JPH08254654A - Confocal point polarization microscope - Google Patents

Confocal point polarization microscope

Info

Publication number
JPH08254654A
JPH08254654A JP5849595A JP5849595A JPH08254654A JP H08254654 A JPH08254654 A JP H08254654A JP 5849595 A JP5849595 A JP 5849595A JP 5849595 A JP5849595 A JP 5849595A JP H08254654 A JPH08254654 A JP H08254654A
Authority
JP
Japan
Prior art keywords
light
sample
objective lens
dichroic mirror
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5849595A
Other languages
Japanese (ja)
Inventor
Kenji Yasuda
賢二 安田
Shinichiro Umemura
晋一郎 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5849595A priority Critical patent/JPH08254654A/en
Publication of JPH08254654A publication Critical patent/JPH08254654A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a device which is provided with a means capable of fixing fluorescence dyestuff on the specified position of a sample, and obtaining the polarization degree of the fluorescence dyestuff in a state where it has depth resolution in an optical microscope. CONSTITUTION: Single color light emitted from a laser light source 1 is guided to an objective lens 4 by a dichroic mirror 7, and is focused on the sample 6 on a sample plate. The light from a fluorescence image on a focusing point is transmitted through the lens 4 again, passes through a filter 8 suitable for the characteristic of the fluorescence dyestuff, then is branched into two optical paths by the dichroic mirror 9. The branched light beams are guided to polarizing boards 10 and 13 crossing at a right angle with each other, so that two images in accordance with the polarization of the fluorescence dyestuff can be obtained and the polarizing direction of the fluorescence dyestuff can be estimated by combining and analyzing the two images.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蛍光色素を含有する試
料の断面を観察する共焦点顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a confocal microscope for observing a cross section of a sample containing a fluorescent dye.

【0002】[0002]

【従来の技術】光学顕微鏡技術は、細胞内の構成要素の
時間変化などの情報を、生体試料が生きた状態のまま直
接観察できる主力技術の一つである。最近の光学顕微鏡
観察技術の進歩は、対象試料の屈折率に依存した観察手
法の場合の分解能限界を、蛍光物質の発光現象を利用す
ることでサブナノメートルの領域まで拡張させることに
成功し、従来、電子顕微鏡でしか観察することのできな
かった蛋白質一分子の振る舞いを、試料固定のプロセス
を経ることなく、生きた状態のまま観察することが可能
となりつつある。
2. Description of the Related Art The optical microscope technique is one of the main techniques for directly observing information such as temporal changes of constituent elements in cells in a living state of a biological sample. Recent advances in optical microscopy have succeeded in extending the resolution limit of the observation method that depends on the refractive index of the target sample to the sub-nanometer range by utilizing the luminescence phenomenon of fluorescent substances. It is becoming possible to observe the behavior of a single protein molecule, which could only be observed with an electron microscope, in a living state without going through the process of sample fixation.

【0003】また、生きた状態のまま試料を観察するこ
とができることから、試料の特定の要素の経時変化、例
えばpHの変化やカルシウムイオン濃度の変化などを、蛍
光物質の蛍光強度の変化に置き換えることで、時間分解
能と空間分解能をあわせ持った情報を取り出すことも可
能となりつつある。また、蛍光色素を特定の蛋白質に結
合させ、その蛍光色素の偏光を直交する2枚の偏光板で
観察することで、その蛋白質の配向、回転などの機能性
蛋白質の構造変化の情報を直接得ることができる。これ
らの技術については木下一彦らがJournal of Cell Bio
logy第115巻67−71頁(1991年)で詳しく報
告している。
Since the sample can be observed in a living state, changes over time in specific elements of the sample, such as changes in pH and calcium ion concentration, are replaced with changes in the fluorescence intensity of the fluorescent substance. Therefore, it is becoming possible to extract information having both temporal resolution and spatial resolution. In addition, by binding a fluorescent dye to a specific protein and observing the polarization of the fluorescent dye with two polarizing plates orthogonal to each other, information on the structural change of the functional protein such as orientation and rotation of the protein can be directly obtained. be able to. Regarding these technologies, Kazuhiko Kinoshita et al., Journal of Cell Bio
logy 115: 67-71 (1991).

