JP2007281279A - Cooling device, and electronic equipment having same - Google Patents

Cooling device, and electronic equipment having same Download PDF

Info

Publication number
JP2007281279A
JP2007281279A JP2006107366A JP2006107366A JP2007281279A JP 2007281279 A JP2007281279 A JP 2007281279A JP 2006107366 A JP2006107366 A JP 2006107366A JP 2006107366 A JP2006107366 A JP 2006107366A JP 2007281279 A JP2007281279 A JP 2007281279A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
conductive sheet
receiving body
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006107366A
Other languages
Japanese (ja)
Inventor
Takeshi Kusakabe
毅 日下部
Tetsuya Anami
哲也 阿南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006107366A priority Critical patent/JP2007281279A/en
Publication of JP2007281279A publication Critical patent/JP2007281279A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device that brings a heat-conducting sheet and a heat receiving body into contact with a plurality of electronic components having different height from a substrate or the substrate, can cool all electronic components within a prescribed range reliably, and can cool a plurality of electronic components having a different heating value sufficiently and efficiently according to each heating value; to provide a reliable cooling device capable of preventing temperature from rising more than necessary in the electronic component packaged onto the substrate; and to provide electronic equipment having the cooling device. <P>SOLUTION: The cooling device 1 has: the heat receiving body 2 for receiving the heat of the electronic component X1, refrigerant pipes 6a, 6b connected to the heat receiving body 2; a radiator 8 connected to the refrigerant pipes 6a, 6b, and a circulation pump 7 for circulating a refrigerant. The cooling device 1 cools the electronic components X1-X5 packaged onto the substrate A, and has the heat-conducting sheet 3 for covering the electronic components X1-X5. The heat-conducting sheet 3 is connected to the outer surface of a prescribed section 6a' in the refrigerant pipe 6b while heat can be transferred. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、パーソナルコンピュータやOA機器等の電子機器の筐体内部において、基板上に実装された複数の半導体素子等の電子部品を冷却する冷却装置及びそれを備えた電子機器に関する。   The present invention relates to a cooling device that cools electronic components such as a plurality of semiconductor elements mounted on a substrate inside a housing of an electronic device such as a personal computer or an OA device, and an electronic device including the same.

近年、パーソナルコンピュータ等の電子機器は処理速度の高速化が図られ、この高速化は極めて急速に進行している。特に、中央処理装置(以下、CPUという)のクロック周波数は従来と比較して格段に大きくなっている。この結果、CPUの発熱量が増し、従来のようにヒートシンクを用いて空冷するだけでは冷却能力が不足するため、高い冷却能力を有する冷却装置が強く求められている。   In recent years, an electronic device such as a personal computer has been increased in processing speed, and this speeding-up has progressed extremely rapidly. In particular, the clock frequency of the central processing unit (hereinafter referred to as CPU) is significantly higher than that of the conventional one. As a result, the amount of heat generated by the CPU increases, and the cooling capacity is insufficient simply by air cooling using a heat sink as in the prior art. Therefore, a cooling device having a high cooling capacity is strongly demanded.

このような冷却装置には種々の方式のものがあるが、近年、受熱体と放熱体との間に冷媒を循環させて冷却する方式(冷媒循環方式)が冷却効率や静音化の点から特に注目されている。冷媒循環方式の冷却装置は、内部に冷媒流路を有するブロック状や板状の金属体からなる受熱体をCPUの上面に接触させ、その接触面(受熱面)からCPUの熱を受熱すると共に、冷媒流路を通過する冷媒に伝達させ、該冷媒を放熱体に循環させて放熱することでCPUの冷却を効率的に行うものである。   There are various types of such cooling devices. In recent years, a cooling method (refrigerant circulation method) in which a refrigerant is circulated between a heat receiving body and a heat radiating body is particularly effective from the viewpoint of cooling efficiency and noise reduction. Attention has been paid. In the cooling device of the refrigerant circulation system, a heat receiving body made of a block-like or plate-like metal body having a refrigerant flow path is brought into contact with the upper surface of the CPU, and the heat of the CPU is received from the contact surface (heat receiving surface). The CPU is efficiently cooled by transmitting the refrigerant to the refrigerant passing through the refrigerant flow path, and circulating the refrigerant through the radiator to dissipate heat.

また、近年の電子機器では、CPUだけでなく、その周辺の電子部品も処理負荷が高まり、発熱が高まる傾向にある。例えば、ビデオプロセッサや液晶ドライバIC等は、画像処理の高精細化に伴い処理負荷が増加している。また、液晶ドライバIC等は、液晶制御のために高い電圧を必要とする場合も多く、結果として高い発熱を発生することが多い。しかし、上記従来の冷媒循環方式の冷却装置では、受熱体の受熱面に接するCPU以外の電子部品からの受熱が困難であり、複数の電子部品を効率的に冷却することができないという問題点があった。なお、複数の電子部品を冷却するために、受熱体を大型化して受熱面の面積を拡大することも考えられるが、無駄なスペースを減少させたノートブック型パーソナルコンピュータ等の電子機器に新たなスペースを割かなければならず、小型化、薄型化という電子機器の目的に相反するものである。更に、受熱面の面積が拡大したとしても、電子機器の中での電子部品の配置は様々であると共に、各電子部品の基板表面からの高さは一様でなく、受熱面を各々の電子部品に適切に接触させることができないという問題点があった。   Further, in recent electronic devices, not only the CPU but also the peripheral electronic components tend to increase the processing load and generate heat. For example, video processors, liquid crystal driver ICs, and the like have increased processing loads with higher definition of image processing. In addition, a liquid crystal driver IC or the like often requires a high voltage for liquid crystal control, and as a result, often generates high heat. However, in the conventional refrigerant circulation cooling device, it is difficult to receive heat from electronic components other than the CPU in contact with the heat receiving surface of the heat receiving body, and it is difficult to efficiently cool a plurality of electronic components. there were. In order to cool a plurality of electronic components, it is conceivable to increase the area of the heat receiving surface by increasing the size of the heat receiving body. However, a new type of electronic device such as a notebook personal computer with reduced useless space has been proposed. Space must be taken, and this is contrary to the purpose of electronic devices such as miniaturization and thinning. Furthermore, even if the area of the heat receiving surface is increased, the arrangement of the electronic components in the electronic device is various, and the height of each electronic component from the substrate surface is not uniform, and the heat receiving surface is made up of each electronic device. There was a problem that the parts could not be brought into proper contact.

このような問題点を解決するために、(特許文献1)には、基板に実装された複数の素子(電子部品)を囲むように前記基板上に固着される枠体と、前記素子を覆うように前記枠体の内側に充填される柔らかい伝熱材と、液体冷媒を流すパイプを固着した冷却板とを有し、前記枠体内に充填した前記伝熱材の表面を平坦にし、前記伝熱材の表面上に前記冷却板を密着させるように構成した集積回路素子の冷却構造が開示されている。   In order to solve such a problem, Patent Document 1 discloses a frame that is fixed on the substrate so as to surround a plurality of elements (electronic components) mounted on the substrate, and covers the elements. A soft heat transfer material filled inside the frame body and a cooling plate to which a pipe through which a liquid refrigerant flows is fixed, and flattening the surface of the heat transfer material filled in the frame body, A cooling structure for an integrated circuit element configured to bring the cooling plate into close contact with the surface of a heat material is disclosed.

また、(特許文献2)には、マザーボード(基板)上にコネクタを介して実装された複数のマルチチップモジュールの上面に、各々水冷ジャケット(受熱体)を接触させ、各前記水冷ジャケット内の冷却剤の流路をフレキシブルホースにより直列に接続し、各前記水冷ジャケットと熱交換器(放熱体)との間に冷却剤を循環させるように構成した冷却機構が開示されている。   Also, in (Patent Document 2), water cooling jackets (heat receiving bodies) are brought into contact with the upper surfaces of a plurality of multichip modules mounted on a mother board (substrate) via connectors, and cooling in each of the water cooling jackets is performed. A cooling mechanism is disclosed in which the flow path of the agent is connected in series by a flexible hose so that the coolant is circulated between each of the water cooling jackets and the heat exchanger (heat radiator).

また、(特許文献3)には、基板上に実装された基板からの高さの異なる複数の半導体から発生する熱を冷却するための冷却構造体であって、前記半導体の上面に放熱シートを介在させて放熱板を添設し、前記放熱シートは上下両面表層部がゴム状に硬化した薄膜補強層であり、内層に未加硫のコンパウンド層が存在し、前記内層は外側にはみ出しているように構成した半導体の冷却構造体が開示されている。
特開昭63−236351号公報 特開平6−195154号公報 特開2002−261206号公報
Further, (Patent Document 3) is a cooling structure for cooling heat generated from a plurality of semiconductors having different heights from a substrate mounted on a substrate, and a heat dissipation sheet is provided on the upper surface of the semiconductor. A heat radiating plate is interposed, and the heat radiating sheet is a thin-film reinforcing layer whose upper and lower surface layers are hardened in a rubber-like shape. A semiconductor cooling structure configured as described above is disclosed.
JP-A-63-236351 JP-A-6-195154 JP 2002-261206 A

しかしながら上記従来の技術では、以下のような課題を有していた。   However, the above conventional techniques have the following problems.

(特許文献1)の冷却構造では、伝熱材の内部に電子部品が埋没してしまうため、不良品の発見やメンテナンス等ができ難いという課題を有していた。   In the cooling structure of (Patent Document 1), since an electronic component is buried inside the heat transfer material, there is a problem that it is difficult to find and maintain a defective product.

(特許文献2)の冷却機構では、複数の電子部品の各々に高価な受熱体を設ける必要があり部品点数の増加、取り付け作業性の低下、コストが高騰化するという課題を有していた。   In the cooling mechanism of (Patent Document 2), it is necessary to provide an expensive heat receiving body for each of a plurality of electronic components, and there are problems that the number of components increases, attachment workability decreases, and cost increases.

(特許文献3)の冷却構造体では、放熱シートを表層部のゴム状に硬化した薄膜補強層と内層のコンパウンド層とにより形成しているので、放熱シートが高価になり生産性に欠けると共に、基板上の複数の半導体の多少の高低差はコンパウンド層の変形により吸収できるかもしれないが、高低差がコンパウンド層の厚みより大きいと対応できず実用性に欠けるという課題を有していた。   In the cooling structure of (Patent Document 3), since the heat dissipation sheet is formed by a thin-film reinforcing layer cured in a rubber shape of the surface layer portion and an inner compound layer, the heat dissipation sheet becomes expensive and lacks productivity, Although some level differences of a plurality of semiconductors on the substrate may be absorbed by deformation of the compound layer, if the level difference is larger than the thickness of the compound layer, it cannot be dealt with and there is a problem that it lacks practicality.

(特許文献1)や(特許文献3)の技術では、基板に実装された複数の電子部品の内、基板からの高さが最も高いものに冷却板や放熱板の高さを合わせる必要があり、他の比較的高さの低いものは冷却板や放熱板までの伝熱距離が長くなり放熱効率に欠けると共に、省スペース性に欠けるという課題を有していた。   In the techniques of (Patent Document 1) and (Patent Document 3), it is necessary to match the height of the cooling plate and the heat radiating plate to the one having the highest height from the substrate among the plurality of electronic components mounted on the substrate. The other relatively low ones have the problem that the heat transfer distance to the cooling plate and the heat radiating plate becomes long and the heat radiating efficiency is lacking, and the space saving is lacking.

基板上に実装された複数の電子部品は通常各々発熱量が異なり、発熱量の多いものと少ないものが混在しているが、(特許文献1)乃至(特許文献3)の技術では各電子部品から一様に放熱するだけであり、発熱量が多いものから十分に放熱できず放熱効率に欠けるという課題を有していた。特に、CPUはその周囲の他の電子部品に比べ発熱量が多く、CPUと他の電子部品との両者を各々の発熱量に応じて十分に且つ効率的に冷却できる冷却装置の開発が望まれている。   A plurality of electronic components mounted on a substrate usually have different amounts of heat generation, and those having a large amount of heat generation and those having a small amount of heat are mixed, but in the technologies of (Patent Document 1) to (Patent Document 3), each electronic component However, it has a problem that the heat dissipation efficiency is insufficient because the heat generation amount is large. In particular, the CPU generates a larger amount of heat than other electronic components around it, and it is desirable to develop a cooling device that can sufficiently and efficiently cool both the CPU and other electronic components according to the amount of heat generated. ing.

本発明は上記従来の課題を解決するもので、基板からの高さの異なる複数の電子部品又は基板に熱伝導性シートや受熱体を確実に接触させ、所定範囲内の全ての電子部品を確実に冷却できると共に、発熱量の異なる複数の電子部品を各々の発熱量に応じて十分に且つ効率的に冷却することができる冷却装置の提供、及び、基板上に実装された電子部品が必要以上に昇温することを防止でき信頼性に優れる電子機器の提供を目的とする。   The present invention solves the above-described conventional problems, and makes sure that a heat conductive sheet or a heat-receiving body is brought into contact with a plurality of electronic components or substrates having different heights from the substrate, so that all electronic components within a predetermined range can be reliably obtained. Providing a cooling device capable of sufficiently and efficiently cooling a plurality of electronic components having different calorific values according to each calorific value, and more than necessary electronic components mounted on the board An object of the present invention is to provide an electronic device that can prevent an increase in temperature and has excellent reliability.

