JP2007281260A - Reflector, package for housing light-emitting element using the same, and lens used for reflector - Google Patents

Reflector, package for housing light-emitting element using the same, and lens used for reflector Download PDF

Info

Publication number
JP2007281260A
JP2007281260A JP2006106944A JP2006106944A JP2007281260A JP 2007281260 A JP2007281260 A JP 2007281260A JP 2006106944 A JP2006106944 A JP 2006106944A JP 2006106944 A JP2006106944 A JP 2006106944A JP 2007281260 A JP2007281260 A JP 2007281260A
Authority
JP
Japan
Prior art keywords
emitting element
highly reflective
light
reflector
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006106944A
Other languages
Japanese (ja)
Inventor
Masashi Tezuka
将志 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2006106944A priority Critical patent/JP2007281260A/en
Publication of JP2007281260A publication Critical patent/JP2007281260A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a package for housing a light-emitting element which is easily formed, and in which a highly-reflective resin layer for suitably reflecting the light of a visible light region is provided on the reflection surface of a reflector and the top surface of a substrate equipped with a light-emitting element. <P>SOLUTION: The package for housing the light-emitting element has a ceramic substrate having a mounting portion for the light-emitting element on a top surface, and an annular reflector joined to the surface of the substrate. At least a part of the reflection surface 2a of the reflector 1 and the top surface of the substrate 5 is covered with a highly-reflective resin layer 3 constituted by mixing a highly-reflective powder material with resin. The highly-reflective powder material is any one kind or any combination of a plurality of kinds selected from titanium dioxide, barium sulfate, barium carbonate, and silicon dioxide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、反射面に高反射性樹脂層を有するリフレクター又は、発光素子搭載面の少なくとも一部に高反射性樹脂層を有する発光素子収納用パッケージ又は、発光素子収納用パッケージに接合されるリフレクターに設置されリフレクターとの接合面に高反射性樹脂層を有するレンズに関する。   The present invention relates to a reflector having a highly reflective resin layer on a reflecting surface, a light emitting element storing package having a highly reflecting resin layer on at least a part of a light emitting element mounting surface, or a reflector bonded to a light emitting element storing package. And a lens having a highly reflective resin layer on the joint surface with the reflector.

従来、発光ダイオード(LED)等の発光素子を収容するパッケージや発光装置、及び照明装置においては、発光素子から発せられる光の照度を高める目的で、発光素子を載置するセラミック基板上に、例えば、反射面を鏡面状に研磨した金属性リフレクターや、リング状をなす躯体の反射面に蒸着法又はメッキ法により金属薄膜を形成したリフレクターを接合して、発光素子から発せられる光の減衰を防止していた。
そして、上述のようなリフレクターの反射面に、Ag(銀)から成る薄膜を形成した場合の光の反射率は、BaSO4を塗布した金属球における可視光領域の光の反射率を100とした場合の94%〜98%となり、高反射性を有することからAg薄膜が高反射材料として多用されてきた。
Conventionally, in a package, a light-emitting device, and a lighting device that house a light-emitting element such as a light-emitting diode (LED), for example, on a ceramic substrate on which the light-emitting element is placed in order to increase the illuminance of light emitted from the light-emitting element A metallic reflector with a mirror-polished reflection surface, or a reflector with a metal thin film formed by vapor deposition or plating on the reflective surface of a ring-shaped enclosure, is used to prevent attenuation of light emitted from the light-emitting element. Was.
The reflectance of light when a thin film made of Ag (silver) is formed on the reflecting surface of the reflector as described above is defined as 100 in the visible light region of the metal sphere coated with BaSO 4 . The Ag thin film has been frequently used as a highly reflective material because it has a high reflectivity of 94% to 98%.

通常、発光素子収納用パッケージにおいては、発光素子を合成樹脂内に封入したり、あるいは、発光素子の上面に例えば合成樹脂性のレンズを覆設するのであるが、特に、高反射材料としてAg薄膜をリフレクターの反射面等に形成した場合に長期間発光素子収納用パッケージ使用すると、熱膨張係数差に起因する熱応力がAg薄膜に作用して剥離することがあり、製品に不具合を生じる原因となっていた。
また、高反射材料としてAg薄膜を用いた場合、Ag薄膜の一部が外気にさらされた状態で使用されるとAg薄膜が酸化して変色してしまい、リフレクターの反射効率が低下して発光素子収納用パッケージから放射される光の照度が低下するという不具合を生じていた。
さらに、リフレクターの反射面に金属薄膜を形成するには、蒸着工程又はメッキ工程を設ける必要があり、製造工程が増えて煩雑である上、製造コストがかさむという課題もあった。
このような課題に対処するため、いくつかの発明が開示されている。
Usually, in a light emitting element storage package, the light emitting element is enclosed in a synthetic resin, or a synthetic resin lens, for example, is covered on the upper surface of the light emitting element. When the light emitting element storage package is used for a long time when the reflector is formed on the reflecting surface of the reflector, the thermal stress due to the difference in thermal expansion coefficient may act on the Ag thin film and cause the product to malfunction. It was.
In addition, when an Ag thin film is used as a highly reflective material, if the Ag thin film is used in a state where it is exposed to the outside air, the Ag thin film is oxidized and discolored, and the reflection efficiency of the reflector is reduced, resulting in light emission. There has been a problem in that the illuminance of light emitted from the element storage package decreases.
Furthermore, in order to form a metal thin film on the reflecting surface of the reflector, it is necessary to provide a vapor deposition step or a plating step, which is complicated due to an increase in the number of manufacturing steps and increases the manufacturing cost.
In order to cope with such a problem, several inventions are disclosed.

以下に、従来技術に係る「半導体発光素子」について説明する。
特許文献1に記載される「半導体発光素子」は、透光性がありレンズとして機能する樹脂中に紫外線を発する発光素子を封入し、発光素子から発せられる紫外光を蛍光体に当てることで可視光波長に変換して蛍光発光させる半導体発光素子に関するものであ。
そして、特許文献1に記載の発明は、樹脂中に封入される発光素子の側面及び上面を、蛍光体及び散乱材を含有する樹脂で被覆することを特徴とするものである。
特許文献1に記載の発明によれば、発光素子から発せられる紫外光の全てを蛍光体及び散乱材を含有する樹脂へと導くことが可能である。そして、蛍光体及び散乱材を含有する樹脂内に到達した紫外光は、散乱材により散乱されて樹脂内の蛍光材により可視光に変換され、可視光に変換された光も樹脂内の散乱材により散乱されることで、蛍光体及び散乱材を含有する樹脂からレンズに放射される光の照度を略均一にすることができる。
さらに、特許文献1に記載の発明において、発光素子の上面及び側面を被覆する樹脂中に添加される散乱材、すなわち、石英粒子又はダイヤモンド粒子は、粒子径を可視光波長以下に、すなわち、約800nm以下となるように細かく粉砕した場合には高反射性も有すると考えられる。
このため、石英粒子又はダイヤモンド粒子を微細な粒子に粉砕して樹脂に添加し、さらにこれを反射面に塗布することで、高反射率の反射面を形成できる可能性があった。
The “semiconductor light emitting device” according to the prior art will be described below.
The “semiconductor light-emitting element” described in Patent Document 1 is made visible by encapsulating a light-emitting element that emits ultraviolet light in a resin that transmits light and functions as a lens, and irradiates the phosphor with ultraviolet light emitted from the light-emitting element. The present invention relates to a semiconductor light emitting element that emits fluorescence by converting into light wavelength.
The invention described in Patent Document 1 is characterized in that the side surface and the upper surface of a light emitting element sealed in a resin are covered with a resin containing a phosphor and a scattering material.
According to the invention described in Patent Document 1, it is possible to guide all of the ultraviolet light emitted from the light emitting element to a resin containing a phosphor and a scattering material. Then, the ultraviolet light that has reached the resin containing the phosphor and the scattering material is scattered by the scattering material and converted into visible light by the fluorescent material in the resin, and the light converted into visible light is also the scattering material in the resin. As a result, the illuminance of light emitted from the resin containing the phosphor and the scattering material to the lens can be made substantially uniform.
Furthermore, in the invention described in Patent Document 1, the scattering material added to the resin covering the upper surface and the side surface of the light emitting element, that is, quartz particles or diamond particles, has a particle diameter equal to or smaller than the visible light wavelength, that is, about When it is finely pulverized to be 800 nm or less, it is considered to have high reflectivity.
For this reason, there is a possibility that a reflective surface having a high reflectivity can be formed by pulverizing quartz particles or diamond particles into fine particles, adding them to the resin, and further applying this to the reflective surface.

