JP2007285280A - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- JP2007285280A JP2007285280A JP2006116758A JP2006116758A JP2007285280A JP 2007285280 A JP2007285280 A JP 2007285280A JP 2006116758 A JP2006116758 A JP 2006116758A JP 2006116758 A JP2006116758 A JP 2006116758A JP 2007285280 A JP2007285280 A JP 2007285280A
- Authority
- JP
- Japan
- Prior art keywords
- region
- heat generation
- generation amount
- internal combustion
- ignition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Fuel-Injection Apparatus (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
- Electrical Control Of Ignition Timing (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
【課題】ホットスポットのバラツキに対応したノック抑制のための制御を実行可能とする。
【解決手段】複数に分割された燃焼室12内の領域A1,A2,・・・A8毎に熱発生量を検出する熱発生量検出手段と、検出された熱発生量に基づいて熱発生量が相対的に多い領域Amaxを特定する領域特定手段と、特定された領域の熱発生を抑制するための所定の抑制制御を実行する抑制制御手段とを備えることを特徴とする内燃機関の制御装置。前記所定の抑制制御は、前記特定された領域Amax以外の領域A5に点火P5を実行するよう点火装置15を制御することを含んでもよい。
【選択図】図5
【解決手段】複数に分割された燃焼室12内の領域A1,A2,・・・A8毎に熱発生量を検出する熱発生量検出手段と、検出された熱発生量に基づいて熱発生量が相対的に多い領域Amaxを特定する領域特定手段と、特定された領域の熱発生を抑制するための所定の抑制制御を実行する抑制制御手段とを備えることを特徴とする内燃機関の制御装置。前記所定の抑制制御は、前記特定された領域Amax以外の領域A5に点火P5を実行するよう点火装置15を制御することを含んでもよい。
【選択図】図5
Description
本発明は内燃機関の制御装置に係り、特に、ノックを抑制するのに好適な内燃機関の制御装置に関する。
一般に、ガソリンエンジンに代表される火花点火式内燃機関においては、シリンダ内の燃焼室に空気と燃料との混合気を形成し、この混合気を圧縮上死点付近のタイミングで点火プラグにより着火、燃焼させることで、動力を得るようにしている。一方、混合気が局部的に自己発火して急激に燃焼するノックという現象が知られている。ノックが発生すると異常な振動及び騒音が発生して不快であるばかりでなく、動力性能、排気性能及び耐久性の面でも悪化をもたらす。これに対し、点火時期を遅らせることがノックの抑制に有利であることが知られているが、点火時期を遅らせると動力性能や燃費の面で不利である。点火時期を徐々に進角していく過程で最初にノックが生じる点をノック限界と称するが、このノック限界にできるだけ近い早期のタイミングで点火を行うことが理想的である。実際には機差バラツキ等を考慮して、ノックを確実に防止できるよう、ノック限界から一定の余裕を持った時期を点火時期として設定しているのが実情である。しかしながら、ノック限界から点火時期までの期間であるノック余裕はできるだけ少ないのが望ましい。
ノックを抑制する技術としては既に多くのものが知られている。例えば特許文献1に記載の内燃機関の制御方法によれば、直噴式ガソリンエンジンの高負荷運転時において、圧縮によっては自着火しない程度にリーンの混合気をピストンで圧縮し、その圧縮途中で燃料を噴射して点火プラグ付近に比較的リッチな混合気を形成し、即ち燃焼室内に混合気の濃い領域と薄い領域とを形成しておいて、その濃い領域に点火を行うことで、ノックが出やすい状況下でもノックを抑制するようにしている。
ところで、ノックが発生する箇所はホットスポット(高温点)になることが多いが、点火位置は通常、燃焼室の中心付近に設定された一箇所(点火プラグの電極間の位置)に固定されており、ホットスポットに応じて点火位置を変えることはできない。つまり、点火位置が一定との前提の下、機差バラツキや運転条件のバラツキ等によってホットスポットにバラツキがあったとしても、これに対応していずれの場合にもノックが必ず発生しないよう、エンジンの適合段階で比較的大きなノック余裕を持たせて代表的な点火時期を定めているのが現状である。このことは、前述したようなノック余裕をできるだけ少なくするという要請を必ずしも十分満足するものではない。
本発明はかかる実情に鑑みて創案されたもので、その目的は、ホットスポットのバラツキに対応したノック抑制のための制御を実行可能な内燃機関の制御装置を提供することにある。
上記目的を達成するため、本発明の第1の態様は、複数に分割された燃焼室内の領域毎に熱発生量を検出する熱発生量検出手段と、該熱発生量検出手段によって検出された各領域の熱発生量に基づいて熱発生量が相対的に多い領域を特定する領域特定手段と、該領域特定手段によって特定された領域の熱発生を抑制するための所定の抑制制御を実行する抑制制御手段とを備えることを特徴とする内燃機関の制御装置を提供する。
この本発明の第1の態様によれば、熱発生量が相対的に多い領域を特定してその領域の熱発生を抑制するための所定の抑制制御を実行するので、熱発生量が相対的に多い領域(ホットスポットができやすい領域でもある)がバラついたとしても、その領域の熱発生を抑制し、これを以てホットスポットの形成を防止し、ノックを抑制することができる。
また、本発明の第2の態様は、複数に分割された燃焼室内の領域毎に熱発生量を検出する熱発生量検出手段と、該熱発生量検出手段によって検出された各領域の熱発生量に基づいてノックが発生した領域を特定する領域特定手段と、該領域特定手段によって特定された領域のノックを抑制するための所定の抑制制御を実行する抑制制御手段とを備えることを特徴とする内燃機関の制御装置を提供する。