上記課題を解決するために、本発明の冷却装置は、内部に冷媒流路を有し電子部品の熱を受熱する受熱体と、受熱体の冷媒流路に接続された冷媒配管と、冷媒配管に接続され冷媒の熱を外部に放熱する放熱体と、冷媒配管を介して受熱体と放熱体との間に冷媒を循環させる循環ポンプと、を備え、基板上に実装された電子部品を冷却する冷却装置であって、1乃至複数の電子部品に覆設された熱伝導性シートを備え、熱伝導性シートは冷媒配管の所定部の外表面に熱伝達可能に接続された構成を有している。   In order to solve the above problems, a cooling device of the present invention includes a heat receiving body that has a refrigerant flow path therein and receives heat from an electronic component, a refrigerant pipe connected to the refrigerant flow path of the heat receiving body, and a refrigerant pipe. A radiator that radiates the heat of the refrigerant to the outside and a circulation pump that circulates the refrigerant between the heat receiver and the radiator via a refrigerant pipe, and cools the electronic components mounted on the board The cooling device includes a heat conductive sheet that covers one or more electronic components, and the heat conductive sheet is connected to an outer surface of a predetermined portion of the refrigerant pipe so as to be able to transfer heat. ing.

これにより、基板からの高さの異なる複数の電子部品に熱伝導性シートや受熱体を確実に接触させ、所定範囲内の全ての電子部品を確実に冷却できると共に、発熱量の異なる複数の電子部品を各々の発熱量に応じて十分に且つ効率的に冷却できる冷却装置を提供することができる。   As a result, the heat conductive sheet and the heat receiving body can be reliably brought into contact with a plurality of electronic components having different heights from the substrate, and all the electronic components within a predetermined range can be reliably cooled, and a plurality of electrons having different heat generation amounts can be obtained. It is possible to provide a cooling device that can sufficiently and efficiently cool a component in accordance with each calorific value.

上記課題を解決するために、本発明の冷却装置は、内部に冷媒流路を有し電子部品の熱を受熱する受熱体と、受熱体の冷媒流路に接続された冷媒配管と、冷媒配管に接続され冷媒の熱を外部に放熱する放熱体と、冷媒配管を介して受熱体と放熱体との間に冷媒を循環させる循環ポンプと、を備え、基板上に実装された電子部品を冷却する冷却装置であって、基板に覆設された熱伝導性シートを備え、熱伝導性シートは冷媒配管の所定部の外表面に熱伝達可能に接続された構成を有している。   In order to solve the above problems, a cooling device of the present invention includes a heat receiving body that has a refrigerant flow path therein and receives heat from an electronic component, a refrigerant pipe connected to the refrigerant flow path of the heat receiving body, and a refrigerant pipe. A radiator that radiates the heat of the refrigerant to the outside and a circulation pump that circulates the refrigerant between the heat receiver and the radiator via a refrigerant pipe, and cools the electronic components mounted on the board The cooling device includes a heat conductive sheet that is covered with a substrate, and the heat conductive sheet is connected to an outer surface of a predetermined portion of the refrigerant pipe so as to be able to transfer heat.

これにより、基板若しくは該基板から突出した電子部品のリードに熱伝導性シートを接触させ、所定の電子部品に受熱体を接触させ、電子部品の熱を基板若しくはリードを介して受熱して所定範囲内の全ての電子部品を確実に冷却できると共に、発熱量の異なる複数の電子部品を各々の発熱量に応じて十分に且つ効率的に冷却できる冷却装置を提供することができる。   As a result, the heat conductive sheet is brought into contact with the substrate or the lead of the electronic component protruding from the substrate, the heat receiving body is brought into contact with the predetermined electronic component, and the heat of the electronic component is received through the substrate or the lead. It is possible to provide a cooling device that can reliably cool all of the electronic components, and can sufficiently and efficiently cool a plurality of electronic components having different calorific values according to the calorific values.

上記課題を解決するために、本発明の電子機器は、上記冷却装置を備えた構成を有している。   In order to solve the above problems, an electronic apparatus of the present invention has a configuration including the cooling device.

これにより、基板上に実装された電子部品が必要以上に昇温することを防止でき信頼性に優れる電子機器を提供することができる。   Thereby, it is possible to provide an electronic device that can prevent an electronic component mounted on the substrate from being heated more than necessary and has excellent reliability.

以上説明したように本発明の冷却装置及びそれを備えた電子機器によれば、以下のような有利な効果が得られる。   As described above, according to the cooling device of the present invention and the electronic apparatus including the same, the following advantageous effects can be obtained.

受熱体と熱伝導性シートにより基板からの高さの異なる複数の電子部品を確実に冷却することができると共に、複数の電子部品の内、比較的発熱量の多い電子部品を受熱体により十分に冷却でき、比較的発熱量の少ない他の電子部品を熱伝導性シートにより冷却できるので、発熱量の異なる複数の電子部品を各々の発熱量に応じて効率的に冷却することができ、電子部品が必要以上に昇温することを防止でき信頼性に優れる。   A plurality of electronic components with different heights from the substrate can be reliably cooled by the heat receiving body and the heat conductive sheet, and among the plurality of electronic components, an electronic component with a relatively large amount of heat generation can be sufficiently absorbed by the heat receiving body. Since other electronic components that can be cooled and have a relatively small amount of heat generation can be cooled by the heat conductive sheet, a plurality of electronic components having different heat generation amounts can be efficiently cooled according to the respective heat generation amounts. Can prevent the temperature from rising more than necessary and has excellent reliability.

本発明は、基板からの高さの異なる複数の電子部品に熱伝導性シートや受熱体を確実に接触させ、所定範囲内の全ての電子部品を確実に冷却できると共に、発熱量の異なる複数の電子部品を各々の発熱量に応じて十分に且つ効率的に冷却できる冷却装置を提供するという目的を、1乃至複数の電子部品に覆設された熱伝導性シートを備え、熱伝導性シートは冷媒配管の所定部の外表面に熱伝達可能に接続されることにより実現した。   In the present invention, a plurality of electronic components having different heights from the substrate can be reliably brought into contact with the heat conductive sheet and the heat receiving body, and all electronic components within a predetermined range can be reliably cooled, and a plurality of heat generation amounts can be varied. For the purpose of providing a cooling device capable of sufficiently and efficiently cooling an electronic component according to the amount of heat generated, the electronic component includes a thermally conductive sheet covered by one or more electronic components, This was realized by being connected to the outer surface of a predetermined part of the refrigerant pipe so as to be able to transfer heat.

また、本発明は、基板若しくは該基板から突出した電子部品のリードに熱伝導性シートを接触させ、所定の電子部品に受熱体を接触させ、電子部品の熱を基板若しくはリードを介して受熱して所定範囲内の全ての電子部品を確実に冷却できると共に、発熱量の異なる複数の電子部品を各々の発熱量に応じて十分に且つ効率的に冷却できる冷却装置を提供するという目的を、基板に覆設された熱伝導性シートを備え、熱伝導性シートは冷媒配管の所定部の外表面に熱伝達可能に接続されることにより実現した。   The present invention also provides a heat conductive sheet in contact with a substrate or a lead of an electronic component protruding from the substrate, a heat receiving member is brought into contact with a predetermined electronic component, and the heat of the electronic component is received through the substrate or the lead. It is an object of the present invention to provide a cooling device that can reliably cool all electronic components within a predetermined range and can sufficiently and efficiently cool a plurality of electronic components having different calorific values according to each calorific value. And the heat conductive sheet is realized by being connected to the outer surface of a predetermined portion of the refrigerant pipe so as to be capable of transferring heat.

また、本発明は、基板上に実装された電子部品が必要以上に昇温することを防止でき信頼性に優れる電子機器を提供するという目的を、上記冷却装置を備えることにより実現した。   In addition, the present invention has achieved the object of providing an electronic device that can prevent an electronic component mounted on a substrate from being heated more than necessary and has excellent reliability, by including the cooling device.

上記課題を解決するためになされた第1の発明は、内部に冷媒流路を有し電子部品の熱を受熱する受熱体と、受熱体の冷媒流路に接続された冷媒配管と、冷媒配管に接続され冷媒の熱を外部に放熱する放熱体と、冷媒配管を介して受熱体と放熱体との間に冷媒を循環させる循環ポンプと、を備え、基板上に実装された電子部品を冷却する冷却装置であって、1乃至複数の電子部品に覆設された熱伝導性シートを備え、熱伝導性シートは冷媒配管の所定部の外表面に熱伝達可能に接続された構成を有している。   A first invention made to solve the above problems includes a heat receiving body that has a refrigerant flow path therein and receives heat from an electronic component, a refrigerant pipe connected to the refrigerant flow path of the heat receiving body, and a refrigerant pipe. A radiator that radiates the heat of the refrigerant to the outside and a circulation pump that circulates the refrigerant between the heat receiver and the radiator via a refrigerant pipe, and cools the electronic components mounted on the board The cooling device includes a heat conductive sheet that covers one or more electronic components, and the heat conductive sheet is connected to an outer surface of a predetermined portion of the refrigerant pipe so as to be able to transfer heat. ing.

この構成により、以下の作用を有する。   This configuration has the following effects.

1乃至複数の電子部品の熱を熱伝導性シートから冷媒配管の所定部を介して循環する冷媒に伝達させ、また、受熱体で直接又は熱伝導性シートを介して受熱した電子部品の熱を冷媒流路を通過する冷媒に伝達させ、放熱体で放熱することで、電子部品を簡単な構造で確実に冷却することができ、筐体内のスペースを取らず電子機器の小型化、薄型化が図れる。   The heat of one or a plurality of electronic components is transferred from the heat conductive sheet to the refrigerant circulating through a predetermined portion of the refrigerant pipe, and the heat of the electronic components received by the heat receiving body directly or through the heat conductive sheet is transmitted. By transmitting to the refrigerant passing through the refrigerant flow path and dissipating heat with the radiator, the electronic components can be reliably cooled with a simple structure, reducing the size and thickness of the electronic equipment without taking up space in the housing. I can plan.

可撓性の熱伝導性シートを備えることにより、基板からの高さの異なる複数の電子部品の各々に熱伝導性シートを接触させることができ、基板上の所定範囲内に実装された複数の電子部品から受熱し、複数の電子部品を確実に冷却することができる。   By providing a flexible heat conductive sheet, the heat conductive sheet can be brought into contact with each of a plurality of electronic components having different heights from the substrate, and a plurality of components mounted within a predetermined range on the substrate can be provided. Heat is received from the electronic component, and the plurality of electronic components can be reliably cooled.

CPU等の発熱量の多い電子部品の上部に受熱体を直接又は熱伝導性シートを介して接触させることで、該電子部品の熱を受熱体で受熱できると共に、比較的発熱量の少ない他の電子部品の熱も熱伝導性シートを介して冷媒配管の所定部で受熱できるので、発熱量の異なる複数の電子部品を各々の発熱量に応じて効率的に冷却することができる。   By contacting the heat receiving body directly or via a heat conductive sheet to the upper part of an electronic component with a large amount of heat generation such as a CPU, the heat of the electronic component can be received by the heat receiving body, and Since the heat of the electronic component can also be received by the predetermined part of the refrigerant pipe via the heat conductive sheet, a plurality of electronic components having different heat generation amounts can be efficiently cooled according to the respective heat generation amounts.

冷媒を循環させる循環ポンプを有するので、冷媒を循環させることにより受熱体及びシート伝熱冷媒配管での受熱と放熱体での放熱を連続的に繰り返し行うことができる。   Since it has the circulation pump which circulates a refrigerant | coolant, the heat receiving in a heat receiving body and sheet | seat heat transfer refrigerant | coolant piping and the heat radiation in a heat radiating body can be repeated continuously by circulating a refrigerant | coolant.

基板上の所定範囲内の複数の電子部品の冷却を液体冷媒の循環による放熱により行うので、電子機器の筐体内への外気導入量を少なくすることができ、冷却ファンの回転数を下げる又は冷却ファンの搭載数を減らすことができ、従来より静音化が図れる。   Since cooling of a plurality of electronic components within a predetermined range on the substrate is performed by heat dissipation by circulation of liquid refrigerant, the amount of outside air introduced into the casing of the electronic device can be reduced, and the number of cooling fan rotations can be reduced or cooled. The number of fans mounted can be reduced, and the noise can be reduced compared to the conventional one.

