JP2007285881A - Polarization microscope, magnetic field applying part for the polarization microscope and magnetic field application method - Google Patents

Polarization microscope, magnetic field applying part for the polarization microscope and magnetic field application method Download PDF

Info

Publication number
JP2007285881A
JP2007285881A JP2006113530A JP2006113530A JP2007285881A JP 2007285881 A JP2007285881 A JP 2007285881A JP 2006113530 A JP2006113530 A JP 2006113530A JP 2006113530 A JP2006113530 A JP 2006113530A JP 2007285881 A JP2007285881 A JP 2007285881A
Authority
JP
Japan
Prior art keywords
coil
stage
magnetic field
measured
coil holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006113530A
Other languages
Japanese (ja)
Inventor
Fumihito Izawa
文仁 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
Original Assignee
Funai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd filed Critical Funai Electric Co Ltd
Priority to JP2006113530A priority Critical patent/JP2007285881A/en
Publication of JP2007285881A publication Critical patent/JP2007285881A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently apply a relatively large magnetic field to a measuring target, for a polarization microscope and based on this, to observe the dynamic magnetization response of the measuring target. <P>SOLUTION: The polarization microscope 10, capable of observing the magnetized state of the measuring target, is equipped with a stage 40 on which the measuring target is arranged; a pancake coil 32 having a flat shape and having a through-hole 32a provided at its center part; a flat plat-shaped coil holder 31, having a light transmission port formed to its central part and holding the pancake coil 32 to the part of the light-transmitting port and a plurality of adjusting screws 36, etc. for fixing the coil holder 31, in a state capable of positionally adjusting the same in the direction vertical, with respect to the surface of the stage between the stage 40 and an object lens 14. The light from the measuring target 50 passes through the control transmission port of the coil holder 31 and the through-hole 32a of the pancake coil 32, and is condensed by the object lens 14. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、偏光顕微鏡、並びに、被測定物に磁界を印加する偏光顕微鏡用の磁界印加部品および磁界印加方法に関する。   The present invention relates to a polarizing microscope, and a magnetic field applying component and a magnetic field applying method for a polarizing microscope for applying a magnetic field to a measurement object.

例えば、光磁気記録媒体に用いられる磁性体の磁区などを観察するのに偏光顕微鏡が用いられている。偏光顕微鏡によれば、磁性体の表面を反射する光が磁性体の磁化の具合により偏光面を回転させる性質を利用して、磁性体の磁化の状態を観察することが出来る。   For example, a polarization microscope is used to observe magnetic domains of a magnetic material used for a magneto-optical recording medium. According to the polarization microscope, it is possible to observe the magnetization state of the magnetic material by utilizing the property that the light reflected from the surface of the magnetic material rotates the polarization plane depending on the magnetization of the magnetic material.

また、このような偏光顕微鏡において、被測定物に外部から磁界を印加する手段を備えたものも以前より提案されている。例えば特許文献1や特許文献2には、対物レンズの側方やステージの下側に永久磁石や電磁コイルを設けて、これらにより被測定物に磁界を印加するようにした偏光顕微鏡が開示されている。   Further, in such a polarization microscope, one having a means for applying a magnetic field to an object to be measured from the outside has been proposed. For example, Patent Document 1 and Patent Document 2 disclose a polarizing microscope in which a permanent magnet or an electromagnetic coil is provided on the side of an objective lens or on the lower side of a stage so that a magnetic field is applied to an object to be measured. Yes.

また、本願発明に関連する従来技術として、特許文献3には、カンチレバーにより試料の磁区構造を観察する磁気力顕微鏡において、カンチレバーの先端を磁化させるのに磁界発生装置を設けた技術が開示されている。
特開昭62−288585号公報 特開昭58−199487号公報 特開平10−239409号公報
As a conventional technique related to the present invention, Patent Document 3 discloses a technique in which a magnetic field generator is provided to magnetize the tip of a cantilever in a magnetic force microscope that observes the magnetic domain structure of a sample with a cantilever. Yes.
JP-A-62-288585 JP 58-199487 A JP-A-10-239409

しかしながら、従来の偏光顕微鏡では、被測定物である磁性体に対してその表面の微小な磁区を変化させるような比較的大きな磁界を効率良く印加する手段がなかったため、磁界印加による動的な磁区の応答を観察したいというような場合でも、それを実現することは困難であった。   However, in the conventional polarizing microscope, there is no means for efficiently applying a relatively large magnetic field that changes a minute magnetic domain on the surface of the magnetic material to be measured. Even if you want to observe the response, it was difficult to realize it.

例えば、上記特許文献1,2に記載されている外部磁界の印加方法は、磁気転写板の転写特性を改善したり、この磁気転写板上の迷路状磁区を消失させる程度の磁界を発生させるものであったり、或いは、磁気バブルメモリを被測定物としたときにこの磁気バブルメモリにバイアス磁界を与える程度の磁界を発生させるものであり、磁性体表面の微小な磁区に比較的大きな磁界を効率良く印加することは困難であった。   For example, the method of applying an external magnetic field described in Patent Documents 1 and 2 generates a magnetic field that improves the transfer characteristics of the magnetic transfer plate or eliminates the labyrinth magnetic domain on the magnetic transfer plate. Or, when a magnetic bubble memory is used as an object to be measured, a magnetic field that generates a bias magnetic field is generated to the magnetic bubble memory, and a relatively large magnetic field is efficiently applied to a minute magnetic domain on the surface of the magnetic material. It was difficult to apply well.