この本発明の第2の態様によれば、ノックが発生した領域を特定してその領域のノックを抑制するための所定の抑制制御を実行するので、そのノックが発生した領域(ホットスポットが既にできた領域でもある)がバラついたとしても、その領域における再度のノック発生を防止することができる。
本発明の第3の態様は、前記第1又は第2の態様において、点火位置が可変な点火装置がさらに備えられ、前記所定の抑制制御が、前記特定された領域以外の領域に点火を実行するよう前記点火装置を制御することを含むことを特徴とする。
この本発明の第3の態様によれば、前記特定された領域以外の領域に点火を実行することができるので、その特定された領域の熱発生を抑制することができる。また、熱発生量が相対的に低い領域或いはノックが発生していない領域で点火が行われることになるので、結果的に燃焼室全体の温度を均等化することができる。こうして、ホットスポットの形成を防止し、ノックを好適に抑制することができる。
本発明の第4の態様は、前記第3の態様において、前記点火装置がレーザ点火装置を有することを特徴とする。
本発明の第5の態様は、前記第1又は第2の態様において、燃料噴射方向が可変な燃料噴射装置がさらに備えられ、前記所定の抑制制御が、前記特定された領域に燃料を噴射するよう前記燃料噴射装置を制御することを含むことを特徴とする。
この本発明の第5の態様によれば、前記特定された領域に燃料を噴射することができるので、その噴射された燃料により、その領域を冷却することができる。よってその領域の温度上昇を抑制し、ホットスポットの形成を防止し、ノックを好適に抑制することができる。
本発明の第6の態様は、前記第1又は第2の態様において、前記領域毎の吸気流入量を可変とする可変吸気装置がさらに備えられ、前記所定の抑制制御が、前記特定された領域以外の領域よりも前記特定された領域の方が吸気流入量が多くなるように前記可変吸気装置を制御することを含むことを特徴とする。
この本発明の第6の態様によれば、前記特定された領域により多くの吸気を流入させることができるので、その流入された吸気により、その領域を冷却することができる。よってその領域の温度上昇を抑制し、ホットスポットの形成を防止し、ノックを好適に抑制することができる。
本発明の第7の態様は、前記第1の態様において、前記領域特定手段が、前記熱発生量検出手段によって検出された各領域の熱発生量に基づいて各領域の1燃焼当たりの総熱発生量を算出すると共に、この総熱発生量が相対的に多い領域を、前記熱発生量が相対的に多い領域として特定することを特徴とする。
本発明の第8の態様は、前記第7の態様において、前記総熱発生量が相対的に多い領域が、前記総熱発生量が最大となる領域であることを特徴とする。
本発明の第9の態様は、前記第7又は第8の態様において、前記抑制制御手段が、前記特定された領域の総熱発生量が所定のしきい値を超えたときに前記抑制制御を実行することを特徴とする。
総熱発生量が相対的に多い領域があっても、その領域は未だノックが生じるほどの高温に達していない可能性もある。この本発明の第9の態様によれば、特定された領域の総熱発生量が所定のしきい値を超えたときに前記抑制制御を実行するので、効率的に抑制制御を実行することができる。
本発明の第10の態様は、前記第7の態様において、前記領域特定手段が、前記各領域の総熱発生量に対して所定の平均化処理を施し、これら平均化処理後の各領域の総熱発生量に基づいて、前記総熱発生量が相対的に多い領域を特定することを特徴とする。
ホットスポットの位置はサイクル毎にバラつく可能性があるものの、燃焼室内の熱発生量分布ないし温度分布には一定の傾向がある可能性がある。この本発明の第10の態様によれば、総熱発生量を平均化して熱発生量が相対的に多い領域を特定するので、そのような熱発生量分布ないし温度分布の傾向を検知すると共に、その傾向に即した抑制制御を実行することができ、ノックを好適に抑制できる可能性がある。
本発明の第11の態様は、前記第1乃至第10のいずれかの態様において、前記熱発生量検出手段が、ガスケットに内蔵されたイオンセンサを有することを特徴とする。
本発明によれば、ホットスポットのバラツキに対応したノック抑制のための制御を実行可能な内燃機関の制御装置を提供することができるという、優れた効果が発揮される。
以下、本発明を実施するための最良の形態を添付図面に基づき詳述する。
[第1実施形態]
図1は、本発明の第1実施形態に係る内燃機関の制御装置を示す。図示されるエンジン(内燃機関)1は車両用火花点火式エンジンであり、例えば多気筒エンジンである(1気筒のみ図示)。エンジン1は、互いに締結されたシリンダブロック2とシリンダヘッド3とを有し、シリンダブロック2とシリンダヘッド3との間にガスケット4が介装されている。シリンダブロック2内にはシリンダ5が区画形成され、シリンダ5内にはピストン6が摺動可能且つ昇降可能に配設されている。7はウォータジャケットである。シリンダヘッド3には吸気ポート8と排気ポート9とが区画形成されており、これら吸気ポート8及び排気ポート9はそれぞれ吸気弁10及び排気弁11によって開閉される。シリンダブロック2、シリンダヘッド3及びピストン6によって、シリンダ5内の燃焼室12が画成されている。吸気ポート8には、燃料噴射のためのインジェクタ13が配設されている。インジェクタ13は燃料を仮想線F1で示す如く吸気ポート8内に噴射する。
[第1実施形態]
図1は、本発明の第1実施形態に係る内燃機関の制御装置を示す。図示されるエンジン(内燃機関)1は車両用火花点火式エンジンであり、例えば多気筒エンジンである(1気筒のみ図示)。エンジン1は、互いに締結されたシリンダブロック2とシリンダヘッド3とを有し、シリンダブロック2とシリンダヘッド3との間にガスケット4が介装されている。シリンダブロック2内にはシリンダ5が区画形成され、シリンダ5内にはピストン6が摺動可能且つ昇降可能に配設されている。7はウォータジャケットである。シリンダヘッド3には吸気ポート8と排気ポート9とが区画形成されており、これら吸気ポート8及び排気ポート9はそれぞれ吸気弁10及び排気弁11によって開閉される。シリンダブロック2、シリンダヘッド3及びピストン6によって、シリンダ5内の燃焼室12が画成されている。吸気ポート8には、燃料噴射のためのインジェクタ13が配設されている。インジェクタ13は燃料を仮想線F1で示す如く吸気ポート8内に噴射する。
シリンダヘッド3には、燃焼室12内の混合気を点火するための点火装置を構成するレーザ点火装置14が設けられている。レーザ点火装置14はシリンダ5の中心部にその軸心に沿って配置され、その先端のレーザ光照射部15が燃焼室12内に臨まされ、レーザ光照射部15から燃焼室12内に向けてレーザ光を発するようになっている。レーザ点火装置14は、例えば特開2006−9585号公報に示されているように、燃焼室12内の任意の位置で点火を実行可能なものである。本実施形態のレーザ点火装置14はレーザ光源及び制御可能な複数の集光レンズを備え、レーザ光の焦点位置(即ち点火位置P、図中星印で示す)がシリンダ5の軸方向及び周方向に可変であり、一乃至複数個までの焦点位置を選択的に有するものである。
