JP2007291421A - High strength steel plate with excellent stretch flangeability - Google Patents

High strength steel plate with excellent stretch flangeability Download PDF

Info

Publication number
JP2007291421A
JP2007291421A JP2006117882A JP2006117882A JP2007291421A JP 2007291421 A JP2007291421 A JP 2007291421A JP 2006117882 A JP2006117882 A JP 2006117882A JP 2006117882 A JP2006117882 A JP 2006117882A JP 2007291421 A JP2007291421 A JP 2007291421A
Authority
JP
Japan
Prior art keywords
mass
less
inclusions
acid
stretch flangeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006117882A
Other languages
Japanese (ja)
Other versions
JP4719067B2 (en
Inventor
Katsuhiro Sasai
勝浩 笹井
Wataru Ohashi
渡 大橋
Kenichi Yamamoto
研一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006117882A priority Critical patent/JP4719067B2/en
Publication of JP2007291421A publication Critical patent/JP2007291421A/en
Application granted granted Critical
Publication of JP4719067B2 publication Critical patent/JP4719067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

【課題】伸びフランジ性に優れた高強度鋼板を提供する。
【解決手段】C:0.03〜0.3質量%、Si:0.1〜2.0質量%、Mn:1.0〜3.5質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.01質量%以下、酸可溶Ti:0.005質量%未満、NdおよびPrの1種もしくは2種の合計:0.0002〜0.02質量%、を含有し、残部が鉄および不可避的不純物からなる鋼であり、その鋼中には平均の介在物組成でNd酸化物もしくはPr酸化物の1種または2種の合計が2〜70質量%、SiO2が2〜60質量%、Al23が70質量%以下の範囲の介在物を含むことを特徴とする伸びフランジ性に優れた高強度鋼板。
【選択図】なし
A high-strength steel sheet excellent in stretch flangeability is provided.
SOLUTION: C: 0.03-0.3 mass%, Si: 0.1-2.0 mass%, Mn: 1.0-3.5 mass%, P: 0.05 mass% or less, S : 0.01% by mass or less, N: 0.0005 to 0.01% by mass, acid-soluble Al: 0.01% by mass or less, acid-soluble Ti: less than 0.005% by mass, one of Nd and Pr Or the total of the two types: 0.0002 to 0.02% by mass, and the balance is steel made of iron and inevitable impurities, and the steel contains Nd oxide or Pr oxide with an average inclusion composition The stretch flangeability is characterized by including inclusions in which the total of one or two of the materials is 2 to 70% by mass, SiO 2 is 2 to 60% by mass, and Al 2 O 3 is 70% by mass or less. Excellent high strength steel plate.
[Selection figure] None

Description

本発明は、建材、家電製品、自動車などに適する、伸びフランジ性に優れた高強度鋼板に関する。本発明における高強度鋼板とは通常の冷延鋼板のほか、亜鉛めっき鋼板やAlめっき鋼板を代表とする各種めっきを施したものも含む。亜鉛めっき鋼板については、通常の溶融亜鉛めっきのみならず、合金化溶融亜鉛めっきも含む。めっき層には、純亜鉛の他、Fe、Al、Mg、Cr、Mnなどを含有するものも含む。   The present invention relates to a high-strength steel sheet excellent in stretch flangeability, which is suitable for building materials, home appliances, automobiles, and the like. The high-strength steel plate in the present invention includes not only a normal cold-rolled steel plate but also those subjected to various platings such as a galvanized steel plate and an Al-plated steel plate. The galvanized steel sheet includes not only normal hot dip galvanizing but also alloyed hot dip galvanizing. The plating layer includes not only pure zinc but also one containing Fe, Al, Mg, Cr, Mn or the like.

近年、特に自動車車体における燃費向上や耐久性向上を目的とした加工性の良い高強度鋼板の需要が高まっている。加えて、衝突安全性やキャビンスペースの拡大のニーズから引張強さにして780MPa級以上の鋼板が、一部レインフォースなどの部材に使用されつつある。   In recent years, there is an increasing demand for high-strength steel sheets with good workability for the purpose of improving fuel efficiency and durability particularly in automobile bodies. In addition, steel sheets with a tensile strength of 780 MPa or higher are being used for some parts such as reinforcement because of the need for collision safety and expansion of cabin space.

このような高強度材を用いて部材を組み上げる時には、延性、曲げ性、伸びフランジ性などが重要となるが、引張強さで780MPa程度までの高強度鋼板において、これらへの対策が講じられている。   When assembling a member using such a high-strength material, ductility, bendability, stretch flangeability, etc. are important. In high-strength steel sheets with a tensile strength of up to about 780 MPa, measures are taken for these. Yes.

たとえば、穴広げ性については、非特許文献1にあるように、主相をベイナイトとして穴広げ性を向上させ、さらには張り出し成形性についても、第2相に残留オーステナイトを生成させることで現行の残留オーステナイト鋼並の張り出し性を示すことが開示されている。   For example, as described in Non-Patent Document 1, with regard to hole expansibility, the main phase is bainite to improve hole expansibility, and the stretch formability is also improved by generating residual austenite in the second phase. It is disclosed that it shows the same stretchability as that of retained austenitic steel.

また、高強度材の高延性化を図るために、複合組織を積極的に活用することが一般的である。しかし、第2相にマルテンサイトや残留オーステナイトを活用した場合、穴広げ性が著しく低下してしまうという問題がある(例えば、非特許文献2)。また、本文献中には、主相をフェライト、第2相をマルテンサイトとし、両者の硬度差を減少させることで穴広げ率が向上することが開示されている。   Moreover, in order to increase the ductility of a high-strength material, it is common to actively utilize a composite structure. However, when martensite or retained austenite is used for the second phase, there is a problem that the hole expandability is significantly lowered (for example, Non-Patent Document 2). Further, this document discloses that the hole expansion ratio is improved by reducing the difference in hardness between the main phase of ferrite and the second phase of martensite.

