JP2007287771A - ヘテロエピタキシャル膜基板、及びデバイス - Google Patents

ヘテロエピタキシャル膜基板、及びデバイス Download PDF

Info

Publication number
JP2007287771A
JP2007287771A JP2006110596A JP2006110596A JP2007287771A JP 2007287771 A JP2007287771 A JP 2007287771A JP 2006110596 A JP2006110596 A JP 2006110596A JP 2006110596 A JP2006110596 A JP 2006110596A JP 2007287771 A JP2007287771 A JP 2007287771A
Authority
JP
Japan
Prior art keywords
film
substrate
heteroepitaxial
columnar structure
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006110596A
Other languages
English (en)
Inventor
Yoshinobu Nakada
嘉信 中田
Takamitsu Fujii
隆満 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006110596A priority Critical patent/JP2007287771A/ja
Publication of JP2007287771A publication Critical patent/JP2007287771A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】複雑な工程を経ることなく、成膜中及び/又は成膜後にエピタキシャル膜にかかる応力を効果的に緩和して、良質なヘテロエピタキシャル膜を成長させる。
【解決手段】ヘテロエピタキシャル膜基板1は、基板10上に、基板10の基板面に対して非平行方向に延びる多数の柱状体21からなる柱状構造膜20を介して、ヘテロエピタキシャル膜40が形成されたものである。柱状構造膜20は、成膜中及び/又は成膜後のヘテロエピタキシャル膜40にかかる応力を緩和する応力緩和層として機能することができる。
【選択図】図1