【0004】[0004]

【発明が解決しようとする課題】上記従来の光学顕微鏡
技術においては、観察平面方向の分解能は十分に得られ
るけれども、深さ方向の分解能は十分に得られなかった
ため、たとえば細胞中の特定の細胞質の振る舞いを観察
しようとした場合、観測したい細胞質を含む深さ方向の
平面以外の深さ位置の情報をノイズとして含む形で取得
してしまい、取得した情報源の蛋白質を特定することが
困難な場合があった。
In the above-mentioned conventional optical microscope technique, although the resolution in the observation plane direction is sufficiently obtained, the resolution in the depth direction is not sufficiently obtained. Therefore, for example, a specific cytoplasm in a cell is obtained. If you try to observe the behavior of the, you will get the information of the depth position other than the plane in the depth direction including the cytoplasm you want to observe as noise, and it will be difficult to identify the protein of the obtained information source. There were cases.

【0005】また、従来の共焦点顕微鏡は試料の断面の
蛍光像を取得する手段はあったが、断面の試料の局部の
回転等の微細な構造変化を計測する手段は無かった。
Further, the conventional confocal microscope has a means for acquiring a fluorescence image of the cross section of the sample, but has no means for measuring a minute structural change such as local rotation of the sample of the cross section.

【0006】本発明は、光学顕微鏡において、試料の特
定の部位の回転等の微細な構造変化を観測する手段を有
する装置を提供することを目的とする。
An object of the present invention is to provide an apparatus having means for observing a fine structural change such as rotation of a specific portion of a sample in an optical microscope.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
には、試料の特定の部位に蛍光色素を固定し、その蛍光
色素の偏光度を深さ分解能を持つ形で取得する手段を有
する共焦点顕微鏡技術を適用し、顕微鏡の対物レンズか
ら共焦点ピンホールを経て観察受光面に至る光路におい
て、ピンホールの前段あるいは後段で、光路を2分割
し、2分岐した光路それぞれに、互いに直行する2枚の
偏光板を導入し、それぞれの偏光板を通過した像を観察
し、その2者の像を比較することで蛍光色素の偏光度お
よび偏光度の変化を観察すればよい。
In order to solve the above-mentioned problems, a fluorescent dye is immobilized on a specific site of a sample, and a means for acquiring the polarization degree of the fluorescent dye in a form having depth resolution is provided. In the optical path from the objective lens of the microscope to the observation light receiving surface through the confocal pinhole by applying the focusing microscope technology, the optical path is divided into two parts before and after the pinhole, and the two branched optical paths are orthogonal to each other. It is only necessary to introduce two polarizing plates, observe the images that have passed through the respective polarizing plates, and compare the two images to observe the degree of polarization of the fluorescent dye and the change in the degree of polarization.

【0008】[0008]

【作用】共焦点顕微鏡において、共焦点光学系は対物レ
ンズの試料に対する合焦位置と光学的に共役な位置にピ
ンホールを置くことで、合焦位置以外からの光を一切排
除し、厚みのある試料の光学的スライス像を試料を破壊
することなく取得することができる。そこで、ピンホー
ルの前段あるいは後段において、光路を2分岐させ、そ
れぞれを互いに直行する2枚の偏光板を通過させること
で、試料に固定した蛍光色素の特定のスライス領域のそ
れぞれの偏光板方向の偏光度をそれぞれ検出することが
できる。これら検出した2枚の偏光像を比較すること
で、試料の傾き、動き、回転等の情報を取得することが
できる。
[Function] In the confocal microscope, the confocal optical system places a pinhole at a position optically conjugate with the focus position of the objective lens with respect to the sample, so that light from other than the focus position is completely eliminated, and An optical slice image of a sample can be acquired without destroying the sample. Therefore, by dividing the optical path into two in the front stage or the rear stage of the pinhole and passing the two polarizing plates orthogonal to each other, the direction of each polarizing plate in the specific slice area of the fluorescent dye fixed to the sample is changed. The degree of polarization can be detected respectively. By comparing the two polarization images thus detected, it is possible to obtain information on the tilt, movement, rotation, etc. of the sample.

【0009】[0009]

【実施例】図1に本発明の一つの実施例の装置構成の模
式図を示す。レーザー光源1から出た単色光は、レンズ
201、ピンホール202、レンズ203を経て対物レ
ンズ4の瞳と同じ大きさの平行光となって減光フィルタ
ー3へ達する。次に減光フィルター3を通過した光はダ
イクロイックミラー7で対物レンズ4に誘導される。こ
のとき、ダイクロイックミラーは制御解析装置によって
その位置をX−Y方向に自由に移動させ、対物レンズの
結像点を試料のX−Y平面上の任意の点に移動させるこ
とができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic diagram of the apparatus configuration of one embodiment of the present invention. The monochromatic light emitted from the laser light source 1 passes through the lens 201, the pinhole 202, and the lens 203 to become parallel light having the same size as the pupil of the objective lens 4 and reaches the neutral density filter 3. Next, the light passing through the neutral density filter 3 is guided to the objective lens 4 by the dichroic mirror 7. At this time, the position of the dichroic mirror can be freely moved in the XY direction by the control analysis device, and the image forming point of the objective lens can be moved to an arbitrary point on the XY plane of the sample.