ここで、受熱体の材質としては、アルミニウム、アルミニウム合金、銅、銅合金等の熱伝導性に優れた金属が好適に用いられる。受熱体の冷媒流路は、互いに間隔を開けて平行に配設された一対の平板の間にリブ状の隔壁を配設して形成してもよいし、二枚の平板状の部材の少なくとも一方にプレス等により溝加工したものを接合して形成してもよい。冷媒流路は蛇行させて形成することにより、その距離を長くして冷媒の体積を増やすことができるので、受熱体で受熱できる熱容量を増加させることができ、冷却効果を高めることができる。   Here, as the material of the heat receiving body, a metal having excellent thermal conductivity such as aluminum, aluminum alloy, copper, copper alloy or the like is preferably used. The refrigerant flow path of the heat receiving body may be formed by disposing a rib-shaped partition wall between a pair of flat plates spaced apart from each other in parallel, or at least of two flat plate-like members. Alternatively, a groove processed by a press or the like may be joined. By forming the refrigerant flow path meandering, the distance can be increased and the volume of the refrigerant can be increased, so that the heat capacity that can be received by the heat receiving body can be increased, and the cooling effect can be enhanced.

ラジエータ等の放熱体はファンレスのものを使用してもよいが、放熱体のみで十分な冷却能力が得られない場合は、冷却ファンと組み合わせて使用してもよい。なお、放熱体や循環ポンプは、電子機器の筐体内部の任意の位置に配置することができる。筐体の要所に通風口を形成することにより、外気を取り入れて放熱体を冷やすことができると共に、温められた空気を外部に排出して筐体の内部に熱が籠もることを防止できる。   A radiator such as a radiator may be fanless, but if sufficient cooling capacity cannot be obtained with only the radiator, it may be used in combination with a cooling fan. In addition, a heat radiator and a circulation pump can be arrange | positioned in the arbitrary positions inside the housing | casing of an electronic device. By forming ventilation openings at the main points of the housing, it is possible to cool the heat sink by taking in outside air, and prevent the heat from being trapped inside the housing by discharging the warmed air to the outside it can.

受熱体、放熱体、循環ポンプの各部を接続する冷媒配管は、金属製でもよいし、合成樹脂製やゴム製でもよい。合成樹脂製やゴム製の冷媒配管は、柔軟性があり容易に変形させることができ設置自在性に優れる。特に水分子が通過し難いブチルゴムを用いた場合、冷媒の減少やこれに伴う増粘を効果的に防ぐことができ信頼性に優れる。なお、リザーブタンクを備えることにより、減少する冷媒を補うことができる。また、リザーブタンク内に空気層を設けることにより、冷媒の体積変化を吸収することができ、寒冷地や冬季における破損を防止することができる。   The refrigerant piping connecting the heat receiving body, the heat radiating body, and the circulation pump may be made of metal, synthetic resin, or rubber. Synthetic resin or rubber refrigerant pipes are flexible and can be easily deformed, providing excellent installation flexibility. In particular, when butyl rubber, which is difficult for water molecules to pass through, is used, it is possible to effectively prevent the decrease in the refrigerant and the accompanying thickening, and the reliability is excellent. In addition, the refrigerant | coolant which decreases can be supplemented by providing a reserve tank. Further, by providing an air layer in the reserve tank, it is possible to absorb the volume change of the refrigerant, and to prevent breakage in cold regions and winter seasons.

受熱体と循環ポンプ或いは放熱体とリザーブタンク等を一体化してもよい。これにより、一部の冷媒配管を省略することができ、取り扱い性を向上させて装置への着脱を容易に行うことができる。   The heat receiving body and the circulation pump or the heat radiating body and the reserve tank may be integrated. Thereby, some refrigerant | coolant piping can be abbreviate | omitted, a handleability can be improved and attachment or detachment to an apparatus can be performed easily.

リザーブタンクや受熱体の表面に周囲の空気との熱交換を行うための放熱フィンを設け、放熱機能を兼ねることもできる。   A heat radiating fin for exchanging heat with the surrounding air can be provided on the surface of the reserve tank or the heat receiving body to also serve as a heat radiating function.

冷媒としては、水や不凍液等が用いられる。不凍液は主成分の水にアルコールの一種であるプロピレングリコールを混合したものが好適に用いられる。また、防錆効果を有する不凍液を用いることにより、金属製の冷媒配管やリザーブタンク等の腐食を防止することができ信頼性に優れる。   Water, antifreeze, or the like is used as the refrigerant. As the antifreeze, a mixture of propylene glycol, which is a kind of alcohol, in water as the main component is suitably used. In addition, by using an antifreeze having a rust-preventing effect, corrosion of metal refrigerant pipes, reserve tanks, etc. can be prevented, and the reliability is excellent.

受熱体を基板に固定する固定手段としては、受熱体の側部に突設されたフランジ部と、該フランジ部と基板とを螺着固定するボルトナットや固定ピン等が用いられる。なお、固定手段としてのボルトや固定ピン等にコイルばねや板ばね、ワッシャ等の弾性体を装着し、該弾性体により受熱体を基板に向けて押圧した状態で固定することができる。これにより、受熱体と電子部品、或いは受熱体と熱伝導性シートと電子部品を確実に密着させ熱伝達性を高めることができる。   As a fixing means for fixing the heat receiving body to the substrate, a flange portion protruding from a side portion of the heat receiving body, a bolt nut, a fixing pin, or the like for screwing and fixing the flange portion and the substrate are used. Note that an elastic body such as a coil spring, a leaf spring, or a washer is attached to a bolt, a fixing pin, or the like as a fixing means, and the heat receiving body can be fixed to the substrate while being pressed by the elastic body. Thereby, a heat receiving body, an electronic component, or a heat receiving body, a heat conductive sheet, and an electronic component can be made to adhere | attach reliably, and heat transfer property can be improved.

熱伝導性シートとしては、実装された電子部品の基板上における配置等に応じて所定の範囲をカバーする多角形状や円形状、その他種々の形状に形成され、実装された電子部品の高低に対応できるように可撓性を有するもので、グラファイトシート、熱伝導性充填材を含有するシリコンゴムシート、銅やアルミニウム等の金属薄膜等が用いられる。グラファイトシートを用いる場合は、電子部品との密着性を高めるために、接触面にアクリル系樹脂層やシリコンゴム等からなる粘着層を形成してもよい。シリコンゴムからなる粘着層(微粘着層)を形成した場合は、耐熱性に優れると共に衝撃を吸収する緩衝性に優れるため好ましい。また、粘着層に替えて又は併せてPETやポリイミド等からなる絶縁層を形成することで各電子部品の絶縁性を確保することができる。   The thermal conductive sheet is formed in a polygonal shape, circular shape, and other various shapes that cover a predetermined range according to the placement of the mounted electronic components on the substrate, etc. It is flexible so that a graphite sheet, a silicon rubber sheet containing a heat conductive filler, a metal thin film such as copper or aluminum, or the like is used. In the case of using a graphite sheet, an adhesive layer made of an acrylic resin layer, silicon rubber, or the like may be formed on the contact surface in order to improve the adhesion with the electronic component. The formation of an adhesive layer (slightly adhesive layer) made of silicon rubber is preferable because it is excellent in heat resistance and shock absorbing properties. Moreover, the insulating property of each electronic component can be ensured by forming an insulating layer made of PET, polyimide, or the like instead of or in addition to the adhesive layer.

熱伝導性シートを冷媒配管の所定部に熱伝達可能に接続する手段としては、その外表面への被覆や巻き付け、粘着層を介して接着等により直接接触させる手段や、冷媒配管に係着や挟着等して固定可能な治具に熱伝導性シートを接続し、該治具を介して機械的に接続する手段等が用いられる。例えば、熱伝導性シートの端部を冷媒配管に巻き付けたり熱伝導性シートの一部を冷媒配管の外表面に接着剤等で接着したりすることによりその接触部分を介して伝熱させる。この場合、冷媒配管や使用する接着剤、治具等は熱伝導性の高い材質で形成することが好ましい。なお、冷媒配管において熱伝導性シートを接触させる部分は、冷媒配管の配置等に応じて熱伝導性シートに最も近接する部分等に適宜設定される。   As a means for connecting the heat conductive sheet to a predetermined part of the refrigerant pipe so as to be capable of transferring heat, a means for directly contacting the outer surface by coating or winding, adhesion through an adhesive layer, etc. Means or the like for connecting a thermally conductive sheet to a jig that can be fixed by clamping or the like and mechanically connecting via the jig is used. For example, the end portion of the heat conductive sheet is wound around the refrigerant pipe, or a part of the heat conductive sheet is adhered to the outer surface of the refrigerant pipe with an adhesive or the like to transfer heat through the contact portion. In this case, it is preferable to form the refrigerant pipe, the adhesive to be used, the jig, etc. with a material having high thermal conductivity. In addition, the part which contacts a heat conductive sheet in refrigerant | coolant piping is suitably set to the part etc. which are the nearest to a heat conductive sheet according to arrangement | positioning etc. of refrigerant | coolant piping.

上記課題を解決するためになされた第2の発明は、内部に冷媒流路を有し電子部品の熱を受熱する受熱体と、受熱体の冷媒流路に接続された冷媒配管と、冷媒配管に接続され冷媒の熱を外部に放熱する放熱体と、冷媒配管を介して受熱体と放熱体との間に冷媒を循環させる循環ポンプと、を備え、基板上に実装された電子部品を冷却する冷却装置であって、基板に覆設された熱伝導性シートを備え、熱伝導性シートは冷媒配管の所定部の外表面に熱伝達可能に接続された構成を有している。   A second invention made to solve the above problems includes a heat receiving body that has a refrigerant flow path therein and receives heat from an electronic component, a refrigerant pipe connected to the refrigerant flow path of the heat receiving body, and a refrigerant pipe. A radiator that radiates the heat of the refrigerant to the outside and a circulation pump that circulates the refrigerant between the heat receiver and the radiator via a refrigerant pipe, and cools the electronic components mounted on the board The cooling device includes a heat conductive sheet that is covered with a substrate, and the heat conductive sheet is connected to an outer surface of a predetermined portion of the refrigerant pipe so as to be able to transfer heat.

この構成により、以下の作用を有する。   This configuration has the following effects.

1乃至複数の電子部品の熱を基板又は電子部品のリードから熱伝導性シート、冷媒配管の所定部を介して循環する冷媒に伝達させ、さらに、受熱体で直接受熱した電子部品の熱を冷媒流路を通過する冷媒に伝達させ放熱体で放熱することで、電子部品を簡単な構造で確実に冷却することができ、筐体内のスペースを取らず電子機器の小型化、薄型化が図れる。   The heat of one or a plurality of electronic components is transferred from the substrate or the lead of the electronic component to the refrigerant circulating through the heat conductive sheet and a predetermined part of the refrigerant pipe, and the heat of the electronic component directly received by the heat receiving body is By transmitting to the refrigerant passing through the flow path and radiating heat with the heat radiating body, the electronic component can be reliably cooled with a simple structure, and the electronic device can be made smaller and thinner without taking up space in the housing.

可撓性の熱伝導性シートを基板の電子部品の実装面の反対側の面等に覆設することで、複数の電子部品の熱を基板又はリードを介して受熱し、複数の電子部品を確実に冷却することができる。   By covering the flexible heat conductive sheet on the surface of the substrate opposite to the mounting surface of the electronic component, the heat of the plurality of electronic components is received through the substrate or leads, and the plurality of electronic components are received. Cooling can be ensured.

CPU等の発熱量の多い電子部品の上部に受熱体を接触させることで、該電子部品の熱を直接受熱体で受熱できると共に、比較的発熱量の少ない他の電子部品の熱を熱伝導性シートを介して冷媒配管で受熱できるので、発熱量の異なる複数の電子部品を各々の発熱量に応じて効率的に冷却することができる。   By bringing a heat receiving body into contact with an upper part of a heat generating electronic component such as a CPU, the heat of the electronic component can be directly received by the heat receiving member, and the heat of other electronic components with a relatively small heat generating amount is thermally conductive. Since heat can be received by the refrigerant pipe via the sheet, a plurality of electronic components having different heat generation amounts can be efficiently cooled according to each heat generation amount.

冷媒を循環させる循環ポンプを有するので、冷媒を循環させることにより受熱体及びシート伝熱冷媒配管での受熱と放熱体での放熱を連続的に繰り返し行うことができる。   Since it has the circulation pump which circulates a refrigerant | coolant, the heat receiving in a heat receiving body and sheet | seat heat transfer refrigerant | coolant piping and the heat radiation in a heat radiating body can be repeated continuously by circulating a refrigerant | coolant.

基板上の所定範囲内の複数の電子部品の冷却を液体冷媒の循環による放熱により行うので、電子機器の筐体内への外気導入量を少なくすることができ、冷却ファンの回転数を下げる又は冷却ファンの搭載数を減らすことができ、従来より静音化が図れる。   Since cooling of a plurality of electronic components within a predetermined range on the substrate is performed by heat dissipation by circulation of liquid refrigerant, the amount of outside air introduced into the casing of the electronic device can be reduced, and the number of cooling fan rotations can be reduced or cooled. The number of fans mounted can be reduced, and the noise can be reduced compared to the conventional one.

ここで、受熱体やその固定手段、放熱体、循環ポンプ、冷媒配管及び熱伝導性シートとしては、上述したものが用いられる。   Here, what was mentioned above is used as a heat receiving body, its fixing means, a heat radiator, a circulation pump, refrigerant | coolant piping, and a heat conductive sheet.