この発明の目的は、偏光顕微鏡において、被測定物に効率的に所定の磁界を印加することを可能とし、被測定物の動的な磁化応答を観測する技術を提供することにある。さらに、被測定物に印加する磁界の強度や角度の微細な調整を可能とする技術を提供することにある。   An object of the present invention is to provide a technique for enabling a predetermined magnetic field to be efficiently applied to a measurement object in a polarizing microscope and observing a dynamic magnetization response of the measurement object. It is another object of the present invention to provide a technique that enables fine adjustment of the strength and angle of a magnetic field applied to a measurement object.

本発明は、上記目的を達成するため、被測定物に対して第1の偏光状態の光を照射するとともに、該被測定物からの光を対物レンズで集光して第2の偏光状態の光を抽出し結像させることで、被測定物の磁化の状態を観察可能な偏光顕微鏡において、被測定物が配置されるステージと、偏平形状で中央部に貫通孔が形成された電磁コイルと、中央に光を透過可能な透過口が形成され該透過口の部分に前記電磁コイルを保持する平板形状のコイルホルダと、該コイルホルダを前記ステージと前記対物レンズとの間でステージ面に対して垂直方向に位置調整可能な状態で固定する固定手段とを備え、前記被測定物からの光が前記コイルホルダ中央の透過口と前記電磁コイルの前記貫通孔を通過して前記対物レンズにより集光される構成とした。   In order to achieve the above object, the present invention irradiates the object to be measured with light in the first polarization state and condenses the light from the object to be measured with the objective lens so as to have the second polarization state. In a polarization microscope capable of observing the state of magnetization of the object to be measured by extracting light and forming an image, a stage on which the object to be measured is disposed, and an electromagnetic coil having a flat shape and a through hole formed in the central portion A flat plate-shaped coil holder that has a transmission hole that can transmit light in the center and holds the electromagnetic coil at a portion of the transmission hole; and the coil holder between the stage and the objective lens with respect to the stage surface And fixing means for fixing in a vertically adjustable position, and light from the object to be measured passes through the transmission hole in the center of the coil holder and the through hole of the electromagnetic coil and is collected by the objective lens. It was set as the structure illuminated.

このような手段によれば、僅かな空間しかない対物レンズとステージの間に電磁コイルを配置して、被測定物に比較的大きな磁界を効率良く印加させることが出来る。さらに、ステージとコイルホルダの間隔を変位させることで磁界の強度や強度勾配等の調整も行うことが出来る。   According to such means, it is possible to efficiently apply a relatively large magnetic field to the object to be measured by disposing the electromagnetic coil between the objective lens having a small space and the stage. Further, by adjusting the distance between the stage and the coil holder, it is possible to adjust the strength of the magnetic field, the strength gradient, and the like.

具体的には、前記電磁コイルとしてはパンケーキコイルを適用すると良い。さらに、前記固定手段としては、前記コイルホルダに回転可能な状態で且つ前記ステージ側に先端を突出させた状態で固定される複数のネジを有し、これら複数のネジを回転させることで前記ステージと前記コイルホルダの間隔を調整可能な構成を適用すると良い。   Specifically, a pancake coil may be applied as the electromagnetic coil. Further, the fixing means includes a plurality of screws that are fixed to the coil holder in a state of being rotatable with the tip projecting toward the stage, and by rotating the plurality of screws, the stage It is preferable to apply a configuration capable of adjusting the interval between the coil holders.

このような構成により、より大きな磁界を効率良く被測定物に印加することが出来る。また、ネジを回すことでコイルホルダの位置や角度の微細な調整、すなわち、被測定物に印加する磁界の強度、強度勾配、向きなどの微細な調整が可能となる。   With such a configuration, a larger magnetic field can be efficiently applied to the object to be measured. Further, by turning the screw, it is possible to finely adjust the position and angle of the coil holder, that is, to finely adjust the strength, strength gradient, direction, etc. of the magnetic field applied to the object to be measured.

また、本発明の偏光顕微鏡用の磁界印加部品は、偏光顕微鏡の対物レンズとステージとの間に固定して使用される偏光顕微鏡用の磁界印加部品であって、偏平形状で中央に貫通孔を有するパンケーキコイルと、中央に光を透過可能な透過口を有し該透過口の部分に前記パンケーキコイルを保持する平板形状のコイルホルダと、該コイルホルダに回転可能な状態で且つ該コイルホルダの底面側に先端を突出させた状態で固定される複数のネジとを備え、前記パンケーキコイルに電流を流すことで前記ステージ上の被測定物に磁界を印加するとともに、前記複数のネジを回転させることで前記コイルホルダと前記ステージとの間隔が変更される構成としたものである。   In addition, the magnetic field application component for a polarizing microscope of the present invention is a magnetic field application component for a polarizing microscope that is used by being fixed between an objective lens of a polarizing microscope and a stage, and has a flat shape with a through hole in the center. A pancake coil having a plate-shaped coil holder having a transmission port through which light can be transmitted in the center and holding the pancake coil in a portion of the transmission port; A plurality of screws fixed to the bottom surface side of the holder with their tips protruding, and applying a current to the pancake coil to apply a magnetic field to the object to be measured on the stage, and the plurality of screws Is configured to change the distance between the coil holder and the stage.