また、特許文献2には「線状照明装置並びにこれを用いた面状照明装置」という名称で、簡単な構成で、輝度ムラのない線状照明装置及びそれを用いた面状照明装置に関するに関する発明が開示されている。
特許文献2に係る発明は、実装面側の大部分が高反射部形成された矩形状の基板上にベアチップ状態のLEDチップを搭載し、基板の短辺側に乱反射部材により形成されるハウジングを設け、基板上面とハウジングにより形成される空間を透光性樹脂で満たしてLEDチップを封入した線状照明装置および、この線状照明装置を矩形リング状に配置した面状照明装置である。
上記構成の発明によれば、LEDチップから発せられ透光性樹脂と空気の境界面で反射された光を、基板上に形成される高反射部において正反射させることができ、さらに、ハウジングの乱反射面では光が乱反射されるので、特許文献2に係る線状光源から発せられる光の輝度ムラを少なくすることができる。
Further, Patent Document 2 relates to a linear illumination device having a simple configuration and having no luminance unevenness under the name of “linear illumination device and planar illumination device using the same”, and a planar illumination device using the same. The invention is disclosed.
In the invention according to Patent Document 2, a bare chip-shaped LED chip is mounted on a rectangular substrate in which most of the mounting surface side is formed with a highly reflective portion, and a housing formed of irregular reflection members on the short side of the substrate. A linear illumination device in which a space formed by a substrate upper surface and a housing is filled with a translucent resin and an LED chip is enclosed, and a planar illumination device in which the linear illumination device is arranged in a rectangular ring shape.
According to the above-described configuration, the light emitted from the LED chip and reflected at the interface between the translucent resin and the air can be regularly reflected at the high reflection portion formed on the substrate, Since light is irregularly reflected on the irregular reflection surface, the luminance unevenness of the light emitted from the linear light source according to Patent Document 2 can be reduced.

特開2002−176201号公報JP 2002-176201 A 特開2004−165124号公報JP 2004-165124 A

しかしながら、上述の特許文献1に開示されるような、石英又はダイヤモンドの微細粒子を含有する樹脂を塗布して高反射性を有する反射面を形成しようとした場合に、石英又はダイヤモンドは、微細粒子にする目的で粉砕すると表面積が増加して乱反射性が増し、この結果、微細粒子を白色化させることが可能である。
その一方で、粉砕により白色化した粒子を、例えば透明な樹脂に添加すると、粒子の表面に樹脂の膜ができて微細粒子の乱反射性が低下する。そして、この結果、樹脂の白色度が低下すると同時に樹脂の不透光性も低下するため、最終的には原料である石英又はダイヤモンドの色が反映された透光性を有する樹脂となってしまう。
つまり、石英又はダイヤモンドを粉砕して作製した白色粉体材料と樹脂の混合物は、透光性を有するため十分な高反射性が期待できないという課題があった。
However, when an attempt is made to form a reflective surface having high reflectivity by applying a resin containing fine particles of quartz or diamond as disclosed in Patent Document 1, the fine particles of quartz or diamond When the pulverization is performed, the surface area is increased and the irregular reflection property is increased. As a result, the fine particles can be whitened.
On the other hand, when the particles whitened by pulverization are added to, for example, a transparent resin, a resin film is formed on the surface of the particles, and the irregular reflectivity of the fine particles decreases. As a result, since the whiteness of the resin is lowered and the light-opacity of the resin is also lowered, the resin finally has a light-transmitting property reflecting the color of quartz or diamond as a raw material. .
In other words, the white powder material and resin mixture prepared by pulverizing quartz or diamond has a problem that sufficient high reflectivity cannot be expected because it has translucency.

また、特許文献2に開示される発明には、基板の表面に高反射部を形成する目的で、白色に塗装するという技術が開示されているものの、特許文献2に係る発明は、高反射性を有する白色塗料関するものではい。   The invention disclosed in Patent Document 2 discloses a technique of painting in white for the purpose of forming a highly reflective portion on the surface of the substrate, but the invention according to Patent Document 2 is highly reflective. Not related to white paint with

本発明はかかる従来の事情に対処してなされたものであり、不透光性と高反射性を有し、形成容易でかつ可視光領域の光を好適に正反射する高反射性樹脂層を反射面に有するリフレクター又は、発光素子搭載面の少なくとも一部に上述のような高反射性樹脂層を有する発光素子収納用パッケージ又は、発光素子収納用パッケージに接合されるリフレクターに設置されリフレクターとの接合面に上述のような高反射性樹脂層を有するレンズを提供することにある。   The present invention has been made in view of such a conventional situation, and has a highly reflective resin layer that has light-transmitting properties and high reflectivity, is easy to form, and suitably regularly reflects light in the visible light region. Reflector installed on a reflector having a reflective surface, a light-emitting element storage package having a highly reflective resin layer as described above on at least a part of a light-emitting element mounting surface, or a reflector bonded to the light-emitting element storage package. The object is to provide a lens having a highly reflective resin layer as described above on the joint surface.

