガスを個別に供給して噴出可能な不活性ガス供給装置と、
を備えた蒸気ボイラ装置。
A steam boiler,
A supply path for supplying the supply water to the steam boiler, having a water supply tank having an exhaust port for storing the supply water supplied to the steam boiler;
A water injection channel for replenishing the supply water stored in the water supply tank, in communication with the water supply tank;
A condensate pipe for sending condensate obtained by condensing steam from the steam boiler;
A condensate tank having an exhaust port for storing the condensate from the condensate pipe;
A communication path for supplying the condensate stored in the condensate tank to the water supply tank;
An inert gas supply device capable of individually supplying and ejecting an inert gas in the supply water stored in the water supply tank and in the condensate stored in the condensate tank;
Steam boiler device equipped with.
前記復水タンクは、前記復水配管からの前記復水を液滴状にして落下させるための網状の充填物層を有している、請求項1に記載の蒸気ボイラ装置。
The steam boiler apparatus according to claim 1, wherein the condensate tank has a net-like packing layer for dropping the condensate from the condensate pipe into droplets.
JP2007196802A 2007-07-28 2007-07-28 Steam boiler equipment Expired - Lifetime JP4735615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007196802A JP4735615B2 (en) 2007-07-28 2007-07-28 Steam boiler equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007196802A JP4735615B2 (en) 2007-07-28 2007-07-28 Steam boiler equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001100162A Division JP4404238B2 (en) 2001-03-30 2001-03-30 Steam boiler equipment

Publications (2)

Publication Number Publication Date
JP2007292457A true JP2007292457A (en) 2007-11-08
JP4735615B2 JP4735615B2 (en) 2011-07-27

Family

ID=38763220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007196802A Expired - Lifetime JP4735615B2 (en) 2007-07-28 2007-07-28 Steam boiler equipment

Country Status (1)

Country Link
JP (1) JP4735615B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018103909A1 (en) * 2016-12-06 2018-06-14 Robert Bosch Gmbh Waste heat recovery system
RU201253U1 (en) * 2020-02-25 2020-12-07 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" BOILER-DECARBONIZER

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223207A (en) * 1992-02-06 1993-08-31 Toshiba Corp Drain reducing device for auxiliary vapor system
JPH06190360A (en) * 1992-10-29 1994-07-12 Nippon Sanso Kk Dissolved oxygen decreasing device
JPH06249450A (en) * 1993-02-26 1994-09-06 Nippon Sanso Kk Method and device for supplying steam
JPH06254538A (en) * 1993-03-01 1994-09-13 Japan Organo Co Ltd Removing device for dissolving oxygen
JPH11347305A (en) * 1998-06-05 1999-12-21 Tozai Kagaku Sangyo Kk Water supply tank for boiler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223207A (en) * 1992-02-06 1993-08-31 Toshiba Corp Drain reducing device for auxiliary vapor system
JPH06190360A (en) * 1992-10-29 1994-07-12 Nippon Sanso Kk Dissolved oxygen decreasing device
JPH06249450A (en) * 1993-02-26 1994-09-06 Nippon Sanso Kk Method and device for supplying steam
JPH06254538A (en) * 1993-03-01 1994-09-13 Japan Organo Co Ltd Removing device for dissolving oxygen
JPH11347305A (en) * 1998-06-05 1999-12-21 Tozai Kagaku Sangyo Kk Water supply tank for boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018103909A1 (en) * 2016-12-06 2018-06-14 Robert Bosch Gmbh Waste heat recovery system
RU201253U1 (en) * 2020-02-25 2020-12-07 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" BOILER-DECARBONIZER

Also Published As

Publication number Publication date
JP4735615B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP5251184B2 (en) Gas dissolved water supply system
JP6386338B2 (en) Ammonia-containing wastewater treatment apparatus and treatment method
US20120000434A1 (en) Method of operating steam boiler
JP2007000699A (en) Production method of nitrogen gas-dissolved water
JP4735615B2 (en) Steam boiler equipment
JP2006169109A (en) Removal method for chlorine
JP5577705B2 (en) Fluorine gas generator
JP4404238B2 (en) Steam boiler equipment
JP2006275410A (en) Boiler device
JP4735363B2 (en) Operation method of boiler device and boiler device
JP2009129874A (en) Fuel cell system
JP2006283988A (en) Deaerating system
JP4872613B2 (en) Gas dissolving cleaning water manufacturing apparatus and manufacturing method
JP2006334532A (en) Concentration apparatus
JP2008121941A (en) Method of operating steam boiler device
JP2007263385A (en) Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
JP4310241B2 (en) System chemical recovery method and recovery device
CN103130294A (en) Method of extracting dissolved acetylene gas from sodium hypochlorite waste water in vacuum in acetylene manufacturing process
JP2017202474A (en) Ozone dissolved water production apparatus
JP2006299105A (en) Method for concentrating methane gas and carbon dioxide gas and concentrator
KR102615609B1 (en) Solution acidification apparatus and gas recovery apparatus using the same and dissolved gas recovery system including the same
KR100766691B1 (en) Stripping-steam- injection-type-vacuum deaerator for reducing oxygen re-absorption
JP4351594B2 (en) Method and apparatus for separating volatile organic compounds from wastewater
CN108545888A (en) A kind of recycling of uns-dimethylhydrazine industrial wastewater and processing combination process
KR101390808B1 (en) Solution supplying apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

R150 Certificate of patent or registration of utility model

Ref document number: 4735615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term