また、本発明の偏光顕微鏡用の磁界印加方法は、偏平形状で中央に貫通孔を有するパンケーキコイルを中央に透過口を有した平板形状のコイルホルダに保持させ、このコイルホルダをステージと被測定物からの光を集光する対物レンズとの間に固定して前記パンケーキコイルに電流を流すことで前記被測定物に磁界を印加し、前記被測定物からの光は前記コイルホルダの透過口と前記パンケーキコイルの貫通孔を介して前記対物レンズに集光されるようにしたものである。   Further, the magnetic field application method for a polarizing microscope of the present invention comprises holding a pancake coil having a flat shape and having a through hole in the center on a flat plate coil holder having a transmission port in the center, and the coil holder is attached to the stage and the covering. A magnetic field is applied to the object to be measured by passing a current through the pancake coil while being fixed between an objective lens that collects light from the object to be measured, and the light from the object to be measured is applied to the coil holder. The light is condensed on the objective lens through a transmission port and a through-hole of the pancake coil.

このような手段により、被測定物に比較的大きな磁界を効率良く印加することができ、また、その磁界の強度や向きの調整も行うことが出来る。   By such means, a relatively large magnetic field can be efficiently applied to the object to be measured, and the strength and direction of the magnetic field can be adjusted.

以上説明したように、本発明に従うと、被測定物の近傍に比較的大きな磁界を効率良く印加することが出来るので、それにより、例えば、磁性体の動的な磁区の応答などの観測が出来るという効果がある。   As described above, according to the present invention, since a relatively large magnetic field can be efficiently applied in the vicinity of the object to be measured, it is possible to observe, for example, the dynamic magnetic domain response of the magnetic material. There is an effect.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態の偏光顕微鏡の構成図、図2は、磁界印加プレートの固定構造を示した分離斜視図である。   FIG. 1 is a configuration diagram of a polarizing microscope according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view showing a fixing structure of a magnetic field application plate.

この実施の形態の偏光顕微鏡10は、被測定物に所定の偏光状態の光を照射し、その反射光のうち所定の偏光状態の光を抽出して結像させることで、被測定物の磁化の状態を観察可能とするとともに、観測中に被測定物に対して比較的大きな磁界の印加を行うことを可能としたものである。   The polarization microscope 10 of this embodiment irradiates the object to be measured with light of a predetermined polarization state, extracts the light of the predetermined polarization state from the reflected light and forms an image, thereby magnetizing the object to be measured. This state can be observed, and a relatively large magnetic field can be applied to the object to be measured during the observation.

この偏光顕微鏡10は、光源11と、光源からの光を直線偏光にする第1偏光子12と、被測定物50へ向う光と被測定物50から反射された光の光路を分けるビームスプリッタ13と、鏡筒14aの下端に設けられ被測定物50の反射光を集光する対物レンズ14と、被測定物50の反射光から所定の偏光状態の光のみを抽出する第2偏光子15と、第2偏光子15を通過した光を結像させて画像データとして取り込む撮像手段としてのデジタルカメラ16と、被測定物50が中央にセットされるステージ20と、被測定物(磁性体)50を加熱して磁化状態をリセットさせるためのヒーター21と、被測定物50に磁界を印加する磁界印加部品としての磁界印加プレート30と、光源11、デジタルカメラ16およびヒーター21の駆動制御と磁界印加プレート30の通電制御を行う制御部40等を備えている。   The polarizing microscope 10 includes a light source 11, a first polarizer 12 that linearly polarizes light from the light source, and a beam splitter 13 that divides an optical path of light directed to the object to be measured 50 and light reflected from the object to be measured 50. An objective lens 14 that is provided at the lower end of the lens barrel 14a and condenses the reflected light of the object to be measured 50; and a second polarizer 15 that extracts only light in a predetermined polarization state from the reflected light of the object to be measured 50; The digital camera 16 as imaging means that forms an image of the light passing through the second polarizer 15 and captures it as image data, the stage 20 on which the object to be measured 50 is set in the center, and the object to be measured (magnetic material) 50 The heater 21 for resetting the magnetization state by heating the magnetic field, the magnetic field application plate 30 as a magnetic field application component for applying a magnetic field to the object to be measured 50, and the driving of the light source 11, the digital camera 16, and the heater 21 And a control unit 40 for performing the energization control of the control and the magnetic field applying plate 30.