また、溶融亜鉛めっきを施したものとして、上述のような組織制御により延性、曲げ性、穴広げ率を向上させたいくつかの開示例がある。例えば、特許文献1〜5がその代表例である。
特許第2607906号公報 特許第2862187号公報 特開平1−198459号公報 特開2001−355043号公報 特許第3037767号公報 CAMP−ISIJ vol.13 (2000) p.395 CAMP−ISIJ vol.13 (2000) p.391
In addition, there are several disclosed examples in which ductility, bendability, and hole expansion rate are improved by the above-described structure control as those that have been subjected to hot dip galvanization. For example, Patent Documents 1 to 5 are typical examples.
Japanese Patent No. 2607906 Japanese Patent No. 2862187 JP-A-1-198459 JP 2001-355043 A Japanese Patent No. 3037767 CAMP-ISIJ vol. 13 (2000) p. 395 CAMP-ISIJ vol. 13 (2000) p. 391

上述したように、穴広げ性によって代表される伸びフランジ成形性に優れた鋼板は多数開発されている。しかしながら、引張強さ780MPa以上の高強度鋼板ではCあるいは多量の合金元素を含有するため、製品の組織が温度や冷却速度などの製造条件によって変化しやすく、必ずしも良好な伸びフランジ成形性が得られていない。   As described above, a large number of steel plates having excellent stretch flange formability represented by hole expansibility have been developed. However, since a high strength steel sheet having a tensile strength of 780 MPa or more contains C or a large amount of alloying elements, the structure of the product is likely to change depending on manufacturing conditions such as temperature and cooling rate, and good stretch flangeability is not necessarily obtained. Not.

本発明者らの研究によれば、この原因が、温度や冷却速度などの製造条件のばらつきにより生成した第2相(主相より面積率の小さい相)と主相(面積率最大の相)との境界部に存在する介在物にあることが分かった。すなわち、第2相は主相と硬さが異なり、両相の境界は亀裂が進展し易い環境にあるため、両相の境界に割れ発生の起点となり易い粗大なクラスター状の介在物が存在すると、穴広げ加工時に粗大なクラスター状の介在物を起点に割れが発生し、その亀裂が両相の粒界を伝播し、表層まで一挙に拡大することが判明した。したがって、鋼中の介在物をできるだけ微細球状化し、製造条件のばらつきにより第2相が生成してもその粒界の介在物が割れ発生の起点にならないようにすれば、穴広げ性が改善されることを見いだした。   According to the study by the present inventors, this is caused by the second phase (phase having a smaller area ratio than the main phase) and the main phase (phase having the largest area ratio) generated due to variations in manufacturing conditions such as temperature and cooling rate. It was found that the inclusions existed at the boundary. That is, the second phase is different in hardness from the main phase, and the boundary between the two phases is in an environment where cracks are likely to progress. Therefore, there is a coarse cluster-like inclusion that tends to cause cracks at the boundary between both phases. It was found that cracks originated from coarse cluster-like inclusions during hole expansion and propagated through the grain boundaries of both phases and expanded to the surface layer all at once. Therefore, if the inclusions in the steel are made as fine as possible and the second phase is generated due to variations in manufacturing conditions so that the inclusions at the grain boundaries do not become the starting point of cracking, the hole expandability is improved. I found out.

一般には、鋼の脱酸はAlを用いて行われるが、Al脱酸により生成したアルミナ系介在物はクラスター化し易く粗大な介在物として鋼中に残留する。これが上記のように伸びフランジ性(穴広げ値)を低下させていると考えられるが、介在物微細球状化制御の視点にたって伸びフランジ性に優れる高強度鋼板を提案した例は見られない。   In general, deoxidation of steel is performed using Al, but alumina inclusions generated by Al deoxidation are easily clustered and remain in the steel as coarse inclusions. Although this is considered to reduce the stretch flangeability (hole expansion value) as described above, no example of suggesting a high-strength steel sheet excellent in stretch flangeability from the viewpoint of inclusion fine spheroidization control has been found.

このような状況を鑑み、本発明者らは、Cあるいは多量の合金元素を含有する高強度鋼板の溶鋼成分において、1)粗大化し易いアルミナ系介在物を生成させないために殆どAl脱酸することなく、2)介在物がクラスター化して粗大にならず、且つ3)割れ発生の起点になり難い球状介在物へと改質する脱酸方法について鋭意研究を進め、更に化学成分や製造方法にも検討を加えて本発明を完成させた。   In view of such a situation, the present inventors perform almost Al deoxidation in the molten steel component of the high-strength steel plate containing C or a large amount of alloy elements in order to 1) not generate alumina inclusions that are likely to be coarsened. 2) Intensive research on deoxidation methods to improve inclusions into spherical inclusions that do not become coarse due to clustering of inclusions, and 3) are difficult to start cracking. The present invention has been completed through examination.

その要旨は以下の通りである。すなわち、
(1)C:0.03〜0.3質量%、Si:0.1〜2.0質量%、Mn:1.0〜3.5質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.01質量%以下、酸可溶Ti:0.005質量%未満、NdおよびPrの1種もしくは2種の合計:0.0002〜0.02質量%を含有し、残部が鉄および不可避的不純物からなる鋼であり、その鋼中には平均の介在物組成でNd酸化物もしくはPr酸化物の1種または2種の合計が2〜70質量%、SiO2が2〜60質量%、Al23が70質量%以下の範囲の介在物を含むことを特徴とする伸びフランジ性に優れた高強度鋼板。
(2)C:0.03〜0.3質量%、Si:0.1〜2.0質量%、Mn:1.0〜3.5質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.01質量%以下、酸可溶Ti:0.005質量%未満、NdおよびPrの1種もしくは2種の合計:0.0002〜0.02質量%を含有し、残部が鉄および不可避的不純物からなる鋼であり、その鋼中には介在物の個数割合で50%以上が球状、紡錘状のいずれか一方または双方の介在物からなることを特徴とする伸びフランジ性に優れた高強度鋼板。
(3)C:0.03〜0.3質量%、Si:0.1〜2.0質量%、Mn:1.0〜3.5質量%、P:0.05質量%以下、S:0.01質量%以下、N:0.0005〜0.01質量%、酸可溶Al:0.01質量%以下、酸可溶Ti:0.005質量%以下、NdおよびPrの1種もしくは2種の合計:0.0002〜0.02質量%を含有し、残部が鉄および不可避的不純物からなる鋼であり、その鋼中には0.5μm以上10μm以下の介在物が500個/cm2以上、100000個/cm2以下存在することを特徴とする伸びフランジ性に優れた高強度鋼板。
The summary is as follows. That is,
(1) C: 0.03-0.3 mass%, Si: 0.1-2.0 mass%, Mn: 1.0-3.5 mass%, P: 0.05 mass% or less, S: 0.01% by mass or less, N: 0.0005 to 0.01% by mass, acid-soluble Al: 0.01% by mass or less, acid-soluble Ti: less than 0.005% by mass, one of Nd and Pr Total of two types: steel containing 0.0002 to 0.02 mass% with the balance being iron and inevitable impurities, and the steel contains Nd oxide or Pr oxide with an average inclusion composition Excellent stretch flangeability, characterized by including inclusions in the range of 1 to 2 mass%, 2 to 70 mass% of SiO 2 , 2 to 60 mass% of SiO 2 , and 70 mass% or less of Al 2 O 3 High strength steel plate.
(2) C: 0.03-0.3 mass%, Si: 0.1-2.0 mass%, Mn: 1.0-3.5 mass%, P: 0.05 mass% or less, S: 0.01% by mass or less, N: 0.0005 to 0.01% by mass, acid-soluble Al: 0.01% by mass or less, acid-soluble Ti: less than 0.005% by mass, one of Nd and Pr Total of two types: Steel containing 0.0002 to 0.02% by mass with the balance being iron and inevitable impurities, in which 50% or more of the inclusions are spherical and spindle-shaped A high-strength steel sheet excellent in stretch flangeability, characterized by comprising any one or both inclusions.
(3) C: 0.03-0.3 mass%, Si: 0.1-2.0 mass%, Mn: 1.0-3.5 mass%, P: 0.05 mass% or less, S: 0.01% by mass or less, N: 0.0005 to 0.01% by mass, acid-soluble Al: 0.01% by mass or less, acid-soluble Ti: 0.005% by mass or less, one of Nd and Pr Total of two types: Steel containing 0.0002 to 0.02% by mass, the balance being iron and inevitable impurities, and 500 inclusions / cm of inclusions of 0.5 μm to 10 μm in the steel 2 or more, a high strength steel sheet excellent in stretch flange formability, characterized in that there 100,000 / cm 2 or less.