Description

本発明は、基板上にヘテロエピタキシャル膜を備えたヘテロエピタキシャル膜基板、及びこのヘテロエピタキシャル膜基板を用いて製造された各種デバイスに関するものである。
ヘテロエピタキシャル成長は、バルク基板が得られない単元素、化合物等の薄膜を成膜する際に、薄膜とは異なる物質上に薄膜を成膜する薄膜形成技術で、特に、基板上に結晶配向性を有する化合物半導体等の薄膜を成長させる薄膜形成技術である。欠陥の少ない高品質なヘテロエピタキシャル膜を成長させるには、基板とヘテロエピタキシャル膜との相性が重要である。
例えば、基板とエピタキシャル膜との格子定数差が大きいと、成膜中及び/又は成膜後のエピタキシャル膜に応力が生じて、得られるエピタキシャル膜にミスフィット転位等の格子欠陥や内部歪みが発生する恐れがある。また、基板とエピタキシャル膜との熱膨張係数差が大きいと、成膜中及び/又は成膜後のエピタキシャル膜に応力が生じて、クラック、膜の部分剥離、及び基板の反り等が発生する恐れがある。
特許文献1には、シリコン基板と窒化物半導体エピタキシャル膜との間に、窒化物半導体バッファ層と、エピタキシャル膜と同種の材料からなる犠牲層と、エピタキシャル膜よりも融点又は耐熱性が高い材料からなり、基板からエピタキシャル膜へのシリコンの拡散を防止する反応防止層とを介在させることが提案されている。
特許文献2には、シリコン基板と窒化物半導体エピタキシャル膜との間に、窒化シリコンバッファ層を介在させることが記載されている。
特許文献3には、基板面に対して垂直に切り立った形状のエピタキシャル膜を形成して、エピタキシャル膜を変形自由度の大きな3次元構造とすることが提案されている。
特許文献4は、エピタキシャル膜からなる自立基板の製造方法に関するものである。特許文献4には、基板上に窒化物半導体に対して分解作用を持つ金属元素を含む金属元素含有膜を介して、窒化物半導体をエピタキシャル成長することにより、金属元素含有膜側に空隙部を有する窒化物半導体エピタキシャル膜を成膜することができ、この空隙部の存在によって、エピタキシャル膜の基板からの剥離が容易になることが記載されている。また、特許文献4には、上記空隙部が応力緩和機能を有することが記載されている。
特開2002-299253号公報 特開平11-265853号公報 特開2004-281869号公報 特開2004-39810号公報
特許文献1及び2に記載の技術では、基板とエピタキシャル膜との格子定数差や熱膨張係数差が大きい場合には、基板とエピタキシャル膜との間に介在させる層の数を増やして対応する必要があり、工程数が多くなってしまう。
特許文献3に記載の技術では、特殊形状のエピタキシャル膜を形成する必要があり、工程が複雑である。また、エピタキシャル膜を基板の全面に形成する場合には、適用できない。
特許文献4に記載の技術では、窒化物半導体に対して分解作用を持つ特殊な金属元素を含む金属元素含有膜を形成し、金属元素含有膜と窒化物半導体とを反応させながら、窒化物半導体エピタキシャル膜を成長させる必要がある。そのため、工程が複雑で、応力緩和機能を有する空隙部の形成の制御も難しい。
本発明は上記事情に鑑みてなされたものであり、複雑な工程を経ることなく、成膜中及び/又は成膜後にエピタキシャル膜にかかる種々の応力を効果的に緩和して、良質なヘテロエピタキシャル膜を成長させることが可能なヘテロエピタキシャル膜基板を提供することを目的とするものである。
本発明のヘテロエピタキシャル膜基板は、基板上に、該基板の基板面に対して非平行方向に延びる多数の柱状体からなる柱状構造膜を介して、ヘテロエピタキシャル膜を有することを特徴とするものである。
前記柱状構造膜は、成膜中及び/又は成膜後の前記ヘテロエピタキシャル膜にかかる応力を緩和する応力緩和層として機能することができる。
前記応力としては、前記基板と前記ヘテロエピタキシャル膜との格子定数差によって発生する応力、及び/又は前記基板と前記ヘテロエピタキシャル膜との熱膨張係数差によって発生する応力が挙げられる。
前記柱状構造膜は、前記ヘテロエピタキシャル膜の結晶面方位と略同一の結晶面方位を有する結晶配向性膜であることが好ましい。
本明細書において、「略同一の結晶面方位」とは、面方位の差が±5°以内である結晶面方位と定義する。
前記柱状構造膜をなす前記多数の柱状体の平均柱径は20〜200nmであることが好ましい。
本明細書において、「多数の柱状体の平均柱径」は、走査型電子顕微鏡(SEM)にて断面写真を撮像して任意の10個の柱状体の径を求め、これらの平均値により求めるものとする。
前記柱状構造膜をなす前記柱状体の成長方向は、前記基板面の法線方向から0°以上60°未満の角度方向であることが好ましい。
前記柱状構造膜と前記ヘテロエピタキシャル膜の間に、バッファ層を有していてもよい。
前記柱状構造膜としては、Si,SiC,SiO,Ge, GeO, AlN, ZnO, InSb, GaP, CdS,ZnSe及びGaNからなる群より選ばれた1種又は2種以上を主成分とする半導体膜が挙げられる。
