JP2007287844A - Method for manufacturing component incorporating substrate, and its manufacturing device - Google Patents

Method for manufacturing component incorporating substrate, and its manufacturing device Download PDF

Info

Publication number
JP2007287844A
JP2007287844A JP2006111975A JP2006111975A JP2007287844A JP 2007287844 A JP2007287844 A JP 2007287844A JP 2006111975 A JP2006111975 A JP 2006111975A JP 2006111975 A JP2006111975 A JP 2006111975A JP 2007287844 A JP2007287844 A JP 2007287844A
Authority
JP
Japan
Prior art keywords
resin
mold
component
manufacturing
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006111975A
Other languages
Japanese (ja)
Inventor
Tsukasa Shiraishi
司 白石
Koichi Hirano
浩一 平野
Seiichi Nakatani
誠一 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006111975A priority Critical patent/JP2007287844A/en
Publication of JP2007287844A publication Critical patent/JP2007287844A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide excellent productivity by collectively performing a holing work in forming through-holes 4 for a via hole and gaps 3 for component storage concerning a component incorporating substrate manufacturing method and its device. <P>SOLUTION: A resin 1A fills a metallic mold 2 and a resin 1B obtained by filling in the metallic mold 2 is taken out from the metallic mold 2. A film 5 is made to adhere on both the surfaces of the resin 1B and the holing work is performed in the film 5 at positions corresponding to the through-holes 4 formed in the resin 1B. The through-holes 4 are filled with a conductive material 6 and the film 5 is ripped off. Circuit substrates 7, 8 with electronic components 9, 10 previously mounted thereon are superimposed by positioning on the outer layer surface of the resin 1B so as to store the electronic components 9, 10 in the gaps 3. The resin 1B is hardened so as to adhere onto the circuit substrates 7, 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子部品を基板中に埋め込んでなる部品内蔵基板の製造方法および部品内蔵基板の製造装置に関するものである。   The present invention relates to a method for manufacturing a component-embedded substrate in which an electronic component is embedded in a substrate, and a device for manufacturing the component-embedded substrate.

近年のエレクトロニクス機器の小型化・薄型化、高機能化に伴って、プリント基板に実装される電子部品の高密度実装化、および、電子部品が実装された回路基板の高機能化への要求が益々強くなっている。このような状況の中、電子部品を基板中に埋め込んだ部品内蔵基板が開発されている(例えば、特許文献1)。   With recent downsizing, thinning and higher functionality of electronic equipment, there is a demand for higher density mounting of electronic components mounted on printed circuit boards and higher functionality of circuit boards mounted with electronic components. It is getting stronger and stronger. Under such circumstances, a component-embedded substrate in which an electronic component is embedded in the substrate has been developed (for example, Patent Document 1).

部品内蔵基板では、通常、プリント基板の表面に実装している能動部品(例えば、半導体素子)や受動部品(例えば、コンデンサ)を基板の中に埋め込んでいるので、基板の面積を削減することができる。また、表面実装の場合と比較して、電子部品を配置する自由度が高くなるため、電子部品間の配線の最適化によって高周波特性の改善なども見込むことができる。   In a component-embedded board, active parts (for example, semiconductor elements) and passive parts (for example, capacitors) mounted on the surface of a printed circuit board are usually embedded in the board, so that the area of the board can be reduced. it can. In addition, since the degree of freedom in arranging electronic components is higher than in the case of surface mounting, improvement in high frequency characteristics can be expected by optimizing the wiring between the electronic components.

今日、既にセラミック基板の分野では、電子部品を内蔵したLTCC(low temperature co-fired ceramics)基板が実用化されているものの、これは重く割れやすいため大型の基板に適用することが難しく、しかも、高温処理が必要なのでLSIのような半導体素子を内蔵できないなど制約が大きい。最近注目されているのは、樹脂を用いたプリント基板に部品を内蔵した部品内蔵基板であり、これは、LTCC基板とは異なり、基板の大きさに対する制約が少なく、LSIの内蔵も可能であるという利点も有している。   Today, in the field of ceramic substrates, LTCC (low temperature co-fired ceramics) substrates with built-in electronic components have been put into practical use, but this is difficult to apply to large substrates because it is heavy and fragile, Since high temperature processing is required, there are significant restrictions such as the inability to incorporate semiconductor elements such as LSI. Recently, a component-embedded substrate in which components are embedded in a printed circuit board using resin, unlike an LTCC substrate, there are few restrictions on the size of the substrate, and an LSI can be incorporated. It also has the advantage.

次に、図6を参照しながら、特許文献1に開示された部品内蔵基板(回路部品内蔵モジュール)について説明する。図6において、101,107,108は絶縁シート、102,111,112はビアホール導体、103は空隙部、104,109,110は配線回路層、105は回路部品である。   Next, a component built-in substrate (circuit component built-in module) disclosed in Patent Document 1 will be described with reference to FIG. In FIG. 6, 101, 107, and 108 are insulating sheets, 102, 111, and 112 are via-hole conductors, 103 is a gap, 104, 109, and 110 are wiring circuit layers, and 105 is a circuit component.

図6に示した回路部品内蔵モジュールは、先ず図6(a)に示すように、熱硬化性樹脂を含む軟質(Bステージ状態)の第1の絶縁シート101を作製する。また、この絶縁シート101には、所望により厚み方向に貫通するスルーホールを形成し、そのスルーホール内に金属粉末を含む導体ペーストをスクリーン印刷や吸引処理をしながら充填して、ビアホール導体102を形成する。また、この絶縁シート101の所定箇所に電子部品を内蔵するための空隙部103を形成する。次に、図6(b1)〜(b4)に示すように、絶縁シート101の表面に、予め回路部品105が実装された配線回路層104を、絶縁シート101の空隙部103に回路部品105が実装収納されるように位置決めして、積層して圧着する。さらに、この絶縁シート101の上下面に軟化状態(Bステージ状態)の第2および第3のビアホール導体111,112を形成した絶縁シート107、108を積層圧着して、図6(c)に示すように、絶縁基板内に回路部品105を内蔵した多層配線基板を作製する。各絶縁層に対するビアホールおよび空隙の形成は、各絶縁層に対してドリル、パンチング、サンドブラスト、あるいは炭酸ガスレーザ、YAGレーザ、およびエキシマレーザー等の照射による加工により行われる。
特許第3051700号
In the circuit component built-in module shown in FIG. 6, first, as shown in FIG. 6A, a soft (B-stage state) first insulating sheet 101 containing a thermosetting resin is produced. Further, in this insulating sheet 101, a through hole penetrating in the thickness direction is formed as desired, and a conductive paste containing metal powder is filled in the through hole while performing screen printing or suction treatment, so that the via hole conductor 102 is formed. Form. Further, a gap 103 for incorporating an electronic component is formed at a predetermined location of the insulating sheet 101. Next, as shown in FIGS. 6B1 to 6B4, the wiring circuit layer 104 in which the circuit component 105 is mounted in advance on the surface of the insulating sheet 101, and the circuit component 105 in the gap 103 of the insulating sheet 101. Position it so that it is mounted and housed, and stack and press. Further, the insulating sheets 107 and 108 in which the second and third via-hole conductors 111 and 112 in the softened state (B stage state) are formed on the upper and lower surfaces of the insulating sheet 101 are laminated and pressure-bonded, as shown in FIG. In this way, a multilayer wiring board in which the circuit component 105 is built in the insulating substrate is manufactured. The formation of via holes and voids in each insulating layer is performed by processing the drilling, punching, sand blasting, or irradiation with carbon dioxide laser, YAG laser, excimer laser or the like on each insulating layer.
Patent No. 3051700

しかしながら、従来の部品内蔵基板の製造方法では、ビアホールおよび空隙の形成に際しては、各層毎に孔開け加工を行う必要があり、生産性が極めて低いという課題を有する。特に、サンドブラスト以外の工法では、1穴毎に孔開け加工行うので、より顕著となる。   However, in the conventional method for manufacturing a component-embedded substrate, when forming a via hole and a gap, it is necessary to perform drilling for each layer, and there is a problem that productivity is extremely low. In particular, a method other than sandblasting is more noticeable because the holes are drilled for each hole.