【0010】対物レンズ4を通過した光は、Z軸方向に
その位置を変化させることのできる試料プレート5上の
試料6の任意のZ軸方向の断層面を焦点面として合焦す
る。合焦点の蛍光像は対物レンズ4を通過し、ダイクロ
イックミラー7を通過した後その蛍光色素の特性にあっ
たフィルター8を通過し、その後にダイクロイックミラ
ー9によって2光路に分岐される。
The light that has passed through the objective lens 4 is focused by using a tomographic plane in an arbitrary Z-axis direction of the sample 6 on the sample plate 5 whose position can be changed in the Z-axis direction as a focal plane. The in-focus fluorescence image passes through the objective lens 4, the dichroic mirror 7, and then the filter 8 that matches the characteristics of the fluorescent dye, and is then branched into two optical paths by the dichroic mirror 9.

【0011】分岐された光は2つの互いに直交する偏光
板10、13に誘導される。それぞれの偏光板10、1
3を通過した蛍光像は、レンズ111、141によって
結像されピンホール112、142によって対物レンズ
の合焦点と同じ光のみが通過することができる。通過し
た光は再びレンズ113、143を通過して検出装置1
2、15に誘導される。検出装置12、15で得られた
情報は、制御解析装置16で記憶され、ダイクロイック
ミラー4の位置あるいは試料プレート5の高さを移動さ
せることでX−Y平面、X−Z平面等の走査による試料
断層面の測定の結果を再構成し、試料の蛍光色素の偏光
の向きを見積もることができる。
The branched light is guided to two polarizing plates 10 and 13 which are orthogonal to each other. Polarizing plates 10, 1
The fluorescent image that has passed through 3 is formed by the lenses 111 and 141, and only the same light as the focal point of the objective lens can pass through the pinholes 112 and 142. The passed light passes through the lenses 113 and 143 again, and the detection device 1
It is guided to 2,15. The information obtained by the detection devices 12 and 15 is stored in the control analysis device 16 and is moved by moving the position of the dichroic mirror 4 or the height of the sample plate 5 by scanning on the XY plane, the XZ plane, or the like. It is possible to reconstruct the measurement result of the sample tomographic plane and estimate the polarization direction of the fluorescent dye of the sample.

【0012】図2に上記実施例の装置で観察した試料の
スライス像を示す。
FIG. 2 shows a slice image of the sample observed by the apparatus of the above embodiment.

【0013】偏光板を通過させない試料の断層像17で
は、試料断面18に並んだ蛍光色素すべてを観察してし
まうが、偏光板10、13を通過させることで蛍光色素
の偏光に応じた像20、21を得ることができ、これら
を組み合わせて解析することで、蛍光色素の偏光の向き
を見積もることができる。
In the tomographic image 17 of the sample that does not pass through the polarizing plate, all the fluorescent dyes lined up in the cross section 18 of the sample are observed, but by passing through the polarizing plates 10 and 13, an image 20 corresponding to the polarization of the fluorescent dye is obtained. , 21 can be obtained, and the polarization direction of the fluorescent dye can be estimated by analyzing them in combination.

【0014】偏光板の挿入、ダイクロイックミラーによ
る光路分岐には平行光を用いることが望ましく対物レン
ズ4の後段は平行光であることが望ましい。また、この
とき、偏光板はレンズ111、141の前段の平行光の
位置か、あるいはレンズ113、143の後段で平行光
に処理した後の位置に挿入するのが望ましい。
It is desirable to use parallel light for inserting the polarizing plate and branching the optical path by the dichroic mirror, and it is desirable that the latter stage of the objective lens 4 is parallel light. At this time, it is desirable that the polarizing plate is inserted at the position of the parallel light in the front stage of the lenses 111 and 141 or the position after the parallel light is processed in the rear stage of the lenses 113 and 143.