本明細書において、「主成分」は含量50質量%以上の成分と定義する。
本発明のヘテロエピタキシャル膜は、多数の柱状体からなる柱状構造膜又は該柱状構造膜上に成膜された膜を下地として成膜されたものであることを特徴とするものである。
本発明のデバイスは、上記の本発明のヘテロエピタキシャル膜基板、若しくはヘテロエピタキシャル膜を用いて製造されたものであることを特徴とするものである。
本発明のヘテロエピタキシャル膜基板は、基板上に、基板面に対して非平行方向に延びる多数の柱状体からなる柱状構造膜を設け、その上にヘテロエピタキシャル膜を設ける構成としている。かかる構成では、柱状構造膜の存在によって、成膜中及び/又は成膜後にヘテロエピタキシャル膜にかかる応力を効果的に緩和することができる。本発明によれば、基板とヘテロエピタキシャル膜との格子定数差によって発生する応力と、基板とヘテロエピタキシャル膜との熱膨張係数差によって発生する応力の双方を効果的に緩和することができる。
本発明では、特許文献1及び2に記載の技術と異なり、基板とヘテロエピタキシャル膜との格子定数差や熱膨張係数差が大きい場合にも、一層の柱状構造膜によって充分な応力緩和効果が得られるので、基板とヘテロエピタキシャル膜との間に介在させる層の数を増やす必要がない。また、特許文献3及び4に記載の技術と異なり、特殊形状のヘテロエピタキシャル膜を形成したり、特殊な反応によって空隙部を形成するなどの、複雑な工程も要しない。
したがって、本発明によれば、複雑な工程を経ることなく、成膜中及び/又は成膜後にヘテロエピタキシャル膜にかかる応力を効果的に緩和して、良質なヘテロエピタキシャル膜を成長させることができる。
以下に、本発明について詳述する。
図1を参照して、本発明に係る一実施形態のヘテロエピタキシャル膜基板の構成について説明する。図1は基板の厚み方向断面図である。図1(a)は後記柱状体21を基板面に対して垂直方向に成長させた例であり、図1(b)は柱状体21を基板面に対して斜め方向に成長させた例であり、それ以外の層構成が同じ図である。
本実施形態のヘテロエピタキシャル膜基板1は、基板10上に、基板10の基板面に対して非平行方向に延びる多数の柱状体21からなる柱状構造膜20を介して、ヘテロエピタキシャル膜40が形成されたものである。また、柱状構造膜20とヘテロエピタキシャル膜40との間に、バッファ層30が形成されている。本実施形態では、層20、30、40はいずれも基板10の略全面に形成されている。図1では、視認しやすくするため、柱状体21や各層の厚みを誇張して図示してある。
基板10としては特に制限はなく、Si,SiC,Al,GaAs,BN、ZnO等の半導体基板が挙げられる。基板10としては、ヘテロエピタキシャル膜40の結晶面方位と略同一の結晶面方位を有する単結晶基板が好ましい。
但し、本実施形態では、基板10とヘテロエピタキシャル膜40との間に柱状構造膜20を介在させるので、ヘテロエピタキシャル膜40の成長に適した柱状構造膜20を成膜できれば、基板10は、ヘテロエピタキシャル膜40の結晶面方位と異なる結晶面方位を有する単結晶基板でもよいし、アモルファス基板でも構わない。アモルファス基板としては、ガラス、石英、及び各種樹脂等の基板が挙げられる。基板10は、基板上に結晶性を有する薄膜又はアモルファス薄膜が積層された積層基板でもよい。
ヘテロエピタキシャル膜40の組成は特に制限なく、Si,SiC,AlN,GaN,GaAs,BN,及びZnO等からなる群より選ばれた1種又は2種以上を主成分とする半導体膜や、ダイヤモンド膜等が挙げられる。
ヘテロエピタキシャル膜40の成膜方法及び成膜条件は特に制限されず、MBE法、MOVPE法、及びMOCVD法等が挙げられる。例えば、MBE法でGaNを成膜する場合、基板温度700℃、Gaflux3×10atoms/cms、RF出力 350W、N流量2sccmの成膜条件にて成膜することにより、歪の少ない高品質のGaNヘテロエピタキシャル膜(例えば膜厚2000nm)を形成することができる。
本実施形態のヘテロエピタキシャル膜40は、多数の柱状体21からなる柱状構造膜20又は柱状構造膜20上に成膜されたバッファ層30を下地として成膜されたものである。
本実施形態において、柱状構造膜20は、成膜中及び/又は成膜後のヘテロエピタキシャル膜40にかかる応力を緩和する応力緩和層として機能する層である。
柱状構造膜20の組成は特に制限なく、上記柱状膜構造が得られる任意の材料が使用でき、Si,SiC,SiO,Ge, GeO, AlN, ZnO, InSb, GaP, CdS,ZnSe及びGaNからなる群より選ばれた1種又は2種以上を主成分とする半導体膜が挙げられる。柱状構造膜20の組成は、基板10及びヘテロエピタキシャル膜40の組成に応じて、適宜選択することが好ましい。
柱状構造膜20は、結晶配向性膜であることが好ましく、ヘテロエピタキシャル膜40の結晶面方位と略同一の結晶面方位を有する結晶配向性膜であることが特に好ましい。