上記目的を達成するため、請求項1記載の発明であるリフレクターは、上面に発光素子の搭載部を有するセラミック製の基体上に接合されるリフレクターであって、このリフレクターの反射面は、高反射性粉体材料を樹脂に混合して成る高反射性樹脂層で被覆され、高反射性粉体材料は、二酸化チタン,硫酸バリウム,炭酸バリウム,酸化マグネシウム,二酸化珪素から選択されるいずれか1種又は複数種の組み合わせであることを特徴とするものである。
上記構成のリフレクターにおいて、高反射性樹脂層はリフレクターの反射面を被覆して、反射面における正反射を起こり易くするという作用を有する。また、高反射性粉体材料は、樹脂内に分散して樹脂に不透光性を付与するという作用を有する。また、高反射性粉体材料は微小な粒子であることから、樹脂に添加された際に、高反射性樹脂層の表面を平滑にして光の正反射を生じ易くするという作用を有する。さらに、高反射性粉体材料は白色であることから、高反射性粉体材料自体の吸光作用を最少にするという作用を有する。そして、上述のような高反射性粉体材料の融点はいずれも1500℃以上であり、樹脂と混合することで耐熱性や耐変色性を向上させるという作用を有する。
さらに、樹脂はリフレクターの反射面に高反射性粉体材料を密着させるという作用を有する。
In order to achieve the above object, a reflector according to the first aspect of the present invention is a reflector bonded to a ceramic substrate having a light emitting element mounting portion on an upper surface, and the reflecting surface of the reflector is highly reflective. Coated with a highly reflective resin layer formed by mixing a conductive powder material with a resin, and the highly reflective powder material is any one selected from titanium dioxide, barium sulfate, barium carbonate, magnesium oxide, and silicon dioxide Or, it is a combination of plural kinds.
In the reflector having the above-described configuration, the highly reflective resin layer has an effect of covering the reflective surface of the reflector and facilitating regular reflection on the reflective surface. Further, the highly reflective powder material has an action of dispersing in the resin and imparting light-opacity to the resin. Further, since the highly reflective powder material is a fine particle, when added to the resin, the surface of the highly reflective resin layer is smoothed so that regular reflection of light easily occurs. Furthermore, since the highly reflective powder material is white, it has the effect of minimizing the light absorbing action of the highly reflective powder material itself. The melting points of the highly reflective powder materials as described above are all 1500 ° C. or higher, and have the effect of improving heat resistance and discoloration resistance when mixed with a resin.
Furthermore, the resin has the effect of bringing the highly reflective powder material into close contact with the reflecting surface of the reflector.

請求項2に記載の発明である発光素子収納用パッケージは、上面に発光素子の搭載部を有するセラミック製の基体と、この基体の表面に接合されるリング状のリフレクターとを有する発光素子収納用パッケージであって、リフレクターは、請求項1に記載されるリフレクターであることを特徴とするものである。
上記構成の発光素子収納用パッケージにおいてリフレクターは、請求項1の発明と同じ作用を有する。
また、このようなリフレクターを備える請求項2に記載の発明は、発光素子から発せられる光が発光素子収納用パッケージ内において減衰するのを防止するという作用を有する。
A light-emitting element storage package according to a second aspect of the present invention is a light-emitting element storage package having a ceramic base having a light-emitting element mounting portion on an upper surface and a ring-shaped reflector bonded to the surface of the base. It is a package, Comprising: A reflector is a reflector as described in Claim 1, It is characterized by the above-mentioned.
In the light emitting element storage package having the above configuration, the reflector has the same function as that of the first aspect of the invention.
Further, the invention according to claim 2 including such a reflector has an effect of preventing light emitted from the light emitting element from being attenuated in the light emitting element housing package.

請求項3に記載の発明である発光素子収納用パッケージは、上面に発光素子の搭載部を有するセラミック製の基体と、この基体の表面に接合されるリング状のリフレクターとを有する発光素子収納用パッケージであって、基体の上面の少なくとも一部は、高反射性粉体材料を樹脂に混合して成る高反射性樹脂層で被覆され、高反射性粉体材料は、二酸化チタン,硫酸バリウム,炭酸バリウム,酸化マグネシウム,二酸化珪素から選択されるいずれか1種又は複数種の組み合わせであることを特徴とするものである。
上記構成の発光素子収納用パッケージにおいて、発光素子を搭載する基体の上面の少なくとも一部を被覆する高反射性樹脂層及びそれに混合される高反射性粉体材料は、請求項1記載の発明に係る高反射性樹脂層及びそれに混合される高反射性粉体材料と同じ作用を有する。
さらに、樹脂は基体の上面に高反射性粉体材料を密着させるという作用を有する。
A light-emitting element storage package according to a third aspect of the present invention is a light-emitting element storage package having a ceramic base having a light-emitting element mounting portion on an upper surface and a ring-shaped reflector bonded to the surface of the base. In the package, at least a part of the upper surface of the substrate is coated with a highly reflective resin layer formed by mixing a highly reflective powder material with a resin, and the highly reflective powder material includes titanium dioxide, barium sulfate, It is one or a combination of plural kinds selected from barium carbonate, magnesium oxide, and silicon dioxide.
In the light emitting element storage package having the above structure, the highly reflective resin layer covering at least a part of the upper surface of the substrate on which the light emitting element is mounted and the highly reflective powder material mixed therewith are as set forth in claim 1. Such a highly reflective resin layer and the highly reflective powder material mixed therewith have the same action.
Further, the resin has an action of bringing a highly reflective powder material into close contact with the upper surface of the base.

請求項4に記載の発明であるレンズは、上面に発光素子の搭載部を有するセラミック製の基体の表面に接合されるリング状のリフレクターに設置されるレンズであって、このレンズは、レンズ本体と蛍光体を含有する透光性フィルムとが積層された透光性積層体と、高反射性粉体材料を樹脂に混合して成り透光性積層体の側面を被覆する高反射性樹脂層とを備え、高反射性粉体材料は、二酸化チタン,硫酸バリウム,炭酸バリウム,酸化マグネシウム,二酸化珪素から選択されるいずれか1種又は複数種の組み合わせであることを特徴とするものである。
上記構成のレンズにおいて、透光性積層体は発光素子から発せられる光を可視光領域の波長に変換し、さらに可視光に変換された光を散光するという作用を有する。また、高反射性樹脂層及びそれに混合される高反射性粉体材料は、請求項1記載の発明に係る高反射性樹脂層及びそれに混合される高反射性粉体材料と同じ作用を有する。
さらに、樹脂は透光性積層体の側面に高反射性粉体材料を密着させるという作用を有する。
A lens according to a fourth aspect of the present invention is a lens installed on a ring-shaped reflector that is bonded to the surface of a ceramic substrate having a light emitting element mounting portion on the upper surface. And a translucent laminate in which a translucent film containing phosphor is laminated, and a highly reflective resin layer that covers a side surface of the translucent laminate by mixing a highly reflective powder material with a resin And the highly reflective powder material is any one or a combination of plural kinds selected from titanium dioxide, barium sulfate, barium carbonate, magnesium oxide, and silicon dioxide.
In the lens having the above-described structure, the light-transmitting laminate has an effect of converting light emitted from the light emitting element into a wavelength in the visible light region and further scattering the light converted into visible light. The highly reflective resin layer and the highly reflective powder material mixed therewith have the same effects as the highly reflective resin layer according to the first aspect of the invention and the highly reflective powder material mixed therewith.
Further, the resin has an effect of bringing a highly reflective powder material into close contact with the side surface of the translucent laminate.