【0015】さらに、本実施例では、光を2光路分岐さ
せて、各分岐光を偏光板に導入したが、偏光板を回転さ
せる手段を用いることで、1光路で異なる偏光面の向き
の情報を2度取得し、それらの情報を比較することでも
同様の効果を得られる。ただし、この場合、光照射によ
る蛍光色素の退色を考慮し、制御解析装置16でその結
果を評価するときに退色分を見積もる必要がある。
Further, in the present embodiment, the light is branched into two optical paths and each branched light is introduced into the polarizing plate. However, by using a means for rotating the polarizing plate, information on the directions of polarization planes different in one optical path is obtained. The same effect can be obtained by acquiring twice and comparing the information. However, in this case, it is necessary to consider the fading of the fluorescent dye due to light irradiation, and to estimate the fading amount when the control analysis device 16 evaluates the result.

【0016】[0016]

【発明の効果】本発明は、以上説明したように構成され
ているので、光学顕微鏡において、試料の特定の部位に
蛍光色素を固定し、その蛍光色素の偏光度を深さ分解能
を持つ形で取得することができるという効果を奏する。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, in an optical microscope, a fluorescent dye is immobilized on a specific site of a sample, and the degree of polarization of the fluorescent dye has a depth resolution. There is an effect that can be acquired.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の装置構成を示す模式図。FIG. 1 is a schematic diagram showing a device configuration of an embodiment of the present invention.

【図2】本発明の実施例を用いた蛍光観察像の例を示す
図。
FIG. 2 is a diagram showing an example of a fluorescence observation image using an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…レーザー光源、201…レンズ、202…ピンホー
ル、203…レンズ、3…フィルター、4…対物レン
ズ、5…試料プレート、6…試料、7…ダイクロイック
ミラー、8…フィルター、9…ダイクロイックミラー、
10…偏光板、111…レンズ、112…ピンホール、
113…レンズ、12…検出装置、13…偏光板、14
1…レンズ、142…ピンホール、143…レンズ、1
5…検出装置、16…制御解析装置、17…試料スライ
ス像、18…試料断面、19…蛍光色素の配向方向、2
0…偏光板通過後の試料スライス像、21…偏光板通過
後の試料スライス像。
1 ... Laser light source, 201 ... Lens, 202 ... Pinhole, 203 ... Lens, 3 ... Filter, 4 ... Objective lens, 5 ... Sample plate, 6 ... Sample, 7 ... Dichroic mirror, 8 ... Filter, 9 ... Dichroic mirror,
10 ... Polarizing plate, 111 ... Lens, 112 ... Pinhole,
113 ... Lens, 12 ... Detection device, 13 ... Polarizing plate, 14
1 ... Lens, 142 ... Pinhole, 143 ... Lens, 1
5 ... Detection device, 16 ... Control analysis device, 17 ... Sample slice image, 18 ... Sample cross section, 19 ... Fluorescent dye orientation direction, 2
0 ... Sample slice image after passing through the polarizing plate, 21 ... Sample slice image after passing through the polarizing plate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光学顕微鏡において、光源と、光路を複数
分岐させる手段と、その後段に配置された複数の向きの
偏光を計測できる手段と、対物レンズの合焦点と同じ合
焦点の光のみを通過させる手段とを持つことを特徴とす
る共焦点偏光顕微鏡。
1. In an optical microscope, a light source, a means for branching a plurality of optical paths, a means for measuring polarized light in a plurality of directions arranged at a subsequent stage, and only light having the same focal point as that of an objective lens. A confocal polarization microscope characterized by having a means for passing it.
【請求項2】光学顕微鏡において、レーザー光源と、対
物レンズにレーザー光を誘導するX−Y方向に可変なダ
イクロイックミラーと、対物レンズと、Z軸方向に可変
な試料プレートと、対物レンズの後段に配置された蛍光
フィルターと、光路を2分岐させるダイクロイックミラ
ーと、その後段に配置された偏光面の向きの異なる2枚
の偏光板と、対物レンズの合焦点と同じ合焦点の光のみ
を通過させるレンズおよびピンホールと、その後段での
光の強度を検出する検出部と、前記X−Y方向に可変な
ダイクロイックミラーとZ−軸方向に可変な試料プレー
トの位置を制御し、それぞれの位置での前記検出部の光
強度データを記録し、焦点位置を走査後に画像データと
して再構成する機能を有する制御解析部とからなること
を特徴とする共焦点偏光顕微鏡。
2. In an optical microscope, a laser light source, a dichroic mirror that guides laser light to an objective lens and that is variable in the XY directions, an objective lens, a sample plate that is variable in the Z axis direction, and a rear stage of the objective lens. The fluorescent filter, the dichroic mirror that splits the optical path into two, the two polarizing plates with different polarization plane orientations that are placed in the subsequent stage, and only the light with the same focal point as that of the objective lens passes A lens and a pinhole to be operated, a detector for detecting the intensity of light in the subsequent stage, a position of the dichroic mirror variable in the X-Y direction and a position of the sample plate variable in the Z-axis direction, and the respective positions are controlled. The confocal image recording device according to claim 1, further comprising: a control analysis unit having a function of recording the light intensity data of the detection unit and reconstructing it as image data after scanning the focal position. Polarizing microscope.
JP5849595A 1995-03-17 1995-03-17 Confocal point polarization microscope Pending JPH08254654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5849595A JPH08254654A (en) 1995-03-17 1995-03-17 Confocal point polarization microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5849595A JPH08254654A (en) 1995-03-17 1995-03-17 Confocal point polarization microscope