図2に示すように、シリンダ5内の燃焼室12は複数の領域に分割されている。その分割数や分割方法は任意であるが、本実施形態では周方向に等角度で八つの領域A1,A2,・・・A8に分割されている。そして、燃焼時に各領域A1〜A8において発生した熱の熱発生量を領域毎に検出するため、熱発生量検出手段を構成するイオンセンサ16が設けられている。図1に示すように、イオンセンサ16はガスケット4の厚さ方向の中間層としてガスケット4に内蔵されている。このようなガスケット内蔵式のイオンセンサは特開2003−184605号公報等にも示されている。
イオンセンサ16は各領域A1〜A8毎に計八つ設けられている。イオンセンサ16は、燃焼室12側の内周端縁部を燃焼室12内に露出させた電極17となし、その電極17に達した火炎の有無を検知する。イオンセンサ16と、接地電極としてのシリンダヘッド3、シリンダブロック2等との間に電位がかけられ、電極17への火炎の到達状態に応じて変化する電流値を計測することにより燃焼室12内の燃焼状態を検出する。より詳しくは、電極17と接地電極の間に火炎が存在すれば、その火炎中のイオンやラジカル、電子等が導電媒体となって、電極17と接地電極の間は開回路から閉回路となり、電流を生じる。この電流をイオン電流という。
図1に示すように、前述のインジェクタ13、レーザ点火装置14及びイオンセンサ16は、制御手段としての電子制御ユニット(以下、ECUと称す)100に電気的に接続されている。ECU100は、エンジン運転状態(例えば回転速度と負荷)に応じてインジェクタ13の開閉時期を制御し、燃料噴射量及び燃料噴射時期を制御する。また、ECU100は、レーザ点火装置14を制御することにより点火時期と、燃焼室12内における点火位置Pとを制御する。レーザ点火装置14は通常、図1に示されるように燃焼室12の中心位置に点火を行うよう制御される。加えて、ECU100は、各領域A1〜A8のイオンセンサ16からのイオン電流を入力し、これらイオン電流を各領域A1〜A8の熱発生量に換算する。
このほか図示省略するが、ECU100には周知のように、クランク角を検出するクランク角センサ、吸入空気量を検出するエアフローメータ、アクセル開度を検出するアクセル開度センサ、電子制御式スロットル弁等、各種センサ及びデバイス類が接続されている。そしてECU100は、クランク角センサの出力に基づいてエンジンのクランク角及び回転速度を検出し、エアフローメータの出力に基づいてエンジンの吸入空気量及び負荷を検出すると共に、主にこれらの値に基づいてエンジンの制御を実行する。
さて、前述のイオンセンサ16から出力されるイオン電流の大きさは、そのイオンセンサ16が設置される燃焼室領域における熱発生量と比例関係にあることが判明している。図3は、各燃焼室領域An(n=1,2,3,・・・8)における熱発生量Qnの変化の様子を示したグラフである。横軸がクランク角CA、縦軸が熱発生量Qで、代表的にQ1,Q2,Q3,Q5のみを示してある。見られるように、圧縮上死点TDC付近で点火が実行されると、燃焼室12内で着火燃焼が起こり、各領域の熱発生量Qnは急激に増大し、その後徐々に減少していく。このとき、各領域Anの熱発生量Qnにはバラツキが見られ、熱が相対的に多量に発生する領域(図示例ではA1)もあれば、熱が相対的に少量しか発生しない領域(図示例ではA5)もある。このように各イオンセンサ16から出力される電流値を監視することにより、領域毎の熱発生量Q1・・を検出し、さらには燃焼室12全体における熱発生量の分布ないし偏りをも検出し、さらには温度分布をも推定することができる。本実施形態ではこのような監視及び検出が後述のように実行される。
ここで、熱発生量が相対的に多い領域、とりわけ熱発生量が最大となる領域には、ノックの原因となるホットスポットができやすいと考えられる。従ってこの熱発生量が相対的に多い領域、特に最大となる領域の熱発生及び温度上昇を避け、好ましくはその領域の熱発生量及び温度を減少するように、エンジンを制御することが好適である。より言えば、燃焼室内におけるホットスポットの形成を回避し、燃焼室内の各領域の温度をできるだけ均等化することが、ノックの抑制に有効である。このことを実現すべく、本実施形態における内燃機関の制御装置は以下のような制御を実行するようにしている。
図4には本実施形態によって実行される第1の制御のルーチンを示す。このルーチンはECU100により720°のクランク角周期で、つまり4ストロークエンジンの1サイクル毎に、繰り返し実行され、例えば燃焼行程後期以降の、燃焼が完全に終了しているような所定のタイミングで実行される。
ECU100はまずステップS101において、燃焼室12内の各領域An毎に総熱発生量TQnを算出する。具体的には、図3に示されるように、燃焼室12内の各領域An毎に、イオンセンサ16の出力電流から換算された熱発生量Qnをクランク角CAについて積分し、1燃焼当たり、即ち1サイクル当たりの総熱発生量TQnを算出する。この総熱発生量TQnは次式により表される。
次にECU100は、ステップS102において、これら各領域の総熱発生量TQnを比較し、総熱発生量TQnが相対的に多い領域を特定する。本実施形態の場合、総熱発生量TQnが相対的に高い領域として、総熱発生量TQnが最大となる領域即ち最大領域Amaxを特定する。
この後ECU100は、ステップS103において、その最大領域Amaxの総熱発生量TQmaxを、予め記憶してある所定のしきい値TQsと比較し、総熱発生量TQmaxがしきい値TQsを超えているか否か(TQmax>TQsが成立しているか否か)を判断する。
総熱発生量TQmaxがしきい値TQsを超えていない場合(S103:NO)、ECU100はステップS105に進み、点火位置が図1に示したような燃焼室中心の通常の点火位置Pになるように、レーザ点火装置14を制御する。これにより、次回の点火はそのような通常の点火位置Pで実行されることになる。
他方、総熱発生量TQmaxがしきい値TQsを超えている場合(S103:YES)、最大領域Amaxの熱発生を抑制するための所定の抑制制御(熱発生抑制制御)を実行する。即ち、ECU100はステップS104に進み、点火位置が少なくとも最大領域Amax以外の領域内に位置するように、レーザ点火装置14を制御する。これにより、次回の点火は最大領域Amax以外の領域内で実行されることになる。これをオフセット点火という。ステップS104,105を終えると本ルーチンが終了される。