本発明の請求項1記載の発明によれば、透光性を有していたり、高反射性を備えない等の理由でリフレクターには適さないと考えられる材質をリフレクターとして使用可能にするという効果を有する。
また、高反射性樹脂層は、不透光性を備えその表面において光を好適に性反射させることができるので、リフレクターの反射面における光の減衰を防止するという効果を有する。さらに、リフレクターとして放熱性の優れた材質の採用を可能にするという効果を有する。
また、請求項1記載のリフレクターは、耐熱性に優れしかも長期間使用した場合でも反射面が変色する恐れがない。このため、高性能で高品質のリフレクターを提供できるという効果を有する。
According to the first aspect of the present invention, it is possible to use, as a reflector, a material considered to be unsuitable for a reflector because it has translucency or does not have high reflectivity. Have
Moreover, since the highly reflective resin layer is opaque and can appropriately reflect light on its surface, it has an effect of preventing light attenuation on the reflecting surface of the reflector. Furthermore, it has the effect of making it possible to employ a material with excellent heat dissipation as a reflector.
Moreover, the reflector according to claim 1 is excellent in heat resistance and has no fear of discoloring the reflection surface even when used for a long time. For this reason, it has the effect that a high-performance and high-quality reflector can be provided.

本発明の請求項2記載の発明によれば、請求項1に記載の発明の効果に加え、発光素子から発せられる光が発光素子収納用パッケージ内において減衰するのを防止して、外部に放射される光の照度を高めることができるという効果を有する。
また、リフレクターとして放熱性の優れた材質を採用することで、発光素子から発せられる熱で発光素子収納用パッケージに不具合が生じる可能性を低減することができる。従って、高性能で高品質の発光素子収納用パッケージを提供できるという効果を有する。
According to the second aspect of the present invention, in addition to the effect of the first aspect of the invention, the light emitted from the light emitting element is prevented from being attenuated in the light emitting element storage package and radiated to the outside. The illuminance of the emitted light can be increased.
Further, by adopting a material with excellent heat dissipation as the reflector, it is possible to reduce the possibility that a defect occurs in the light emitting element storage package due to heat generated from the light emitting element. Therefore, it is possible to provide a high-performance and high-quality light-emitting element storage package.

本発明の請求項3記載の発明によれば、基体の上面に到達した光を基体上面の法線方向に好適に正反射させることができるので、発光素子収納用パッケージ内における光の減衰を防止すると同時に、外部に放射される光の照度を高めることができるという効果を有する。また、基体に放熱性の優れた材質を採用できるという効果を有する。このため、発光素子から発せられる熱で発光素子収納用パッケージに不具合が生じる可能性を低減することができる。従って、高性能で高品質の発光素子収納用パッケージを提供できるという効果を有する。   According to the third aspect of the present invention, the light that has reached the upper surface of the substrate can be properly regularly reflected in the normal direction of the upper surface of the substrate, so that attenuation of light in the light emitting element storage package is prevented. At the same time, there is an effect that the illuminance of the light emitted to the outside can be increased. Moreover, it has the effect that the material excellent in heat dissipation can be employ | adopted for a base | substrate. For this reason, possibility that a malfunction will arise in the light emitting element storage package with the heat | fever emitted from a light emitting element can be reduced. Therefore, it is possible to provide a high-performance and high-quality light-emitting element storage package.

本発明の請求項4記載のレンズによれば、レンズの側面に高反射性樹脂層を有するので、透光性を有していたり高反射性を備えない等の理由でリフレクターには適さないと考えられる材質を、リフレクターとして使用可能にするという効果を有する。また、高反射性樹脂層の表面において光を好適に正反射させることができるので、レンズを介してリフレクターの表面に到達する光の減衰を防止して、外部に放射される光の照度を高めることができるという効果を有する。
さらに、請求項4に記載のレンズを長期間使用した場合でも、高反射性樹脂層の反射面が変色する恐れがない。このため、高性能で高品質のレンズを提供できるという効果を有する。
According to the lens of claim 4 of the present invention, since it has a highly reflective resin layer on the side surface of the lens, it is not suitable for a reflector because it has translucency or does not have high reflectivity. It has the effect of making possible materials usable as a reflector. In addition, since the light can be properly specularly reflected on the surface of the highly reflective resin layer, attenuation of light that reaches the surface of the reflector via the lens is prevented, and the illuminance of the light emitted to the outside is increased. It has the effect of being able to.
Furthermore, even when the lens according to claim 4 is used for a long period of time, there is no possibility that the reflective surface of the highly reflective resin layer is discolored. For this reason, it has the effect that a high-performance and high-quality lens can be provided.

本発明の最良の形態に係るリフレクターとそれを用いた発光素子収納用パッケージ及びリフレクターに用いるレンズの実施例について説明する。   Embodiments of a reflector according to the best mode of the present invention, a light emitting element storage package using the reflector, and a lens used in the reflector will be described.

以下に、本発明の実施例1に係るリフレクターについて図1を参照しながら詳細に説明する。(特に請求項1に対応)
図1(a)は本発明の実施例1に係るリフレクターの概念図であり、(b)は図1(a)におけるA−A線断面図である。
図1(a),(b)に示すように、本発明の実施例1に係るリフレクター1は、リング状のリフレクター本体2の反射面2a上に高反射性樹脂層3を有するものである。
このように、実施例1に係るリフレクター1は、2つの部材すなわち、リフレクター本体2及び樹脂を主成分とする高反射性樹脂層3により構成されているので、従来のように、リフレクター1自体を高反射性を有する素材で構成したり、リフレクター本体2の材質を金属薄膜の形成に適したものにする必要がない。
すなわち、十分な強度と放熱性を備え、かつその反射面に高反射性樹脂層3を形成可能な材質であればどんなものでもリフレクター本体2として適用できるという効果を有する。
従って、強度と放熱性に優れる安価な材質をリフレクター本体2として採用することができ、この結果、高性能で高品質のリフレクター1を安価に提供できるという優れた効果を有するのである。
Hereinafter, the reflector according to the first embodiment of the present invention will be described in detail with reference to FIG. (Especially corresponding to claim 1)
Fig.1 (a) is a conceptual diagram of the reflector which concerns on Example 1 of this invention, (b) is the sectional view on the AA line in Fig.1 (a).
As shown in FIGS. 1A and 1B, a reflector 1 according to Example 1 of the present invention has a highly reflective resin layer 3 on a reflective surface 2a of a ring-shaped reflector body 2. FIG.
As described above, the reflector 1 according to the first embodiment is configured by the two members, that is, the reflector body 2 and the highly reflective resin layer 3 mainly composed of resin. There is no need to use a material having high reflectivity or to make the reflector body 2 suitable for forming a metal thin film.
In other words, any material having sufficient strength and heat dissipation and capable of forming the highly reflective resin layer 3 on its reflecting surface can be applied as the reflector body 2.
Therefore, an inexpensive material excellent in strength and heat dissipation can be adopted as the reflector body 2, and as a result, it has an excellent effect that the high-performance and high-quality reflector 1 can be provided at low cost.

また、実施例1に係るリフレクター1の反射面2aに形成される高反射性樹脂層3は、高反射性粉体材料と樹脂との混合体であり、塗料としてリフレクター本体2の表面に塗布しても良いし、このような高反射性粉体材料と樹脂との混合体を一旦フィルム状にして、例えば、リフレクター本体2の反射面2aと略符合する形状に打ち抜き成形した後、反射面2a上にモールド成形して被着してもよい。
そして、前者の場合には、高反射性粉体材料と樹脂との混合体を、例えば、スピンコーターを用いて塗布したり、噴霧状にして塗布面に吹付けたり、あるいは、電界塗装により被着することが望ましい。
The highly reflective resin layer 3 formed on the reflecting surface 2a of the reflector 1 according to the first embodiment is a mixture of a highly reflective powder material and a resin, and is applied to the surface of the reflector body 2 as a paint. Alternatively, such a mixture of the highly reflective powder material and the resin is once formed into a film shape, for example, stamped and formed into a shape substantially coincident with the reflecting surface 2a of the reflector body 2, and then the reflecting surface 2a. It may be molded and deposited on top.
In the former case, the mixture of the highly reflective powder material and the resin is applied using, for example, a spin coater, sprayed onto the application surface, or coated by electric field coating. It is desirable to wear.