上記課題を解決するためになされた第3の発明は、第1又は第2の発明に記載の冷却装置であって、熱伝導性シートの端部を冷媒配管の所定部の外表面に巻き付けて接続した構成を有している。   3rd invention made | formed in order to solve the said subject is a cooling device as described in 1st or 2nd invention, Comprising: The edge part of a heat conductive sheet is wound around the outer surface of the predetermined part of refrigerant | coolant piping. It has a connected configuration.

この構成により、第1又は第2の発明の作用に加え、以下の作用を有する。   With this configuration, in addition to the functions of the first or second invention, the following functions are provided.

熱伝導性シートの端部を冷媒配管の所定部の外表面に巻き付けることにより、伝熱面積を広くして熱伝達性を高めることができ、冷却性能を向上できる。   By winding the end portion of the heat conductive sheet around the outer surface of the predetermined portion of the refrigerant pipe, the heat transfer area can be widened to improve the heat transfer performance, and the cooling performance can be improved.

上記課題を解決するためになされた第4の発明は、第1乃至第3の発明の内いずれか1の発明に記載の冷却装置であって、熱伝導性シートは受熱体と電子部品との間に挟み込まれて配設された構成を有している。   A fourth invention made to solve the above-described problem is the cooling device according to any one of the first to third inventions, wherein the heat conductive sheet includes a heat receiving member and an electronic component. It has a configuration that is sandwiched between them.

この構成により、第1乃至第3の発明の内いずれか1の発明の作用に加え、以下の作用を有する。   With this configuration, in addition to the operation of any one of the first to third inventions, the following operation is provided.

熱伝導性シートが受熱体と電子部品との間に挟み込まれているので、熱伝導性シートで受熱した電子部品の熱を受熱体を介して冷媒流路を通過する冷媒に伝達することができ、電子部品から冷媒への熱の伝達経路が増加することにより熱伝達性を高めることができ、冷却性能を向上できる。   Since the heat conductive sheet is sandwiched between the heat receiving body and the electronic component, the heat of the electronic component received by the heat conductive sheet can be transmitted to the refrigerant passing through the refrigerant channel through the heat receiving body. The heat transfer path from the electronic component to the refrigerant is increased, so that the heat transfer can be improved and the cooling performance can be improved.

受熱体及び熱伝導性シートの基板への取り付け取り外しが容易であり、電子部品等のメンテナンス性に優れる。   It is easy to attach and remove the heat receiving body and the heat conductive sheet to the substrate, and it is excellent in maintainability of electronic parts and the like.

上記課題を解決するためになされた第5の発明は、第1乃至第4の発明の内いずれか1の発明に記載の冷却装置であって、複数の熱伝導性シートを備え、複数の熱伝導性シートは冷媒配管を介して直列に接続された構成を有している。   A fifth invention made to solve the above-mentioned problems is the cooling device according to any one of the first to fourth inventions, comprising a plurality of heat conductive sheets, and a plurality of heats. The conductive sheet has a configuration connected in series via a refrigerant pipe.

この構成により、第1乃至第4の発明の内いずれか1の発明の作用に加え、以下の作用を有する。   With this configuration, in addition to the operation of any one of the first to fourth inventions, the following operation is provided.

複数の熱伝導性シートを直列に接続することで、種々の電子部品の実装数や配置に対応させることができ、また、同一の基板に実装された電子部品に限らず、隣接する複数の基板に渡って1の冷媒経路で接続された熱伝導性シートや受熱体を配設することができ、自由に受熱機構を設計することができる。   By connecting a plurality of thermal conductive sheets in series, it is possible to correspond to the number and arrangement of various electronic components, and not only electronic components mounted on the same substrate, but also a plurality of adjacent substrates It is possible to dispose a heat conductive sheet or a heat receiving body connected by one refrigerant path, and a heat receiving mechanism can be designed freely.

上記課題を解決するためになされた第6の発明は、第1乃至第5の発明の内いずれか1の発明に記載の冷却装置であって、熱伝導性シートの受熱面の反対側の面に配設された柔軟性を有する緩衝材と、緩衝材を熱伝導性シートに押圧固定する押え板と、を備えた構成を有している。   6th invention made | formed in order to solve the said subject is a cooling device as described in any one of 1st thru | or 5th invention, Comprising: The surface on the opposite side to the heat receiving surface of a heat conductive sheet And a cushioning material having flexibility and a presser plate for pressing and fixing the cushioning material to the heat conductive sheet.

この構成により、第1乃至第5の発明の内いずれか1の発明の作用に加え、以下の作用を有する。   With this configuration, in addition to the operation of any one of the first to fifth inventions, the following operation is provided.

緩衝材が高さの異なる複数の電子部品に追従して変形することで、熱伝導性シートを押圧して電子部品に確実に密着させることができ熱伝達性を高めることができる。   Since the cushioning material follows and deforms a plurality of electronic components having different heights, the heat conductive sheet can be pressed and securely adhered to the electronic components, and heat transferability can be improved.

押え板により緩衝材を熱伝導性シートに押圧して保持固定することができ、緩衝材が熱伝導性シートから剥がれたり移動したりするのを防止でき密着性の低下を防止できる。   The cushioning material can be pressed and held and fixed to the heat conductive sheet by the presser plate, and the cushioning material can be prevented from peeling off or moving from the heat conductive sheet, thereby preventing a decrease in adhesion.

ここで、熱伝導性シートに受熱体を接触させる場合は、緩衝材や押え板の対応箇所に開口部を設ける。該開口部の内部に受熱体を配設することで、受熱体の周囲が塞がれるのを防止できるため、放熱効率の低下を防止できる。   Here, when making a heat receiving body contact a heat conductive sheet, an opening part is provided in the location corresponding to a buffer material or a presser plate. By disposing the heat receiving body inside the opening, it is possible to prevent the periphery of the heat receiving body from being blocked, and thus it is possible to prevent a reduction in heat dissipation efficiency.

押え板を基板に対して固定する固定手段としては、ボルトナットや固定ピン等が用いられる。なお、固定手段としてのボルトや固定ピン等にコイルばねや板ばね、ワッシャ等の弾性体を装着し、該弾性体により押え板を基板に向けて押圧した状態で固定することができる。これにより、熱伝導性シートと電子部品を密着性を高め熱伝達性を高めることができる。   As a fixing means for fixing the presser plate to the substrate, a bolt nut or a fixing pin is used. An elastic body such as a coil spring, a leaf spring, or a washer is attached to a bolt, a fixing pin, or the like as a fixing means, and the pressing plate can be fixed to the substrate by the elastic body. Thereby, adhesiveness can be improved and heat transferability can be improved between the heat conductive sheet and the electronic component.

緩衝材や押え板として熱伝導性を有する材質を用いることで電子部品の熱を熱伝導性シートから緩衝材及び押え板を介して筐体内部の空気に放熱することができ、放熱効率を高めることができる。この場合、押え板の上面に複数の放熱フィンを立設することで放熱効率をさらに高めることができる。   By using a material with thermal conductivity for the cushioning material and the presser plate, the heat of the electronic components can be radiated from the thermal conductive sheet to the air inside the housing via the bufferer and the presser plate, increasing the heat dissipation efficiency. be able to. In this case, the heat radiation efficiency can be further enhanced by providing a plurality of heat radiation fins on the upper surface of the holding plate.

上記課題を解決するためになされた第7の発明は、第6の発明に記載の冷却装置であって、緩衝材及び押え板が、互いに連通する貫通孔を備えた構成を有している。   7th invention made | formed in order to solve the said subject is a cooling device as described in 6th invention, Comprising: It has the structure provided with the through-hole in which a shock absorbing material and a pressing board communicate mutually.

この構成により、第6の発明の作用に加え、以下の作用を有する。   With this configuration, in addition to the operation of the sixth invention, the following operation is provided.

緩衝材と押え板とに連通する貫通孔を備えているので、電子部品の発熱により電子部品間の空間部の空気中の水蒸気が結露するのを防止でき、短絡や腐食等の発生を防止できる。   Since it has a through hole that communicates with the cushioning material and the presser plate, it is possible to prevent moisture in the air in the space between the electronic components from condensing due to heat generated by the electronic components, and to prevent occurrence of short circuits and corrosion. .

上記課題を解決するためになされた第8の発明は、第1乃至第7の発明の内いずれか1の発明に記載の冷却装置であって、受熱体が、循環ポンプを一体に形成したポンプ一体型受熱体である構成を有している。   An eighth invention made to solve the above-described problem is the cooling device according to any one of the first to seventh inventions, wherein the heat receiving body integrally forms a circulation pump. It has the structure which is an integrated heat receiving body.

この構成により、第1乃至第7の発明の内いずれか1の発明の作用に加え、以下の作用を有する。   With this configuration, in addition to the operation of any one of the first to seventh inventions, the following operation is provided.

受熱体及び循環ポンプに替えてポンプ一体型受熱体を用いることにより、部品点数を低減し省スペース性に優れ電子機器の小型化、薄型化が図れる。   By using a pump-integrated heat receiving body instead of the heat receiving body and the circulation pump, the number of components is reduced, and space saving is excellent, and the electronic device can be reduced in size and thickness.

受熱部に隣接したポンプ室内の冷媒を羽根車により攪拌するので受熱性能を向上することができる。   Since the refrigerant in the pump chamber adjacent to the heat receiving portion is agitated by the impeller, the heat receiving performance can be improved.

受熱部における圧力損失がなくなるので循環ポンプを小さくでき省スペース性に優れる。   Since there is no pressure loss in the heat receiving part, the circulation pump can be made small and space saving is excellent.

上記課題を解決するためになされた第9の発明は、電子機器であって、第1乃至第8の発明の内いずれか1に記載の冷却装置を備えた構成を有している。   A ninth invention made to solve the above problems is an electronic device, and has a configuration including the cooling device according to any one of the first to eighth inventions.

この構成により、以下の作用を有する。   This configuration has the following effects.

基板からの高さの異なる複数の電子部品に可撓性を有する熱伝導性シートを接触させると共に、CPU等の発熱量の多い電子部品に直接又は熱伝導性シートを介して受熱体を接触させることで、基板上の所定範囲内に実装された複数の電子部品の熱を受熱体や熱伝導性シートで受熱し液冷で放熱することができ、複数の電子部品を効率的に冷却することができ、基板上に実装された電子部品が必要以上に昇温することを防止でき信頼性に優れる。   A heat conductive sheet having flexibility is brought into contact with a plurality of electronic components having different heights from the substrate, and a heat receiving body is brought into contact with an electronic component having a large amount of heat generation such as a CPU directly or through the heat conductive sheet. Therefore, the heat of a plurality of electronic components mounted within a predetermined range on the board can be received by a heat receiving body or a heat conductive sheet and dissipated by liquid cooling, and the plurality of electronic components can be efficiently cooled. It is possible to prevent the electronic component mounted on the substrate from being heated more than necessary, and it is excellent in reliability.

複数の電子部品を部品点数が少なく簡単な構造で確実に冷却でき、筐体内のスペースを取らず電子機器の小型化、薄型化が図れると共に、液体冷媒の循環により放熱することで、筐体内への外気導入量を少なくすることができ、冷却ファンの回転数を下げる又は冷却ファンの搭載数を減らすことができ、従来より静音化が図れる。   Multiple electronic components can be reliably cooled with a simple structure with a small number of parts, and the electronic equipment can be reduced in size and thickness without taking up space in the housing, and heat can be dissipated by circulating liquid refrigerant into the housing. The amount of outside air introduced can be reduced, the number of rotations of the cooling fan can be reduced, or the number of mounted cooling fans can be reduced.

ここで、第1乃至第8の発明の冷却装置は、パーソナルコンピュータやサーバ装置、コピー機等のOA機器等、基板に実装された電子部品を有する種々の電子機器に搭載することができる。   Here, the cooling device of the first to eighth inventions can be mounted on various electronic devices having electronic components mounted on a substrate, such as an OA device such as a personal computer, a server device, and a copying machine.

(実施の形態1)
以下、本発明の実施の形態について、各図に基づいて説明する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態1における冷却装置を示す要部断面図であり、図2(a)は押え板と緩衝材と熱伝導性シートに形成された貫通孔を示す要部断面図であり、図2(b)は押え板の上面に立設された放熱フィンを示す要部断面図である。   FIG. 1 is a cross-sectional view of a main part showing a cooling device according to Embodiment 1 of the present invention, and FIG. 2 (a) is a cross-sectional view of a main part showing through holes formed in a presser plate, a cushioning material and a heat conductive sheet. FIG. 2B is a cross-sectional view of the main part showing the heat dissipating fins erected on the upper surface of the presser plate.