本発明はかかる点に鑑みてなされたものであり、その主な目的は、生産性に優れた部品内蔵基板の製造方法およびその製造装置を提供することにある。   The present invention has been made in view of such a point, and a main object thereof is to provide a method for manufacturing a component-embedded substrate and a manufacturing apparatus therefor, which are excellent in productivity.

本発明の第1の部品内蔵基板の製造方法は、成型可能な絶縁性を有する樹脂を金型内に充填する工程と、前記金型内に充填して成型した樹脂を前記金型から取り出す工程と、前記金型から取り出した前記樹脂の上下少なくとも一方の面にフィルムを貼り付ける工程と、前記樹脂中に形成した所定の貫通孔に対応する位置において前記フィルムに孔開け加工を施す工程と、前記所定の貫通孔内に導電性材料を充填する工程と、前記フィルムを剥離する工程と、前記フィルムを剥離した樹脂の外層面に予め電子部品を実装した回路基板を該電子部品が前記樹脂中に形成した所定の空隙に収納されるように位置決めして重ね合わせる工程と、前記樹脂を硬化して前記回路基板と接着する工程とを含むものである。   The method for manufacturing a first component-embedded substrate of the present invention includes a step of filling a mold with a resin having insulating properties that can be molded, and a step of taking out the molded resin filled in the mold from the mold A step of attaching a film to at least one upper and lower surfaces of the resin taken out from the mold, and a step of punching the film at a position corresponding to a predetermined through hole formed in the resin; A step of filling the predetermined through-hole with a conductive material; a step of peeling the film; and a circuit board in which an electronic component is previously mounted on the outer surface of the resin from which the film has been peeled. A step of positioning and overlapping so as to be accommodated in a predetermined gap formed in the step, and a step of curing the resin and bonding it to the circuit board.

なお、成型可能な絶縁性を有する樹脂を金型内に充填する工程と、前記金型内に充填して成型した樹脂を前記金型から取り出す工程との間に、前記樹脂の硬度を増大させる工程をさらに含むものであってもよい。   In addition, the hardness of the resin is increased between the step of filling the mold with a resin having an insulating property and the step of taking out the resin filled in the mold and molded from the mold. It may further include a process.

また、成型可能な絶縁性を有する樹脂は、複数枚の樹脂を重ね合わせてなるものであってもよい。   In addition, the moldable insulating resin may be a laminate of a plurality of resins.

本発明の第1の部品内蔵基板の製造方法によると、基板となる樹脂を金型内に充填して成型することによって、樹脂中にビアホールとなる貫通孔ならびに電子部品を収納するための空隙を一括して形成でき、生産性に優れる。   According to the first method of manufacturing a component-embedded substrate of the present invention, by filling a resin to be a substrate into a mold and molding the resin, there are through holes to be via holes and voids for accommodating electronic components in the resin. It can be formed in a lump and has excellent productivity.

本発明の第2の部品内蔵基板の製造方法は、成型可能な絶縁性を有する第1の樹脂上に成型可能な絶縁性を有する第2の樹脂を重ねて金型内に充填する工程と、前記金型内に充填して成型した前記第1および第2の樹脂を前記金型から取り出す工程と、前記第1および第2の樹脂中に形成した所定の貫通孔内に導電性材料を充填する工程と、前記第1の樹脂を剥離する工程と、前記第2の樹脂の外層面に予め電子部品を実装した回路基板を該電子部品が前記第2の樹脂中に形成した所定の空隙に収納されるように位置決めして重ね合わせる工程と、前記第2の樹脂を硬化して前記回路基板と接着する工程とを含むものである。   The second component-embedded substrate manufacturing method of the present invention includes a step of stacking a moldable insulating second resin on a moldable insulating first resin and filling the mold in a mold. A step of taking out the first and second resins filled and molded in the mold from the mold, and filling a predetermined through hole formed in the first and second resins with a conductive material A step of peeling the first resin, and a circuit board having electronic components mounted in advance on the outer layer surface of the second resin in a predetermined gap formed in the second resin by the electronic components. It includes a step of positioning and stacking so as to be accommodated, and a step of curing the second resin and bonding it to the circuit board.

なお、成型可能な絶縁性を有する第1の樹脂上に成型可能な絶縁性を有する第2の樹脂を重ねて金型内に充填する工程が、成型可能な絶縁性を有する第1の樹脂を金型内に充填する工程と、前記第1の樹脂の硬度を増大させる工程と、成型可能な絶縁性を有する第2の樹脂を金型内に充填して前記第1の樹脂上に重ねる工程とからなるものであってもよい。   The step of stacking the moldable insulating second resin on the moldable insulating first resin and filling the mold with the moldable insulating first resin has the moldable insulating first resin. A step of filling the mold, a step of increasing the hardness of the first resin, and a step of filling the mold with a second resin having a moldable insulating property and overlaying the mold on the first resin It may consist of:

また、成型可能な絶縁性を有する第1の樹脂上に成型可能な絶縁性を有する第2の樹脂を重ねて金型内に充填する工程と、前記金型内に充填して成型した前記第1および第2の樹脂を前記金型から取り出す工程との間に、前記第2の樹脂の硬度を増大させる工程をさらに含むものであってもよい。   Also, a step of filling a mold with a second resin having a moldable insulating property on the moldable first resin, filling the mold with the mold, and molding the mold filled with the mold. A step of increasing the hardness of the second resin may be further included between the step of taking out the first resin and the second resin from the mold.

また、成型可能な絶縁性を有する第2の樹脂は、複数枚の樹脂を重ね合わせてなるものであってもよい。   Further, the second resin having insulating properties that can be molded may be a laminate of a plurality of resins.

本発明の第2の部品内蔵基板の製造方法によると、基板となる第2の樹脂を金型内に充填して成型することによって、第1および第2の樹脂中にビアホールとなる貫通孔ならびに電子部品を収納するための空隙を一括して形成でき、生産性に優れる。   According to the second method of manufacturing a component-embedded substrate of the present invention, by filling the mold with the second resin to be the substrate and molding it, the through holes to be via holes in the first and second resins, and Gaps for storing electronic components can be formed in a batch, and productivity is excellent.

本発明の第3の部品内蔵基板の製造方法は、フィルム上に成型可能な絶縁性を有する樹脂を積層してなる積層体の前記樹脂の表面より金型をプレスする工程と、前記積層体中にプレス形成された所定の貫通孔内に前記フィルム面から導電性材料を充填する工程と、前記フィルムを剥離する工程と、前記フィルムを剥離した樹脂の外層面に予め電子部品を実装した回路基板を該電子部品が前記樹脂中にプレス形成した所定の空隙に収納されるように位置決めして重ね合わせる工程と、前記樹脂を硬化して前記回路基板と接着する工程とを含むものである。   The third component-embedded substrate manufacturing method of the present invention includes a step of pressing a mold from the surface of the resin of a laminate formed by laminating an insulating resin moldable on a film, A circuit board in which electronic parts are mounted in advance on the outer layer surface of the resin from which the film is peeled off, a step of filling the conductive material from the film surface into the predetermined through-hole press formed on the film, a step of peeling the film, The electronic component includes a step of positioning and overlapping so that the electronic component is accommodated in a predetermined gap formed by pressing in the resin, and a step of curing the resin and bonding the resin to the circuit board.