また、高反射性樹脂層3を構成する高反射性粉体材料は、白色でかつ微細粒子状の物質であり、しかも耐熱性を有することが望ましく、具体的には、二酸化チタン,硫酸バリウム,炭酸バリウム,酸化マグネシウム, 二酸化珪素から選択されるいずれか1種又は複数種の組み合わせが適している。なお、二酸化珪素は、たとえば、石英粉や、珪砂、珪粉等であることが望ましい。
これは、高反射性粉体材料が微細粒子状の物質であることで、樹脂に混合した際に微細粒子が樹脂内に分散して樹脂の濁度が高まり、高反射性樹脂層3を不透光体にすることができるという効果を有する。また、微細粒子状の高反射性粉体材料と樹脂の混合体から成る高反射性樹脂層3の表面は、平滑となり光の正反射を容易にするという効果を有する。
なお、難水溶性の炭酸バリウムや二酸化珪素以外の高反射性粉体材料は、通常水溶性を有しており、単に樹脂と混合しただけでは十分な耐水性が発揮されない。つまり、たとえば、高反射性粉体材料と樹脂を単に混合して高反射性樹脂層3を形成した場合、大気中の水分と高反射性粉体材料が反応して体積膨張が起こり、高反射性樹脂層3にクラックが生じたり、高反射性樹脂層3の強度が低下する恐れがある。
このため、高反射性粉体材料と樹脂の混合体を調整する場合、高反射性粉体材料の粒子表面に予め界面活性剤等の被膜を形成し、その後に樹脂と混合することが望ましい。
このように、界面活性剤を介して高反射性粉体材料を樹脂に混合することで、樹脂に対する高反射性粉体材料の添加量を最大65体積%にまで高めることができ、さらに、高反射性樹脂層3の耐水性を高めることができる。また、樹脂に対する高反射性粉体材料の添加量が高まるにつれ、この混合体から成る高反射性樹脂層3の耐熱性や耐変色性耐も向上するという効果を有する。
さらに、高反射性粉体材料の粒子の表面に予め界面活性剤等の被膜を形成することで、高反射性粉体材料の樹脂による濡れ性を高めることができるという効果を有する。この結果、高反射性樹脂層3の白色度が増し、その表面において可視光領域の光を好適に正反射できるという効果を有する。
また、特に、樹脂に対して55体積%から体積65%の高反射性粉体材料を混合して成る高反射性樹脂層3においては、表面における光の減衰がほとんど起こらず、高反射性粉体材料単体の反射率と同等の反射率を有する反射面を形成できるという効果を有する。
そして、高反射性粉体材料が白色物質であることで、高反射性粉体材料自体の吸光作用を最少にできるという効果を有する。
そして、高反射性粉体材料自体が耐熱性を有することで、つまり、単体物質の融点が1500℃を超えるような高温である物質とすることで、高反射性樹脂層3の耐熱性を向上できるという効果を有する。
この結果、樹脂と高反射性粉体材料とを混合することで、高反射性,高熱伝導性,高電気絶縁性,高耐水性を備えた高反射性樹脂層3を形成することができるのである。
Further, the highly reflective powder material constituting the highly reflective resin layer 3 is a white and fine particulate substance, and preferably has heat resistance. Specifically, titanium dioxide, barium sulfate, Any one or a combination of two or more selected from barium carbonate, magnesium oxide, and silicon dioxide is suitable. In addition, it is desirable that silicon dioxide is, for example, quartz powder, silica sand, silica powder, or the like.
This is because the highly reflective powder material is a fine particle substance, so that when mixed with the resin, the fine particles are dispersed in the resin, increasing the turbidity of the resin and making the highly reflective resin layer 3 unusable. It has the effect that it can be set as a translucent body. In addition, the surface of the highly reflective resin layer 3 made of a mixture of a finely particulate highly reflective powder material and a resin is smooth and has the effect of facilitating regular reflection of light.
Highly reflective powder materials other than poorly water-soluble barium carbonate and silicon dioxide usually have water solubility, and sufficient water resistance cannot be exhibited by simply mixing with a resin. In other words, for example, when the highly reflective resin layer 3 is formed by simply mixing the highly reflective powder material and the resin, the moisture in the atmosphere reacts with the highly reflective powder material to cause volume expansion, resulting in a highly reflective material. There is a possibility that cracks may occur in the conductive resin layer 3 and the strength of the highly reflective resin layer 3 may be reduced.
For this reason, when preparing a mixture of a highly reflective powder material and a resin, it is desirable to form a film of a surfactant or the like in advance on the particle surface of the highly reflective powder material and then mix with the resin.
In this way, by adding the highly reflective powder material to the resin via the surfactant, the amount of the highly reflective powder material added to the resin can be increased to a maximum of 65% by volume. The water resistance of the reflective resin layer 3 can be increased. Further, as the amount of the highly reflective powder material added to the resin increases, the heat resistance and discoloration resistance of the highly reflective resin layer 3 made of this mixture are also improved.
Furthermore, by forming a film of a surfactant or the like on the surface of the particles of the highly reflective powder material in advance, the wettability of the highly reflective powder material with the resin can be improved. As a result, the whiteness of the highly reflective resin layer 3 is increased, and the effect is obtained that the light in the visible light region can be properly regularly reflected on the surface thereof.
In particular, in the highly reflective resin layer 3 formed by mixing 55% by volume to 65% by volume of the highly reflective powder material with respect to the resin, light attenuation on the surface hardly occurs, and the highly reflective powder. This has the effect that a reflecting surface having a reflectance equivalent to the reflectance of the body material alone can be formed.
In addition, since the highly reflective powder material is a white substance, the light reflecting action of the highly reflective powder material itself can be minimized.
And by making the highly reflective powder material itself heat resistant, that is, by making it a substance having a high temperature such that the melting point of the single substance exceeds 1500 ° C., the heat resistance of the highly reflective resin layer 3 is improved. It has the effect of being able to.
As a result, the highly reflective resin layer 3 having high reflectivity, high thermal conductivity, high electrical insulation, and high water resistance can be formed by mixing the resin and the highly reflective powder material. is there.