磁界印加プレート30は、剛性を有する板状のコイルホルダ31の中央部分に偏平形状の電磁コイル32を保持したものである。電磁コイル32はパンケーキコイルであり、中央部分に上下に貫通する空洞部(貫通孔)32aが形成されている。また、コイルホルダ31の中央部分には貫通口が設けられ、この貫通口の部分に電磁コイル32が嵌合されて保持された構成になっている。このような構成により、薄型で比較的大きな磁界を中央部位に発生させること可能となり、さらに、中央部分の空洞部32aを介して被測定物50へ光を照射したり被測定物50の反射光を対物レンズ14まで導くことが可能になっている。   The magnetic field application plate 30 has a flat electromagnetic coil 32 held at the center of a plate-like coil holder 31 having rigidity. The electromagnetic coil 32 is a pancake coil, and a hollow portion (through hole) 32a penetrating vertically is formed in the central portion. In addition, a through-hole is provided in the central portion of the coil holder 31, and the electromagnetic coil 32 is fitted and held in this through-hole portion. With such a configuration, a thin and relatively large magnetic field can be generated in the central portion, and further, the object 50 can be irradiated with light through the hollow portion 32a of the central portion or the reflected light of the object 50 can be reflected. Can be guided to the objective lens 14.

コイルホルダ31は、矩形板状で、四隅部分に4個の微調ネジ36…が配設され、これらの微調ネジ36…によりステージ20への固定と、ステージ20との間隔や角度の微調整が可能になっている。微調ネジ36…は、コイルホルダ31の板面に対して垂直の向きに伸びるようにコイルホルダ31の下面側に突出した状態に固定され、ステージ20の対応する位置に設けられたネジ孔20b…にそれぞれ螺合するようになっている。   The coil holder 31 has a rectangular plate shape, and four fine adjustment screws 36... Are arranged at four corners. The fine adjustment screws 36... Can be fixed to the stage 20 and finely adjusted with respect to the interval and angle with the stage 20. It is possible. The fine adjustment screws 36 are fixed in a state of protruding to the lower surface side of the coil holder 31 so as to extend in a direction perpendicular to the plate surface of the coil holder 31, and screw holes 20 b provided in corresponding positions of the stage 20. Are screwed together.

図3には、コイルホルダ31の微調ネジ36…の固定構造部分を詳細に示した縦断面図を示す。図3(a)に示すように、各微調ネジ36…は、コイルホルダ31のネジ挿通孔31bに空回りする状態に挿通されるとともに、各微調ネジ36のコイルホルダ31の底面側には固定リング(例えばEリングなど)36aが固着され、微調ネジ36に対してコイルホルダ31が高さ方向に位置決めされた状態にされている。それゆえ、微調ネジ36を回してその先端をステージ20のネジ孔20bに螺合させていくことで、ステージ20と磁界印加プレート30との間隔を変化させることが可能になっている。また、左右や前後の微調ネジ36…の螺合量を異ならせることで磁界印加プレート30の角度を微調整することも可能になっている。   FIG. 3 is a longitudinal sectional view showing in detail a fixing structure portion of the fine adjustment screws 36 of the coil holder 31. As shown in FIG. 3A, each fine adjustment screw 36 is inserted into a screw insertion hole 31b of the coil holder 31 so as to be idle, and a fixing ring is provided on the bottom surface side of the coil holder 31 of each fine adjustment screw 36. 36a (for example, E ring) is fixed, and the coil holder 31 is positioned in the height direction with respect to the fine adjustment screw 36. Therefore, the distance between the stage 20 and the magnetic field application plate 30 can be changed by turning the fine adjustment screw 36 and screwing the tip of the fine adjustment screw 36 into the screw hole 20 b of the stage 20. Further, the angle of the magnetic field application plate 30 can be finely adjusted by changing the screwing amounts of the left and right and front and rear fine adjustment screws 36.

なお、微調ネジ36の固定構造は、図3(b)のようにしても良い。すなわち、コイルホルダ31側に微調ネジ36と螺号するネジ孔31cを設ける一方、ステージ20に微調ネジ36の先端部分を受ける窪み20c等を設ける。このような構成としても、微調ネジ36を回転させてステージ20と磁界印加プレート30との間隔を変化させたり、磁界印加プレート30の角度を調整することが可能である。   The fine adjustment screw 36 may be fixed as shown in FIG. That is, a screw hole 31c that is screwed with the fine adjustment screw 36 is provided on the coil holder 31 side, while a recess 20c that receives a tip portion of the fine adjustment screw 36 is provided on the stage 20. Even with such a configuration, the fine adjustment screw 36 can be rotated to change the interval between the stage 20 and the magnetic field application plate 30 or to adjust the angle of the magnetic field application plate 30.

次に、上記構成の偏光顕微鏡を用いて磁性体の動的な磁区応答を観察する処理について説明する。   Next, processing for observing the dynamic magnetic domain response of the magnetic material using the polarizing microscope having the above-described configuration will be described.

図4には、磁性体の動的な磁区応答の観察処理を説明する動作波形図を示す。   FIG. 4 shows an operation waveform diagram for explaining the observation process of the dynamic magnetic domain response of the magnetic material.