図1に示すように、本発明の実施の形態1における冷却装置1は、パーソナルコンピュータやサーバ装置、コピー機等のOA機器等の電子機器(図示せず)の筐体内において、基板Aに実装された比較的発熱量の大きなCPU等の半導体素子等の電子部品X1及び電子部品X1に近接して実装されたビデオプロセッサや液晶ドライバIC等の比較的発熱量の小さな電子部品X2〜X5を冷却するものである。冷却装置1の受熱機構R1は、アルミニウム、アルミニウム合金、銅、銅合金等の金属でブロック状や板状に形成された受熱体2と可撓性を有する熱伝導性シート3とを備え、電子部品X1〜X5で発生した熱が熱伝導性シート3と受熱体2で受熱される。熱伝導性シート3は電子部品X1〜X5に覆設され、熱伝導性シート3の端部3aは冷媒配管6aの所定部6a′に巻き付けられ、所定部6a′の外表面に接着剤により接着されている。また、電子部品X1の上部の熱伝導性シート3の上面に接触して受熱体2が配設され、電子部品X2〜X5の上部の熱伝導性シート3の上面に接触して緩衝材4が配設され、緩衝材4の上部に押え板5が配設されている。   As shown in FIG. 1, the cooling device 1 according to the first embodiment of the present invention is mounted on a substrate A in a housing of an electronic device (not shown) such as an OA device such as a personal computer, a server device, or a copy machine. Cooled electronic components X1 such as a semiconductor element such as a CPU having a relatively large calorific value and electronic components X2 to X5 having a relatively small calorific value such as a video processor and a liquid crystal driver IC mounted in the vicinity of the electronic component X1 To do. The heat receiving mechanism R1 of the cooling device 1 includes a heat receiving body 2 formed in a block shape or a plate shape with a metal such as aluminum, an aluminum alloy, copper, or a copper alloy, and a heat conductive sheet 3 having flexibility. The heat generated in the parts X1 to X5 is received by the heat conductive sheet 3 and the heat receiving body 2. The heat conductive sheet 3 is covered with the electronic components X1 to X5, the end 3a of the heat conductive sheet 3 is wound around the predetermined portion 6a 'of the refrigerant pipe 6a, and is adhered to the outer surface of the predetermined portion 6a' with an adhesive. Has been. Further, the heat receiving body 2 is disposed in contact with the upper surface of the heat conductive sheet 3 on the upper part of the electronic component X1, and the buffer material 4 is in contact with the upper surface of the heat conductive sheet 3 on the upper part of the electronic components X2 to X5. The presser plate 5 is disposed above the cushioning material 4.

受熱体2の内部には冷媒を通過させるための冷媒流路2aが蛇行して形成され、冷媒流路2aの流路入口2bには冷媒配管6aを介して冷媒を循環させるための循環ポンプ7が接続され、流路出口2cには冷媒配管6bを介して受熱体2で受熱した熱を放熱するためのラジエータ等の放熱体8が接続されている。循環ポンプ7と放熱体8の間の冷媒配管6aには減少する冷媒を補うためのリザーブタンク9が配設されている。また、放熱体8の近傍には放熱体8に送風して冷却を促進するための冷却ファン(図示せず)が連設されている。冷媒配管6a,6bは水分子が通過し難いブチルゴムで形成されている。   A refrigerant flow path 2a for allowing the refrigerant to pass therethrough is formed inside the heat receiving body 2 in a meandering manner, and a circulation pump 7 for circulating the refrigerant through the refrigerant pipe 6a at the flow path inlet 2b of the refrigerant flow path 2a. And a radiator 8 such as a radiator for radiating the heat received by the heat receiver 2 through the refrigerant pipe 6b is connected to the flow path outlet 2c. A refrigerant tank 6a between the circulation pump 7 and the radiator 8 is provided with a reserve tank 9 for supplementing the decreasing refrigerant. Further, a cooling fan (not shown) is provided in the vicinity of the radiator 8 for blowing air to the radiator 8 to promote cooling. The refrigerant pipes 6a and 6b are made of butyl rubber which is difficult for water molecules to pass through.

受熱体2の冷媒流路2aは、互いに間隔を開けて平行に配設した一対の平板又はブロック体の間にリブ状の隔壁を配設して形成してもよいし、二枚の平板状等の部材の少なくとも一方にプレス等により溝加工したものを接合して形成してもよい。なお、冷媒流路2aを蛇行させて形成し、その距離を長くすることで、受熱体2と冷媒流路2aとの接触面積が増え、熱伝達量を多くすることができ、受熱体2で受熱できる熱容量を増加させ、冷却効果を高めている。   The refrigerant flow path 2a of the heat receiving body 2 may be formed by disposing a rib-like partition wall between a pair of flat plates or block bodies arranged parallel to each other at intervals, or two flat plate shapes. A member that is grooved by pressing or the like may be joined to at least one of the members. In addition, the refrigerant flow path 2a is formed by meandering, and by increasing the distance, the contact area between the heat receiving body 2 and the refrigerant flow path 2a can be increased, and the amount of heat transfer can be increased. The heat capacity that can receive heat is increased and the cooling effect is enhanced.

熱伝導性シート3としてはグラファイトシート等が用いられる。グラファイトシートを用いた場合は、シート表面に沿った方向(面方向)の熱伝導性が高いため、熱伝導速度を速め、冷却効率を高めることができる。   As the heat conductive sheet 3, a graphite sheet or the like is used. When a graphite sheet is used, the heat conductivity in the direction along the sheet surface (plane direction) is high, so the heat conduction speed can be increased and the cooling efficiency can be increased.

緩衝材4は、ゲル状等の高分子化合物やスポンジ等で形成され、柔軟性及び形状可変性を有している。これにより、緩衝材4を電子部品X2〜X5側に押し付けることで緩衝材4が電子部品X2〜X5の形状にならって変形し、熱伝導性シート3を高さの異なる電子部品X2〜X5の上面に密着させることができる。押え板5は、アルミニウムや銅等の金属板や合成樹脂板等により形成されている。なお、緩衝材4と押え板5の所定部には、受熱体2を配設するための開口部10が形成されている。   The buffer material 4 is formed of a polymer compound such as a gel or a sponge, and has flexibility and shape variability. Thereby, the buffer material 4 is deformed according to the shape of the electronic components X2 to X5 by pressing the buffer material 4 toward the electronic components X2 to X5, and the heat conductive sheet 3 is changed to the height of the electronic components X2 to X5 having different heights. It can be adhered to the upper surface. The presser plate 5 is formed of a metal plate such as aluminum or copper, a synthetic resin plate, or the like. Note that an opening 10 for arranging the heat receiving body 2 is formed in a predetermined portion of the cushioning material 4 and the presser plate 5.

なお、図2(a)に示すように、熱伝導性シート3と緩衝材4と押え板5とを貫通する貫通孔11を形成し、熱伝導性シート3の下方に形成された電子部品X1とX2の間或いは電子部品X2とX3の間等の空間部Dと押え板5の上部の空間(電子機器の筐体内部の空間)とを連通することもできる。これにより、電子部品X1〜X5の発熱による空間部Dにおける結露を防止できる。   As shown in FIG. 2A, an electronic component X <b> 1 is formed below the heat conductive sheet 3 by forming a through hole 11 that penetrates the heat conductive sheet 3, the buffer material 4, and the presser plate 5. And the space part D such as between the electronic components X2 and X3 and the space above the pressing plate 5 (the space inside the housing of the electronic device) can be communicated with each other. Thereby, the dew condensation in the space part D by the heat_generation | fever of the electronic components X1-X5 can be prevented.

また、図2(b)に示すように、押え板5の上面に複数の放熱フィン12を立設してもよい。これにより、電子部品X1〜X5から熱伝導性シート3及び緩衝材4を介して押え板5に伝達した熱を効率的に放熱できる。   Further, as shown in FIG. 2B, a plurality of radiating fins 12 may be erected on the upper surface of the holding plate 5. Thereby, the heat transmitted from the electronic components X1 to X5 to the presser plate 5 via the heat conductive sheet 3 and the buffer material 4 can be efficiently radiated.

図1において、受熱体2を基板Aに固定する固定手段S1は、受熱体2の側面の所定部、例えば角部等にボルト挿通孔13aを有するフランジ部13を突設し、フランジ部13と基板Aのボルト挿通孔13a,Bにボルト14aを連挿すると共に、ボルト14aの頭部とフランジ部13の上面との間にコイルばねや板ばね等の弾性体14bを装着した状態でナット14cで締め付け固定して構成されている。これにより、受熱体2を基板Aに強固に固定すると共に、弾性体14bにより熱伝導性シート3と電子部品X1との密着性及び受熱体2と熱伝導性シート3との密着性を高め、熱伝達性を高めることができる。   In FIG. 1, fixing means S <b> 1 for fixing the heat receiving body 2 to the substrate A projects a flange portion 13 having a bolt insertion hole 13 a at a predetermined portion, for example, a corner portion of the side surface of the heat receiving body 2. The bolt 14a is continuously inserted into the bolt insertion holes 13a and B of the substrate A, and the nut 14c is mounted with an elastic body 14b such as a coil spring or a leaf spring between the head of the bolt 14a and the upper surface of the flange portion 13. It is configured by tightening and fixing with. Thereby, while fixing the heat receiving body 2 firmly to the board | substrate A, the adhesiveness of the heat conductive sheet 3 and the electronic component X1 and the adhesiveness of the heat receiving body 2 and the heat conductive sheet 3 are improved by the elastic body 14b, Heat transfer can be increased.

また、押え板5を基板Aに固定する固定手段S2としては、受熱体2の固定手段S1と同様のものを用いることができる。固定手段S2は、押え板5の端部近傍にボルト挿通孔15aが形成され、押え板5と基板Aのボルト挿通孔15a,Cにボルト16aを連挿すると共に、ボルト16aに弾性体16bを装着した状態でナット16cで締め付け固定して構成されている。これにより、押え板5を基板Aに強固に固定すると共に、弾性体16bにより熱伝導性シート3と電子部品X2〜X5との密着性を高め、熱伝達性を高めることができる。   As the fixing means S2 for fixing the presser plate 5 to the substrate A, the same means as the fixing means S1 for the heat receiving body 2 can be used. The fixing means S2 is formed with a bolt insertion hole 15a in the vicinity of the end portion of the presser plate 5. The bolt 16a is inserted into the presser plate 5 and the bolt insertion holes 15a and C of the substrate A, and an elastic body 16b is attached to the bolt 16a. In the mounted state, the nut 16c is fastened and fixed. As a result, the presser plate 5 can be firmly fixed to the substrate A, and the adhesiveness between the heat conductive sheet 3 and the electronic components X2 to X5 can be improved by the elastic body 16b, thereby improving heat transferability.

本実施の形態では、放熱体8に冷却ファンを組み合わせて使用したが、放熱体8のみで十分な冷却能力が得られる場合は、ファンレスのものを使用してもよい。尚、冷却ファンの大きさや回転数などは、放熱体8の冷却能力に応じて適宜選択することができる。また、電子部品X1〜X5の温度に応じて冷却ファンの回転数を変化させたり、回転と停止を切り替えたりした場合、効率的な冷却を行うことができ、省エネルギー性に優れると共に、冷却ファンの回転により発生する騒音を最低限に抑えることができ低騒音性に優れる。   In the present embodiment, a cooling fan is used in combination with the radiator 8. However, when a sufficient cooling capacity can be obtained with only the radiator 8, a fanless fan may be used. Note that the size and the number of rotations of the cooling fan can be appropriately selected according to the cooling capacity of the radiator 8. In addition, when the number of rotations of the cooling fan is changed according to the temperature of the electronic components X1 to X5, or when the rotation and stop are switched, efficient cooling can be performed, and the energy saving performance is excellent. Noise generated by rotation can be suppressed to the minimum, and low noise is excellent.

また、リザーブタンク9内に循環ポンプ7を設置したり、リザーブタンク9の表面をフィン形状に形成して放熱体8の機能を兼ねたりすることもできる。さらに、リザーブタンク9内に空気層を設けることにより、冷媒の体積変化を吸収することができ、寒冷地や冬季における破損を防止することができる。なお、本実施の形態では冷媒として不凍液を使用することにより、冷媒の凍結を防止した。   Further, the circulation pump 7 can be installed in the reserve tank 9, or the surface of the reserve tank 9 can be formed in a fin shape so as to function as the radiator 8. Furthermore, by providing an air layer in the reserve tank 9, changes in the volume of the refrigerant can be absorbed, and damage in cold regions and winter seasons can be prevented. In the present embodiment, freezing of the refrigerant is prevented by using an antifreeze liquid as the refrigerant.

冷却装置1の各部を接続する冷媒配管6a,6bに、水分子が通過し難いブチルゴムを用いることにより、冷媒の水分の減少や増粘を効果的に防いでいる。なお、冷媒配管6a,6bは、ゴム製以外に合成樹脂製や金属製のものを使用してもよい。合成樹脂製やゴム製の冷媒配管6a,6bは、柔軟性があり容易に変形させることができ、軽量で取り扱い性、設置自在性に優れ好ましい。   By using butyl rubber, which is difficult for water molecules to pass through, to the refrigerant pipes 6a and 6b connecting the respective parts of the cooling device 1, the moisture content and viscosity increase of the refrigerant are effectively prevented. The refrigerant pipes 6a and 6b may be made of synthetic resin or metal other than rubber. The synthetic resin and rubber refrigerant pipes 6a and 6b are flexible and can be easily deformed. They are lightweight, excellent in handling and installation, and are preferable.

以上のように構成された本発明の実施の形態1における冷却装置1の動作について説明する。   The operation of the cooling device 1 according to Embodiment 1 of the present invention configured as described above will be described.