なお、積層体の樹脂の表面より金型をプレスする工程にて、前記積層体を加熱してもよい。   In addition, you may heat the said laminated body in the process of pressing a metal mold | die from the surface of the resin of a laminated body.

また、成型可能な絶縁性を有する樹脂は、複数枚の樹脂を重ね合わせてなるものであってもよい。   In addition, the moldable insulating resin may be a laminate of a plurality of resins.

本発明の第3の部品内蔵基板の製造方法によると、基板となる樹脂の表面より金型をプレスすることによって、樹脂中にビアホールとなる貫通孔ならびに電子部品を収納するための空隙を一括して形成でき、生産性に優れる。   According to the third method of manufacturing a component-embedded substrate of the present invention, by pressing a mold from the surface of the resin serving as the substrate, a through hole serving as a via hole and a gap for accommodating electronic components are collectively contained in the resin. And can be formed with excellent productivity.

本発明の第4の部品内蔵基板の製造方法は、フィルム上に成型可能な絶縁性を有する樹脂を積層した積層体を所定の速度で送り出して表面に凸部を有する所定の速度で回転している回転体に供給する工程と、前記積層体の樹脂の表面より前記回転体にてプレスする工程と、前記積層体を所定の長さに裁断する工程と、前記裁断した積層体中にプレス形成された所定の貫通孔内に前記フィルム面から導電性材料を充填する工程と、前記フィルムを剥離する工程と、前記フィルムを剥離した樹脂の外層面に予め電子部品を実装した回路基板を該電子部品が前記樹脂中にプレス形成した所定の空隙に収納されるように位置決めして重ね合わせる工程と、前記樹脂を硬化して前記回路基板と接着する工程とを含むものである。   According to the fourth method of manufacturing a component-embedded substrate of the present invention, a laminate in which an insulating resin that can be molded on a film is laminated at a predetermined speed and rotated at a predetermined speed having a convex portion on the surface. Supplying to the rotating body, pressing with the rotating body from the resin surface of the laminated body, cutting the laminated body into a predetermined length, and press forming in the cut laminated body Filling a predetermined through-hole with a conductive material from the film surface, peeling the film, and mounting a circuit board on which an electronic component is previously mounted on the outer layer surface of the resin from which the film has been peeled off The method includes a step of positioning and stacking the parts so as to be accommodated in a predetermined gap formed by pressing in the resin, and a step of curing the resin and bonding the resin to the circuit board.

なお、積層体の樹脂の表面より回転体にてプレスする工程にて、前記積層体を加熱してもよい。   In addition, you may heat the said laminated body in the process pressed with the rotary body from the surface of resin of a laminated body.

また、成型可能な絶縁性を有する樹脂は、複数枚の樹脂を重ね合わせてなるものであってもよい。   In addition, the moldable insulating resin may be a laminate of a plurality of resins.

本発明の部品内蔵基板の製造装は、表面に凸部を有した回転体を所定の速度で回転する機構と、フィルム上に成型可能な絶縁性を有する樹脂を積層した積層体を所定の速度で送り出して前記回転体に供給する機構とを備えたものである。   The manufacturing apparatus for a component-embedded substrate of the present invention has a mechanism in which a rotating body having a convex portion on the surface is rotated at a predetermined speed and a laminated body in which an insulating resin that can be molded on a film is laminated at a predetermined speed. And a mechanism for supplying the rotating body to the rotating body.

本発明の第4の部品内蔵基板の製造方法によると、基板となる樹脂の表面より凸部を有した回転体にてプレスすることによって、樹脂中にビアホールとなる貫通孔ならびに電子部品を収納するための空隙を一括して形成でき、生産性に優れる。   According to the fourth method for manufacturing a substrate with built-in components of the present invention, the through-hole serving as a via hole and the electronic component are accommodated in the resin by pressing with a rotating body having a convex portion from the surface of the resin serving as the substrate. Therefore, the voids can be formed all at once, and the productivity is excellent.

本発明によれば、ビアホールのための貫通孔および部品収納のための空隙の形成において、一括して孔開け加工が施されるので、優れた生産性にて部品内蔵基板を製造することができる。   According to the present invention, in the formation of the through hole for the via hole and the gap for storing the component, the boring process is performed collectively, so that the component built-in substrate can be manufactured with excellent productivity. .

(第1の実施の形態)
本発明の第1の実施の形態について図面をもとに説明する。図1は、本実施の形態の部品内蔵基板を製造する方法を説明するための工程図である。
(First embodiment)
A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a process diagram for explaining a method of manufacturing a component-embedded substrate according to the present embodiment.

図1によれば、先ず、図1(a)に示すように、未硬化の液状のエポキシ系熱硬化型樹脂1Aを金型2中に注入した後、80℃30分程度の加熱処理を施して軟質(Bステージ)化し、樹脂1Aの硬度を増大させる。次に、図1(b)に示すように、金型2に応じた部品収納のための空隙3やビアホール形成用の貫通孔4が形成されている軟質化した熱硬化型樹脂1Bを金型2より取り出す。次に、図1(c)に示すように、軟質化した樹脂1Bの両面にPET材の樹脂フィルム5を貼り付ける。次に、図1(d)に示すように、ビアホール形成用の貫通孔4の両端部の樹脂フィルム5を、レーザ照射により開口して開口部14を形成する。次に、図1(e)に示すように、樹脂フィルム5の開口部14より、エポキシ系樹脂に導電性金属粉、例えばCu粉を添加した導電性樹脂ペースト6を、スクリーン印刷や吸引処理をしながら充填する。次に、図1(f)に示すように、樹脂フィルム5を剥離する。最後に、図1(g)に示すように、樹脂1Bの両外層面に、回路基板7,8の表面にそれぞれ電子部品9,10を実装した実装体を、電子部品9,10が空隙3内に収納されるように位置を合わせて重ねた後、加熱プレス処理(200℃、3MPa、2時間)を施して一体化すると同時に、ビアホール6を介した回路基板7と回路基板10間の接続を行う。   According to FIG. 1, first, as shown in FIG. 1 (a), after injecting an uncured liquid epoxy thermosetting resin 1A into the mold 2, a heat treatment is performed at 80 ° C. for about 30 minutes. To soften (B stage) and increase the hardness of the resin 1A. Next, as shown in FIG. 1 (b), a softened thermosetting resin 1B in which a gap 3 for housing components corresponding to the mold 2 and a through hole 4 for forming a via hole is formed is molded. Take out from 2. Next, as shown in FIG.1 (c), the resin film 5 of PET material is affixed on both surfaces of the softened resin 1B. Next, as shown in FIG. 1D, the resin film 5 at both ends of the through hole 4 for forming a via hole is opened by laser irradiation to form an opening 14. Next, as shown in FIG.1 (e), from the opening part 14 of the resin film 5, the conductive resin paste 6 which added the conductive metal powder, for example, Cu powder, to the epoxy resin is subjected to screen printing or suction treatment. While filling. Next, as shown in FIG. 1F, the resin film 5 is peeled off. Finally, as shown in FIG. 1G, a mounting body in which the electronic components 9 and 10 are mounted on the surfaces of the circuit boards 7 and 8 respectively on both outer layer surfaces of the resin 1B, and the electronic components 9 and 10 have the gap 3 After being aligned and stacked so as to be housed inside, it is integrated by applying a heat press process (200 ° C., 3 MPa, 2 hours), and at the same time, connection between the circuit board 7 and the circuit board 10 via the via hole 6 I do.