本発明により、安定して伸びフランジ性に優れた高強度鋼板を得ることができる。   According to the present invention, a high-strength steel plate that is stable and excellent in stretch flangeability can be obtained.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明における鋼板の成分範囲の限定理由について述べる。   First, the reason for limiting the component range of the steel sheet in the present invention will be described.

Cは鋼板の強度を確保するために必須の元素であり、780MPa以上の高強度鋼板を得るためには少なくとも0.03質量%が必要である。しかし、Cが0.3質量%を超えると、伸びフランジ性が著しく劣化するので、これを上限とする。   C is an essential element for securing the strength of the steel plate, and at least 0.03 mass% is necessary to obtain a high strength steel plate of 780 MPa or more. However, if C exceeds 0.3% by mass, stretch flangeability deteriorates remarkably, so this is the upper limit.

Siは本発明のようにAlやTiを極力添加しない溶鋼において主要な脱酸元素となるため、本発明おいて極めて重要である。溶鋼中の溶存酸素濃度を低下させ、鋳造時にCO気泡が発生しないためにはSiを0.1質量%以上添加する必要がある。また、Siは伸びフランジ性を低下させることなく強度を確保するのに有効な元素であり、少なくとも0.05質量%が必要であるが、脱酸条件も合わせて考慮するとSiは0.1質量%を下限とする。過剰に添加すると溶接性や延性に悪影響を及ぼすので2.0質量%を上限とする。   Since Si is a major deoxidizing element in molten steel to which Al and Ti are not added as much as in the present invention, it is extremely important in the present invention. In order to reduce the dissolved oxygen concentration in the molten steel and prevent the generation of CO bubbles during casting, it is necessary to add Si by 0.1% by mass or more. Si is an element effective for securing strength without deteriorating stretch flangeability, and at least 0.05% by mass is necessary. However, considering deoxidation conditions as well, Si is 0.1% by mass. % Is the lower limit. If added excessively, the weldability and ductility are adversely affected, so 2.0 mass% is made the upper limit.

MnはC、Siとともに鋼板の高強度化に有効な元素であり、1.0質量%以上は含有させる必要があるが、3.5質量%を超えて含有させると延性が劣化すると共に、MnSが多く析出し伸びフランジ性を低下させるため、上限を3.5質量%とする。   Mn is an element effective for increasing the strength of the steel sheet together with C and Si, and it is necessary to contain 1.0% by mass or more, but if it exceeds 3.5% by mass, the ductility deteriorates and MnS Therefore, the upper limit is set to 3.5% by mass.

Pは固溶強化元素として有効であるが、偏析による加工性の劣化が懸念されるので0.05質量%以下にする必要がある。Pの下限値は0質量%を含む。   P is effective as a solid solution strengthening element, but since there is a concern about deterioration of workability due to segregation, it is necessary to make it 0.05% by mass or less. The lower limit value of P includes 0% by mass.

SはMnSなどの介在物を形成して伸びフランジ性を劣化させる。したがって、できるだけ抑制すべきであるが0.01質量%以下であれば許容される。Sの下限値は0質量%を含む。   S forms inclusions such as MnS and deteriorates stretch flangeability. Therefore, it should be suppressed as much as possible, but is acceptable if it is 0.01% by mass or less. The lower limit value of S includes 0% by mass.

Nは機械的強度を高めたり、BH性(焼付き硬化性)を付与したりするのには有効であるが、添加し過ぎると微量Alや微量Tiであっても粗大な析出物を生成し、伸びフランジ性を劣化させるので、0.01質量%を上限とする。一方、Nを0.0005質量%未満とすることは現状プロセスでは大変負荷が大きく、コストが高くなるため下限値は0.0005質量%とする。   N is effective in increasing mechanical strength and imparting BH properties (seizure hardenability), but if added too much, coarse precipitates are generated even with trace amounts of Al and Ti. Since the stretch flangeability is deteriorated, the upper limit is 0.01% by mass. On the other hand, if N is less than 0.0005 mass%, the current process is very heavy and the cost is high, so the lower limit is set to 0.0005 mass%.

酸可溶Alはその酸化物がクラスター化して粗大になり易いため極力抑制することが望ましい。しかしながら、Alは予備的な脱酸材として酸可溶Al濃度で0.01質量%までは用いることが許容される。これは、後述の通り、酸可溶Al濃度が0.01質量%超になると、介在物中のAl23含有率が70質量%を超え、NdやPrを添加しても介在物のクラスター化を防止することができないため、穴広げ性が低下する。クラスター化防止の観点から酸可溶Al濃度は低い方が良く、下限値は0質量%を含む。また、酸可溶Al濃度とは、酸に溶解したAl量を測定したもので、溶存Alは酸に溶解し、Al23は酸に溶解しないことを利用した分析方法である。ここで、酸とは、例えば塩酸1、硝酸1,水2の割合で混合した混酸である。 It is desirable to suppress acid-soluble Al as much as possible because the oxide is likely to cluster and become coarse. However, Al is allowed to be used as a preliminary deoxidizer up to 0.01% by mass at an acid-soluble Al concentration. As described later, when the acid-soluble Al concentration exceeds 0.01% by mass, the content of Al 2 O 3 in the inclusion exceeds 70% by mass, and even if Nd or Pr is added, Since the clustering cannot be prevented, the hole expandability is reduced. From the viewpoint of preventing clustering, the acid-soluble Al concentration should be low, and the lower limit value includes 0% by mass. The acid-soluble Al concentration is an analytical method that measures the amount of Al dissolved in an acid, and utilizes the fact that dissolved Al dissolves in an acid and Al 2 O 3 does not dissolve in an acid. Here, the acid is, for example, a mixed acid mixed at a ratio of hydrochloric acid 1, nitric acid 1, and water 2.