つまり、上述のような高反射性粉体材料の特性が相乗的に作用することで、リフレクター本体2の反射面2aに、不透光性を有し表面が平滑な高反射性樹脂層3を形成することが可能となり、この結果、高反射性樹脂層3の表面において光を好適に正反射させることのできる高性能なリフレクター1を提供できるという優れた効果を発揮するのである。
また、高反射性樹脂層3を構成する樹脂としては、耐熱性を備えかつ樹脂自体の吸光性が低いものが適している。つまり、樹脂の透明度が高いことが望ましく、具体的には、エポキシ樹脂,シリコン樹脂,フェノール樹脂から選択されるいずれか1種又は複数種の組み合わせであることが望ましい。
さらに、樹脂の成形性を保ったまま十分な高反射性が発揮されるためには、上述のようなそれぞれの樹脂に対して30体積%〜65体積%の高反射性粉体材料を混合することが望ましい。
これは、樹脂に混合する高反射性粉体材料の量が30体積%よりも少ない場合には、樹脂と高反射性粉体材料との混合体の不透光性が低下してしまい、高反射性樹脂層3内に光が透過してしまうことで、高反射性樹脂層3の表面における光の反射率が低下する傾向が認められたためである。逆に、樹脂に混合する白色粉体材料の量が65体積%よりも多い場合には、樹脂の成形性が低下する傾向が認められた。
なお、本願明細書中に記載される他の実施例に係る高反射性樹脂層3についても、上述した構成の特徴の点で本実施例の高反射性樹脂層3と同様である。
In other words, the highly reflective resin layer 3 that is opaque and has a smooth surface is formed on the reflective surface 2a of the reflector body 2 by the synergistic action of the characteristics of the highly reflective powder material as described above. As a result, it is possible to provide a high-performance reflector 1 capable of appropriately regularly reflecting light on the surface of the highly reflective resin layer 3.
Moreover, as resin which comprises the highly reflective resin layer 3, what has heat resistance and the light absorbency of resin itself is suitable. That is, the transparency of the resin is desirably high, and specifically, any one or a combination of a plurality of types selected from an epoxy resin, a silicon resin, and a phenol resin is desirable.
Furthermore, in order to exhibit sufficient high reflectivity while maintaining the moldability of the resin, 30% to 65% by volume of a highly reflective powder material is mixed with each resin as described above. It is desirable.
This is because, when the amount of the highly reflective powder material mixed with the resin is less than 30% by volume, the light opacity of the mixture of the resin and the highly reflective powder material is reduced. This is because a tendency that the reflectance of light on the surface of the highly reflective resin layer 3 decreases due to the transmission of light into the reflective resin layer 3 was observed. On the contrary, when the amount of the white powder material mixed with the resin is more than 65% by volume, the tendency for the moldability of the resin to decrease was recognized.
Note that the highly reflective resin layer 3 according to the other examples described in the present specification is the same as the highly reflective resin layer 3 of the present example in terms of the characteristics of the above-described configuration.

以下に、本発明の実施例2に係る発光素子収納用パッケージについて図2及び図3を参照しながら詳細に説明する。(特に請求項2及び請求項3に対応)
図2は本発明の実施例2に係る発光素子収納用パッケージの一例を示す断面図である。なお、図1に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。
図2に示すように、本発明の実施例2に係る発光素子収納用パッケージ4aは、例えば、セラミックス製の基体5の上面に発光素子6を搭載し、さらに発光素子6の外周を囲うようにリング状のリフレクター1を接合材7により接合したものである。この時、発光素子6は接合材7及び接合用バンプ8を介して基体5上面に搭載され、接合材7は基体5内部に設けられるビア9を通じて基体5の裏面に設けられる端子10と電気的に接続されている。なお、基体5の上面に搭載する発光素子6と接合材7とは、上述のようにフリップチップにより電気的に接続しても良いし、金属製のワイヤを用いて接続してもよい。
また、リフレクター本体2の反射面2aには高反射性樹脂層3が設けられており、この高反射性樹脂層3は、発光素子6から発せられる光が反射面2aにおいて減衰するのを防止している。
また、発光素子6の上面側には、レンズ本体11aと、蛍光体11cを含有する透光性フィルム11bが積層されたレンズ11が覆設されており、発光素子6に通電した際に発光素子6から発せられる光を、例えば、紫外光等を可視光領域の光に変換した後、輝度ムラを低減しながらレンズ本体11aから発光素子収納用パッケージ4aの外部に光が放射されるよう構成されるものである。
さらに、本実施例に係る発光素子収納用パッケージ4aにおいては、基体5の上面の少なくとも一部にも高反射性樹脂層3が設けられており、基体5の上面に到達した光が減衰するのを防止している。
なお、本実施例に係る発光素子収納用パッケージ4aにおいては、リフレクター本体2の反射面2aに高反射性樹脂層3を予め被着したリフレクター1を基体5の上面に接合しても良いし、後述の図3に示すような手順により、基体5の上面にリフレクター本体2のみをまず接合した後に、基体5の上面及びリフレクター本体2の反射面2aに高反射性樹脂層3を被着してもよい。
このように、リフレクター1の反射面2a、及び基体5の上面に高反射性樹脂層3を被着した発光素子収納用パッケージ4aによれば、発光素子6から発せられる光は、高反射性樹脂層3の表面において正反射を繰り返しながら発光素子収納用パッケージ4aの外部へと放射されるので、発光素子収納用パッケージ4a内における光の減衰を最少にできるという効果を有する。この結果、発光素子収納用パッケージ4aから発せられる光を照度の高いものにできるという効果を発揮するのである。
Hereinafter, a light-emitting element storage package according to Example 2 of the present invention will be described in detail with reference to FIGS. 2 and 3. (Especially corresponding to claims 2 and 3)
FIG. 2 is a cross-sectional view showing an example of a light emitting element storage package according to Example 2 of the present invention. In addition, the same code | symbol is attached | subjected about the part same as what was described in FIG. 1, and the description about the structure is abbreviate | omitted.
As shown in FIG. 2, the light emitting element storage package 4 a according to the second embodiment of the present invention includes, for example, a light emitting element 6 mounted on the upper surface of a ceramic base 5 and further surrounds the outer periphery of the light emitting element 6. A ring-shaped reflector 1 is joined by a joining material 7. At this time, the light emitting element 6 is mounted on the upper surface of the substrate 5 via the bonding material 7 and the bonding bumps 8, and the bonding material 7 is electrically connected to the terminal 10 provided on the back surface of the substrate 5 through the via 9 provided in the substrate 5. It is connected to the. The light emitting element 6 and the bonding material 7 mounted on the upper surface of the substrate 5 may be electrically connected by flip chip as described above, or may be connected using a metal wire.
In addition, a highly reflective resin layer 3 is provided on the reflecting surface 2a of the reflector body 2, and this highly reflecting resin layer 3 prevents the light emitted from the light emitting element 6 from being attenuated on the reflecting surface 2a. ing.
Further, on the upper surface side of the light emitting element 6, a lens 11 in which a lens main body 11a and a translucent film 11b containing a phosphor 11c are laminated is covered, and the light emitting element 6 is energized when the light emitting element 6 is energized. After the light emitted from 6 is converted into light in the visible light region, for example, the light is emitted from the lens body 11a to the outside of the light emitting element storage package 4a while reducing unevenness in luminance. Is.
Further, in the light emitting element storage package 4a according to the present embodiment, the highly reflective resin layer 3 is provided also on at least a part of the upper surface of the base body 5, and the light reaching the upper surface of the base body 5 is attenuated. Is preventing.
In the light emitting element storage package 4a according to the present embodiment, the reflector 1 in which the highly reflective resin layer 3 is previously applied to the reflecting surface 2a of the reflector body 2 may be bonded to the upper surface of the base body 5, After the reflector main body 2 is first bonded to the upper surface of the base body 5 by the procedure shown in FIG. 3 to be described later, the highly reflective resin layer 3 is applied to the upper surface of the base body 5 and the reflecting surface 2a of the reflector main body 2. Also good.
Thus, according to the light emitting element storage package 4a in which the highly reflective resin layer 3 is attached to the reflective surface 2a of the reflector 1 and the upper surface of the base body 5, the light emitted from the light emitting element 6 is highly reflective resin. Since light is emitted to the outside of the light emitting element housing package 4a while repeating regular reflection on the surface of the layer 3, the light attenuation in the light emitting element housing package 4a can be minimized. As a result, the effect that the light emitted from the light emitting element storage package 4a can be made high in illuminance is exhibited.