先ず、この観察処理の前工程として、被測定物50をステージ20にセットした後、磁界印加プレート30の高さや角度の調整を行う。この調整は、高さや角度を計測しながら微調ネジ36を回すことで行う。この磁界印加プレート30の高さや角度の調整により、被測定物50に印加される磁界の強度勾配や角度を微細に変化させることが出来る。なお、磁界の強度は、電磁コイル32に流す電流の大きさによっても調整することが可能である。   First, as a pre-process of this observation process, after setting the measured object 50 on the stage 20, the height and angle of the magnetic field application plate 30 are adjusted. This adjustment is performed by turning the fine adjustment screw 36 while measuring the height and angle. By adjusting the height and angle of the magnetic field application plate 30, the strength gradient and angle of the magnetic field applied to the object to be measured 50 can be finely changed. Note that the strength of the magnetic field can also be adjusted by the magnitude of the current flowing through the electromagnetic coil 32.

次に、制御部40に対して、電磁コイル32への通電量(パルス電流の大きさやパルス幅)、並びに、観察タイミング(磁界印加タイミングから写真撮影までの時間長)の設定を行う。そして、このような設定が済んだら、制御部40に観測処理の開始指令を与えて処理を実行させる。   Next, the energization amount (the magnitude and pulse width of the pulse current) to the electromagnetic coil 32 and the observation timing (the time length from the magnetic field application timing to the photographing) are set for the control unit 40. Then, after such setting is completed, an instruction to start observation processing is given to the control unit 40 to execute processing.

観察処理が開始されると、制御部40は、先ず、デジタルカメラ16のシャッターを開状態にするとともに、図4に示すような動作タイミングで、ヒーター21の駆動、電磁コイル32への通電、光源11のフラッシュ照射を実行させる。ここで、ヒーター21の駆動とは、被測定物50の磁性体の磁化状態をリセットさせるためのものである。そして、磁性体の磁化状態がリセットされた状態で、図4のコイル電流の出力により、所定パルスの磁界が磁性体に印加され、この印加タイミングから所定時間経過後にフラッシュがたかれて磁性体の磁化状態の像がデジタルカメラ16の撮像素子に入力される。   When the observation process is started, the control unit 40 first opens the shutter of the digital camera 16, drives the heater 21, energizes the electromagnetic coil 32, and the light source at the operation timing shown in FIG. 4. 11 flash irradiation is performed. Here, the driving of the heater 21 is for resetting the magnetization state of the magnetic body of the DUT 50. Then, in a state where the magnetization state of the magnetic material is reset, a magnetic field of a predetermined pulse is applied to the magnetic material by the output of the coil current of FIG. An image in a magnetized state is input to the image sensor of the digital camera 16.

また、1回のフラッシュ照射では露光時間が短いため、これらの動作を所定周期(例えば30Hz周期)で所定回数(例えば10秒間)繰り返し実行させる。そして、この間のデジタルカメラ16の撮像素子の出力を積分させることで、所定パルスの磁界の印加から所定時間後の磁区応答の状態を撮像した1枚の画像を得ることができる。   Further, since the exposure time is short in one flash irradiation, these operations are repeatedly executed a predetermined number of times (for example, 10 seconds) at a predetermined period (for example, 30 Hz period). Then, by integrating the output of the image sensor of the digital camera 16 during this period, it is possible to obtain one image obtained by imaging the state of the magnetic domain response after a predetermined time from the application of the magnetic field of the predetermined pulse.

さらに、このような撮像処理を、コイル電流の出力タイミングの設定パターンを、図4の矢印で示すように前後にずらして複数実行することで、磁界印加から様々な時間経過後の磁区応答の撮像画像を得ることが出来る。また、磁界印加プレート30の高さや角度、並びに、コイル電流の電流値やパルス幅を変えて複数の撮像処理を行うことで、様々な磁界印加の状態に対する磁性体の磁区応答の撮像画像を得ることが出来る。   Further, by performing a plurality of such imaging processes by shifting the setting pattern of the output timing of the coil current back and forth as shown by the arrows in FIG. 4, imaging of the magnetic domain response after various times have passed since the magnetic field application. An image can be obtained. Further, by performing a plurality of imaging processes by changing the height and angle of the magnetic field application plate 30 and the current value and pulse width of the coil current, captured images of magnetic domain responses of various magnetic fields are obtained. I can do it.

以上のように、この実施の形態の偏光顕微鏡10、その磁界印加プレート30および磁界印加方法によれば、被測定物50に比較的大きな磁界を効率良く印加することが出来るので、磁性体の動的な磁区応答の観察等を行うことが出来る。   As described above, according to the polarizing microscope 10 of this embodiment, the magnetic field application plate 30 and the magnetic field application method, a relatively large magnetic field can be efficiently applied to the object 50 to be measured. The magnetic domain response can be observed.

また、磁界印加プレート30の高さや角度を微調整できるので、印加する磁界の状態を様々なパターンに変化させて、それぞれのパターンにおける動的な磁区応答の観察も行うことが出来る。   Further, since the height and angle of the magnetic field application plate 30 can be finely adjusted, the state of the applied magnetic field can be changed to various patterns, and dynamic magnetic domain responses in the respective patterns can be observed.