なお、本実施の形態では1個の金型から取り出した1種類の樹脂で部品内蔵基板を作製したが、2種類の樹脂を重ねて作製することも可能である。以下、2種類の樹脂を重ねて部品内蔵基板を製造する方法を、図2の工程図を用いて説明する。   In the present embodiment, the component-embedded substrate is manufactured with one type of resin taken out from one mold, but it is also possible to stack two types of resins. Hereinafter, a method of manufacturing a component-embedded substrate by stacking two types of resins will be described with reference to the process diagram of FIG.

図2によれば、先ず、図2(a)に示すように、未硬化の液状のエポキシ系熱硬化型樹脂1Aをそれぞれ金型2,12中に注入した後、80℃30分程度の加熱処理を施して軟質(Bステージ)化し、樹脂1Aの硬度を増大させる。次に、図2(b)に示すように、金型2,12に応じた部品収納のための空隙3やビアホール形成用の貫通孔4が形成されている軟質化した各熱硬化型樹脂1Bを金型2,12より取り出す。次に、図2(c)に示すように、軟質化した各樹脂1Bの両面に、PET材の樹脂フィルム5を貼り付ける。次に、図2(d)に示すように、各樹脂1B中に形成したビアホール形成用の貫通孔4の両端部の樹脂フィルム5を、レーザ照射により開口して開口部14を形成する。次に、図2(e)に示すように、樹脂フィルム5の開口部14より、エポキシ系樹脂に導電性金属粉、例えばCu粉を添加した導電性樹脂ペースト6を、スクリーン印刷や吸引処理をしながら充填する。次に、図2(f)に示すように、樹脂フィルム5を剥離する。最後に、図1(g)に示すように、各樹脂1B同士を所定の位置が重なるように重ね合わせ、さらに回路基板7,8の表面にそれぞれ電子部品9,10を実装した実装体を、樹脂1B同士を積層した両外層面に、電子部品9,10が空隙3内に収納されるように位置を合わせて重ねた後、加熱プレス処理(200℃、3MPa、2時間)を施して一体化すると同時に、ビアホール6を介した回路基板7と回路基板10間の接続を行う。   According to FIG. 2, first, as shown in FIG. 2 (a), uncured liquid epoxy thermosetting resin 1A is poured into molds 2 and 12, respectively, and then heated at 80 ° C. for about 30 minutes. It is processed to be soft (B stage) to increase the hardness of the resin 1A. Next, as shown in FIG. 2 (b), each softened thermosetting resin 1B that is softened in which a gap 3 for housing components corresponding to the molds 2 and 12 and a through hole 4 for forming a via hole are formed. Is taken out from the molds 2 and 12. Next, as shown in FIG.2 (c), the resin film 5 of PET material is affixed on both surfaces of each softened resin 1B. Next, as shown in FIG. 2 (d), the resin film 5 at both ends of the through hole 4 for forming the via hole formed in each resin 1B is opened by laser irradiation to form an opening 14. Next, as shown in FIG. 2 (e), the conductive resin paste 6 obtained by adding conductive metal powder, for example, Cu powder, to the epoxy resin is subjected to screen printing or suction treatment from the opening 14 of the resin film 5. While filling. Next, as shown in FIG. 2F, the resin film 5 is peeled off. Finally, as shown in FIG. 1 (g), a mounting body in which the respective resins 1 </ b> B are overlapped so that predetermined positions overlap each other and the electronic components 9 and 10 are mounted on the surfaces of the circuit boards 7 and 8, respectively. After the electronic parts 9 and 10 are aligned and overlapped on both outer layer surfaces where the resins 1B are laminated, the heat pressing process (200 ° C., 3 MPa, 2 hours) is performed integrally. At the same time, the circuit board 7 and the circuit board 10 are connected via the via hole 6.

なお、上記で説明した2種類の樹脂に留まらず、3種類以上の樹脂を重ねて部品内蔵基板を製造することも可能である。   In addition to the two types of resins described above, it is possible to manufacture a component-embedded board by stacking three or more types of resins.

本実施の形態によれば、ビアホール6を形成する貫通孔4や電子部品9,10を収納する空隙3を一括して形成できるので、極めて生産性の高い部品内蔵基板を製造する方法を提供できる。   According to the present embodiment, the through holes 4 for forming the via holes 6 and the gaps 3 for storing the electronic components 9 and 10 can be formed in a lump, so that it is possible to provide a method for manufacturing a component built-in substrate with extremely high productivity. .

また、図1(f)および図2(f)に示す工程において、フィルム付着面を研削加工することにより、樹脂1Bの厚み精度が向上すると共に、樹脂1Bの新生面が表層に現れることにより積層プレス後の接着力が向上する。   Further, in the steps shown in FIGS. 1 (f) and 2 (f), the thickness accuracy of the resin 1B is improved by grinding the film adhesion surface, and the new surface of the resin 1B appears on the surface layer. Later adhesion is improved.

なお、液状の樹脂1Aを金型2,12内に注入した後に加熱処理を施し軟質化を行ったが、予め軟質化した樹脂を金型2,12内に充填してもよい。その際は、加熱処理時間の短縮または削減することができる。   The liquid resin 1A is injected into the molds 2 and 12 and then softened by heat treatment. However, the molds 2 and 12 may be filled with a previously softened resin. In that case, the heat treatment time can be shortened or reduced.

また、成型可能な絶縁性を有する樹脂としてエポキシ系の熱硬化型樹脂1Aを用いたが、他の材料系の熱硬化型樹脂材料や紫外線硬化型樹脂材料および熱可塑型樹脂材料などの他の硬化性を有する樹脂材料を用いてもよい。   In addition, the epoxy thermosetting resin 1A is used as the insulating resin that can be molded, but other materials such as thermosetting resin materials, ultraviolet curable resin materials, and thermoplastic resin materials are used. A curable resin material may be used.

また、ビアホール6を形成する導電性材料として、導電性ペースト材料以外にメッキ製法などによる金属バルクなどを用いてもよい。   Further, as the conductive material for forming the via hole 6, a metal bulk or the like by a plating method may be used in addition to the conductive paste material.

さらに、樹脂フィルム材料やその開口方法については、同様な効果が得られる場合には特にこれを規定しない。また、樹脂1Bの両面に樹脂フィルム5を貼り付けたが、樹脂1Bの方面のみに樹脂フィルム5を貼り付けるものであってもよい。   Further, the resin film material and the opening method thereof are not particularly defined when similar effects can be obtained. Moreover, although the resin film 5 was affixed on both surfaces of resin 1B, the resin film 5 may be affixed only on the direction of resin 1B.

(第2の実施の形態)
本発明の第2の実施の形態について図面をもとに説明する。図3は、本実施の形態の部品内蔵基板を製造する方法を説明するための工程図である。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a process diagram for explaining a method of manufacturing the component-embedded substrate of the present embodiment.