電子部品X1〜X5で発生した熱は、熱伝導性シート3の受熱面(電子部品X1〜X5に接触した面)で受熱され、熱伝導性シート3の端部3aから冷媒配管6aの所定部6a′内の冷媒に伝達される。また、電子部品X1〜X5の熱は、熱伝導性シート3から受熱体2を介して冷媒流路2a内の冷媒に伝達される。循環ポンプ7を駆動することにより、冷媒が放熱体8へ移動し、放熱が行われる。冷却ファンの回転の有無や回転数を適宜、選択することによって放熱体8からの放熱量を制御し、電子部品X1〜X5の温度を調整する。放熱体8で冷却された冷媒は、リザーブタンク9を通り、再び循環ポンプ7によって受熱体2へ送られる。   The heat generated in the electronic components X1 to X5 is received by the heat receiving surface of the heat conductive sheet 3 (the surface in contact with the electronic components X1 to X5), and the predetermined portion of the refrigerant pipe 6a from the end 3a of the heat conductive sheet 3 is received. It is transmitted to the refrigerant in 6a '. Moreover, the heat of the electronic components X1 to X5 is transmitted from the heat conductive sheet 3 to the refrigerant in the refrigerant flow path 2a through the heat receiving body 2. By driving the circulation pump 7, the refrigerant moves to the heat radiating body 8, and heat is radiated. By appropriately selecting whether or not the cooling fan is rotating and the number of rotations, the amount of heat released from the radiator 8 is controlled, and the temperature of the electronic components X1 to X5 is adjusted. The refrigerant cooled by the radiator 8 passes through the reserve tank 9 and is sent again to the heat receiver 2 by the circulation pump 7.

以上のように実施の形態1における冷却装置1及びそれを備えた電子機器によれば、以下の作用を有する。   As described above, the cooling device 1 according to the first embodiment and the electronic apparatus including the same have the following operations.

熱伝導性シート3の端部3aが冷媒配管6aの所定部6a′の外表面に巻き付けられると共に、熱伝導性シート3の所定部が受熱体2と電子部品X1の間に挟み込まれているので、熱伝導性シート3で受熱した熱を冷媒配管6aを通過する冷媒に直接伝達できると共に、受熱体2を介して冷媒流路2aを通過する冷媒に伝達することができ、複数の熱の伝達経路を有するため熱伝達性を高めることができる。   Since the end portion 3a of the heat conductive sheet 3 is wound around the outer surface of the predetermined portion 6a ′ of the refrigerant pipe 6a, the predetermined portion of the heat conductive sheet 3 is sandwiched between the heat receiving body 2 and the electronic component X1. The heat received by the heat conductive sheet 3 can be directly transmitted to the refrigerant passing through the refrigerant pipe 6a, and can be transmitted to the refrigerant passing through the refrigerant flow path 2a via the heat receiving body 2, thereby transferring a plurality of heats. Since it has a path, heat transferability can be improved.

受熱体2が発熱量の多いCPU等の電子部品X1の上部に熱伝導性シート3を介して配設されているので、伝熱距離を短く(熱伝導性シート3の厚み分のみ)して電子部品X1の熱を十分に受熱できると共に、他の比較的発熱量の少ない電子部品X2〜X5の熱を熱伝導性シート3で受熱できるので、発熱量の異なる複数の電子部品X1〜X5を各々の発熱量に応じて効率的に冷却できる。   Since the heat receiving body 2 is disposed on the upper part of the electronic component X1 such as a CPU having a large heat generation amount via the heat conductive sheet 3, the heat transfer distance is shortened (only the thickness of the heat conductive sheet 3). Since the heat of the electronic component X1 can be received sufficiently and the heat of the other electronic components X2 to X5 having a relatively small heat generation amount can be received by the heat conductive sheet 3, a plurality of electronic components X1 to X5 having different heat generation amounts can be obtained. It can cool efficiently according to each calorific value.

熱伝導性シート3を備えているので、基板Aからの高さの異なる電子部品X1〜X5の上面に、高低差が大きい場合であっても熱伝導性シート3を確実に密着させることができ、所定範囲内の全ての電子部品X1〜X5を1の熱伝導性シート3で確実に放熱できる。   Since the heat conductive sheet 3 is provided, the heat conductive sheet 3 can be securely adhered to the upper surfaces of the electronic components X1 to X5 having different heights from the substrate A even when the height difference is large. All of the electronic components X1 to X5 within the predetermined range can be reliably radiated by the one heat conductive sheet 3.

熱伝導性シート3が電子部品X1〜X5に覆設され、緩衝材4及び押え板5により各々の電子部品X1〜X5に密着するように押圧固定されているので、電子部品X1〜X5の熱を熱伝導性シート3により確実に受熱することができる。   Since the heat conductive sheet 3 is covered with the electronic components X1 to X5 and is pressed and fixed so as to be in close contact with the respective electronic components X1 to X5 by the buffer material 4 and the presser plate 5, the heat of the electronic components X1 to X5 Can be reliably received by the heat conductive sheet 3.

受熱体2に放熱体8が接続されているので、受熱体2で受熱した熱を放熱体8で効率的に放熱できる。   Since the radiator 8 is connected to the heat receiver 2, the heat received by the heat receiver 2 can be efficiently radiated by the radiator 8.

受熱体2と放熱体8の間で冷媒を循環させる循環ポンプ7を有するので、循環ポンプ7で冷媒を循環させることにより、受熱体2での受熱と放熱体8での放熱を連続的に繰り返し行うことができる。   Since it has the circulation pump 7 which circulates a refrigerant | coolant between the heat receiving body 2 and the heat radiating body 8, the heat receiving in the heat receiving body 2 and the heat radiating in the heat radiating body 8 are continuously repeated by circulating the refrigerant with the circulation pump 7. It can be carried out.

複数の電子部品X1〜X5の冷却を液体冷媒の循環による放熱により行うので、電子機器の筐体内への外気の導入量を少なくすることができ、冷却ファンの回転数を下げる又は冷却ファンの搭載数を減らすことができ、ファンの駆動音等の騒音を減少でき静音化が図れる。   Since cooling of the plurality of electronic components X1 to X5 is performed by heat dissipation by circulation of the liquid refrigerant, the amount of outside air introduced into the housing of the electronic device can be reduced, and the number of rotations of the cooling fan can be reduced or the cooling fan can be mounted. The number can be reduced, noise such as fan drive noise can be reduced, and noise reduction can be achieved.

複数の電子部品X1〜X5の熱を熱伝導性シート3や受熱体2を介して冷媒に伝達させることで、複数の電子部品X1〜X5を部品点数が少なく簡単な構造で確実に冷却でき、筐体内のスペースを取らず電子機器の小型化、薄型化が図れる。   By transferring the heat of the plurality of electronic components X1 to X5 to the refrigerant through the heat conductive sheet 3 or the heat receiving body 2, the plurality of electronic components X1 to X5 can be reliably cooled with a simple structure with a small number of components, Electronic devices can be made smaller and thinner without taking up space in the housing.

受熱体2がボルト14a等を用いた固定手段S1により基板Aに固定され、熱伝導性シート3がボルト16a等を用いた固定手段S2により基板Aに固定されているので、受熱体2や熱伝導性シート3の基板Aへの取り付け取り外しが可能で、電子部品X1〜X5等のメンテナンスを容易に行うことができる。   Since the heat receiving body 2 is fixed to the substrate A by the fixing means S1 using the bolts 14a and the like, and the heat conductive sheet 3 is fixed to the substrate A by the fixing means S2 using the bolts 16a and the like, the heat receiving body 2 and the heat The conductive sheet 3 can be attached to and detached from the substrate A, and maintenance of the electronic components X1 to X5 can be easily performed.

(実施の形態2)
図3は本発明の実施の形態2における冷却装置の受熱機構を示す要部断面図である。
(Embodiment 2)
FIG. 3 is a cross-sectional view of the main part showing the heat receiving mechanism of the cooling device in Embodiment 2 of the present invention.

図3に示すように、実施の形態2における冷却装置1aが実施の形態1と異なる点は、受熱機構R2において、緩衝材及び押え板に替えて、熱伝導性シート3と電子部品X2〜X5との接触面(伝熱面)にアクリル系樹脂等からなる粘着層3bが形成されている点である。これにより、緩衝材4及び押え板5を取り付けなくても熱伝導性シート3と電子部品X2〜X5とを確実に密着させ熱伝達性を高めることができる。   As shown in FIG. 3, the cooling device 1a in the second embodiment is different from the first embodiment in that in the heat receiving mechanism R2, the heat conductive sheet 3 and the electronic components X2 to X5 are used instead of the cushioning material and the holding plate. The adhesive layer 3b made of acrylic resin or the like is formed on the contact surface (heat transfer surface). Thereby, even if it does not attach the buffer material 4 and the presser plate 5, the heat conductive sheet 3 and the electronic components X2-X5 can be made to adhere | attach reliably, and heat transferability can be improved.

以上のように実施の形態2における冷却装置1a及びそれを備えた電子機器によれば、実施の形態1の作用に加え、以下の作用を有する。   As described above, the cooling device 1a according to the second embodiment and the electronic apparatus including the same have the following operations in addition to the operations of the first embodiment.

電子部品X2〜X5に熱伝導性シート3が粘着層3bを介して密着しているので、電子部品X2〜X5の熱を熱伝導性シート3に確実に伝達させ、効率的に放熱を行うことができる。また、緩衝材や押え板、及び押え板の固定手段等を設ける必要がないため、部品点数を低減でき筐体内のスペースを取らず電子機器の小型化、薄型化が図れる。   Since the heat conductive sheet 3 is in close contact with the electronic components X2 to X5 via the adhesive layer 3b, the heat of the electronic components X2 to X5 can be reliably transmitted to the heat conductive sheet 3 to efficiently dissipate heat. Can do. In addition, since there is no need to provide a cushioning material, a presser plate, and a fixing means for the presser plate, the number of parts can be reduced, and the electronic device can be made smaller and thinner without taking up space in the housing.

(実施の形態3)
図4(a)は本発明の実施の形態3における冷却装置を示す要部断面図であり、図4(b)は緩衝材と押え板に替えて粘着層を有する熱伝導性シートを用いた冷却装置の受熱機構を示す要部断面図である。なお、図4において、実施の形態1又は2で説明したものと同様のものは、同一の符号を付けて説明を省略する。
(Embodiment 3)
FIG. 4 (a) is a cross-sectional view showing the main part of the cooling device according to Embodiment 3 of the present invention, and FIG. 4 (b) uses a heat conductive sheet having an adhesive layer in place of the cushioning material and the holding plate. It is principal part sectional drawing which shows the heat receiving mechanism of a cooling device. In FIG. 4, the same components as those described in the first or second embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図4(a)に示すように、本発明の実施の形態3における冷却装置1bは、基板Aに実装された電子部品X1及び電子部品X1に近接して或いは離れて実装された電子部品X2〜X5を冷却するために、受熱体2と熱伝導性シート3からなる受熱機構R3を備え、受熱体2の下面を電子部品X1の上面に接触させ実施の形態1で説明した固定手段S1(図4(a)においては図示せず)により基板Aに固定すると共に、熱伝導性シート3を電子部品X2〜X5に覆設し、その上面に緩衝材4及び押え板5を配設し実施の形態1で説明した固定手段S2(図4(a)においては図示せず)により基板Aに固定し、熱伝導性シート3と電子部品X2〜X5とを密着させる。そして、冷媒配管6bの所定部6b′に熱伝導性シート3の端部3aを巻き付けてその外表面に接着剤により接着している。   As shown in FIG. 4A, the cooling device 1b according to the third embodiment of the present invention includes an electronic component X1 mounted on the substrate A and an electronic component X2 mounted close to or away from the electronic component X1. In order to cool X5, a heat receiving mechanism R3 including the heat receiving body 2 and the heat conductive sheet 3 is provided, and the fixing means S1 described in the first embodiment is provided by bringing the lower surface of the heat receiving body 2 into contact with the upper surface of the electronic component X1 (see FIG. 4 (a) (not shown) and fixed to the substrate A, the thermal conductive sheet 3 is covered with the electronic components X2 to X5, and the cushioning material 4 and the pressing plate 5 are disposed on the upper surface. It fixes to the board | substrate A by the fixing means S2 (not shown in FIG. 4A) demonstrated in the form 1, and the heat conductive sheet 3 and the electronic components X2-X5 are stuck. And the edge part 3a of the heat conductive sheet 3 is wound around the predetermined part 6b 'of the refrigerant | coolant piping 6b, and it adhere | attached on the outer surface with the adhesive agent.

なお、図4(b)に示すように、緩衝材4及び押え板5に替えて熱伝導性シート3の下面に実施の形態2で説明した粘着層3bを設けてもよい。   In addition, as shown in FIG.4 (b), it may replace with the shock absorbing material 4 and the holding plate 5, and may provide the adhesion layer 3b demonstrated in Embodiment 2 on the lower surface of the heat conductive sheet 3. As shown in FIG.