なお、本発明は、上記実施の形態に限られるものではなく、様々な変更が可能である。例えば、実施の形態では、コイルホルダの中央部分を開口させてそこに電磁コイルを保持するようにしたが、コイルホルダの中央部分を光を透過する透明板により構成し、そこに電磁コイルを載置し固定するようにしても良い。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, in the embodiment, the central portion of the coil holder is opened and the electromagnetic coil is held there. However, the central portion of the coil holder is configured by a transparent plate that transmits light, and the electromagnetic coil is mounted thereon. It may be placed and fixed.

また、図3(a)のネジ固定構造において、固定リング36aを設けずに、コイルホルダ31とステージ20との間にバネを介在させ、コイルホルダ31を微調ネジ36の頭部側に付勢させることで、コイルホルダ31を高さの微調整が可能なように固定するようにしても良い。   3A, without providing the fixing ring 36a, a spring is interposed between the coil holder 31 and the stage 20, and the coil holder 31 is urged toward the head side of the fine adjustment screw 36. By doing so, you may make it fix the coil holder 31 so that fine adjustment of height is possible.

その他、実施の形態で示した偏光顕微鏡の光学系の構成は様々なパターンに変更しても良いし、被測定物の観察画像の取得方法も様々なパターンに変更可能である。例えば、撮像手段としてデジタルカメラでなくフィルムカメラを用いても良いし、カメラの感度を上げて1回のシャッターの開閉で観察画像を取得するようにしても良い。また、電磁コイル32に連続的に電流パルスを出力して磁界印加を連続的に行いつつ被測定物を接眼レンズを介して目視により観察するようにしても良い。また、上記実施の形態では、被測定物からの反射光を観測する反射型の偏光顕微鏡を例示したが、被測定物からの透過光を観測する透過型の偏光顕微鏡でも同様に本発明を適用することが出来る。   In addition, the configuration of the optical system of the polarization microscope described in the embodiment may be changed to various patterns, and the method for acquiring the observation image of the object to be measured can be changed to various patterns. For example, a film camera instead of a digital camera may be used as the imaging means, or an observation image may be acquired by opening and closing the shutter once by increasing the sensitivity of the camera. Alternatively, the object to be measured may be visually observed through an eyepiece while continuously applying a magnetic field by outputting current pulses to the electromagnetic coil 32. In the above-described embodiment, the reflection type polarization microscope that observes the reflected light from the object to be measured is illustrated. However, the present invention is similarly applied to the transmission type polarization microscope that observes the transmitted light from the object to be measured. I can do it.

本発明の実施の形態の偏光顕微鏡を示す全体構成図である。It is a whole lineblock diagram showing the polarization microscope of an embodiment of the invention. 磁界印加プレートの固定構造を示した分離斜視図である。It is the isolation | separation perspective view which showed the fixation structure of the magnetic field application plate. コイルホルダの微調ネジの固定構造を詳細に示した縦断面図であり、(a)はその第1パターン、(b)は第2パターンである。It is the longitudinal cross-sectional view which showed the fixation structure of the fine adjustment screw of a coil holder in detail, (a) is the 1st pattern, (b) is the 2nd pattern. 被測定物の動的な磁区応答の状態を撮像する撮像処理の動作を示す動作波形図である。It is an operation | movement waveform diagram which shows the operation | movement of the imaging process which images the state of the dynamic magnetic domain response of a to-be-measured object.

符号の説明Explanation of symbols

10 偏光顕微鏡
11 光源
12 第1偏光子
13 ビームスプリッタ
14 対物レンズ
14a 鏡筒
15 第2偏光子
16 デジタルカメラ
20 ステージ
20b ネジ孔
21 ヒーター
30 磁界印加プレート(磁界印加部品)
31 コイルホルダ
31 ネジ挿通孔
32 電磁コイル(パンケーキコイル)
32a 空洞部
36 微調ネジ
36 固定リング
40 制御部
50 被測定物
DESCRIPTION OF SYMBOLS 10 Polarizing microscope 11 Light source 12 1st polarizer 13 Beam splitter 14 Objective lens 14a Lens barrel 15 2nd polarizer 16 Digital camera 20 Stage 20b Screw hole 21 Heater 30 Magnetic field application plate (magnetic field application component)
31 Coil holder 31 Screw insertion hole 32 Electromagnetic coil (pancake coil)
32a Cavity part 36 Fine adjustment screw 36 Fixing ring 40 Control part 50 Measured object

Claims (6)