図3によれば、先ず、図3(a)に示すように、第1の樹脂となる未硬化の液状のエポキシ系熱硬化型樹脂15Aをそれぞれ金型2,12中に注入した後、150℃30分程度の加熱処理を施し樹脂15Aの硬度を増大させて樹脂フィルム15Bを形成する。次に、図3(b)に示すように、金型2,12に、第2の樹脂となる液状のエポキシ系硬化樹脂1Aを充填して、80℃30分程度の加熱処理を施して軟質(Bステージ)化し、樹脂1Aの硬度を増大させる。次に、図3(c)に示すように、空隙3やビアホール形成用の貫通孔4が形成されている軟質化した熱硬化型樹脂1Bを、それぞれ金型2,12より取り出す。次に、図3(d)に示すように、軟質化した各樹脂1Bに形成された貫通孔4に樹脂フィルム15B面より、エポキシ樹脂に導電性金属粉、例えばCu粉を添加した導電性樹脂ペースト6を、スクリーン印刷や吸引処理をしながら充填する。次に、図3(e)に示すように、各樹脂フィルム15Bを剥離した後、各樹脂1B同士を所定の位置が重なるように重ね合わせる。最後に、図3(f)に示すように、回路基板7,8の表面にそれぞれ電子部品9,10を実装した実装体を、樹脂1B同士を積層した両外層面に、電子部品9,10が空隙3内に収納されるように位置を合わせて重ねた後、加熱プレス処理(200℃、3MPa、2時間)を施して一体化すると同時に、ビアホール6を介した回路基板7と回路基板10間の接続を行う。   According to FIG. 3, first, as shown in FIG. 3A, an uncured liquid epoxy thermosetting resin 15 </ b> A that becomes the first resin is injected into the molds 2 and 12, respectively, and then 150. A resin film 15B is formed by increasing the hardness of the resin 15A by performing heat treatment at about 30 ° C. for about 30 minutes. Next, as shown in FIG. 3 (b), the molds 2 and 12 are filled with a liquid epoxy-based cured resin 1A to be the second resin, and subjected to a heat treatment at 80 ° C. for about 30 minutes. (B stage) to increase the hardness of the resin 1A. Next, as shown in FIG. 3C, the softened thermosetting resin 1B in which the void 3 and the through hole 4 for forming the via hole are formed is taken out from the molds 2 and 12, respectively. Next, as shown in FIG.3 (d), the conductive resin which added the conductive metal powder, for example, Cu powder to the epoxy resin from the resin film 15B surface to the through-hole 4 formed in each softened resin 1B. The paste 6 is filled while performing screen printing or suction processing. Next, as shown in FIG.3 (e), after peeling each resin film 15B, each resin 1B is piled up so that a predetermined position may overlap. Finally, as shown in FIG. 3 (f), a mounting body in which the electronic components 9 and 10 are mounted on the surfaces of the circuit boards 7 and 8, respectively, and the electronic components 9 and 10 are formed on both outer layer surfaces where the resins 1B are laminated. Are stacked so as to be accommodated in the gap 3 and then integrated by applying a heat press process (200 ° C., 3 MPa, 2 hours), and at the same time, the circuit board 7 and the circuit board 10 through the via hole 6. Make a connection between.

本実施の形態によれば、第1の実施の形態の効果に加え、樹脂フィルムを開口する工程が不要となるので、さらに生産性が高く、微細なビア接続が行える部品内蔵基板を製造することができる。   According to the present embodiment, in addition to the effects of the first embodiment, a process for opening a resin film is not required, and therefore, it is possible to manufacture a component-embedded substrate that is more productive and can perform fine via connection. Can do.

また、図3(e)に示す工程において、フィルム付着面を研削加工することにより、樹脂1Bの厚み精度が向上すると共に、樹脂1Bの新生面が表層に現れることにより積層プレス後の接着力が向上する。   Further, in the step shown in FIG. 3 (e), by grinding the film adhesion surface, the thickness accuracy of the resin 1B is improved, and the new surface of the resin 1B appears on the surface layer, thereby improving the adhesive strength after the lamination press. To do.

なお、液状の樹脂1Aを金型2,12内に注入した後に加熱処理を施し軟質化を行ったが、予め軟質化した樹脂を金型2,12内に充填してもよい。その際は、加熱処理時間の短縮または削減することができる。   The liquid resin 1A is injected into the molds 2 and 12 and then softened by heat treatment. However, the molds 2 and 12 may be filled with a previously softened resin. In that case, the heat treatment time can be shortened or reduced.

また、金型2,12内に充填する2種類の成型可能な絶縁性を有する第1,2の樹脂としてエポキシ系の熱硬化型樹脂1A,15Aを用いたが、いずれの樹脂も他の材料系の熱硬化型樹脂材料や紫外線硬化型樹脂材料および熱可塑型樹脂材料などの他の硬化性を有する樹脂材料を用いてもよい。   In addition, the epoxy-type thermosetting resins 1A and 15A are used as the first and second resins having two kinds of moldable insulating properties to be filled in the molds 2 and 12, but any resin is another material. Other curable resin materials such as a thermosetting resin material, an ultraviolet curable resin material, and a thermoplastic resin material may be used.

また、ビアホール6を形成する導電性材料として、導電性ペースト材料以外にメッキ製法などによる金属バルクなどを用いてもよい。   Further, as the conductive material for forming the via hole 6, a metal bulk or the like by a plating method may be used in addition to the conductive paste material.

さらに、2種類の樹脂1A,15Aを積層する製造方法を説明したが、1種類のみの場合や、3種類以上の樹脂を積層しての製造方法も可能である。   Furthermore, although the manufacturing method which laminates | stacks 2 types of resin 1A, 15A was demonstrated, the manufacturing method of laminating | stacking 3 types or more of resin in the case of only 1 type or 3 types is also possible.

(第3の実施の形態)
本発明の第3の実施の形態について図面をもとに説明する。図4は、本実施の形態の部品内蔵基板を製造する方法を説明するための工程図である。
(Third embodiment)
A third embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a process diagram for explaining a method of manufacturing the component-embedded substrate according to the present embodiment.

図4によれば、先ず、図4(a)に示すように、PET材からなる樹脂フィルム15B上に軟質(Bステージ)化処理を施したシート状のエポキシ系熱硬化型樹脂1Bを積層した積層体を、図4(b)に示すように、金型22,32でプレスする。プレスする際には積層体に150℃の温度を加えることで、シート状のエポキシ系熱硬化型樹脂フィルム1Bは低粘度化するので、成型性が向上する。次に、図4(c)に示すように、軟質化した各樹脂1Bに形成された貫通孔4にフィルム15B面より、エポキシ樹脂に導電性金属粉、例えばCu粉を添加した導電性樹脂ペースト6を、スクリーン印刷や吸引処理をしながら充填する。次に、図4(d)に示すように、樹脂フィルム15Bを剥離した後、各シート状の樹脂1B同士を所定の位置が重なるように重ね合わせる。最後に、図4(f)に示すように、回路基板7,8の表面にそれぞれ電子部品9,10を実装した実装体を、各樹脂1B同士を積層した両外層面に、電子部品9,10が空隙3内に収納されるように位置を合わせて重ねた後、加熱プレス処理(200℃、3MPa、2時間)を施して一体化すると同時に、ビアホール6を介した回路基板7と回路基板10間の接続を行う。   According to FIG. 4, first, as shown in FIG. 4A, a sheet-like epoxy thermosetting resin 1 </ b> B subjected to a softening (B-stage) treatment is laminated on a resin film 15 </ b> B made of a PET material. As shown in FIG. 4 (b), the laminate is pressed with the dies 22 and 32. When pressing, the sheet-like epoxy thermosetting resin film 1B is reduced in viscosity by applying a temperature of 150 ° C. to the laminate, so that the moldability is improved. Next, as shown in FIG.4 (c), the conductive resin paste which added the conductive metal powder, for example, Cu powder, to the epoxy resin from the film 15B surface to the through-hole 4 formed in each softened resin 1B 6 is filled while performing screen printing or suction processing. Next, as shown in FIG. 4D, after the resin film 15B is peeled off, the sheet-like resins 1B are overlapped so that predetermined positions overlap each other. Finally, as shown in FIG. 4 (f), a mounting body in which the electronic components 9 and 10 are mounted on the surfaces of the circuit boards 7 and 8, respectively, and the electronic components 9 and 10 on both outer layer surfaces in which the resins 1B are laminated. 10 and the circuit board 7 and the circuit board through the via hole 6 at the same time after being stacked so as to be accommodated in the gap 3 and then integrated by applying a heat press process (200 ° C., 3 MPa, 2 hours). Connection between 10 is performed.