酸可溶Tiもその酸化物がクラスター化して粗大になり易いこと、鋼中のNと結びついて粗大なTiNの介在物を生成し易いことから、酸可溶Tiは0.005質量%未満とし、下限値は0質量%を含む。また、酸可溶Ti濃度とは、酸に溶解したTi量を測定したもので、溶存Tiは酸に溶解し、Ti酸化物は酸に溶解しないことを利用した分析方法である。ここで、酸とは、例えば塩酸1、硝酸1,水2の割合で混合した混酸である。   The acid-soluble Ti also tends to be coarse due to its oxides clustering, and easily forms coarse TiN inclusions in combination with N in the steel, so the acid-soluble Ti should be less than 0.005% by mass. The lower limit value includes 0% by mass. The acid-soluble Ti concentration is an analytical method that measures the amount of Ti dissolved in an acid, and uses that dissolved Ti dissolves in an acid and Ti oxide does not dissolve in an acid. Here, the acid is, for example, a mixed acid mixed at a ratio of hydrochloric acid 1, nitric acid 1, and water 2.

Nd、Prは予備Al脱酸とSi脱酸により生成したAl23−SiO2介在物を微細球状のNd酸化物(例えば、Nd23、NdO2)−Al23−SiO2複合介在物、Pr酸化物(例えば、Pr23、PrO2)−Al23−SiO2複合介在物、或いはNd酸化物−Pr酸化物−Al23−SiO2複合介在物に改質し、伸びフランジ性を向上させる最も重要な成分である。 Nd and Pr are fine spherical Nd oxides (for example, Nd 2 O 3 , NdO 2 ) -Al 2 O 3 —SiO 2, which are Al 2 O 3 —SiO 2 inclusions formed by preliminary Al deoxidation and Si deoxidation. Composite inclusions, Pr oxides (eg, Pr 2 O 3 , PrO 2 ) -Al 2 O 3 —SiO 2 composite inclusions, or Nd oxide—Pr oxide—Al 2 O 3 —SiO 2 composite inclusions It is the most important component to improve and improve stretch flangeability.

このような介在物改質効果を得るためには、NdおよびPrの1種もしくは2種の合計濃度を0.0002質量%以上0.02質量%以下にする必要がある。NdおよびPrの1種もしくは2種の合計濃度が0.0002質量%未満では、Al23−SiO2介在物を微細球状に改質できず、0.02質量%超では介在物中のSiO2分は還元され、殆どNd酸化物−Al23介在物やPr酸化物−Al23介在物となり介在物がクラスター化し、伸びフランジ性が低下する。なお、他のランタノイド元素としてCe、LaやSm等もあるが、これら元素はNdやPrに比べて介在物を微細球状化する効果が弱い。このため、予備Al脱酸で生成したAl23が操業のばらつきで多量に残留した場合でも、改質能力の高いNdやPrを用いれば安定して介在物のクラスター化を防止し、伸びフランジ性を向上できる。
なお、本発明鋼に含まれる鉄以外の不可避的不純物とは、スクラップ中に含有されるSn,Ni,Cu等が、不可避的に鋼中に混入しているものをいう。
In order to obtain such an inclusion modification effect, the total concentration of one or two of Nd and Pr needs to be 0.0002 mass% or more and 0.02 mass% or less. If the total concentration of one or two of Nd and Pr is less than 0.0002% by mass, the Al 2 O 3 —SiO 2 inclusion cannot be modified into a fine sphere, and if it exceeds 0.02% by mass, the inclusion in the inclusion The SiO 2 content is reduced and almost becomes Nd oxide-Al 2 O 3 inclusions or Pr oxide-Al 2 O 3 inclusions, and the inclusions cluster, and the stretch flangeability decreases. There are other lanthanoid elements such as Ce, La, and Sm, but these elements have a weaker effect of making the inclusions into a fine sphere than Nd and Pr. For this reason, even when a large amount of Al 2 O 3 produced by preliminary Al deoxidation remains due to operational variations, the use of Nd or Pr having a high reforming ability prevents stable inclusion clustering and increases the elongation. Flangeability can be improved.
The inevitable impurities other than iron contained in the steel of the present invention mean that Sn, Ni, Cu, etc. contained in the scrap are inevitably mixed in the steel.

次に、鋼板中における介在物の存在条件について述べる。   Next, conditions for inclusions in the steel sheet will be described.

伸びフランジ性に優れた鋼板を得るためは、鋼板中の介在物は、割れ発生の起点となり難いように、球状で微細に分散していることが重要である。本発明の鋼板における介在物の平均組成、形態および粒径分布を調査した。   In order to obtain a steel sheet excellent in stretch flangeability, it is important that inclusions in the steel sheet are spherically and finely dispersed so that cracks are unlikely to become the starting point of cracking. The average composition, morphology, and particle size distribution of inclusions in the steel sheet of the present invention were investigated.

介在物の平均組成は、ランダムに選んだ複数個(例えば20個以上)の介在物を組成分析し、平均濃度を算出することにより求めることができる。   The average composition of inclusions can be obtained by analyzing the composition of a plurality of randomly selected inclusions (for example, 20 or more) and calculating the average concentration.

その結果、介在物の平均組成でNd酸化物もしくはPr酸化物の1種または2種の合計が2〜70質量%以上、SiO2が2〜60質量%、Al23が70質量%以下の範囲となるように組成制御された鋼板では、伸びフランジ性が向上することが判明した。 As a result, in the average composition of inclusions, the total of one or two of Nd oxide or Pr oxide is 2 to 70% by mass, SiO 2 is 2 to 60% by mass, and Al 2 O 3 is 70% by mass or less. It was found that the stretch flangeability is improved in the steel sheet whose composition is controlled so as to be in the above range.