本実施形態において、柱状構造膜20は、図1(a)のように、柱状構造膜20をなす多数の柱状体21が基板10の基板面に対して垂直方向に延びた垂直柱状膜構造でもよいし、図1(b)のように柱状構造膜20をなす多数の柱状体21が基板10の基板面に対して斜め方向に延びた斜め柱状膜構造でもよい。
垂直柱状膜構造の柱状構造膜20は、基板を蒸着源に対して傾斜させずにEB蒸着やスパッタ蒸着等を行う正面蒸着法により成膜することができる。
斜め柱状膜構造の柱状構造膜20は、基板を蒸着源に対して傾斜させてEB蒸着やスパッタ蒸着等を行う斜方蒸着法により成膜することができる。
基板10が特定の結晶面方位を有する単結晶基板である場合には、結晶面方位及び結晶成長方向が基板10の結晶面方位と略同一である柱状体21を成長させやすく、その上に略同一の結晶面方位のヘテロエピタキシャル膜40を成長させやすい。
したがって、基板10としてヘテロエピタキシャル膜40の結晶面方位と略同一の結晶面方位を有する単結晶基板を用いることで、所望の結晶面方位のヘテロエピタキシャル膜40を成長させやすく、好ましい。
ただし、基板10がヘテロエピタキシャル膜40の結晶面方位と異なる結晶面方位を有する単結晶基板又はアモルファス基板であっても、成膜条件によっては、ヘテロエピタキシャル膜40の結晶面方位と略同一の結晶面方位を有する柱状構造膜20を成長させることができる。例えば、基板10がアモルファス基板であっても、比較的低温(室温〜300℃)で成膜を行うと、特定の結晶面方位を有する柱状構造膜20を成長させることができる。このように、少なくとも柱状構造膜20がヘテロエピタキシャル膜40の結晶面方位と略同一の結晶面方位を有していれば、所望の結晶面方位のヘテロエピタキシャル膜40を成長させやすく、好ましい。
上記膜構造の柱状構造膜20が、成膜中及び/又は成膜後のヘテロエピタキシャル膜40にかかる応力を緩和する応力緩和層として機能する層であることを述べた。本実施形態では、柱状構造膜20によって、基板10とヘテロエピタキシャル膜40との格子定数差によって発生する応力と、基板10とヘテロエピタキシャル膜40との熱膨張係数差によって発生する応力の双方を緩和することができる。
本実施形態における応力緩和のメカニズムは下記の通りであると考えられる。
基板10と柱状構造膜20との界面において、柱状構造膜20側の界面近辺の結晶粒界に格子の不連続な乱れを有しており、柱状構造膜20中の各柱状体21の界面に、あたかも多数の転位が存在しているような状態となるため、基板10と柱状構造膜20との歪を吸収する。また、柱状構造膜20をなす多数の柱状体21同士の結晶粒界の結合力は、ボンドが切れていたり、その長さが長いため相対的に結晶の強度より弱くなるため、変形能が高く、歪が容易に吸収される。また、柱状構造膜20と柱状構造膜上に成膜したヘテロエピタキシャル膜40との間においても、同様のメカニズムにより歪みが吸収され、従って基板10とヘテロエピタキシャル膜40との格子定数差によって発生する応力及び熱膨張係数差によって生じる応力の双方を緩和することができる。
このように、本実施形態では格子定数差によって発生する応力を緩和することができるので、ミスフィット転位等の格子欠陥や内部歪みが少なく、結晶品質の良質なヘテロエピタキシャル膜40を成長させることができる。AlのC面上へのウルツ鉱型GaNヘテロエピタキシャル膜の格子不整合は14%、Si(111)面上へのウルツ鉱型GaNヘテロエピタキシャル膜の格子不整合は20%、Si(001)面上への遷亜鉛鉱型GaAsヘテロエピタキシャル膜の格子不整合は4%、Si(111)面上へのウルツ鉱型ZnOヘテロエピタキシャル膜の格子不整合は18%であり、本実施形態によれば、これらの格子不整合を効果的に緩和することができる。
また、本実施形態では熱膨張係数差によって発生する応力を緩和することができるので、クラック、膜の部分剥離、及び基板の反り等の発生を抑えることができる。
例えば、基板材料であるSiの熱膨張係数は3.59×10−6/K、Alは7.5×10−6、一方ヘテロエピタキシャル膜材料であるGaNは5.59×10−6 、ZnOは2.9×10−6である。従って、本実施形態は、基板10としてSi基板又はAl基板を用い、GaN膜又はZnOからなるヘテロエピタキシャル膜40を成膜する場合などに有効である。
柱状構造膜20の厚みは特に制限されず、過小ではアイランド状になり十分な柱状構造膜が形成されず、柱状構造膜20による応力緩和効果が充分に発現せず、過大では表面荒れが大きくなり良好なヘテロエピ膜の成長ができなくなるので、5〜500nmであることが好ましい。
柱状構造膜20をなす多数の柱状体21の平均柱径に特に制限はなく、20〜200nmが好ましい。
柱状体21の成長方向は特に制限はなく、基板10の基板面の法線方向から0°以上60°未満の角度方向であることが好ましい。圧縮あるいは引張応力が働くのは、基板面に対して平行な方向、つまり基板面の法線方向から90°の角度方向である。柱状体21の成長方向が60°以上傾いた場合には、柱状構造膜20が有する90°方向への応力緩和作用は、柱状構造膜の成長方向が0°の場合の1/2以下になると考えられる。つまり、成長方向が0°の場合と同等の応力緩和作用を生じさせるには倍以上の膜厚が必要となると考えられ、そのため、成膜時間が長くなり効率的ではなくなる。よって60°未満の角度とすることが好ましい。