本実施形態によれば、総熱発生量TQnが相対的に高い領域、特に最大となる最大領域Amaxを特定し、この最大領域Amaxの熱発生を抑制するための抑制制御(熱発生抑制制御)、特にオフセット点火制御を実行するので、最大領域Amaxがいかなる位置にあっても、最大領域Amaxを避けて点火を実行することができる。よって、ホットスポットができやすい最大領域Amaxがバラついたとしても、最大領域Amaxの熱発生及び温度上昇を抑制し、或いは熱発生量及び温度を減少することができ、ホットスポットの形成を防止することができる。また同時に、総熱発生量TQnが相対的に低い領域で点火を行うことから、その領域の温度が上昇することになり、結果的に燃焼室内全体として温度が均等化され、ホットスポットの形成を防止しノックを好適に抑制することができる。
ここで、ステップS103に関連して、総熱発生量TQmaxがしきい値TQsを超えている場合にのみオフセット点火する理由は、総熱発生量TQmaxがしきい値TQsを超えていない場合には未だ最大領域Amaxの温度がノックが生じるほどの高温に達しておらず、或いはホットスポットの形成までに未だ余裕があると考えられるからである。このように総熱発生量TQmaxがしきい値TQsを超えた場合にのみオフセット点火を行うことで、オフセット点火を効率的に実行することができる。
ここで、オフセット点火については例えば次のような態様が可能である。まず図5に示す第1の態様において、ECU100は、最大領域Amaxの特定と同時に、実線TQで示す燃焼室12内全体での総熱発生量の分布を算出する。図示例では領域A1が最大領域Amaxとなっており、領域A1の反対側に位置する領域A5が、総熱発生量が最小の領域となっている。そして点火は図示されるようにその最小領域A5において実行される。点火位置P5は例えば、領域A5の周方向の中間位置、且つ領域A5の半径方向の中間位置よりやや外側よりの位置、且つ点火時期における領域A5の高さ方向の中間位置である。
図6に示すオフセット点火の第2の態様を説明する。ECU100は前記同様に最大領域Amaxの特定と同時に総熱発生量の分布TQを算出する。図示例では領域A1が最大領域Amaxとなっており、また、領域A5,A6,A3という順番で総熱発生量が最小から順次大きくなっている。点火は、それら最小から三番目までの領域A5,A6,A3において同時に実行される。つまりここでは複数の領域内で多点点火が実行される。各領域内における点火位置P5,P6,P3は前記同様である。
なお、領域特定及びオフセット点火の態様としては様々なものが考えられる。例えば、総熱発生量の高い順から幾つかの領域を特定領域とし、この特定領域以外の領域のうち、一つの領域、複数の領域、或いは全部の領域に、点火を実行してもよい。
本実施形態によれば、最大領域ないしホットスポットの位置の変化に応じて、そのような位置を避けるように点火位置を変えることができる。このため、ホットスポットのバラツキの原因である機差バラツキ、運転状態のバラツキ、気筒間の燃焼バラツキ、燃料性状のバラツキ等を吸収することができる。また、適合は実質的にしきい値TQsの設定のみであり、適合作業を容易化できる。さらに、ホットスポットの形成が防止されるので、ノック限界をより進角側に設定できると共に、ノック余裕をより削減することが可能になって、内燃機関の性能を最大限に引き出すことが可能になる。
前記第1の制御に換えて、図7に示す第2の制御を実行してもよい。このルーチンでは、図4に示された第1の制御のルーチンのステップS101とステップS102との間にステップS101’が追加されている。ステップS101’においては、ステップS101で算出された各領域Anの総熱発生量TQnに対し以下のような平均化処理が実行される。即ち、ECU100は、前回サイクルから遡って所定数m(例えばm=99)のサイクル分の総熱発生量TQnをサイクル毎に更新しながら記憶している。そして今回サイクルにおいて、ECU100は、その記憶してある所定数mのサイクル分の総熱発生量TQn[m](m=1,2,・・・99)と、今回サイクルでステップS101において算出した総熱発生量TQnとを全て加算し、その結果を(m+1)で除して、(m+1)個の総熱発生量TQnの値を平均化する。そしてECU100は、次のステップS102において、平均化処理後の各領域の総熱発生量TQn’を比較し、総熱発生量TQn’が最大となる最大領域Amaxを特定する。
ホットスポットの位置はサイクル毎にバラつく可能性があるものの、燃焼室内の熱発生量分布ないし温度分布には一定の傾向がある可能性がある。この手法によれば、総熱発生量TQnをサイクル平均して最大領域を特定するので、そのような熱発生量分布ないし温度分布の傾向を検知すると共に、その傾向に即したオフセット点火を実行することができ、ノックを好適に抑制できる可能性がある。
平均化処理については他にも様々な方法が考えられる。例えば前回サイクルの平均化処理後の総熱発生量と、今回サイクルで算出された総熱発生量とをそれぞれに対し所定の重み付けを行いつつ平均化する方法(所謂なまし処理)も可能である。
図8には本実施形態によって実行される第3の制御のルーチンを示す。このルーチンもECU100により720°のクランク角周期で繰り返し実行され、例えば燃焼行程後期以降の、燃焼が完全に終了しているような所定のタイミングで実行される。
ECU100はまずステップS201において、燃焼室12内の各領域An毎に検出された熱発生量Qnを所定のしきい値Qskと比較し、熱発生量Qnがしきい値Qskを超えている(Qn>Qsk)領域Anがあるか否かを判断する。
図3に仮想線Kで示されているように、ある燃焼室内領域でノックが発生していると、その領域における熱発生量の検出値が瞬時的に極端に増大する。従って全領域の熱発生量の検出値Qnと、ノック発生時の熱発生量相当に設定されたしきい値(ノック判定しきい値)Qskとの比較により、ノックの発生の有無と、ノックが発生した領域とを特定することができる。なお、ノック判定しきい値Qskは、ノックが発生していないときの熱発生量よりも大きな値に設定される。従ってノックが発生していないときには、いずれの領域の熱発生量もノック判定しきい値Qskに達せず、ノック発生有りとされることはない。
ステップS201において、熱発生量Qnがしきい値Qskを超える領域Anが無いと判断した場合(S201:NO)、即ち、いずれの領域でもノックが発生していないと判断した場合、ECU100はステップS204に進み、点火位置が図1に示したような燃焼室中心の通常の点火位置Pになるように、レーザ点火装置14を制御する。これにより、次回の点火はそのような通常の点火位置Pで実行されることになる。