被測定物に対して第1の偏光状態の光を照射するとともに、該被測定物からの光を対物レンズで集光して第2の偏光状態の光を抽出し結像させることで、被測定物の磁化の状態を観察可能な偏光顕微鏡において、
被測定物が配置されるステージと、
偏平形状で中央部に貫通孔を有するパンケーキコイルと、
中央に光を透過可能な透過口を有し該透過口の部分に前記パンケーキコイルを保持する平板形状のコイルホルダと、
該コイルホルダを前記ステージと前記対物レンズとの間でステージ面に対して垂直方向に位置調整可能な状態で固定する固定手段とを備え、
前記被測定物からの光が前記コイルホルダ中央の透過口と前記パンケーキコイルの貫通孔を通過して前記対物レンズにより集光されるように構成され、
さらに、
前記固定手段は、前記コイルホルダに回転可能な状態で且つ前記ステージ側に先端を突出させた状態で固定される複数のネジを有し、これら複数のネジを回転させることで前記ステージと前記コイルホルダの間隔が調整可能にされていることを特徴とする偏光顕微鏡。
By irradiating the object to be measured with light in the first polarization state, condensing the light from the object to be measured with an objective lens and extracting the light in the second polarization state to form an image. In a polarizing microscope that can observe the state of magnetization of the measurement object,
A stage on which the object to be measured is placed;
A pancake coil with a flat shape and a through hole in the center,
A flat plate-shaped coil holder having a transmission port capable of transmitting light in the center and holding the pancake coil in a portion of the transmission port;
Fixing means for fixing the coil holder between the stage and the objective lens in a state in which the position can be adjusted in a direction perpendicular to the stage surface;
The light from the object to be measured is configured to be collected by the objective lens through the transmission hole in the center of the coil holder and the through-hole of the pancake coil,
further,
The fixing means has a plurality of screws that are fixed to the coil holder in a state where the tip can be rotated and a tip is projected to the stage side, and the stage and the coil are rotated by rotating the plurality of screws. A polarizing microscope characterized in that an interval between holders is adjustable.
被測定物に対して第1の偏光状態の光を照射するとともに、該被測定物からの光を対物レンズで集光して第2の偏光状態の光を抽出し結像させることで、被測定物の磁化の状態を観察可能な偏光顕微鏡において、
被測定物が配置されるステージと、
偏平形状で中央部に貫通孔が形成された電磁コイルと、
中央に光を透過可能な透過口が形成され該透過口の部分に前記電磁コイルを保持する平板形状のコイルホルダと、
該コイルホルダを前記ステージと前記対物レンズとの間でステージ面に対して垂直方向に位置調整可能な状態で固定する固定手段とを備え、
前記被測定物からの光が前記コイルホルダ中央の透過口と前記電磁コイルの前記貫通孔を通過して前記対物レンズにより集光されるように構成されていることを特徴とする偏光顕微鏡。
By irradiating the object to be measured with light in the first polarization state, condensing the light from the object to be measured with an objective lens and extracting the light in the second polarization state to form an image. In a polarizing microscope that can observe the state of magnetization of the measurement object,
A stage on which the object to be measured is placed;
An electromagnetic coil having a flat shape and a through-hole formed in the center;
A plate-shaped coil holder in which a transmission port capable of transmitting light is formed at the center, and the electromagnetic coil is held in a portion of the transmission port;
Fixing means for fixing the coil holder between the stage and the objective lens in a state in which the position can be adjusted in a direction perpendicular to the stage surface;
A polarizing microscope characterized in that light from the object to be measured passes through the transmission hole in the center of the coil holder and the through hole of the electromagnetic coil and is collected by the objective lens.
前記電磁コイルはパンケーキコイルであることを特徴とする請求項2記載の偏光顕微鏡。   The polarizing microscope according to claim 2, wherein the electromagnetic coil is a pancake coil. 前記固定手段は、
前記コイルホルダに回転可能な状態で且つ前記ステージ側に先端を突出させた状態で固定される複数のネジを有し、
これら複数のネジを回転させることで前記ステージと前記コイルホルダの間隔が調整可能にされていることを特徴とする請求項2又は3に記載の偏光顕微鏡。
The fixing means includes
A plurality of screws fixed to the coil holder in a rotatable state and in a state where tips are projected toward the stage;
The polarizing microscope according to claim 2 or 3, wherein a distance between the stage and the coil holder is adjustable by rotating the plurality of screws.
偏光顕微鏡の対物レンズとステージとの間に固定して使用される偏光顕微鏡用の磁界印加部品であって、
偏平形状で中央に貫通孔を有するパンケーキコイルと、
中央に光を透過可能な透過口を有し該透過口の部分に前記パンケーキコイルを保持する平板形状のコイルホルダと、
該コイルホルダに回転可能な状態で且つ該コイルホルダの底面側に先端を突出させた状態で固定される複数のネジとを備え、
前記パンケーキコイルに電流を流すことで前記ステージ上の被測定物に磁界を印加するとともに、前記複数のネジを回転させることで前記コイルホルダと前記ステージとの間隔が変更されることを特徴とする偏光顕微鏡用の磁界印加部品。
A magnetic field application component for a polarizing microscope used by being fixed between an objective lens of a polarizing microscope and a stage,
A pancake coil having a flat shape and a through hole in the center;
A flat plate-shaped coil holder having a transmission port capable of transmitting light in the center and holding the pancake coil in the transmission port part;
A plurality of screws that are fixed to the coil holder in a rotatable state and with the tip protruding from the bottom side of the coil holder;
The magnetic field is applied to the object to be measured on the stage by passing an electric current through the pancake coil, and the interval between the coil holder and the stage is changed by rotating the plurality of screws. Magnetic field application component for polarizing microscope.
偏光顕微鏡のステージに固定された被測定物に対して磁界を印加する偏光顕微鏡用の磁界印加方法であって、
偏平形状で中央に貫通孔を有するパンケーキコイルを中央に透過口を有した平板形状のコイルホルダに保持させ、
このコイルホルダを前記ステージと前記被測定物からの光を集光する対物レンズとの間に固定して前記パンケーキコイルに電流を流すことで前記被測定物に磁界を印加し、
前記被測定物からの光は前記コイルホルダの透過口と前記パンケーキコイルの貫通孔を介して前記対物レンズに集光されるようにしたことを特徴とする偏光顕微鏡用の磁界印加方法。
A magnetic field application method for a polarization microscope that applies a magnetic field to an object to be measured fixed to a stage of a polarization microscope,
A flat-shaped coil holder having a flat shape and a through-hole in the center is held in a flat plate-shaped coil holder having a transmission port in the center,
The coil holder is fixed between the stage and an objective lens that collects light from the object to be measured, and a magnetic field is applied to the object to be measured by passing a current through the pancake coil.
A magnetic field application method for a polarizing microscope, wherein light from the object to be measured is condensed on the objective lens through a transmission port of the coil holder and a through-hole of the pancake coil.
JP2006113530A 2006-04-17 2006-04-17 Polarization microscope, magnetic field applying part for the polarization microscope and magnetic field application method Pending JP2007285881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113530A JP2007285881A (en) 2006-04-17 2006-04-17 Polarization microscope, magnetic field applying part for the polarization microscope and magnetic field application method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113530A JP2007285881A (en) 2006-04-17 2006-04-17 Polarization microscope, magnetic field applying part for the polarization microscope and magnetic field application method