柱状構造膜20は、基板10とヘテロエピタキシャル膜40とが直接接触すると、接触面において反応が起こり、基板表面の平滑性が低下するような場合には、上記応力緩和層としての機能に加えて、基板表面の保護膜として機能することもできる。
バッファ層30は、基板10とヘテロエピタキシャル膜40との格子定数差等を緩和する層であり、また、上記柱状構造膜20と同様に、基板表面の保護膜としての機能も有している。
バッファ層30の組成は特に制限なく、SiN,AlN,GaN等の1種又は2種以上の半導体を主成分とする半導体膜が挙げられる。バッファ層30は、柱状構造膜20上に通常の薄膜形成法により成膜された薄膜でもよいし、柱状構造膜20の表面を窒化等して得られる窒化膜等でもよい。
本実施形態のヘテロエピタキシャル膜基板1は、以上のように構成されている。
本実施形態のヘテロエピタキシャル膜基板1は、基板10上に、基板面に対して非平行方向に延びる多数の柱状体21からなる柱状構造膜20を設け、その上にヘテロエピタキシャル膜40を設ける構成としている。かかる構成では、柱状構造膜20の存在によって、成膜中及び/又は成膜後にヘテロエピタキシャル膜40にかかる応力を効果的に緩和することができる。本実施形態によれば、基板10とヘテロエピタキシャル膜40との格子定数差によって発生する応力と、基板10とヘテロエピタキシャル膜40との熱膨張係数差によって発生する応力の双方を効果的に緩和することができる。
本実施形態によれば、成膜中及び/又は成膜後にエピタキシャル膜40にかかる種々の応力を効果的に緩和して、良質なヘテロエピタキシャル膜40を成長させることができる。
アモルファス基板を用い、柱状構造膜を設けずに、バッファ層のみを介してヘテロエピタキシャル成長を行う場合には、単結晶のヘテロエピタキシャル膜40を成長させることは難しい(後記比較例2を参照)。これに対して、本実施形態では、基板10としてアモルファス基板を用いる場合や、ヘテロエピタキシャル膜40の下地であるバッファ層30がアモルファスである場合にも、ヘテロエピタキシャル膜40にかかる応力を効果的に緩和することができるので、結晶品質が良好な単結晶ヘテロエピタキシャル膜40を成長させることができる(後記実施例3〜5を参照)。
本実施形態では、「背景技術」の項に挙げた特許文献1及び2に記載の技術と異なり、基板10とヘテロエピタキシャル膜40との格子定数差や熱膨張係数差が大きい場合にも、一層の柱状構造膜20によって充分な応力緩和効果が得られるので、基板10とヘテロエピタキシャル膜40との間に介在させる層の数を増やす必要がない。ただし、必要に応じて、複数層の柱状構造膜20を設けることは差し支えない。
本実施形態では、一層の柱状構造膜20によって充分な応力緩和効果が得られるので、バッファ層30を省略することもできる。本実施形態のように、基板10とヘテロエピタキシャル膜40との間にバッファ層30を介在させる場合には、柱状構造膜20とバッファ層30の双方によって、ヘテロエピタキシャル膜40にかかる応力を緩和することができ、より大きな応力緩和効果が得られる。
また、本実施形態のヘテロエピタキシャル膜基板1では、特許文献3及び4に記載の技術と異なり、特殊形状のヘテロエピタキシャル膜を形成したり、特殊な反応によって空隙部を形成するなどの、複雑な工程も要しない。
本実施形態のヘテロエピタキシャル膜基板1、若しくはヘテロエピタキシャル膜40を用いて、各種デバイスを製造することができる。例えば、発光ダイオード、レーザダイオード、高周波デバイス等のデバイスを高品質に製造することができる。
本発明に係る実施例及び比較例について説明する。
(実施例1)
HF洗浄等により表面を清澄化したSi(111)基板上に、EB蒸着により、室温下で20nm厚のSi膜を正面蒸着した。このSi膜は、基板面に対して略垂直方向、すなわち<111>方位で成長した多数の柱状体からなる柱状構造膜であった。多数の柱状体の平均柱径は約50nmであり、柱状体の結晶面方位及び結晶成長方向は、基板の結晶面方位と略同一であった。上記Si柱状構造膜上に、MBE法により50nm厚のAlNバッファ層を積層し、最後にGaNを2000nm厚でヘテロエピタキシャル成長させ、本発明のヘテロエピタキシャル膜基板を得た。成膜条件は、GaN膜は基板温度を700℃でGaflux3×1012atoms/cms、RF出力 350W、N流量2sccmであった。
(実施例2)
斜めスパッタ蒸着によってSi柱状構造膜を成膜した以外は、実施例1と同様にして、本発明のヘテロエピタキシャル膜基板を得た。基板の蒸着源に対する傾斜角(=基板面の法線方向と基板からみた蒸着源方向とのなす角)は40°とした。