他方、ステップS201において、熱発生量Qnがしきい値Qskを超えている領域Anがあると判断した場合(S201:YES)、ECU100はステップS202に進み、その熱発生量Qnがしきい値Qskを超えている領域をノック発生領域Akとして特定する。なおこのノック発生領域は複数である場合もあり得る。
次にECU100は、ステップS203に進み、そのノック発生領域Akにおけるノックを抑制するための所定の抑制制御(ノック抑制制御)を実行する。即ち、ECU100は、前述の熱発生抑制制御(図4のステップS104)と同様に、点火位置が少なくともノック発生領域Ak以外の領域内に位置するように、レーザ点火装置14を制御する。これにより、次回の点火はノック発生領域Ak以外の領域内で実行され、オフセット点火が実行されることになる。オフセット点火の態様は図5及び図6に関連して説明した態様のほか、前で述べたあらゆる態様が選択可能である。ステップS203,204を終えると本ルーチンが終了される。
この第3の制御によれば、ノック発生領域Akを特定し、このノック発生領域Akに関連して抑制制御(ノック抑制制御)、特にオフセット点火制御を実行するので、ノック発生領域Akを避けて点火を実行することができる。よって、ノックの原因となるホットスポットがバラついたとしても、そのホットスポットを避けるようにして後の点火を実行でき、再度のノック発生を防止することができる。また、そのようなノック発生領域の温度上昇を抑制し、或いは温度を下げることができので、一旦できたホットスポットの消失を促し、さらなるノックの発生を防止することができる。そして燃焼室内温度の均等化によりノックを好適に抑制することができる。
この第3の制御についても様々な変形例が考えられる。例えば、大きさの異なるノック判定しきい値を予め複数設定しておき、これらノック判定しきい値と熱発生量との比較により、ノックの程度を分ける(例えば大ノック、中ノック、小ノック等)ことも可能である。そしてこれらノックの程度に応じてオフセット点火の態様を変えることも可能である。例えば、ある領域で大ノックが検出されたときには総熱発生量が最小となる1領域でのみ点火を行い、小ノックのみが検出されたときにはその小ノック領域を外して多点点火する、といった方法等が可能である。
[第2実施形態]
次に、本発明の第2実施形態に係る内燃機関の制御装置を図9を参照しつつ説明する。この第2実施形態の構成は前記第1実施形態と大略同様であり、同様の部分については図中同一符号を付して説明を省略する。
次に、本発明の第2実施形態に係る内燃機関の制御装置を図9を参照しつつ説明する。この第2実施形態の構成は前記第1実施形態と大略同様であり、同様の部分については図中同一符号を付して説明を省略する。
前記第1実施形態に対する主な相違点は、点火位置が可変なレーザ点火装置14の代わりに、燃料噴射方向が可変な燃料噴射装置20が設けられている点である。なお、点火装置としては、図示しないが、公知の点火プラグ等からなる、一定位置に点火を行う点火装置が設けられている。
燃料噴射装置20は、冷却用の燃料を噴射するための冷却用インジェクタ21を有する。冷却用インジェクタ21は、シリンダ軸に沿ってシリンダヘッド3に設けられると共に、その先端の噴孔22が燃焼室12内に臨まされ、シリンダ5の中心部に配置されている。そして燃料F2を、噴孔22から燃焼室12内に向けて、シリンダ軸と所定角度をなすよう斜め下に噴射するようになっている。ピストン6の頂面部にはその噴射された燃料F2を受け入れるための凹部23が設けられており、これにより噴射された燃料F2がシリンダ5壁面に付着してオイルを希釈するのを防止している。
冷却用インジェクタ21は軸受24を介してシリンダヘッド3に取り付けられ、シリンダ軸回りに回転可能である。なお軸受24は、燃焼室12内のガスの漏出を防止するためのシール構造をも有する。また、冷却用インジェクタ21をシリンダ軸回りに回転駆動するための回転駆動装置25も設けられている。本実施形態の回転駆動装置25は、冷却用インジェクタ21の外周部に設けられたリングギヤ26と、リングギヤ26に噛合されるラック27と、ラック27を長手方向に往復動させるアクチュエータ28とを備える。アクチュエータ28はECU100により制御される。
アクチュエータ28によりラック27が長手方向に駆動されると、これに伴ってリングギヤ26が回転駆動され、冷却用インジェクタ21がシリンダ軸回りに回転するようになる。そして、噴孔22の向きもシリンダ軸回りに回転し、これにより各領域An毎に個別に燃料噴射可能となる。
なお、燃料噴射方向が可変な燃料噴射装置はこのような構成に限られない。例えば切換可能で且つ異なる向きの複数の噴孔を有するインジェクタを用い、これら噴孔を切り換えて使用することにより燃料噴射方向を切り換えてもよい。なお噴孔数に応じて領域数を設定してもよい(例えば2噴孔2領域、3噴孔3領域等)。
図10には本実施形態によって実行される第4の制御のルーチンを示す。このルーチンもECU100により720°のクランク角周期で繰り返し実行される。
このルーチンにおいて、ステップS301〜303は図4に示したステップS101〜103と同じである。そしてステップS303において、総熱発生量TQmaxがしきい値TQsを超えていない場合(S303:NO)、本ルーチンが終了される。
他方、ステップS303において総熱発生量TQmaxがしきい値TQsを超えている場合(S303:YES)、最大領域Amaxの熱発生を抑制するための所定の抑制制御(熱発生抑制制御)を実行する。即ち、ECU100は先ずステップS304に進み、適宜アクチュエータ28を駆動して冷却用インジェクタ21を回転させ、噴孔22が最大領域Amaxに指向されるよう、冷却用インジェクタ21をセットする。そして次にステップS305に進み、所定のタイミングで冷却用インジェクタ21から燃料を噴射させる。こうすると最大領域Amaxに燃料が噴射され、最大領域Amaxが燃料の持つ気化潜熱により冷却されることとなる。こうして本ルーチンが終了される。
本実施形態によれば、総熱発生量TQnが相対的に高い領域、特に最大となる最大領域Amaxを特定し、この最大領域Amaxに関連して抑制制御(熱発生抑制制御)、特に燃料冷却制御(S304,305)を実行するので、その燃料冷却により最大領域Amaxの温度上昇を抑制し、或いは温度を下げることができ、ホットスポットの形成を防止することができる。また同時に、燃焼室内全体として温度を均等化することができる。こうしてホットスポットの形成を防止し、ノックを好適に抑制することができる。