平均組成でNd酸化物もしくPr酸化物の1種または2種の合計が2質量%未満では、NdやPr添加による介在物改質効果が小さく、反対にNd酸化物もしくはPr酸化物の1種または2種の合計が70質量%超では、過改質となり、何れの場合も介在物は微細球状化しないため、平均組成でNd酸化物もしくはPr酸化物の1種または2種の合計の下限値は2質量%、上限値は70質量%とした。   When the average composition of one or two of Nd oxide or Pr oxide is less than 2% by mass, the effect of inclusion modification by addition of Nd or Pr is small, and conversely, 1 of Nd oxide or Pr oxide. If the total of seeds or two types exceeds 70% by mass, over-reformation occurs, and in any case, inclusions do not become fine spheroidized, so the average composition of one or two of Nd oxide or Pr oxide The lower limit was 2% by mass, and the upper limit was 70% by mass.

また、平均組成でSiO2が60質量%超では、圧延時に非常に長い延伸介在物となり、これが多く鋼板中に存在するため伸びフランジ性が低下し、反対にSiO2が2質量%未満では介在物が微細球状に分散しないため、平均組成でSiO2の上限値を60質量%、下限値を2質量%とした。 The average SiO 2 is greater than the 60% by mass in the composition, become very long stretched inclusions during rolling, which reduces the stretch flangeability due to the presence in many steel sheet, interposed in SiO 2 is less than 2 wt% in the opposite Since the product does not disperse into fine spheres, the upper limit value of SiO 2 is 60% by mass and the lower limit value is 2% by mass in the average composition.

さらに、介在物中にはAl23を含有しないことが微細球状化の点から好ましいが、Al予備脱酸や耐火物溶損の影響により介在物中のAl23含有率が高くなることがある。この場合、平均組成で介在物中には70質量%以下に限ってAl23が混入しても良く、下限値は0質量%を含む。これは、介在物中のAl23含有率が70質量%を超えると、NdやPrによる改質効果が損なわれ、介在物のクラスター化が進行してしまうためである。なお、本発明において上記組成の酸化物以外にスラグや耐火物などから混入する不可避的不純物酸化物は許容される。 Furthermore, it is preferable not to contain Al 2 O 3 in the inclusions from the viewpoint of fine spheroidization, but the content of Al 2 O 3 in the inclusions increases due to the influence of Al preliminary deoxidation and refractory melting. Sometimes. In this case, Al 2 O 3 may be mixed in the inclusions with an average composition of 70% by mass or less, and the lower limit includes 0% by mass. This is because when the Al 2 O 3 content in the inclusions exceeds 70% by mass, the modification effect by Nd and Pr is impaired, and the inclusions are clustered. In the present invention, inevitable impurity oxides mixed from slag, refractory, etc. other than oxides having the above composition are allowed.

次に、鋼板中の介在物の形態について述べる。介在物の形態はランダムに選んだ複数個(例えば50個以上)の介在物を光学顕微鏡で観察することができる。例えば、ランダムに選んだ100個の介在物を光学顕微鏡の100倍と1000倍で観察し、球状、紡錘状、クラスター状とその他に分類し、球状と紡錘状の介在物の個数割合を求めることが推奨される。なお、球状とは、介在物の長径と短径がほぼ等しく円形として観察されるもの、紡錘上とは、介在物の長径/短径が3以下で楕円形に観察されるもの、クラスター状とは介在物粒子が2個以上密集したもの、その他としては、例えば角張った単体状のものとして、それぞれ定義される。
その結果、球状、紡錘状のいずれか一方または双方の介在物の個数割合が50%以上の鋼板では、伸びフランジ性が向上することが判明した。球状、紡錘状のいずれか一方または双方の介在物の個数割合が50%未満では、クラスター状の介在物が相対的に増え、伸びフランジ性が低下するため、その下限値を50%とした。上限値は100%である。
Next, the form of inclusions in the steel sheet will be described. As for the form of the inclusion, a plurality of (for example, 50 or more) inclusions selected at random can be observed with an optical microscope. For example, 100 randomly selected inclusions are observed at 100 times and 1000 times of an optical microscope, and are classified into spherical, spindle, cluster and others, and the number ratio of spherical and spindle inclusions is obtained. Is recommended. In addition, the spherical shape means that the major axis and minor axis of the inclusions are observed as being substantially equal and circular, and on the spindle means that the major axis / minor axis of the inclusion is 3 or less and is observed as an ellipse, Is defined as one in which two or more inclusion particles are densely packed, and the other as, for example, an angular single piece.
As a result, it has been found that the stretch flangeability is improved in the steel plate in which the number ratio of one or both of the spherical shape and the spindle shape is 50% or more. If the number ratio of one or both of the spherical and spindle-shaped inclusions is less than 50%, the cluster-like inclusions are relatively increased and the stretch flangeability is lowered, so the lower limit value was set to 50%. The upper limit is 100%.

ここに、「球状、紡錘状のいずれか一方または双方の介在物の個数割合が50%以上」とは、
「球状介在物単独の個数割合が50%以上の場合、
紡錘状介在物単独の個数割合が50%以上の場合、
球状介在物と紡錘状介在物の双方が混在していて、それぞれの個数割合の合計が50%以上の場合
のいずれか」であることを示す。
Here, “the ratio of the number of inclusions in either or both spherical and spindle shapes is 50% or more”
“When the number of spherical inclusions alone is 50% or more,
When the number ratio of spindle-shaped inclusions is 50% or more,
It indicates that “both spherical inclusions and spindle inclusions are mixed, and the total of the number ratios thereof is 50% or more”.

さらに、鋼板中の介在物の粒径分布について述べる。介在物の粒径分布は、光学顕微鏡(例えば100倍と1000倍)で介在物を観察して、その粒径を測定することができる。ここで、粒径とは、円相当直径を意味し、(介在物長径×介在物短径)0.5で求めた。 Furthermore, the particle size distribution of inclusions in the steel sheet will be described. The particle size distribution of the inclusions can be measured by observing the inclusions with an optical microscope (for example, 100 times and 1000 times). Here, the particle size means the equivalent circle diameter, and was obtained by (inclusion major axis × inclusion minor axis) 0.5 .

また、介在物の粒径については、伸びフランジ性に有害な10μmを超える大型介在物が減少すると、0.5μm以上10μm以下の介在物個数が増加し、このサイズの介在物個数が伸びフランジ性と良く対応するため、0.5μm以上10μm以下に着目した。その結果、0.5μm以上10μm以下の介在物が500個/cm2以上、100000個/cm2以下存在する鋼板では、伸びフランジ性が向上することが判明した。 In addition, regarding the particle size of inclusions, when the number of large inclusions exceeding 10 μm, which is harmful to stretch flangeability, decreases, the number of inclusions between 0.5 μm and 10 μm increases. In order to correspond well with this, attention was focused on 0.5 μm or more and 10 μm or less. As a result, it has been found that the stretch flangeability is improved in the steel sheet in which the inclusions of 0.5 μm or more and 10 μm or less exist at 500 pieces / cm 2 or more and 100,000 pieces / cm 2 or less.