Si柱状構造膜は、基板面の法線方向に対して約20°の方向に成長した多数の柱状体からなる膜構造であった。多数の柱状体の平均柱径は約50nmであった。柱状体の結晶面方位及び結晶成長方向は基板の面方位と略同一であり、柱状結晶膜の垂直方向の結晶面方位は基板の垂直方向の結晶方位と略同一の<111>であった。
(実施例3)
Si柱状構造膜を成膜した後、基板温度を1000℃にし、装置内をNH雰囲気にすることで、Si柱状構造膜の表面を窒化して、1〜2nm厚のアモルファス窒化シリコンのバッファ層を形成し、その上にGaNをヘテロエピタキシャル成長させた以外は、実施例1と同様にして、本発明のヘテロエピタキシャル膜基板を得た。
(実施例4)
基板としてHF洗浄等により表面を清澄化した石英基板を用い、基板温度100℃の条件でSi柱状構造膜を正面蒸着した以外は、実施例1と同様にして、本発明のヘテロエピタキシャル膜基板を得た。
Si柱状構造膜は、基板面に対して略垂直方向、すなわち<111>方位で成長した多数の柱状体からなる柱状構造膜であった。多数の柱状体の平均柱径は約50nmであり、柱状体の結晶面方位及び結晶成長方向は、基板の結晶面方位と略同一であった。
(実施例5)
基板として実施例4と同じ石英基板を用い、基板温度100℃の条件でSi柱状構造膜を斜めスパッタ蒸着した以外は、実施例2と同様にして、本発明のヘテロエピタキシャル膜基板を得た。
Si柱状構造膜は、基板面の法線方向に対して約20°の方向に成長した多数の柱状体からなる膜構造であった。多数の柱状体の平均柱径は約50nmであった。柱状体の結晶面方位及び結晶成長方向は基板の面方位と略同一であり、柱状結晶膜の垂直方向の結晶面方位は基板の垂直方向の結晶方位と略同一の<111>であった。
(比較例1)
Si柱状構造膜を設けずに、Si基板上にAlNバッファ層とGaNヘテロエピタキシャル膜とを積層した以外は、実施例1と同様にして、比較用のヘテロエピタキシャル膜基板を得た。
(比較例2)
基板として実施例4と同じ石英基板を用いた以外は、比較例1と同様にして、比較用のヘテロエピタキシャル膜基板を得た。
(評価項目と評価方法)
<転位密度>
転位密度は、透過型電子顕微鏡により測定した。各例おいて得られたヘテロエピタキシャル膜基板を、基板中心からR/2(又はW/2)の位置において{1120}面で切り出し、縦断面の測定試料とした。測定試料に垂直に電子線を入射し、バーガスベクトルb=<0001>,b=1/3<2−1−10>,b=1/3<2−1−13>をもつ転位を×15000で観察し、その視野内の転位の長さを測定して密度を求めた。
<基板の反り量>
各例おいて得られたヘテロエピタキシャル膜基板の反り量δを成膜前後についてそれぞれ測定した。基板の反り量δは、図2に示すように、基板の一端を垂直面に当接させたときの、この当接高さと他端の高さとのずれ量である。図中、lは基板の長さ、tは基板の厚さ、dは基板上に成膜された薄膜の合計厚さである(薄膜光学ハンドブック 発行:講談社 編者:真下正夫、吉田政次 p214−215)。
<評価結果>
各例において製造したヘテロエピタキシャル膜基板の基板と各層の組成、及び評価結果を表1に示す。
単結晶シリコン基板を用い、バッファ層のみを介してヘテロエピタキシャル膜を成長させた比較例1は、従来の標準的な方法でヘテロエピタキシャル膜を成長させた例であり、この例が基準となる。比較例1では単結晶のヘテロエピタキシャル膜を成長させることができ、その転位密度は1.0×1010cm−2であった。得られたヘテロエピタキシャル膜基板の反り量は60μmであった。
基板をアモルファス基板に変えて比較例1と同様にヘテロエピタキシャル成長を行った比較例2では、単結晶のヘテロエピタキシャル膜を成長させることができず、得られたヘテロエピタキシャル膜は多結晶であった。単結晶のヘテロエピタキシャル膜を成長できなかったので、転位密度とヘテロエピタキシャル膜基板の反り量の評価は実施しなかった。
上記比較例1,2に対して、柱状構造膜を介してヘテロエピタキシャル膜を成長させた実施例1〜5では、単結晶基板を用いた実施例1,2、アモルファスバッファ層を下地としてヘテロエピタキシャル成長を実施した実施例3、アモルファス基板を用いた実施例4,5のいずれにおいても、単結晶のヘテロエピタキシャル膜を成長させることができた。また、得られたヘテロエピタキシャル膜の転位密度は、4.0×10〜9.0×10cm−2であり、比較例1の転位密度より3桁も低い値であった。また、ヘテロエピタキシャル膜基板の反り量も比較例1の1/3程度であった。これらの結果から、柱状構造膜が応力緩和層として有効であることが示された。
Figure 2007287771
本発明のヘテロエピタキシャル膜基板は、発光ダイオード、レーザダイオード、高周波デバイス等の各種デバイスに好ましく利用できる。
(a)及び(b)は本発明に係る一実施形態のヘテロエピタキシャル膜基板の断面図 実施例と比較例の評価方法を説明するための図
符号の説明
1 ヘテロエピタキシャル膜基板
10 基板
20 柱状構造膜
21 柱状体
30 バッファ層
40 ヘテロエピタキシャル膜