Publications (1)

Publication Number Publication Date
JP2007285881A true JP2007285881A (en) 2007-11-01

Family

ID=38757792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113530A Pending JP2007285881A (en) 2006-04-17 2006-04-17 Polarization microscope, magnetic field applying part for the polarization microscope and magnetic field application method

Country Status (1)

Country Link
JP (1) JP2007285881A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160107924A (en) * 2015-03-06 2016-09-19 서강대학교산학협력단 microwave neafield microscope based on optical indicator and nearfield heating
CN111855585A (en) * 2020-07-07 2020-10-30 上海交通大学 Method for determining crystal domain space distribution and crystal lattice orientation of non-centrosymmetric crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160107924A (en) * 2015-03-06 2016-09-19 서강대학교산학협력단 microwave neafield microscope based on optical indicator and nearfield heating
KR101715044B1 (en) 2015-03-06 2017-03-22 서강대학교산학협력단 microwave neafield microscope based on optical indicator and nearfield heating
CN111855585A (en) * 2020-07-07 2020-10-30 上海交通大学 Method for determining crystal domain space distribution and crystal lattice orientation of non-centrosymmetric crystal
CN111855585B (en) * 2020-07-07 2023-08-15 上海交通大学 Determination method for domain space distribution and lattice orientation of non-centrosymmetric crystal

Similar Documents

Publication Publication Date Title
McCord Progress in magnetic domain observation by advanced magneto-optical microscopy
US7915577B2 (en) Single-shot spatially-resolved imaging magnetometry using ultracold atoms
Soldatov et al. Advanced MOKE magnetometry in wide-field Kerr-microscopy
US20220050153A1 (en) Magnetic measuring device
CN108519218B (en) Optical element multiwavelength laser damage measure and analysis system
EP3161437B1 (en) Measuring polarisation
Neudert et al. Small-amplitude magnetization dynamics in permalloy elements investigated by time-resolved wide-field Kerr microscopy
JP2007285881A (en) Polarization microscope, magnetic field applying part for the polarization microscope and magnetic field application method
CN212569096U (en) Magnetic imaging device based on diamond NV color center and Kerr effect
ATE233401T1 (en) IMAGINATION AND CHARACTERIZATION OF THE FOCAL FIELD OF A LENS THROUGH SPATIAL AUTOCORRELATION
JP3365474B2 (en) Polarizing imaging device
JP2004294293A (en) Method for collectively observing and measuring optical characteristics of plurality of different samples
CN104034944B (en) Photoelectrical current sensing dynamic checkout unit
JP2008165874A (en) Magnetic field distribution measuring device, temperature distribution measuring device, magnetic field distribution measuring method, and temperature distribution measuring method
Moses et al. A novel instrument for real-time dynamic domain observation in bulk and micromagnetic materials
JP5822570B2 (en) Circular dichroism imaging system
KR20180121586A (en) Electromagnetic field imaging device
US6593739B1 (en) Apparatus and method for measuring magnetization of surfaces
JP2005332772A (en) Electron microscope equipped with magnetic microprobe
US20060250129A1 (en) Method of measuring sub-micrometer hysteresis loops of magnetic films
JP2005095012A (en) Screening apparatus for drug development
JP4842441B2 (en) Convergent light polarization microscope apparatus and convergent light polarization microscope observation method
JP2003344258A (en) Device for impressing vertical magnetic field for magnetic force microscope
JPH08254654A (en) Confocal point polarization microscope
CN112219096A (en) Method and system for measuring optical shear of a birefringent device beyond the diffraction limit