次に、本発明の実施例2に係る発光素子収納用パッケージの製造工程の一例を、図3を参照しながら説明する。
図3(a)〜(e)はいずれも本発明の実施例2に係る発光素子収納用パッケージの製造工程の一例を示す概念図である。なお、図1又は図2に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。
ここでは、基体5上面にリフレクター本体2のみを接合した後に、基体5の上面及びリフレクター本体2の反射面2aに高反射性樹脂層3を被着する場合を例に挙げて説明する。
本発明の実施例2に係る発光素子収納用パッケージ4aを製造するには、図3(a)に示すように、セラミック製の基体5上に発光素子6を搭載した後、電気的な機能検査が完了した発光素子収納用パッケージ4aに、まず、基体5の上面における被着面の形状と略符合する形状に、例えば打ち抜き成形した高反射性樹脂フィルム3aを載置し、この作業の後又はこの作業と同時に高反射性樹脂フィルム3aをモールド成形して基体5の上面に被着することで高反射性樹脂層3を形成する。
Next, an example of a manufacturing process of the light emitting element storage package according to the second embodiment of the present invention will be described with reference to FIG.
3A to 3E are conceptual views showing an example of a manufacturing process of the light emitting element storage package according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same part as what was described in FIG. 1 or FIG. 2, and the description about the structure is abbreviate | omitted.
Here, the case where only the reflector main body 2 is joined to the upper surface of the substrate 5 and then the highly reflective resin layer 3 is attached to the upper surface of the substrate 5 and the reflecting surface 2a of the reflector main body 2 will be described as an example.
In order to manufacture the light emitting element storage package 4a according to the second embodiment of the present invention, as shown in FIG. 3A, after the light emitting element 6 is mounted on the ceramic substrate 5, an electrical function test is performed. First, a highly reflective resin film 3a, for example, stamped and molded, is placed in a shape substantially coincident with the shape of the adherend surface on the upper surface of the base body 5, and after this operation or Simultaneously with this operation, the highly reflective resin film 3a is molded and deposited on the upper surface of the substrate 5, thereby forming the highly reflective resin layer 3.

次に、図3(b),(c)に示すように、リフレクター本体2の反射面2aの形状と略符合する形状に、例えば打ち抜き成形した高反射性樹脂フィルム3bを載置し、この作業の後又はこの作業と同時に高反射性樹脂フィルム3bをモールド成形してリフレクター本体2の反射面2aに被着することで高反射性樹脂層3を形成する。
そして、図3(d)に示すように、発光素子6の上面側に、レンズ本体11aと蛍光体11cを含有する透光性フィルム11bを積層して成るレンズ11を覆設すればよい。
このように、図3(a)〜(e)に示すような工程により実施例2に係る発光素子収納用パッケージ4aを製造する場合、リフレクター本体2のみを基体5上に接合した発光素子収納用パッケージ4aを作製する工程と、このような発光素子収納用パッケージ4a内に高反射性樹脂層3を形成する工程を別々に実施することができるという効果を有する。
この結果、発光素子収納用パッケージ4aを大量に生産する際に、セラミック製の基体5を碁盤目状に区画して、複数の発光素子収納用パッケージ4aを同時に製造し、その後発光素子収納用パッケージ4aの1つ1つを個片化して個別の製品とする手法を採用することができるという効果を有する。
つまり、発光素子収納用パッケージ4aの大量生産が容易になり、発光素子収納用パッケージ4aの製造に係るコストを大幅に削減できるという優れた効果を発揮するのである。
また、高反射性樹脂層3は耐熱性に優れ、しかも長期間使用した場合であっても、従来のAg薄膜のように反射面の色が変色して光の反射率が低下し、発光素子収納用パッケージから放射される光の照度が低下する等の不具合を生じる心配がないので、高性能でかつ高品質な発光素子収納用パッケージ4aを提供できるという効果を有する。
さらに、基体5やリフレクター本体2の材質に、強度や放熱性の優れた材質を採用することが可能となり、強度や耐久性に優れた発光素子収納用パッケージ4aを提供できるという効果を発揮する。
なお、後述の実施例3に係るレンズを備える発光素子収納用パッケージの効果についても同様である。
Next, as shown in FIGS. 3B and 3C, a highly reflective resin film 3b formed by punching, for example, is placed in a shape that substantially matches the shape of the reflecting surface 2a of the reflector body 2, and this work is performed. After or simultaneously with this operation, the highly reflective resin film 3b is molded and attached to the reflective surface 2a of the reflector body 2 to form the highly reflective resin layer 3.
And as shown in FIG.3 (d), what is necessary is just to cover the lens 11 which laminates | stacks the translucent film 11b containing the lens main body 11a and the fluorescent substance 11c on the upper surface side of the light emitting element 6.
Thus, when manufacturing the light emitting element accommodation package 4a according to the second embodiment by the steps as shown in FIGS. 3A to 3E, the light emitting element accommodation case in which only the reflector body 2 is bonded onto the base body 5 is used. There is an effect that the process of manufacturing the package 4a and the process of forming the highly reflective resin layer 3 in the light emitting element storage package 4a can be performed separately.
As a result, when the light emitting element storage packages 4a are produced in large quantities, the ceramic base 5 is partitioned into a grid pattern to simultaneously manufacture a plurality of light emitting element storage packages 4a, and then the light emitting element storage packages. It has the effect that the method of separating each of 4a into individual products can be adopted.
That is, the mass production of the light emitting element storage package 4a is facilitated, and the excellent effect of significantly reducing the cost for manufacturing the light emitting element storage package 4a is exhibited.
In addition, the highly reflective resin layer 3 has excellent heat resistance, and even when used for a long period of time, the color of the reflective surface is discolored as in the case of a conventional Ag thin film, and the light reflectance is reduced. Since there is no fear of causing problems such as a decrease in the illuminance of light emitted from the storage package, it is possible to provide a high-performance and high-quality light-emitting element storage package 4a.
Furthermore, it is possible to employ a material having excellent strength and heat dissipation as the material of the base body 5 and the reflector body 2, and the effect of providing the light emitting element storage package 4a excellent in strength and durability is exhibited.
The same applies to the effect of the light emitting element storage package including a lens according to Example 3 described later.