Publications (1)

Publication Number Publication Date
JPH08254654A true JPH08254654A (en) 1996-10-01

Family

ID=13086012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5849595A Pending JPH08254654A (en) 1995-03-17 1995-03-17 Confocal point polarization microscope

Country Status (1)

Country Link
JP (1) JPH08254654A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038848B2 (en) 2002-12-27 2006-05-02 Olympus Corporation Confocal microscope
US7365344B2 (en) 2004-04-09 2008-04-29 Olympus Corporation Scanning fluorescent microscope
JP2008225013A (en) * 2007-03-12 2008-09-25 Olympus Corp Laser scanning type microscope
JP2009258192A (en) * 2008-04-14 2009-11-05 Olympus Corp Scanning-type laser microscope
EP2463700A1 (en) * 2010-12-08 2012-06-13 Olympus Corporation Fluorescence microscope
KR101478881B1 (en) * 2012-11-28 2015-01-06 한양대학교 산학협력단 Dual detection confocal fluorescence microscopy apparatus and method of capturing image

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038848B2 (en) 2002-12-27 2006-05-02 Olympus Corporation Confocal microscope
US7215469B2 (en) 2002-12-27 2007-05-08 Olympus Optical Co., Ltd. Confocal microscope
US7365344B2 (en) 2004-04-09 2008-04-29 Olympus Corporation Scanning fluorescent microscope
JP2008225013A (en) * 2007-03-12 2008-09-25 Olympus Corp Laser scanning type microscope
JP2009258192A (en) * 2008-04-14 2009-11-05 Olympus Corp Scanning-type laser microscope
EP2463700A1 (en) * 2010-12-08 2012-06-13 Olympus Corporation Fluorescence microscope
US9075238B2 (en) 2010-12-08 2015-07-07 Olympus Corporation Fluorescence microscope
KR101478881B1 (en) * 2012-11-28 2015-01-06 한양대학교 산학협력단 Dual detection confocal fluorescence microscopy apparatus and method of capturing image

Similar Documents

Publication Publication Date Title
JP5485156B2 (en) Method for three-dimensional imaging of a sample with a microscope
JP5097247B2 (en) Confocal microscope apparatus and observation method using confocal microscope apparatus
Brakenhoff Imaging modes in confocal scanning light microscopy (CSLM)
JP5599314B2 (en) Method and optical apparatus for inspection of samples
JP6253400B2 (en) Image forming method and image forming apparatus
US7646481B2 (en) Method and microscope for high spatial resolution examination of samples
US20020020800A1 (en) Device and method for examining and manipulating microscopic objects
CN108982456B (en) Three-dimensional living cell super-resolution microscopic imaging method and device based on evanescent wave illumination
Monck et al. Thin-section ratiometric Ca2+ images obtained by optical sectioning of fura-2 loaded mast cells.
US4930893A (en) Electrophoresis imaging system
JP4414722B2 (en) Laser microscope
JP4239166B2 (en) Multilayer observation type optical microscope and multilayer observation unit
Amos et al. Re‐evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics
JP4632634B2 (en) Confocal microscope apparatus and observation method using confocal microscope apparatus
CA2614254C (en) Three dimensional position observation method and apparatus
JPH08254654A (en) Confocal point polarization microscope
CN105675541B (en) One kind having axial high-resolution reflective confocal system
JP3968629B2 (en) Fluorescence image measuring device
Dixon et al. Confocal microscopy with transmitted light
WO2008019729A1 (en) Microscope with interferometer arrangement for transmitted light examination of transparent objects using interference contrast and polarization contrast
NL2019891B1 (en) Label-free microscopy
CN116736510B (en) Microscopic imaging system and microscopic imaging method for identifying sample angle
Wang et al. Light sheet and light field microscopy based on scanning Bessel beam illumination
Langford Video-enhanced microscopy for analysis of cytoskeleton structure and function
JP2836859B2 (en) Three-dimensional spatial and time-resolved absorption spectrum measurement device