Claims (10)

  1. 基板上に、該基板の基板面に対して非平行方向に延びる多数の柱状体からなる柱状構造膜を介して、ヘテロエピタキシャル膜を有することを特徴とするヘテロエピタキシャル膜基板。
  2. 前記柱状構造膜は、成膜中及び/又は成膜後の前記ヘテロエピタキシャル膜にかかる応力を緩和する応力緩和層であることを特徴とする請求項1に記載のヘテロエピタキシャル膜基板。
  3. 前記応力は、前記基板と前記ヘテロエピタキシャル膜との格子定数差によって発生する応力、及び/又は前記基板と前記ヘテロエピタキシャル膜との熱膨張係数差によって発生する応力であることを特徴とする請求項2に記載のヘテロエピタキシャル膜基板。
  4. 前記柱状構造膜は、前記ヘテロエピタキシャル膜の結晶面方位と略同一の結晶面方位を有する結晶配向性膜であることを特徴とする請求項1〜3のいずれかに記載のヘテロエピタキシャル膜基板。
  5. 前記柱状構造膜をなす前記多数の柱状体の平均柱径が20〜200nmであることを特徴とする請求項1〜4のいずれかに記載のヘテロエピタキシャル膜基板。
  6. 前記柱状構造膜をなす前記柱状体の成長方向が、前記基板面の法線方向から0°以上60°未満の角度方向であることを特徴とする請求項1〜5のいずれかに記載のヘテロエピタキシャル膜基板。
  7. 前記柱状構造膜と前記ヘテロエピタキシャル膜の間に、バッファ層を有することを特徴とする請求項1〜6のいずれかに記載のヘテロエピタキシャル膜基板。
  8. 前記柱状構造膜は、Si,SiC,SiO,Ge, GeO, AlN, ZnO, InSb, GaP, CdS,ZnSe及びGaNからなる群より選ばれた1種又は2種以上を主成分とする半導体膜であることを特徴とする請求項1〜7のいずれかに記載のヘテロエピタキシャル膜基板。
  9. 多数の柱状体からなる柱状構造膜又は該柱状構造膜上に成膜された膜を下地として成膜されたものであることを特徴とするヘテロエピタキシャル膜。
  10. 請求項1〜8のいずれかに記載のヘテロエピタキシャル膜基板、若しくは請求項9に記載のヘテロエピタキシャル膜を用いて製造されたものであることを特徴とするデバイス。
JP2006110596A 2006-04-13 2006-04-13 ヘテロエピタキシャル膜基板、及びデバイス Withdrawn JP2007287771A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006110596A JP2007287771A (ja) 2006-04-13 2006-04-13 ヘテロエピタキシャル膜基板、及びデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006110596A JP2007287771A (ja) 2006-04-13 2006-04-13 ヘテロエピタキシャル膜基板、及びデバイス