ここで、噴射された冷却用燃料F2は、そのまま燃焼用に用いることができる。この場合、冷却用燃料量だけ、メインのインジェクタ13からの燃料噴射量が減少される。また、シリンダ壁面のオイル希釈化防止のため、冷却用燃料F2がピストン6の凹部23に入るようなタイミング、即ちピストン6が十分上昇したタイミング(例えば圧縮行程後期の所定タイミング)で、冷却用燃料F2が噴射されるのがよい。なお、ポート噴射用インジェクタを省略し、冷却用インジェクタにメインインジェクタとしての機能を持たせ、エンジンを直噴エンジンとすることも可能である。この場合、総熱発生量TQnが相対的に高い領域、特に最大領域Amaxに常に燃料を噴射するよう、インジェクタの噴射方向を制御することが考えられる。
また、前記第1実施形態の第3の制御(図8)に関連して説明したような、一旦発生したノックの抑制を図るため、本実施形態の燃料冷却制御を適用することも可能である。この場合、図8に示したルーチンは次のように変形される。即ち、ステップS203が図10のステップS304,305に置き換えられ、置換後のステップS304においては、ノック発生領域Akに向かって燃料が噴射されるよう、冷却用インジェクタ21の向きがセットされる。そしてステップS204は省略される。
[第3実施形態]
次に、本発明の第3実施形態に係る内燃機関の制御装置を図11を参照しつつ説明する。以下の説明において、前記第1実施形態と同様の部分については図中同一符号を付して説明を省略する。
次に、本発明の第3実施形態に係る内燃機関の制御装置を図11を参照しつつ説明する。以下の説明において、前記第1実施形態と同様の部分については図中同一符号を付して説明を省略する。
図11は、エンジンの一気筒の構成を概略的に描いた平面図である。なおこの構成は全気筒に共通である。図示されるように、シリンダ5内の燃焼室12には二つの吸気ポート8A,8Bと二つの排気ポート9A,9Bとが連通されており、これら吸気ポート8A,8Bと排気ポート9A,9Bとはそれぞれ吸気弁10A,10Bと排気弁11A,11Bとにより開閉されるようになっている。そして一定位置に点火を行う点火装置(点火プラグ29)がシリンダの中心部に配設されている。シリンダ5内の燃焼室12は、二つの吸気ポート8A,8Bのちょうど中間を通る仮想分割面Dを境に二つの領域A1,A2に等分割されている。そして、燃焼時における各領域A1,A2の熱発生量を個別に検出するため、イオンセンサ16が領域毎に設けられている。一方の吸気ポート8Aは一方の領域A1に接続され、他方の吸気ポート8Bは他方の領域A2に接続されている。なお図示しないが、いずれか一方の吸気ポートに燃料噴射用インジェクタが設けられている。
特に本実施形態においては、領域毎の吸気流入量を可変とする可変吸気装置30が設けられている。本実施形態の可変吸気装置30は、それぞれの吸気ポート8A,8Bに設けられた開閉可能な気流制御弁31A,31Bと、これら気流制御弁31A,31Bを個別に開閉駆動するアクチュエータ(図示せず)とを備え、アクチュエータがECU100により制御されることにより気流制御弁31A,31Bの開度が個別に制御されるようになっている。
図12には本実施形態によって実行される第5の制御のルーチンを示す。このルーチンもECU100により720°のクランク角周期で繰り返し実行される。
このルーチンにおいて、ステップS401〜403は図4に示したステップS101〜103と同じである(但しn=1,2)。そしてステップS403において、最大領域Amax(ここでは領域A1,A2のいずれか)の総熱発生量TQmaxがしきい値TQsを超えていない場合(S403:NO)、本ルーチンが終了される。
他方、ステップS403において、最大領域Amaxの総熱発生量TQmaxがしきい値TQsを超えている場合(S403:YES)、ステップS404において、最大領域Amaxの熱発生を抑制するための所定の抑制制御(熱発生抑制制御)を実行する。即ちECU100は、最大領域Amax以外の領域よりも最大領域Amaxの方が吸気流入量が多くなるように可変吸気装置30を制御する。
例えば、最大領域Amaxが領域A1の場合、図13に示すように、ECU100は、可変吸気装置30のアクチュエータを制御し、領域A1に対応する気流制御弁31Aを全開に、また領域A2に対応する気流制御弁31Bを全閉に作動させる。これにより領域A1のみに新気としての吸気が流入し、この流入された吸気により領域A1が冷却される。なおこのような偏った吸気流入によりシリンダ内には図中S1で示される順方向のスワールが形成される。
また逆に、最大領域Amaxが領域A2の場合、図14に示すように、ECU100は、可変吸気装置30のアクチュエータを制御し、領域A2に対応する気流制御弁31Bを全開に、また領域A1に対応する気流制御弁31Aを全閉に作動させる。これにより領域A2のみに新気からなる吸気が流入し、この流入された吸気により領域A2が冷却される。なおこのような偏った吸気流入によりシリンダ内には図中S2で示される逆方向のスワールが形成される。
本実施形態によれば、総熱発生量TQnが相対的に高い領域、特に最大となる最大領域Amaxを特定し、この最大領域Amaxに関連して抑制制御(熱発生抑制制御)、特に吸気冷却制御(S404)を実行するので、その吸気冷却により最大領域Amaxの温度上昇を抑制し、或いは温度を下げることができ、ホットスポットの形成を防止することができる。また同時に、燃焼室内全体として温度を均等化することができる。こうしてホットスポットの形成を防止し、ノックを好適に抑制することができる。
前記第1実施形態の第3の制御(図8)に関連して説明したような、一旦発生したノックの抑制を図るため、本実施形態の吸気冷却制御を適用することも可能である。この場合、図8に示したルーチンは次のように変形される。即ち、ステップS203が図12のステップS404に置き換えられ、置換後のステップS404においては、ノック発生領域Akに吸気流が相対的に多く流入するように可変吸気装置30が制御される。そしてステップS204は省略される。
本実施形態の変形例も様々なものが考えられる。例えば、前述の例では気流制御弁31A,31Bを全開又は全閉としたが、これらを中間開度に制御することも可能である。また、例えば最大領域Amaxが領域A1の場合、領域A1に対応する気流制御弁31Aを、領域A2に対応する気流制御弁31Bより大きい開度にするのが好ましい。本実施形態は2領域、2ポート、2気流制御弁の態様であったが、数についての制限はなく、例えば3領域、3ポート、3気流制御弁の態様などとすることもできる。