以上のように構成された本発明の実施の形態3における冷却装置1bの動作について説明する。   The operation of cooling device 1b according to Embodiment 3 of the present invention configured as described above will be described.

電子部品X1で発生した熱は、受熱体2から冷媒流路2a内の冷媒に伝達され、また、電子部品X2〜X5で発生した熱は、熱伝導性シート3を面方向に伝導し熱伝導性シート3の端部3aから冷媒配管6bの所定部6b′内の冷媒に伝達され、循環ポンプ7を駆動することにより、冷媒が放熱体8へ移動し、放熱が行われる。放熱体8で冷却された冷媒は、リザーブタンク9を通り、再び循環ポンプ7によって受熱体2へ送られる。   The heat generated in the electronic component X1 is transmitted from the heat receiving body 2 to the refrigerant in the refrigerant flow path 2a, and the heat generated in the electronic components X2 to X5 is conducted through the heat conductive sheet 3 in the surface direction to conduct heat. The refrigerant is transferred from the end portion 3a of the conductive sheet 3 to the refrigerant in the predetermined portion 6b 'of the refrigerant pipe 6b, and when the circulation pump 7 is driven, the refrigerant moves to the radiator 8 and heat is radiated. The refrigerant cooled by the radiator 8 passes through the reserve tank 9 and is sent again to the heat receiver 2 by the circulation pump 7.

以上のように実施の形態3における冷却装置1b及びそれを備えた電子機器によれば、以下の作用を有する。   As described above, the cooling device 1b according to the third embodiment and the electronic apparatus including the same have the following operations.

発熱量の多い電子部品X1は受熱体2を接触させて受熱し、比較的発熱量の少ない電子部品X2〜X5は熱伝導性シート3を接触させて受熱することで、基板Aに実装された発熱量の異なる複数の電子部品X1〜X5を効率的に放熱することができる。   The electronic component X1 having a large calorific value is received by contacting the heat receiving body 2, and the electronic components X2 to X5 having a relatively small calorific value are mounted on the substrate A by receiving the heat by contacting the heat conductive sheet 3. A plurality of electronic components X1 to X5 having different calorific values can be efficiently radiated.

受熱体2と熱伝導性シート3とを冷媒配管6bで接続しているので、発熱量の多い電子部品X1とその他の電子部品X2〜X5とが同一基板A上で離れて実装され或いは異なる基板Aに実装されている場合であっても、受熱体2と所定部6b′の間の冷媒配管6bの長さを長く形成することで各電子部品X1〜X5をその配置等によらず確実に冷却することができる。   Since the heat receiving body 2 and the heat conductive sheet 3 are connected by the refrigerant pipe 6b, the electronic component X1 having a large amount of heat generation and the other electronic components X2 to X5 are mounted separately on the same substrate A or different substrates. Even when mounted on A, the length of the refrigerant pipe 6b between the heat receiving body 2 and the predetermined portion 6b 'is formed long, so that the electronic components X1 to X5 can be reliably connected regardless of the arrangement or the like. Can be cooled.

(実施の形態4)
図5は本発明の実施の形態4における冷却装置の受熱機構を示す要部断面図である。なお、図5において、実施の形態1乃至3で説明したものと同様のものは、同一の符号を付けて説明を省略する。
(Embodiment 4)
FIG. 5 is a cross-sectional view of the main part showing the heat receiving mechanism of the cooling device in Embodiment 4 of the present invention. In FIG. 5, the same components as those described in the first to third embodiments are denoted by the same reference numerals and the description thereof is omitted.

図5に示すように、実施の形態4における冷却装置1cが実施の形態3と異なる点は、受熱機構R4において、熱伝導性シート3を基板Aの下面に粘着層3bを介して添設している点である。これにより、電子部品X1〜X5の熱を基板A若しくは基板Aの下面に突出した電子部品X1〜X5のリードを介して熱伝導性シート3で受熱することができ、電子部品X1〜X5及び基板Aの温度上昇を抑えることができる。また、実施の形態3で説明した、電子部品X1〜X5に直接熱伝導性シート3や受熱体2を接触させることによる放熱と組み合わせて用いることにより、効率良く放熱できるという作用を有する。   As shown in FIG. 5, the cooling device 1c in the fourth embodiment is different from the third embodiment in that a heat conductive sheet 3 is attached to the lower surface of the substrate A via an adhesive layer 3b in the heat receiving mechanism R4. It is a point. Thereby, the heat of the electronic components X1 to X5 can be received by the heat conductive sheet 3 through the leads of the electronic components X1 to X5 protruding from the substrate A or the lower surface of the substrate A, and the electronic components X1 to X5 and the substrate The temperature rise of A can be suppressed. Moreover, it has the effect | action that it can thermally radiate efficiently by using in combination with the thermal radiation by making the heat conductive sheet 3 and the heat receiving body 2 contact the electronic components X1-X5 demonstrated in Embodiment 3. FIG.

なお、熱伝導性シート3の粘着層3bとしては、短絡を防止するために絶縁性を有するものを用いる。絶縁性を有する粘着層3bとしてはPETテープやポリイミドテープ等が用いられる。また、粘着層3bに替えて実施の形態1で説明した緩衝材4と押え板5と固定手段S2を用いて熱伝導性シート3を基板Aの下面に密着させることもできる。この場合、熱伝導性シート3を絶縁性を有する材質で形成するか、或いは熱伝導性シート3と基板Aとの間にPETやポリイミド等からなる絶縁層を介在させる。   In addition, as the adhesive layer 3b of the heat conductive sheet 3, an insulating layer is used to prevent a short circuit. As the insulating adhesive layer 3b, a PET tape, a polyimide tape or the like is used. Further, the heat conductive sheet 3 can be brought into close contact with the lower surface of the substrate A by using the buffer material 4, the presser plate 5 and the fixing means S <b> 2 described in the first embodiment instead of the adhesive layer 3 b. In this case, the heat conductive sheet 3 is formed of an insulating material, or an insulating layer made of PET, polyimide, or the like is interposed between the heat conductive sheet 3 and the substrate A.

(実施の形態5)
図6は本発明の実施の形態5における冷却装置を示す要部斜視図であり、図7は本発明の実施の形態5における冷却装置の変形例を示す要部斜視図である。なお、本実施の形態5においては、循環ポンプやリザーブタンクは図示を省略している。
(Embodiment 5)
FIG. 6 is a main part perspective view showing a cooling device in Embodiment 5 of the present invention, and FIG. 7 is a main part perspective view showing a modification of the cooling device in Embodiment 5 of the present invention. In the fifth embodiment, the circulation pump and the reserve tank are not shown.

図6に示すように、冷却装置1dは、受熱体2と複数の熱伝導性シート3,3′,3″からなる受熱機構R5を備え、熱伝導性シート3,3′,3″の端部3aを冷媒配管6bの所定部6b′に巻き付けて接着し、受熱体2と熱伝導性シート3,3′,3″と放熱体8とを冷媒配管6a,6bで直列に接続している。これにより、電子部品Xの実装数や配置等によらず種々の基板Aに対応することができる。なお、同一の基板Aに実装された電子部品Xに限らず、隣接する複数の基板Aに渡って熱伝導性シート3,3′,3″や受熱体2を配設してもよい。また、1つの冷媒循環系統に配設される受熱体2の数は1つに限らず複数を直列に接続して配設してもよい。   As shown in FIG. 6, the cooling device 1d includes a heat receiving member R and a heat receiving mechanism R5 including a plurality of heat conductive sheets 3, 3 ', 3 ", and ends of the heat conductive sheets 3, 3', 3". The part 3a is wound around and bonded to a predetermined part 6b 'of the refrigerant pipe 6b, and the heat receiving body 2, the heat conductive sheets 3, 3', 3 "and the heat radiator 8 are connected in series by the refrigerant pipes 6a, 6b. Thereby, it can respond to various board | substrates A irrespective of the mounting number, arrangement | positioning, etc. of the electronic component X. In addition, not only the electronic component X mounted in the same board | substrate A but several board | substrate A adjacent. The heat conductive sheets 3, 3 ′, 3 ″ and the heat receiving body 2 may be arranged over the range. Moreover, the number of the heat receiving bodies 2 arranged in one refrigerant circulation system is not limited to one, and a plurality of the heat receiving bodies 2 may be arranged in series.

また、図7に示す冷却装置1eのように、受熱機構R6において、上述のように受熱体2と複数の熱伝導性シート3,3′,3″を直列に接続すると共に、所定の電子部品Xの上部に熱伝導性シート3を介して受熱体2を接触させる、すなわち実施の形態1で説明した受熱機構R1を組み合わせることもでき、電子部品Xの実装数や配置等によらず種々の基板Aに対応して自由に受熱機構を設計することができる。   Further, as in the cooling device 1e shown in FIG. 7, in the heat receiving mechanism R6, the heat receiving body 2 and the plurality of heat conductive sheets 3, 3 ′, 3 ″ are connected in series as described above, and a predetermined electronic component is used. The heat receiving body 2 can be brought into contact with the upper portion of X via the heat conductive sheet 3, that is, the heat receiving mechanism R1 described in the first embodiment can be combined, and various types can be used regardless of the number and arrangement of the electronic components X. The heat receiving mechanism can be designed freely corresponding to the substrate A.

なお、説明をわかり易くするために図示は省略しているが、本実施の形態5において、実施の形態1等で説明した緩衝材4や押え板5、或いは熱伝導性シート3に粘着層3bを適宜設けてもよい。   In addition, although illustration is abbreviate | omitted in order to make description easy to understand, in this Embodiment 5, the adhesive layer 3b is added to the buffer material 4 and the holding plate 5 which were demonstrated in Embodiment 1, etc. or the heat conductive sheet 3. FIG. You may provide suitably.

(実施の形態6)
図8は本発明の実施の形態6における冷却装置のポンプ一体型受熱体を示す要部断面図である。
(Embodiment 6)
FIG. 8 is a cross-sectional view of a main part showing a pump-integrated heat receiving body of a cooling device according to Embodiment 6 of the present invention.

図8に示すように、ポンプ一体型受熱体20は、内部に蛇行状の冷媒流路21aを有するブロック状や板状の受熱部21と、受熱部21の上部に固設されたポンプケーシング部22とを備え、ポンプケーシング部22の内部にポンプ室23が形成され、ポンプケーシング部22の上部にはモータ24が配設されている。ポンプ室23にはモータ軸25に固定された羽根車26が配設されている。羽根車26はモータ24の駆動により回転し、流路入口21b側から冷媒をポンプ室23内に吸込んで受熱部21の冷媒流路21a側に吐出し、流路出口21c側へ流れるようになっている。   As shown in FIG. 8, the pump-integrated heat receiving body 20 includes a block-shaped or plate-shaped heat receiving portion 21 having a meandering refrigerant flow path 21 a therein, and a pump casing portion fixed to the upper portion of the heat receiving portion 21. 22, a pump chamber 23 is formed inside the pump casing portion 22, and a motor 24 is disposed above the pump casing portion 22. An impeller 26 fixed to the motor shaft 25 is disposed in the pump chamber 23. The impeller 26 rotates by driving the motor 24, sucks the refrigerant into the pump chamber 23 from the flow path inlet 21b side, discharges it to the refrigerant flow path 21a side of the heat receiving portion 21, and flows to the flow path outlet 21c side. ing.

実施の形態1乃至5で説明した受熱体2及び循環ポンプ7に替えてポンプ一体型受熱体20を用いることにより、部品点数を低減して省スペース性に優れ、設置容易性に優れるという作用を有する。   By using the pump-integrated heat receiving body 20 instead of the heat receiving body 2 and the circulation pump 7 described in the first to fifth embodiments, the number of parts is reduced, and space saving is excellent, and installation is easy. Have.

本発明は、パーソナルコンピュータやOA機器等の電子機器の筐体内部において、基板上に実装された複数の半導体素子等の電子部品を冷却する冷却装置及びそれを備えた電子機器に関し、本発明によれば、基板からの高さの異なる複数の電子部品又は基板に熱伝導性シートや受熱体を確実に接触させ、所定範囲内の全ての電子部品を確実に冷却できると共に、発熱量の異なる複数の電子部品を各々の発熱量に応じて十分に且つ効率的に冷却することができる冷却装置、及び、基板上に実装された電子部品が必要以上に昇温することを防止でき信頼性に優れる電子機器を提供することができる。   The present invention relates to a cooling device that cools electronic components such as a plurality of semiconductor elements mounted on a substrate inside a housing of an electronic device such as a personal computer or an OA device, and an electronic device including the same. According to the present invention, a plurality of electronic components having different heights from the substrate or a substrate can be reliably brought into contact with the heat conductive sheet or the heat receiving body, and all electronic components within a predetermined range can be reliably cooled, and a plurality of heat generation amounts can be varied. A cooling device that can sufficiently and efficiently cool the electronic components according to the amount of heat generated, and an electronic component mounted on the substrate can be prevented from being heated more than necessary, and has excellent reliability. An electronic device can be provided.