0.5μm以上10μm以下の介在物が500個/cm2未満では、10μmを超える伸びフランジ性に有害な大型介在物が鋼板中に観察され、割れ発生の起点となるため、その個数密度の下限値は500個/cm2とした。また、0.5μm以上10μm以下の介在物が100000個/cm2超存在する場合には、介在物の個数が多過ぎて伸びフランジ性が低下するため、その上限値は100000個/cm2とした。 If the number of inclusions of 0.5 μm or more and 10 μm or less is less than 500 / cm 2 , large inclusions that are harmful to stretch flangeability exceeding 10 μm are observed in the steel sheet and become the starting point of cracking. The value was 500 pieces / cm 2 . Moreover, when there are more than 100,000 inclusions / cm 2 in the range of 0.5 μm or more and 10 μm or less, the number of inclusions is so large that the stretch flangeability is lowered, so the upper limit is 100,000 / cm 2 . did.

本発明は、引張強度が780MPa未満の強度クラスの鋼にも当然適用できるが、組織制御だけで伸びフランジ性の課題はほぼ解決されているため、本発明の介在物微細化制御は組織制御だけで伸びフランジ性が解決し難い780MPa以上の鋼に適用することが好ましい。   The present invention is naturally applicable to steel of a strength class having a tensile strength of less than 780 MPa, but the problem of stretch flangeability is almost solved only by the structure control, so the inclusion refinement control of the present invention is only the structure control. Therefore, it is preferable to apply to steel of 780 MPa or more where stretch flangeability is difficult to solve.

次に、鋼板の組織について説明する。   Next, the structure of the steel plate will be described.

本発明では、伸びフランジ性を介在物制御により向上させるものであり、鋼板のミクロ組織は特に限定するものではないが、優れた伸びフランジ性を得るためには、できるだけ単相組織とすることが適しているが、第2相を有する場合でも主相の面積率は80%以上とすることが好ましい。   In the present invention, stretch flangeability is improved by inclusion control, and the microstructure of the steel sheet is not particularly limited, but in order to obtain excellent stretch flangeability, a single-phase structure should be used as much as possible. Although it is suitable, even when it has the second phase, the area ratio of the main phase is preferably 80% or more.

最後に、本願の高強度鋼板を製造するための条件について述べる。   Finally, conditions for producing the high-strength steel sheet of the present application will be described.

本発明では転炉で吹錬して脱炭し、或いは更に真空脱ガス装置を用いて脱炭し、或いは更にCを添加してC濃度を0.03〜0.3質量%にした溶鋼中に、Si,Mn,P等の合金を添加して、脱酸と成分調整を行うと共に、AlやTiは添加しないか、或いは酸素調整を必要とする場合には酸可溶Alや酸可溶Tiが僅かに残る程度(酸可溶Alは0.01質量%以下、酸可溶Tiは0.005質量%未満)の少量のAlやTiを添加し、その後NdおよびPrの1種または2種以上を添加して成分調整を行う。本発明では介在物微細球状化の観点からAl23やTi酸化物ができるだけ残留しないことが好ましいので、AlやTiを添加する場合には、それらの添加から3分以上の攪拌時間を設けて、その後にNdおよびPrの1種または2種以上を添加することが望ましい。 In the present invention, decarburization is performed by blowing in a converter, or further decarburization using a vacuum degassing apparatus, or further C is added to the molten steel in which the C concentration is 0.03 to 0.3% by mass. In addition, Si, Mn, P and other alloys are added to perform deoxidation and component adjustment, and when Al or Ti is not added or oxygen adjustment is required, acid-soluble Al or acid-soluble A small amount of Al or Ti is added such that Ti remains slightly (acid-soluble Al is 0.01% by mass or less, and acid-soluble Ti is less than 0.005% by mass), and then one or two of Nd and Pr Add seeds or more to adjust ingredients. In the present invention, it is preferable that Al 2 O 3 and Ti oxide do not remain as much as possible from the viewpoint of inclusion spheroidization. Therefore, when adding Al or Ti, a stirring time of 3 minutes or more is provided from the addition. Thereafter, it is desirable to add one or more of Nd and Pr.

このようにして溶製された溶鋼を連続鋳造してスラブを製造し、これを熱間圧延することにより熱延鋼板とする。本発明が目的とする鋼中酸化物の形態及び組成は熱延工程で影響されないため熱間圧延法は特に限定するものではなく、通常の熱間圧延を施した後、650℃以下で巻き取ることが好ましい。650℃超では粗大な炭化物を初めとする化合物が出現し易く、伸びフランジ性が劣化する。より好ましくは600℃以下である。下限は特に定めないが、常温以下とするのは困難であるためこれを下限とすることが好ましい。   The molten steel thus produced is continuously cast to produce a slab, which is hot rolled to obtain a hot rolled steel sheet. The form and composition of the oxide in steel aimed by the present invention is not affected by the hot rolling process, so the hot rolling method is not particularly limited, and after normal hot rolling, it is wound at 650 ° C. or lower. It is preferable. If it exceeds 650 ° C., compounds such as coarse carbides tend to appear, and stretch flangeability deteriorates. More preferably, it is 600 degrees C or less. Although the lower limit is not particularly defined, it is preferable to set this as the lower limit because it is difficult to make it at room temperature or lower.

このようにして製造した熱延鋼板に必要に応じて酸洗、スキンパスを行っても良い。スキンパスの圧下率は特に限定しないが、形状矯正、耐常温時効性の改善、強度調整などのため40%程度まで行っても良い。0.1%未満では効果が小さく、制御も困難なのでこれを下限値にすることが好ましい。   The hot-rolled steel sheet thus manufactured may be pickled and skin-passed as necessary. The reduction rate of the skin pass is not particularly limited, but may be up to about 40% for shape correction, improvement of room temperature aging resistance, strength adjustment, and the like. If it is less than 0.1%, the effect is small and control is difficult, so this is preferably set to the lower limit.