本発明によれば、第1,第2の実施の形態の効果に加え、樹脂フィルムの貼付工程がなくなり工程が簡素化されるので、さらに生産性の高い部品内蔵基板を製造できる。   According to the present invention, in addition to the effects of the first and second embodiments, the resin film sticking process is eliminated and the process is simplified, so that a component-embedded substrate with higher productivity can be manufactured.

また、図4(e)に示す工程において、フィルム付着面を研削加工することにより、樹脂の厚み精度が向上すると共に、樹脂の新生面が表層に現れることにより積層プレス後の接着力が向上する。   In the step shown in FIG. 4 (e), by grinding the film adhesion surface, the thickness accuracy of the resin is improved, and the new surface of the resin appears on the surface layer, thereby improving the adhesive force after the lamination press.

なお、シート状の成型可能な絶縁性を有する樹脂としてエポキシ系の熱硬化型樹脂1Bを用いたが、いずれの樹脂も他の材料系の熱硬化型樹脂材料や紫外線硬化型樹脂材料および熱可塑型樹脂材料などの他の樹脂材料を用いてもよい。   Note that the epoxy thermosetting resin 1B is used as the sheet-like moldable insulating resin. However, any resin may be a thermosetting resin material, ultraviolet curable resin material, or thermoplastic resin of another material type. Other resin materials such as a mold resin material may be used.

また、ビアホール6を形成する導電性材料として、導電性ペースト材料以外にメッキ製法などによる金属バルクなどを用いてもよい。   Further, as the conductive material for forming the via hole 6, a metal bulk or the like by a plating method may be used in addition to the conductive paste material.

さらに、2種類の樹脂を積層する製造方法を説明したが、1種類のみの場合や、3種類以上の樹脂を積層しての製造方法も可能である。   Furthermore, although the manufacturing method which laminates | stacks two types of resin was demonstrated, the manufacturing method of laminating | stacking three or more types of resin is also possible when only one type is laminated | stacked.

(第4の実施の形態)
本発明の第4の実施の形態について図面をもとに説明する。図5は、本実施の形態の部品内蔵基板を製造する方法および装置を説明するための概略図である。
(Fourth embodiment)
A fourth embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a schematic diagram for explaining the method and apparatus for manufacturing the component-embedded substrate of the present embodiment.

図5に示すように、ロール41に巻き付けた、PET材からなる樹脂フィルム5上に軟質(Bステージ)化処理を施したシート状のエポキシ系熱硬化型樹脂1Bを積層した積層体となるシート40が、一定速度でフィードされるように、別のロール42で巻き取る。この一定速度でフィードされているシート40は、凸部45を設けたドラム状回転体44と加熱機構を有するステージ43間を潜り抜ける際に、ステージ43により低粘度化された状態で、ドラム状回転体44の凸部45により部品を収納するための空隙3とビアホール6を形成する貫通孔4が形成される。すなわち、凸部45は、樹脂1B中に空隙3をプレス形成するための凸部と、シート40を貫通して貫通孔4をプレス形成するための凸部とからなる。このプレス加工の際、シート40は回転ドラム44表面にて所定の膜厚に平坦化される。この後、シート40は所定の長さに裁断されてから、図4(c)以降と同様にして、貫通孔4にフィルム5面より、エポキシ樹脂に導電性金属粉、例えばCu粉を添加した導電性樹脂ペーストを、スクリーン印刷や吸引処理をしながら充填した後、樹脂フィルム5を剥離してから、各樹脂1B同士を所定の位置が重なるように重ね合わせた後、さらに回路基板7,8の表面にそれぞれ電子部品9,10を実装した実装体を、樹脂1B同士を積層した両外層面に、電子部品9,10が空隙3内に収納されるように位置を合わせて重ねた後、加熱プレス処理(200℃、3MPa、2時間)を施して一体化すると同時に、ビアホール6を介した回路基板7と回路基板10間の接続を行う。   As shown in FIG. 5, the sheet | seat used as the laminated body which laminated | stacked the sheet-like epoxy type thermosetting resin 1B which gave the soft (B stage) process on the resin film 5 which consists of PET materials wound around the roll 41 40 is wound up by another roll 42 so that it is fed at a constant speed. When the sheet 40 fed at a constant speed passes through the drum-shaped rotating body 44 provided with the convex portions 45 and the stage 43 having the heating mechanism, the sheet 40 is reduced in viscosity by the stage 43 in a drum-like state. Through holes 4 for forming gaps 3 and via holes 6 for housing components are formed by the convex portions 45 of the rotating body 44. That is, the convex portion 45 includes a convex portion for press-forming the gap 3 in the resin 1 </ b> B and a convex portion for pressing the through-hole 4 through the sheet 40. During this pressing, the sheet 40 is flattened to a predetermined thickness on the surface of the rotating drum 44. Thereafter, after the sheet 40 is cut to a predetermined length, conductive metal powder such as Cu powder is added to the epoxy resin from the surface of the film 5 in the same manner as in FIG. After the conductive resin paste is filled while performing screen printing or suction treatment, the resin film 5 is peeled off, and the resins 1B are overlapped with each other so that the predetermined positions overlap each other. After mounting the mounting body in which the electronic components 9 and 10 are mounted on the surfaces of the electronic components 9 and 10 on both outer layer surfaces in which the resins 1B are laminated, the electronic components 9 and 10 are aligned and stacked so that they are accommodated in the gap 3, At the same time, the circuit board 7 and the circuit board 10 are connected via the via hole 6 at the same time by performing a heat press process (200 ° C., 3 MPa, 2 hours) for integration.

本実施の形態によれば、第1〜第3の実施の形態の効果に加え、シートの成型工程が連続化されるので、さらに生産性が高い部品内蔵基板を製造できる。   According to the present embodiment, in addition to the effects of the first to third embodiments, the sheet molding process is continued, so that a component-embedded substrate with higher productivity can be manufactured.

また、図4(e)に示す工程において、フィルム付着面を研削加工することにより、樹脂の厚み精度が向上すると共に、樹脂の新生面が表層に現れることにより積層プレス後の接着力が向上する。   In the step shown in FIG. 4 (e), by grinding the film adhesion surface, the thickness accuracy of the resin is improved, and the new surface of the resin appears on the surface layer, thereby improving the adhesive force after the lamination press.

なお、シート状の成型可能な絶縁性を有する樹脂としてエポキシ系の熱硬化型樹脂1Bを用いたが、いずれの樹脂も他の材料系の熱硬化型樹脂材料や紫外線硬化型樹脂材料および熱可塑型樹脂材料などの他の樹脂材料を用いてもよい。   Note that the epoxy thermosetting resin 1B is used as the sheet-like moldable insulating resin. However, any resin may be a thermosetting resin material, ultraviolet curable resin material, or thermoplastic resin of another material type. Other resin materials such as a mold resin material may be used.