以上、本発明の第1〜第3実施形態を説明したが、本発明の実施形態は他にも様々なものが考えられる。例えば、前記実施形態では総熱発生量が相対的に多い領域として、総熱発生量が最大となる唯一の最大領域を用いたが、そのような領域としては複数の領域とすることが可能であり、例えば総熱発生量が多い順から幾つかの領域を特定領域としてもよい。また、燃焼室の分割領域数や分割方法も任意に選択可能である。領域毎に熱発生量を検出する熱発生量検出手段は前述のようなガスケット内蔵型イオンセンサに限られないが、ガスケット内蔵型イオンセンサを用いた場合、これをシリンダ軸方向に複数設置すると、シリンダ軸方向に分割された燃焼室内の領域毎に熱発生量を検出可能となる。本発明は吸気通路噴射式(典型的にはポート噴射式)エンジンのみならず、筒内噴射式エンジンにも適用可能である。前記第1〜第3実施形態及び前記第1〜第5の制御は、可能な限りにおいて、適宜組み合わせることが可能である。
本発明の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。
1 エンジン
4 ガスケット
12 燃焼室
14 レーザ点火装置
16 イオンセンサ
21 冷却用インジェクタ
22 噴孔
25 回転駆動装置
30 可変吸気装置
An 領域
Amax 最大領域
Ak ノック発生領域
Qn 熱発生量
TQn 総熱発生量
TQmax 最大領域の総熱発生量
TQs しきい値
Qsk しきい値
4 ガスケット
12 燃焼室
14 レーザ点火装置
16 イオンセンサ
21 冷却用インジェクタ
22 噴孔
25 回転駆動装置
30 可変吸気装置
An 領域
Amax 最大領域
Ak ノック発生領域
Qn 熱発生量
TQn 総熱発生量
TQmax 最大領域の総熱発生量
TQs しきい値
Qsk しきい値
Claims (11)
- 複数に分割された燃焼室内の領域毎に熱発生量を検出する熱発生量検出手段と、
該熱発生量検出手段によって検出された各領域の熱発生量に基づいて熱発生量が相対的に多い領域を特定する領域特定手段と、
該領域特定手段によって特定された領域の熱発生を抑制するための所定の抑制制御を実行する抑制制御手段と
を備えることを特徴とする内燃機関の制御装置。 - 複数に分割された燃焼室内の領域毎に熱発生量を検出する熱発生量検出手段と、
該熱発生量検出手段によって検出された各領域の熱発生量に基づいてノックが発生した領域を特定する領域特定手段と、
該領域特定手段によって特定された領域のノックを抑制するための所定の抑制制御を実行する抑制制御手段と
を備えることを特徴とする内燃機関の制御装置。 - 点火位置が可変な点火装置をさらに備え、
前記所定の抑制制御が、前記特定された領域以外の領域に点火を実行するよう前記点火装置を制御することを含むことを特徴とする請求項1又は2記載の内燃機関の制御装置。 - 前記点火装置がレーザ点火装置を有することを特徴とする請求項3記載の内燃機関の制御装置。
- 燃料噴射方向が可変な燃料噴射装置をさらに備え、
前記所定の抑制制御が、前記特定された領域に燃料を噴射するよう前記燃料噴射装置を制御することを含むことを特徴とする請求項1又は2記載の内燃機関の制御装置。 - 前記領域毎の吸気流入量を可変とする可変吸気装置をさらに備え、
前記所定の抑制制御が、前記特定された領域以外の領域よりも前記特定された領域の方が吸気流入量が多くなるように前記可変吸気装置を制御することを含むことを特徴とする請求項1又は2記載の内燃機関の制御装置。 - 前記領域特定手段が、前記熱発生量検出手段によって検出された各領域の熱発生量に基づいて各領域の1燃焼当たりの総熱発生量を算出すると共に、この総熱発生量が相対的に多い領域を、前記熱発生量が相対的に多い領域として特定することを特徴とする請求項1記載の内燃機関の制御装置。
- 前記総熱発生量が相対的に多い領域が、前記総熱発生量が最大となる領域であることを特徴とする請求項7記載の内燃機関の制御装置。
- 前記抑制制御手段が、前記特定された領域の総熱発生量が所定のしきい値を超えたときに前記抑制制御を実行することを特徴とする請求項7又は8記載の内燃機関の制御装置。
- 前記領域特定手段が、前記各領域の総熱発生量に対して所定の平均化処理を施し、これら平均化処理後の各領域の総熱発生量に基づいて、前記総熱発生量が相対的に多い領域を特定することを特徴とする請求項7記載の内燃機関の制御装置。
- 前記熱発生量検出手段が、ガスケットに内蔵されたイオンセンサを有することを特徴とする請求項1乃至10いずれかに記載の内燃機関の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006116758A JP2007285280A (ja) | 2006-04-20 | 2006-04-20 | 内燃機関の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006116758A JP2007285280A (ja) | 2006-04-20 | 2006-04-20 | 内燃機関の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007285280A true JP2007285280A (ja) | 2007-11-01 |
Family
ID=38757281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006116758A Pending JP2007285280A (ja) | 2006-04-20 | 2006-04-20 | 内燃機関の制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007285280A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2264304A1 (en) * | 2008-03-14 | 2010-12-22 | Imagineering, Inc. | Gasket of internal combustion engine and internal combustion engine |
JP2012207611A (ja) * | 2011-03-30 | 2012-10-25 | Honda Motor Co Ltd | 内燃機関 |
WO2013021852A1 (ja) * | 2011-08-10 | 2013-02-14 | イマジニアリング株式会社 | 内燃機関 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03246326A (ja) * | 1990-02-23 | 1991-11-01 | Nissan Motor Co Ltd | 内燃機関の異常燃焼検出装置 |