本発明の実施の形態1における冷却装置を示す要部断面図Sectional drawing which shows the principal part which shows the cooling device in Embodiment 1 of this invention (a)押え板と緩衝材と熱伝導性シートに形成された貫通孔を示す要部断面図、(b)押え板の上面に立設された放熱フィンを示す要部断面図(A) Main part sectional view showing through hole formed in presser plate, cushioning material and heat conductive sheet, (b) Main part cross sectional view showing radiating fin erected on upper surface of presser plate 本発明の実施の形態2における冷却装置の受熱機構を示す要部断面図Sectional drawing which shows the principal part which shows the heat receiving mechanism of the cooling device in Embodiment 2 of this invention (a)本発明の実施の形態3における冷却装置を示す要部断面図、(b)緩衝材と押え板に替えて粘着層を有する熱伝導性シートを用いた冷却装置の受熱機構を示す要部断面図(A) Main part sectional drawing which shows the cooling device in Embodiment 3 of this invention, (b) The main part which shows the heat-receiving mechanism of the cooling device using the heat conductive sheet which has an adhesion layer instead of a buffer material and a pressing board Sectional view 本発明の実施の形態4における冷却装置の受熱機構を示す要部断面図Sectional drawing which shows the principal part which shows the heat receiving mechanism of the cooling device in Embodiment 4 of this invention 本発明の実施の形態5における冷却装置を示す要部斜視図The principal part perspective view which shows the cooling device in Embodiment 5 of this invention. 本発明の実施の形態5における冷却装置の変形例を示す要部斜視図The principal part perspective view which shows the modification of the cooling device in Embodiment 5 of this invention. 本発明の実施の形態6における冷却装置のポンプ一体型受熱体を示す要部断面図Sectional drawing which shows the principal part which shows the pump integrated heat receiving body of the cooling device in Embodiment 6 of this invention.

符号の説明Explanation of symbols

1,1a,1b,1c,1d,1e 冷却装置
2 受熱体
2a 冷媒流路
2b 流路入口
2c 流路出口
3,3′,3″ 熱伝導性シート
3a 熱伝導性シートの端部
3b 粘着層
4 緩衝材
5 押え板
6a,6b 冷媒配管
7 循環ポンプ
8 放熱体
9 リザーブタンク
10 開口部
11 貫通孔
12 放熱フィン
13 フランジ部
13a,15a ボルト挿通孔
14a,16a ボルト
14b,16b 弾性体
14c,16c ナット
20 ポンプ一体型受熱体
21 受熱部
21a 冷媒流路
21b 流路入口
21c 流路出口
22 ポンプケーシング部
23 ポンプ室
24 モータ
25 モータ軸
26 羽根車
A 基板
B,C ボルト挿通孔
R1〜R6 受熱機構
S1,S2 固定手段
X,X1〜X5 電子部品
1, 1a, 1b, 1c, 1d, 1e Cooling device 2 Heat receiving body 2a Refrigerant flow path 2b Flow path inlet 2c Flow path outlet 3, 3 ', 3 "Thermal conductive sheet 3a End part of thermal conductive sheet 3b Adhesive layer 4 Buffer material 5 Holding plate 6a, 6b Refrigerant piping 7 Circulating pump 8 Radiator 9 Reserve tank 10 Opening part 11 Through hole 12 Radiation fin 13 Flange part 13a, 15a Bolt insertion hole 14a, 16a Bolt 14b, 16b Elastic body 14c, 16c Nut 20 Pump-integrated heat receiving member 21 Heat receiving portion 21a Refrigerant flow path 21b Flow path inlet 21c Flow path outlet 22 Pump casing portion 23 Pump chamber 24 Motor 25 Motor shaft 26 Impeller A Substrate B, C Bolt insertion holes R1 to R6 Heat receiving mechanism S1, S2 fixing means X, X1-X5 electronic parts

Claims (9)

内部に冷媒流路を有し電子部品の熱を受熱する受熱体と、前記受熱体の前記冷媒流路に接続された冷媒配管と、前記冷媒配管に接続され冷媒の熱を外部に放熱する放熱体と、前記冷媒配管を介して前記受熱体と前記放熱体との間に前記冷媒を循環させる循環ポンプと、を備え、基板上に実装された前記電子部品を冷却する冷却装置であって、
1乃至複数の前記電子部品に覆設された熱伝導性シートを備え、前記熱伝導性シートは前記冷媒配管の所定部の外表面に熱伝達可能に接続されていることを特徴とする冷却装置。
A heat receiving body that has a refrigerant flow path inside and receives heat from an electronic component, a refrigerant pipe connected to the refrigerant flow path of the heat receiving body, and heat dissipation that radiates heat of the refrigerant connected to the refrigerant pipe to the outside A cooling pump that cools the electronic component mounted on a substrate, and a circulation pump that circulates the refrigerant between the heat receiving body and the heat radiating body via the refrigerant pipe,
A cooling device comprising a heat conductive sheet covering one or more of the electronic components, wherein the heat conductive sheet is connected to an outer surface of a predetermined portion of the refrigerant pipe so as to be able to transfer heat. .
内部に冷媒流路を有し電子部品の熱を受熱する受熱体と、前記受熱体の前記冷媒流路に接続された冷媒配管と、前記冷媒配管に接続され冷媒の熱を外部に放熱する放熱体と、前記冷媒配管を介して前記受熱体と前記放熱体との間に前記冷媒を循環させる循環ポンプと、を備え、基板上に実装された前記電子部品を冷却する冷却装置であって、
前記基板に覆設された熱伝導性シートを備え、前記熱伝導性シートは前記冷媒配管の所定部の外表面に熱伝達可能に接続されていることを特徴とする冷却装置。
A heat receiving body that has a refrigerant flow path inside and receives heat from an electronic component, a refrigerant pipe connected to the refrigerant flow path of the heat receiving body, and heat dissipation that radiates heat of the refrigerant connected to the refrigerant pipe to the outside A cooling pump that cools the electronic component mounted on a substrate, and a circulation pump that circulates the refrigerant between the heat receiving body and the heat radiating body via the refrigerant pipe,
A cooling device comprising: a heat conductive sheet covering the substrate, wherein the heat conductive sheet is connected to an outer surface of a predetermined portion of the refrigerant pipe so as to be able to transfer heat.
前記熱伝導性シートの端部を前記冷媒配管の所定部の外表面に巻き付けて接続していることを特徴とする請求項1又は2に記載の冷却装置。 The cooling device according to claim 1 or 2, wherein an end portion of the heat conductive sheet is wound around and connected to an outer surface of a predetermined portion of the refrigerant pipe. 前記熱伝導性シートは前記受熱体と前記電子部品との間に挟み込まれて配設されていることを特徴とする請求項1乃至3の内いずれか1項に記載の冷却装置。 The cooling device according to any one of claims 1 to 3, wherein the thermally conductive sheet is interposed between the heat receiving body and the electronic component. 複数の前記熱伝導性シートを備え、前記複数の熱伝導性シートは前記冷媒配管を介して直列に接続されていることを特徴とする請求項1乃至4の内いずれか1項に記載の冷却装置。 The cooling according to any one of claims 1 to 4, further comprising a plurality of the heat conductive sheets, wherein the plurality of heat conductive sheets are connected in series via the refrigerant pipe. apparatus. 前記熱伝導性シートの受熱面の反対側の面に配設された柔軟性を有する緩衝材と、前記緩衝材を前記熱伝導性シートに押圧固定する押え板と、を備えていることを特徴とする請求項1乃至5の内いずれか1項に記載の冷却装置。 A cushioning material having flexibility disposed on a surface opposite to the heat receiving surface of the thermal conductive sheet, and a press plate for pressing and fixing the cushioning material to the thermal conductive sheet. The cooling device according to any one of claims 1 to 5. 前記緩衝材及び前記押え板が、互いに連通する貫通孔を備えていることを特徴とする請求項6に記載の冷却装置。 The cooling device according to claim 6, wherein the cushioning material and the presser plate have through holes communicating with each other. 前記受熱体が、前記循環ポンプを一体に形成したポンプ一体型受熱体であることを特徴とする請求項1乃至7の内いずれか1項に記載の冷却装置。 The cooling device according to any one of claims 1 to 7, wherein the heat receiving body is a pump-integrated heat receiving body in which the circulation pump is integrally formed. 請求項1乃至8の内いずれか1項に記載の冷却装置を備えていることを特徴とする電子機器。 An electronic apparatus comprising the cooling device according to any one of claims 1 to 8.
JP2006107366A 2006-04-10 2006-04-10 Cooling device, and electronic equipment having same Pending JP2007281279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006107366A JP2007281279A (en) 2006-04-10 2006-04-10 Cooling device, and electronic equipment having same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006107366A JP2007281279A (en) 2006-04-10 2006-04-10 Cooling device, and electronic equipment having same

Publications (1)

Publication Number Publication Date
JP2007281279A true JP2007281279A (en) 2007-10-25

Family

ID=38682410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006107366A Pending JP2007281279A (en) 2006-04-10 2006-04-10 Cooling device, and electronic equipment having same

Country Status (1)

Country Link
JP (1) JP2007281279A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016267A (en) * 2008-07-07 2010-01-21 Hitachi Ltd Electronic device
JP2010238904A (en) * 2009-03-31 2010-10-21 Nec Corp Electronic device, method of cooling electronic device, cooling unit of electronic device, and method of manufacturing cooling unit of electronic device
JP2011154195A (en) * 2010-01-27 2011-08-11 Ricoh Co Ltd Image forming device
JP2020068301A (en) * 2018-10-24 2020-04-30 日本電産株式会社 Cooling device
JP2021077825A (en) * 2019-11-13 2021-05-20 Necプラットフォームズ株式会社 Cooling system and electronics
JP2021077824A (en) * 2019-11-13 2021-05-20 Necプラットフォームズ株式会社 Cooling system, electronic equipment
US20220078924A1 (en) * 2020-09-10 2022-03-10 Lenovo (Singapore) Pte. Ltd. Electronic apparatus and structure
KR20220072721A (en) * 2020-11-24 2022-06-02 주식회사 팩테크 Assembly of Semiconductor Device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016267A (en) * 2008-07-07 2010-01-21 Hitachi Ltd Electronic device
JP2010238904A (en) * 2009-03-31 2010-10-21 Nec Corp Electronic device, method of cooling electronic device, cooling unit of electronic device, and method of manufacturing cooling unit of electronic device
JP2011154195A (en) * 2010-01-27 2011-08-11 Ricoh Co Ltd Image forming device
JP7247517B2 (en) 2018-10-24 2023-03-29 日本電産株式会社 Cooling system
JP2020068301A (en) * 2018-10-24 2020-04-30 日本電産株式会社 Cooling device
JP2021077825A (en) * 2019-11-13 2021-05-20 Necプラットフォームズ株式会社 Cooling system and electronics
JP2021077824A (en) * 2019-11-13 2021-05-20 Necプラットフォームズ株式会社 Cooling system, electronic equipment
US20220078924A1 (en) * 2020-09-10 2022-03-10 Lenovo (Singapore) Pte. Ltd. Electronic apparatus and structure
CN114165503A (en) * 2020-09-10 2022-03-11 联想(新加坡)私人有限公司 Electronic device and structure
US11751341B2 (en) * 2020-09-10 2023-09-05 Lenovo (Singapore) Pte. Ltd. Electronic apparatus and structure
CN114165503B (en) * 2020-09-10 2024-03-15 联想(新加坡)私人有限公司 Electronic device and structure
KR20220072721A (en) * 2020-11-24 2022-06-02 주식회사 팩테크 Assembly of Semiconductor Device
KR102515088B1 (en) 2020-11-24 2023-03-30 주식회사 팩테크 Assembly of Semiconductor Device

Similar Documents

Publication Publication Date Title
JP2007281279A (en) Cooling device, and electronic equipment having same
TWI342486B (en) Heat-dissipation module and electronic apparatus having the same
US6639797B2 (en) Computer having cooling device
US20060227504A1 (en) Heat-dissipating module of electronic device
US7133284B2 (en) Power supply without cooling fan
JP2010251756A (en) Heat dissipation device and method of manufacturing the same
JP2004111968A (en) Heat sink with heat pipe directly brought into contact with component
KR20070108951A (en) Heat absorption member, cooling device, and electronic apparatus
WO2021037206A1 (en) Vehicle-mounted apparatus and vehicle
TW201334679A (en) Heat dissipating module
US20070076376A1 (en) Method, apparatus and computer system for providing for the transfer of thermal energy
US9377251B2 (en) Thermal ground plane for cooling a computer
JP2004111969A (en) Heat sink with angled heat pipe
US20170105312A1 (en) Heat dissipating module, heat dissipating system and circuit module
TWI342485B (en) Structure and method for efficient thermal dissipation in an electronic assembly
JP2010212533A (en) Local cooling device
JPH0832262A (en) Cooling module for lsi
US20080218964A1 (en) Desktop personal computer and thermal module thereof
US20100089555A1 (en) Liquid-cooling type thermal module
US7954541B2 (en) Heat dissipation module
JP2005142328A (en) Heat transmission apparatus
TWI285083B (en) Multi-chips heat radiator
JP2005317033A (en) Display device integrated computer, and cooling module used therein
CN114842749B (en) Display module and display device
JP2008211001A (en) Electronic device cooling apparatus