熱延鋼板を酸洗して冷間圧延したのち、最高到達温度を600〜1100℃とする熱処理後、常温まで連続的に冷却するか、さらに100〜550℃の温度で30秒以上保持しても良い。最高到達温度が600℃未満ではα−γ変態が起こりにくく、再結晶もしないことがあるため、加工性が低下し易いので600℃を下限とすることが好ましい。一方、最高到達温度を1100℃超とするには、コストアップが著しく、また板破断などの操業トラブルを誘発するのでこれを上限とすることが好ましい。より好ましくは700〜950℃の範囲である。この温度域での熱処理時間は特に規定しないが、鋼板の温度均一化のために1秒以上が好ましい。しかし、10分超では、粒界酸化相生成が促進される上、コストの上昇を招く。熱処理後、各種めっきを施しても構わない。また、スキンパスの実施も可能である。   After pickling and cold rolling the hot-rolled steel sheet, after heat treatment to make the maximum temperature 600 to 1100 ° C, it is continuously cooled to room temperature or further maintained at a temperature of 100 to 550 ° C for 30 seconds or more. Also good. If the maximum temperature is less than 600 ° C., α-γ transformation is unlikely to occur and recrystallization may not occur. On the other hand, in order to set the maximum temperature to be higher than 1100 ° C., the cost increases remarkably, and operation troubles such as plate breakage are induced. More preferably, it is the range of 700-950 degreeC. Although the heat treatment time in this temperature range is not particularly defined, it is preferably 1 second or more for uniform temperature of the steel sheet. However, if it exceeds 10 minutes, the generation of grain boundary oxidized phase is promoted and the cost is increased. Various plating may be performed after the heat treatment. A skin pass can also be performed.

以下、本発明の実施例を比較例とともに説明する。   Examples of the present invention will be described below together with comparative examples.

表1に化学成分を示す鋼のスラブを連続鋳造法により製造した。このスラブを1200℃に加熱し、Ar3変態温度以上である880℃〜910℃で熱延を完了し、580℃で巻き取った厚さ2.3mmの鋼帯を、酸洗の後、冷延により板厚を1.2mmとした。引き続き熱処理を表2の最高到達温度の条件で行った。最高到達温度にて90秒間保持して、(最高到達温度−130)℃まで5℃/秒で冷却した。その後、表2に示した冷速で冷却し、さらに表2の過時効温度で約300秒間付加的熱処理を行った。スキンパスは0.5%とした。 Steel slabs having chemical components shown in Table 1 were produced by a continuous casting method. This slab was heated to 1200 ° C., hot rolling was completed at 880 ° C. to 910 ° C., which is higher than the Ar 3 transformation temperature, and a 2.3 mm thick steel strip wound up at 580 ° C. was pickled, The plate thickness was set to 1.2 mm by rolling. Subsequently, the heat treatment was carried out under the conditions of the highest temperature reached in Table 2. The temperature was maintained at the maximum temperature for 90 seconds and cooled to (maximum temperature-130) ° C. at 5 ° C./second. Then, it cooled at the cold speed shown in Table 2, and also performed additional heat treatment for about 300 seconds at the overaging temperature of Table 2. The skin pass was 0.5%.

このようにして得られた鋼板の強度、延性、伸びフランジ性および介在物の粒径分布、形態、平均組成を調べた。その結果を表2に示す。強度と延性は、圧延方向に対して垂直方向に採取したJIS5号試験片の引張試験により求めた。伸びフランジ性は、150mm×150mmの鋼板の中央に開けた直径10mmの打ち抜き穴を60°の円錐パンチで押し広げ、板厚貫通亀裂が生じた時点での穴径D(mm)を測定し、穴広げ値λ=(D−10)/10で求めたλで評価した。さらに、介在物は光学顕微鏡による100倍と1000倍の観察を行い、ランダムに選んだ100個の介在物について粒径と形態を測定した。さらに、走査型電子顕微鏡の定量分析機能を用いて、ランダムに選んだ20個の介在物について組成分析を実施した。表2から明らかなように、本発明の要件を満たす発明鋼は、同強度の比較鋼と比べて穴広げ値が大きくなっており、優れた伸びフランジ性を示すことが分かる。   The steel sheet thus obtained was examined for strength, ductility, stretch flangeability, inclusion particle size distribution, morphology, and average composition. The results are shown in Table 2. Strength and ductility were determined by a tensile test of a JIS No. 5 test piece taken in a direction perpendicular to the rolling direction. Stretch flangeability is measured by measuring the hole diameter D (mm) at the time when a through-thickness crack is generated by expanding a punched hole with a diameter of 10 mm with a 60 ° conical punch in the center of a 150 mm × 150 mm steel plate. The hole expansion value λ = (D−10) / 10. Furthermore, the inclusions were observed 100 times and 1000 times with an optical microscope, and the particle size and morphology of 100 inclusions selected at random were measured. Furthermore, using a quantitative analysis function of a scanning electron microscope, composition analysis was performed on 20 inclusions randomly selected. As can be seen from Table 2, the inventive steel that satisfies the requirements of the present invention has a larger hole expansion value than the comparative steel of the same strength, and shows excellent stretch flangeability.

Figure 2007291421
Figure 2007291421

Figure 2007291421
Figure 2007291421

Claims (3)