Publications (1)

Publication Number Publication Date
JP2007287771A true JP2007287771A (ja) 2007-11-01

Family

ID=38759289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006110596A Withdrawn JP2007287771A (ja) 2006-04-13 2006-04-13 ヘテロエピタキシャル膜基板、及びデバイス

Country Status (1)

Country Link
JP (1) JP2007287771A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046294A1 (ja) 2013-09-30 2015-04-02 並木精密宝石株式会社 ダイヤモンド基板及びダイヤモンド基板の製造方法
WO2016132746A1 (ja) * 2015-02-20 2016-08-25 国立大学法人名古屋大学 薄膜基板と半導体装置とこれらの製造方法および成膜装置および成膜方法およびGaNテンプレート
KR20160119068A (ko) 2014-02-05 2016-10-12 나미키 세이미츠 호오세키 가부시키가이샤 다이아몬드 기판 및 다이아몬드 기판의 제조 방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046294A1 (ja) 2013-09-30 2015-04-02 並木精密宝石株式会社 ダイヤモンド基板及びダイヤモンド基板の製造方法
KR20160065090A (ko) 2013-09-30 2016-06-08 나미키 세이미츠 호오세키 가부시키가이샤 다이아몬드 기판 및 다이아몬드 기판의 제조 방법
US10132000B2 (en) 2013-09-30 2018-11-20 Adamant Namiki Precision Jewel Co., Ltd. Diamond substrate and diamond substrate manufacturing method
US10480096B2 (en) 2013-09-30 2019-11-19 Adamant Namiki Precision Jewel Co., Ltd. Diamond substrate
KR20160119068A (ko) 2014-02-05 2016-10-12 나미키 세이미츠 호오세키 가부시키가이샤 다이아몬드 기판 및 다이아몬드 기판의 제조 방법
US10246794B2 (en) 2014-02-05 2019-04-02 Adamant Namiki Precision Jewel Co., Ltd. Diamond substrate and method for manufacturing diamond substrate
US10619267B2 (en) 2014-02-05 2020-04-14 Adamant Namiki Precision Jewel Co., Ltd. Diamond substrate
WO2016132746A1 (ja) * 2015-02-20 2016-08-25 国立大学法人名古屋大学 薄膜基板と半導体装置とこれらの製造方法および成膜装置および成膜方法およびGaNテンプレート
JPWO2016132746A1 (ja) * 2015-02-20 2017-11-30 国立大学法人名古屋大学 薄膜基板と半導体装置とこれらの製造方法および成膜装置および成膜方法およびGaNテンプレート

Similar Documents

Publication Publication Date Title
US8916906B2 (en) Boron-containing buffer layer for growing gallium nitride on silicon
JP5842057B2 (ja) 半導体装置の製造方法
US7498244B2 (en) Method for fabricating GaN-based nitride layer
JP5317398B2 (ja) 格子パラメータを変化させる元素を含有する窒化ガリウムデバイス基板
US7723217B2 (en) Method for manufacturing gallium nitride single crystalline substrate using self-split
JP4335187B2 (ja) 窒化物系半導体装置の製造方法
JP6655389B2 (ja) Iii−nテンプレートの製造方法およびiii−nテンプレート
US7253499B2 (en) III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer
JP5133927B2 (ja) 化合物半導体基板
JP4823856B2 (ja) AlN系III族窒化物単結晶厚膜の作製方法
US20060255363A1 (en) Epitaxial substrate, semiconductor element, manufacturing method for epitaxial substrate and method for unevenly distributing dislocations in group III nitride crystal
JP4380294B2 (ja) Iii−v族窒化物系半導体基板
JP4555340B2 (ja) GaN系窒化膜を形成する方法
US7348278B2 (en) Method of making nitride-based compound semiconductor crystal and substrate
JP4333466B2 (ja) 半導体基板の製造方法及び自立基板の製造方法
JP2007053251A (ja) Iii族窒化物結晶の形成方法、積層体、およびエピタキシャル基板
JP2009067658A (ja) 窒化物半導体下地基板、窒化物半導体積層基板および窒化物半導体自立基板、並びに窒化物半導体下地基板の製造方法
JP2007287771A (ja) ヘテロエピタキシャル膜基板、及びデバイス
JP2005518092A (ja) 適切な基板上における炭化ケイ素又は第iii族元素窒化物の層の製造方法
JP5929434B2 (ja) AlN系膜の製造方法およびそれに用いられる複合基板
US20130214282A1 (en) Iii-n on silicon using nano structured interface layer
JP4545389B2 (ja) エピタキシャル基板およびiii族窒化物層群の転位低減方法
JP2007161535A (ja) 半導体結晶基板の製造方法
KR100466574B1 (ko) GaN 기반 질화막의 형성방법
JP5489269B2 (ja) 窒化物半導体基板及びその製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707