また、ビアホール6を形成する導電性材料として、導電性ペースト材料以外にメッキ製法などによる金属バルクなどを用いてもよい。   Further, as the conductive material for forming the via hole 6, a metal bulk or the like by a plating method may be used in addition to the conductive paste material.

さらに、2種類の樹脂を積層する製造方法を説明したが、1種類のみの場合や、3種類以上の樹脂を積層しての製造方法も可能である。   Furthermore, although the manufacturing method which laminates | stacks two types of resin was demonstrated, the manufacturing method of laminating | stacking three or more types of resin is also possible when only one type is laminated | stacked.

本発明は、生産性に優れ小型で高密度な部品内蔵基板を製造することができ、小型,軽量,薄型の電子機器などに利用可能である。   INDUSTRIAL APPLICABILITY The present invention can produce a small, high-density component-embedded substrate with excellent productivity, and can be used for a small, light, and thin electronic device.

本発明の第1の実施の形態における部品内蔵基板の製造方法を説明するための工程図Process drawing for demonstrating the manufacturing method of the component built-in board | substrate in the 1st Embodiment of this invention 本発明の第1の実施の形態における部品内蔵基板の製造方法にて、2種類の樹脂を積層した場合を説明するための工程図Process drawing for demonstrating the case where two types of resin are laminated | stacked in the manufacturing method of the component built-in board | substrate in the 1st Embodiment of this invention. 本発明の第2の実施の形態における部品内蔵基板の製造方法を説明するための工程図Process drawing for demonstrating the manufacturing method of the component built-in board | substrate in the 2nd Embodiment of this invention. 本発明の第3の実施の形態における部品内蔵基板の製造方法を説明するための工程図Process drawing for demonstrating the manufacturing method of the component built-in board | substrate in the 3rd Embodiment of this invention. 本発明の第4の実施の形態における部品内蔵基板の製造方法およびその製造装置を説明するための概略図Schematic for demonstrating the manufacturing method of the component built-in board | substrate in the 4th Embodiment of this invention, and its manufacturing apparatus. 従来例における部品内蔵基板の製造方法を説明するための工程図Process diagram for explaining a method of manufacturing a component-embedded substrate in a conventional example

符号の説明Explanation of symbols

1A,1B 基板となる絶縁性を有する樹脂
2,12 金型
3 内蔵部品を収納するための空隙
4 ビアホール用の貫通孔
5,15A,15B 樹脂フィルム
6 ビアホール
7,8 回路基板
9,10 電子部品
22,32 プレス金型
40 シート(積層体)
41,42 ロール
43 加熱機構付きステージ
44 ドラム状回転体
45 凸部
1A, 1B Insulating resin to be used as substrate 2,12 Mold 3 Void for accommodating built-in parts 4 Via hole for via hole 5, 15A, 15B Resin film 6 Via hole 7, 8 Circuit board 9, 10 Electronic component 22, 32 Press dies 40 Sheet (laminate)
41, 42 Roll 43 Stage with heating mechanism 44 Drum-like rotating body 45 Convex part

Claims (11)

成型可能な絶縁性を有する樹脂を金型内に充填する工程と、前記金型内に充填して成型した樹脂を前記金型から取り出す工程と、前記金型から取り出した前記樹脂の上下少なくとも一方の面にフィルムを貼り付ける工程と、前記樹脂中に形成した所定の貫通孔に対応する位置において前記フィルムに孔開け加工を施す工程と、前記所定の貫通孔内に導電性材料を充填する工程と、前記フィルムを剥離する工程と、前記フィルムを剥離した樹脂の外層面に予め電子部品を実装した回路基板を該電子部品が前記樹脂中に形成した所定の空隙に収納されるように位置決めして重ね合わせる工程と、前記樹脂を硬化して前記回路基板と接着する工程とを含む部品内蔵基板の製造方法。   A step of filling a mold with a resin having an insulating property, a step of removing the resin filled in the mold and molded from the mold, and at least one of upper and lower sides of the resin taken out of the mold A step of attaching a film to the surface, a step of perforating the film at a position corresponding to a predetermined through-hole formed in the resin, and a step of filling a conductive material in the predetermined through-hole And a step of peeling the film, and positioning a circuit board having electronic components mounted in advance on the outer surface of the resin from which the film has been peeled so that the electronic components are accommodated in a predetermined gap formed in the resin. The component-embedded substrate manufacturing method includes a step of superimposing and a step of curing the resin and bonding the resin to the circuit board. 請求項1記載の部品内蔵基板の製造方法において、成型可能な絶縁性を有する樹脂を金型内に充填する工程と、前記金型内に充填して成型した樹脂を前記金型から取り出す工程との間に、前記樹脂の硬度を増大させる工程をさらに含むことを特徴とする部品内蔵基板の製造方法。   2. The method of manufacturing a component-embedded substrate according to claim 1, wherein a mold is filled with an insulating resin having a moldability and a mold is filled with the mold and the molded resin is taken out from the mold. The method for manufacturing a component-embedded substrate further comprising a step of increasing the hardness of the resin between the steps. 成型可能な絶縁性を有する第1の樹脂上に成型可能な絶縁性を有する第2の樹脂を重ねて金型内に充填する工程と、前記金型内に充填して成型した前記第1および第2の樹脂を前記金型から取り出す工程と、前記第1および第2の樹脂中に形成した所定の貫通孔内に導電性材料を充填する工程と、前記第1の樹脂を剥離する工程と、前記第2の樹脂の外層面に予め電子部品を実装した回路基板を該電子部品が前記第2の樹脂中に形成した所定の空隙に収納されるように位置決めして重ね合わせる工程と、前記第2の樹脂を硬化して前記回路基板と接着する工程とを含む部品内蔵基板の製造方法。   A step of filling a mold with a second resin having a moldable insulating property on the moldable first resin, filling the mold with the first resin, and molding the first and second molds; Removing the second resin from the mold, filling a predetermined through-hole formed in the first and second resins with a conductive material, and peeling the first resin Positioning and overlapping a circuit board having electronic components mounted in advance on the outer layer surface of the second resin so that the electronic components are housed in a predetermined gap formed in the second resin; and A method of manufacturing a component-embedded board, comprising: curing a second resin and bonding the second resin to the circuit board. 請求項3記載の部品内蔵基板の製造方法において、成型可能な絶縁性を有する第1の樹脂上に成型可能な絶縁性を有する第2の樹脂を重ねて金型内に充填する工程が、成型可能な絶縁性を有する第1の樹脂を金型内に充填する工程と、前記第1の樹脂の硬度を増大させる工程と、成型可能な絶縁性を有する第2の樹脂を金型内に充填して前記第1の樹脂上に重ねる工程とからなることを特徴とする部品内蔵基板の製造方法。   4. The method of manufacturing a component-embedded substrate according to claim 3, wherein the step of filling the mold with the second resin having the insulating property that can be molded is stacked on the first resin having the insulating property that can be molded. Filling the mold with a first resin having an insulating property, filling the mold with a step of increasing the hardness of the first resin, and filling the mold with a second resin having a moldable insulating property And a step of superimposing the first resin on the first resin. 請求項3記載の部品内蔵基板の製造方法において、成型可能な絶縁性を有する第1の樹脂上に成型可能な絶縁性を有する第2の樹脂を重ねて金型内に充填する工程と、前記金型内に充填して成型した前記第1および第2の樹脂を前記金型から取り出す工程との間に、前記第2の樹脂の硬度を増大させる工程をさらに含むことを特徴とする部品内蔵基板の製造方法。   The method of manufacturing a component-embedded substrate according to claim 3, wherein a step of filling a mold with a second resin having an insulating property that can be molded on the first resin having an insulating property that can be molded, Incorporating a component, further comprising a step of increasing the hardness of the second resin between the step of taking out the first and second resins filled and molded in the die from the die A method for manufacturing a substrate. フィルム上に成型可能な絶縁性を有する樹脂を積層してなる積層体の前記樹脂の表面より金型をプレスする工程と、前記積層体中にプレス形成された所定の貫通孔内に前記フィルム面から導電性材料を充填する工程と、前記フィルムを剥離する工程と、前記フィルムを剥離した樹脂の外層面に予め電子部品を実装した回路基板を該電子部品が前記樹脂中にプレス形成した所定の空隙に収納されるように位置決めして重ね合わせる工程と、前記樹脂を硬化して前記回路基板と接着する工程とを含む部品内蔵基板の製造方法。   A step of pressing a mold from the surface of the resin of a laminate formed by laminating an insulating resin moldable on the film, and the film surface in a predetermined through-hole press-formed in the laminate A step of filling a conductive material, a step of peeling the film, and a circuit board in which the electronic component is mounted in advance on the outer surface of the resin from which the film has been peeled. A method for manufacturing a component-embedded board, comprising: a step of positioning and overlapping so as to be accommodated in a gap; and a step of curing the resin and bonding the resin to the circuit board. 請求項6記載の部品内蔵基板の製造方法において、積層体の樹脂の表面より金型をプレスする工程にて、前記積層体を加熱することを特徴とする部品内蔵基板の製造方法。   7. The method for manufacturing a component built-in substrate according to claim 6, wherein the laminate is heated in a step of pressing a mold from a resin surface of the laminate. フィルム上に成型可能な絶縁性を有する樹脂を積層した積層体を所定の速度で送り出して表面に凸部を有する所定の速度で回転している回転体に供給する工程と、前記積層体の樹脂の表面より前記回転体にてプレスする工程と、前記積層体を所定の長さに裁断する工程と、前記裁断した積層体中にプレス形成された所定の貫通孔内に前記フィルム面から導電性材料を充填する工程と、前記フィルムを剥離する工程と、前記フィルムを剥離した樹脂の外層面に予め電子部品を実装した回路基板を該電子部品が前記樹脂中にプレス形成した所定の空隙に収納されるように位置決めして重ね合わせる工程と、前記樹脂を硬化して前記回路基板と接着する工程とを含む部品内蔵基板の製造方法。   A step of feeding a laminated body in which an insulating resin moldable on a film is laminated at a predetermined speed and supplying the laminated body to a rotating body having a convex portion on the surface and rotating at a predetermined speed; and the resin of the laminated body A step of pressing from the surface of the rotating body with the rotating body, a step of cutting the laminated body into a predetermined length, and a conductive property from the film surface into a predetermined through-hole formed in the cut laminated body. A step of filling the material, a step of peeling the film, and a circuit board in which the electronic component is mounted in advance on the outer surface of the resin from which the film has been peeled are stored in a predetermined gap formed by pressing the electronic component in the resin. A method of manufacturing a component-embedded board, comprising: a step of positioning and superimposing as described above; and a step of curing the resin and bonding it to the circuit board. 請求項8記載の部品内蔵基板の製造方法において、積層体の樹脂の表面より回転体にてプレスする工程にて、前記積層体を加熱することを特徴とする部品内蔵基板の製造方法。   9. The method for manufacturing a component built-in substrate according to claim 8, wherein the laminate is heated in a step of pressing with a rotating body from a resin surface of the laminate. 請求項1または請求項3または請求項6または請求項8記載の部品内蔵基板の製造方法において、前記成型可能な絶縁性を有する樹脂が複数枚の樹脂を重ね合わせてなることを特徴とする部品内蔵基板の製造方法。   9. The method of manufacturing a component-embedded substrate according to claim 1, claim 3, or claim 6 or claim 8, wherein the moldable insulating resin is formed by superposing a plurality of resins. A method for manufacturing a built-in substrate. 表面に凸部を有した回転体を所定の速度で回転する機構と、フィルム上に成型可能な絶縁性を有する樹脂を積層した積層体を所定の速度で送り出して前記回転体に供給する機構とを備えた部品内蔵基板の製造装置。