JPH0533755A (ja) * | 1991-07-29 | 1993-02-09 | Nissan Motor Co Ltd | 内燃機関の点火装置 |
JPH0666195A (ja) * | 1992-08-21 | 1994-03-08 | Nissan Motor Co Ltd | 内燃機関のノッキング検出装置 |
JP2001003801A (ja) * | 1999-06-17 | 2001-01-09 | Isuzu Motors Ltd | コモンレール式燃料噴射装置 |
JP2004124832A (ja) * | 2002-10-03 | 2004-04-22 | Mitsubishi Heavy Ind Ltd | 内燃機関の異常燃焼検知、調整方法及びその装置 |
JP2004332584A (ja) * | 2003-05-02 | 2004-11-25 | Nissan Motor Co Ltd | 火花点火式内燃機関の燃焼制御装置 |
-
2006
- 2006-04-20 JP JP2006116758A patent/JP2007285280A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03246326A (ja) * | 1990-02-23 | 1991-11-01 | Nissan Motor Co Ltd | 内燃機関の異常燃焼検出装置 |
JPH0533755A (ja) * | 1991-07-29 | 1993-02-09 | Nissan Motor Co Ltd | 内燃機関の点火装置 |
JPH0666195A (ja) * | 1992-08-21 | 1994-03-08 | Nissan Motor Co Ltd | 内燃機関のノッキング検出装置 |
JP2001003801A (ja) * | 1999-06-17 | 2001-01-09 | Isuzu Motors Ltd | コモンレール式燃料噴射装置 |
JP2004124832A (ja) * | 2002-10-03 | 2004-04-22 | Mitsubishi Heavy Ind Ltd | 内燃機関の異常燃焼検知、調整方法及びその装置 |
JP2004332584A (ja) * | 2003-05-02 | 2004-11-25 | Nissan Motor Co Ltd | 火花点火式内燃機関の燃焼制御装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2264304A1 (en) * | 2008-03-14 | 2010-12-22 | Imagineering, Inc. | Gasket of internal combustion engine and internal combustion engine |
EP2264304A4 (en) * | 2008-03-14 | 2014-06-11 | Imagineering Inc | INTERNAL COMBUSTION ENGINE STATIC SEAL SEAL AND INTERNAL COMBUSTION ENGINE |
JP2012207611A (ja) * | 2011-03-30 | 2012-10-25 | Honda Motor Co Ltd | 内燃機関 |
WO2013021852A1 (ja) * | 2011-08-10 | 2013-02-14 | イマジニアリング株式会社 | 内燃機関 |
US9447768B2 (en) | 2011-08-10 | 2016-09-20 | Imagineering, Inc. | Internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4873250B2 (ja) | 車両用エンジンのプリイグニッション検出装置 | |
JP4873249B2 (ja) | 車両用エンジンの制御装置 | |
JP5576141B2 (ja) | 内燃機関の制御装置 | |
JP5802229B2 (ja) | 内燃機関の点火制御装置 | |
US20120029789A1 (en) | Methods of detecting pre-ignition and preventing it from causing knock in direct injection spark ignition engines | |
JP2005133659A (ja) | 内燃機関の燃料噴射制御装置 | |
JP4784467B2 (ja) | 予混合圧縮着火内燃機関 | |
JP6307811B2 (ja) | エンジンの制御装置 | |
JP4868242B2 (ja) | 車両用エンジンの制御装置 | |
JP5625842B2 (ja) | 内燃機関の制御装置 | |
JP2007285280A (ja) | 内燃機関の制御装置 | |
JP7310241B2 (ja) | エンジン劣化推定方法およびエンジンの制御装置 | |
JP2012149552A (ja) | 内燃機関の制御装置 | |
JP4293110B2 (ja) | 内燃機関のアイドル制御装置 | |
JP2015014229A (ja) | 内燃機関の異常燃焼回避装置 | |
JP6225969B2 (ja) | 過給機付き内燃機関の制御装置及び制御方法 | |
JP2014224470A (ja) | 内燃機関の制御装置 | |
JP7287075B2 (ja) | エンジンの制御装置 | |
KR101956030B1 (ko) | 엔진 시스템 제어 방법 및 장치 | |
JP2018119502A (ja) | ポート噴射式内燃機関の燃料噴射制御機構 | |
JP6167659B2 (ja) | 内燃機関の燃料噴射制御装置 | |
JP2012184661A (ja) | 内燃機関の制御装置 | |
JP2011256791A (ja) | 内燃機関の異常判定装置 | |
JP2010230044A (ja) | 過給機付き内燃機関の制御装置 | |
JP2007285238A (ja) | 内燃機関の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080624 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100406 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100817 |