C:0.03〜0.3質量%、
Si:0.1〜2.0質量%、
Mn:1.0〜3.5質量%、
P:0.05質量%以下、
S:0.01質量%以下、
N:0.0005〜0.01質量%、
酸可溶Al:0.01質量%以下、
酸可溶Ti:0.005質量%未満、
NdおよびPrの1種もしくは2種の合計:0.0002〜0.02質量%を含有し、残部が鉄および不可避的不純物からなる鋼であり、
その鋼中には平均の介在物組成でNd酸化物もしくはPr酸化物の1種または2種の合計が2〜70質量%、SiO2が2〜60質量%、Al23が70質量%以下の範囲の介在物を含むことを特徴とする伸びフランジ性に優れた高強度鋼板。
C: 0.03-0.3 mass%,
Si: 0.1 to 2.0% by mass,
Mn: 1.0 to 3.5% by mass,
P: 0.05 mass% or less,
S: 0.01% by mass or less,
N: 0.0005 to 0.01% by mass,
Acid-soluble Al: 0.01% by mass or less,
Acid-soluble Ti: less than 0.005% by mass,
A total of one or two of Nd and Pr: 0.0002 to 0.02% by mass, the balance being steel made of iron and inevitable impurities,
One or two total 2 to 70% by weight of the inclusions of the average in the steel Nd oxides composition or a Pr oxide, SiO 2 is 2 to 60 wt%, Al 2 O 3 is 70 wt% A high-strength steel sheet excellent in stretch flangeability, characterized by including inclusions in the following range.
C:0.03〜0.3質量%、
Si:0.1〜2.0質量%、
Mn:1.0〜3.5質量%、
P:0.05質量%以下、
S:0.01質量%以下、
N:0.0005〜0.01質量%、
酸可溶Al:0.01質量%以下、
酸可溶Ti:0.005質量%未満、
NdおよびPrの1種もしくは2種の合計:0.0002〜0.02質量%を含有し、残部が鉄および不可避的不純物からなる鋼であり、
その鋼中には介在物の個数割合で50%以上が球状、紡錘状のいずれか一方または双方の介在物からなることを特徴とする伸びフランジ性に優れた高強度鋼板。
C: 0.03-0.3 mass%,
Si: 0.1 to 2.0% by mass,
Mn: 1.0 to 3.5% by mass,
P: 0.05 mass% or less,
S: 0.01% by mass or less,
N: 0.0005 to 0.01% by mass,
Acid-soluble Al: 0.01% by mass or less,
Acid-soluble Ti: less than 0.005% by mass,
A total of one or two of Nd and Pr: 0.0002 to 0.02% by mass, the balance being steel made of iron and inevitable impurities,
A high-strength steel sheet with excellent stretch flangeability, characterized in that in the steel, 50% or more of inclusions are composed of either spherical or spindle inclusions or both.
C:0.03〜0.3質量%、
Si:0.1〜2.0質量%、
Mn:1.0〜3.5質量%、
P:0.05質量%以下、
S:0.01質量%以下、
N:0.0005〜0.01質量%、
酸可溶Al:0.01質量%以下、
酸可溶Ti:0.005質量%以下、
NdおよびPrの1種もしくは2種の合計:0.0002〜0.02質量%を含有し、残部が鉄および不可避的不純物からなる鋼であり、
その鋼中には0.5μm以上10μm以下の介在物が500個/cm2以上、100000個/cm2以下存在することを特徴とする伸びフランジ性に優れた高強度鋼板。
C: 0.03-0.3 mass%,
Si: 0.1 to 2.0% by mass,
Mn: 1.0 to 3.5% by mass,
P: 0.05 mass% or less,
S: 0.01% by mass or less,
N: 0.0005 to 0.01% by mass,
Acid-soluble Al: 0.01% by mass or less,
Acid-soluble Ti: 0.005% by mass or less,
A total of one or two of Nd and Pr: 0.0002 to 0.02% by mass, the balance being steel made of iron and inevitable impurities,
A high-strength steel sheet excellent in stretch flangeability, characterized in that inclusions of 0.5 μm or more and 10 μm or less are present in the steel of 500 pieces / cm 2 or more and 100,000 pieces / cm 2 or less.
JP2006117882A 2006-04-21 2006-04-21 High strength steel plate with excellent stretch flangeability and method for producing the same Active JP4719067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006117882A JP4719067B2 (en) 2006-04-21 2006-04-21 High strength steel plate with excellent stretch flangeability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006117882A JP4719067B2 (en) 2006-04-21 2006-04-21 High strength steel plate with excellent stretch flangeability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007291421A true JP2007291421A (en) 2007-11-08
JP4719067B2 JP4719067B2 (en) 2011-07-06

Family

ID=38762323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117882A Active JP4719067B2 (en) 2006-04-21 2006-04-21 High strength steel plate with excellent stretch flangeability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4719067B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299136A (en) * 2008-06-13 2009-12-24 Nippon Steel Corp High strength steel sheet having excellent stretch flange formability and fatigue property, and method for refining the molten steel thereof
JP2009299149A (en) * 2008-06-16 2009-12-24 Nippon Steel Corp Dp steel sheet superior in formability for extension flange and method for producing the same
WO2022145064A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002422A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Manufacturing method of steel material with few alumina clusters
JP2005307301A (en) * 2004-04-23 2005-11-04 Nippon Steel Corp High strength steel plate with excellent stretch flangeability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002422A (en) * 2003-06-12 2005-01-06 Nippon Steel Corp Manufacturing method of steel material with few alumina clusters
JP2005307301A (en) * 2004-04-23 2005-11-04 Nippon Steel Corp High strength steel plate with excellent stretch flangeability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299136A (en) * 2008-06-13 2009-12-24 Nippon Steel Corp High strength steel sheet having excellent stretch flange formability and fatigue property, and method for refining the molten steel thereof
JP2009299149A (en) * 2008-06-16 2009-12-24 Nippon Steel Corp Dp steel sheet superior in formability for extension flange and method for producing the same
WO2022145064A1 (en) * 2020-12-28 2022-07-07 日本製鉄株式会社 Steel material

Also Published As

Publication number Publication date
JP4719067B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP6354909B2 (en) High-strength steel sheet, high-strength galvanized steel sheet, and production methods thereof
JP4927236B1 (en) Steel sheet for hot stamping, manufacturing method thereof, and manufacturing method of high-strength parts
JP4445365B2 (en) Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP5114747B2 (en) Manufacturing method of high-strength steel sheet with extremely good balance between hole expansibility and ductility and manufacturing method of galvanized steel sheet
WO2011142356A1 (en) High-strength steel sheet and method for producing same
JP4926814B2 (en) High strength steel plate with controlled yield point elongation and its manufacturing method
JP6597889B2 (en) High strength cold-rolled steel sheet and method for producing high-strength cold-rolled steel sheet
JP6237960B1 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
JP2023100953A (en) Plated steel sheet for hot forming with excellent impact properties after hot forming, hot formed member, and manufacturing method thereof
JP5979326B1 (en) High strength plated steel sheet and method for producing the same
JP2005320624A (en) Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding
JP4050991B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
JP2020509190A (en) High-strength steel sheet excellent in high-temperature elongation property, warm press-formed member, and method for producing them
JP4730088B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP2005256115A (en) High-strength hot-rolled steel sheet with excellent stretch flangeability and fatigue characteristics
WO2008007477A1 (en) High-strength steel sheet excellent in stretch flangeability and fatigue property
JP2010043360A (en) High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor
JP2002363694A (en) Superhigh strength cold rolled steel sheet having excellent bending workability
JP4719067B2 (en) High strength steel plate with excellent stretch flangeability and method for producing the same
JP4268559B2 (en) High strength steel plate with excellent stretch flangeability
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
JP2008274336A (en) High-strength steel sheet with excellent stretch flangeability and fatigue characteristics and method for producing the molten steel
JP2007231352A (en) Precipitation hardening high strength steel sheet and its production method
JP5979325B1 (en) High strength plated steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110401

R151 Written notification of patent or utility model registration

Ref document number: 4719067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350