A mechanism for rotating a rotating body having a convex portion on the surface at a predetermined speed; and a mechanism for feeding a laminated body in which an insulating resin that can be molded on a film is laminated at a predetermined speed and supplying the laminated body to the rotating body. An apparatus for manufacturing a component-embedded board comprising

JP2006111975A 2006-04-14 2006-04-14 Method for manufacturing component incorporating substrate, and its manufacturing device Pending JP2007287844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006111975A JP2007287844A (en) 2006-04-14 2006-04-14 Method for manufacturing component incorporating substrate, and its manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006111975A JP2007287844A (en) 2006-04-14 2006-04-14 Method for manufacturing component incorporating substrate, and its manufacturing device

Publications (1)

Publication Number Publication Date
JP2007287844A true JP2007287844A (en) 2007-11-01

Family

ID=38759347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006111975A Pending JP2007287844A (en) 2006-04-14 2006-04-14 Method for manufacturing component incorporating substrate, and its manufacturing device

Country Status (1)

Country Link
JP (1) JP2007287844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187117A1 (en) * 2012-06-14 2013-12-19 株式会社村田製作所 High frequency module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187117A1 (en) * 2012-06-14 2013-12-19 株式会社村田製作所 High frequency module
JP5574073B2 (en) * 2012-06-14 2014-08-20 株式会社村田製作所 High frequency module
US9013882B2 (en) 2012-06-14 2015-04-21 Murata Manufacturing Co., Ltd. High-frequency module

Similar Documents

Publication Publication Date Title
US7470461B2 (en) Printed circuit board and method of manufacturing the same
JP5059842B2 (en) Method for manufacturing printed circuit board
WO2010113448A1 (en) Manufacturing method for circuit board, and circuit board
KR101253514B1 (en) Method of resolving substrate warpage problem due to differences in thermal coefficients and electronic component embedded printed circuit board manufactured thereof
CN107799281B (en) Inductor and method of manufacturing the same
JP5688162B2 (en) Method for manufacturing component-embedded substrate and component-embedded substrate manufactured using this method
WO2014185218A1 (en) Method for producing resinous multilayer substrate
JP2004140018A (en) Process for producing multilayer board, multilayer board, and mobile apparatus using it
JP2009099616A (en) Core member and method of manufacturing core member
JP5302920B2 (en) Manufacturing method of multilayer wiring board
WO2006098406A1 (en) Method for manufacturing circuit forming board
JP2006049660A (en) Manufacturing method of printed wiring board
JP2016048768A (en) Wiring board and manufacturing method of semiconductor device
KR101068466B1 (en) Fabrication method of laminating unit board and multi-layer board using the same and its fabrication method
KR101912284B1 (en) Manufacturing method of inductor and inductor
JP2007287844A (en) Method for manufacturing component incorporating substrate, and its manufacturing device
KR101205464B1 (en) Method for manufacturing a printed circuit board
KR101167422B1 (en) Carrier member and method of manufacturing PCB using the same
JP2007335631A (en) Manufacturing method of laminated wiring board
JP2008258358A (en) Rigid flexible board and manufacturing method thereof
JP2020017634A (en) Method for manufacturing multilayer printed wiring board and multilayer printed wiring board
JP2005064357A (en) Multilayer wiring board and method for manufacturing the same
CN111312680B (en) Bearing plate of coreless packaging substrate and preparation method
JP3855670B2 (en) Multilayer circuit board manufacturing method
JP2006196567A (en) Method for manufacturing circuit formation substrate