以下に、本発明の実施例3に係るレンズ及びそれを用いた発光素子収納用パッケージについて図4及び図5を参照しながら詳細に説明する。(特に請求項4に対応)
図4(a),(b)はいずれも本発明の実施例3に係るレンズの製造工程を示す概念図である。なお、図1乃至図3に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。
本発明の実施例3に係るレンズ12は、上述の実施例2に係る発光素子収納用パッケージ4aに設けられるレンズ11の側面に高反射性樹脂層3を設けたことを特徴とするものであり、レンズ11と同様の作用及び効果を有するものである。
上述のような本発明の実施例3に係るレンズ12は、図4(a)に示すように、まず、透光性を有する樹脂製のレンズ本体12aと、透光性を有し蛍光体12cを含有する樹脂製の透光性フィルム12b1〜12b6を積層して成る透光性積層体12dを作製した後又はその作製時に、透光性積層体12dの側面に高反射性樹脂フィルム3cを圧着することで、図4(b)に示すような、高反射性樹脂層3を透光性積層体12dの側面に備えたレンズ12を作製することができる。
このように、実施例3に係るレンズ12は、複数の透光性フィルム12b1〜12b6からなる透光性積層体12dを有するので、例えば、透光性フィルム12b1〜12b6のそれぞれに、紫外光を可視光に変換した際の発光波長がそれぞれ異なる複数種類の発光体を別々に添加することもできる。
そしてこの場合、レンズ12の底面側からレンズ12の内部に紫外光を入射させた際に、レンズ本体12aの上面から、調光済みの均質な光を放射させることができるという優れた効果を発揮するのである。
なお、透光性フィルム12bの数は図4に示されるものに限定されるものではなく、レンズ12の目的に応じて自由に変更されて良い。また、レンズ本体12aや透光性フィルム12b1〜12b6に透明な単結晶体の微小粉体を含有させることで散光性を高めてもよい。
このような実施例3に係るレンズ12によれば、レンズ12から放射される光の色調を、透光性フィルム12bの厚さや数を変えることで容易にかつ高精度に調整することが可能である。従って、レンズ12を大量生産する場合に、均質な製品を提供することができるという効果を有する。
Hereinafter, a lens according to Example 3 of the present invention and a light-emitting element storage package using the lens will be described in detail with reference to FIGS. 4 and 5. (Especially corresponding to claim 4)
4 (a) and 4 (b) are conceptual diagrams showing a manufacturing process of a lens according to Example 3 of the present invention. The same parts as those described in FIGS. 1 to 3 are denoted by the same reference numerals, and description of the configuration is omitted.
The lens 12 according to Example 3 of the present invention is characterized in that the highly reflective resin layer 3 is provided on the side surface of the lens 11 provided in the light emitting element storage package 4a according to Example 2 described above. , Having the same action and effect as the lens 11.
As shown in FIG. 4A, the lens 12 according to the third embodiment of the present invention as described above, first, a resin lens body 12a having translucency, and a translucent phosphor 12c. resin translucent film 12b containing 1 ~12b 6 and then to prepare a light-transmitting laminate 12d formed by laminating or a manufacturing time, highly reflective resin film 3c on the side surface of the light-transmitting laminate 12d By pressure bonding, a lens 12 provided with a highly reflective resin layer 3 on the side surface of the translucent laminate 12d as shown in FIG. 4B can be produced.
Thus, the lens 12 according to the third embodiment, since the light-transmitting laminate 12d comprising a plurality of light-transmitting film 12b 1 ~12b 6, for example, each of the light-transmitting film 12b 1 ~12b 6 A plurality of types of light emitters having different emission wavelengths when ultraviolet light is converted to visible light can be added separately.
In this case, when ultraviolet light is incident on the inside of the lens 12 from the bottom surface side of the lens 12, an excellent effect of being able to radiate homogenous light that has been dimmed from the top surface of the lens body 12a is exhibited. To do.
The number of translucent films 12b is not limited to that shown in FIG. 4, and may be freely changed according to the purpose of the lens 12. Alternatively, the light scattering property may be enhanced by adding transparent single crystal fine powder to the lens body 12a or the light-transmitting films 12b 1 to 12b 6 .
According to the lens 12 according to the third embodiment, the color tone of the light emitted from the lens 12 can be adjusted easily and with high accuracy by changing the thickness and number of the translucent film 12b. is there. Therefore, when the lens 12 is mass-produced, there is an effect that a homogeneous product can be provided.

続いて、上述のような本発明の実施例3に係るレンズ12を用いた発光素子収納用パッケージの製造工程について図5を参照しながら説明する。
図5(a)〜(c)はいずれも本発明の実施例3に係るレンズを用いた発光素子収納用パッケージの製造工程の一例を示す概念図である。なお、図1乃至図4に記載されたものと同一部分については同一符号を付し、その構成についての説明は省略する。
本発明の実施例3に係るレンズ12を用いた発光素子収納用パッケージ4bを作製するには、図5(a),(b)に示すように、例えば、セラミック製の基体5上に発光素子6及びリフレクター本体2を接合し、電気的な機能検査が完了した発光素子収納用パッケージ4bに、まず、基体5の上面の一部とリフレクター本体2の反射面2aの一部を被覆するような、例えば、打ち抜き成形した高反射性樹脂フィルム3dを載置し、この作業の後又はこの作業と同時に高反射性樹脂フィルム3dをモールド成形して、基体5の上面の一部及びリフレクター本体2の反射面2aの一部に高反射性樹脂層3を形成する。
この後、図5(b),(c)に示すように透光性積層体12dの側面に高反射性樹脂層3を備えるレンズ12を発光素子6の上面側に覆設すればよい。
このように、例えば、図5(a)〜(c)に示すような工程によれば、高反射性樹脂層3を形成する工程の一部とレンズ12を覆設する工程を同時に行うことができ、作業工程を簡略化できるという効果を有する。
この結果、発光素子収納用パッケージ4bを大量に生産する場合も、セラミック製の基体5を碁盤目状に区画して、複数の発光素子収納用パッケージ4bを同時に製造し、その後発光素子収納用パッケージ4bの1つ1つを個片化して個別の製品とする手法を採用することができるという効果を有する。
この結果、発光素子収納用パッケージ4bの大量生産が一層容易となり、発光素子収納用パッケージ4bの製造に係るコストを大幅に削減できるという優れた効果を発揮する。
Next, a manufacturing process of the light emitting element storage package using the lens 12 according to the third embodiment of the present invention as described above will be described with reference to FIG.
FIGS. 5A to 5C are conceptual diagrams showing an example of a manufacturing process of a light emitting element storage package using a lens according to Example 3 of the present invention. The same parts as those described in FIGS. 1 to 4 are denoted by the same reference numerals, and description of the configuration is omitted.
In order to manufacture the light emitting element storage package 4b using the lens 12 according to Example 3 of the present invention, as shown in FIGS. 5A and 5B, for example, a light emitting element is formed on a ceramic substrate 5. 6 and the reflector main body 2 are joined, and the light emitting element storage package 4b that has been subjected to the electrical function test is first covered with a part of the upper surface of the base body 5 and a part of the reflective surface 2a of the reflector main body 2. For example, a highly reflective resin film 3d that has been punched and formed is placed, and after this operation or simultaneously with this operation, the highly reflective resin film 3d is molded, and a part of the upper surface of the substrate 5 and the reflector body 2 are formed. A highly reflective resin layer 3 is formed on a part of the reflective surface 2a.
Thereafter, as shown in FIGS. 5B and 5C, the lens 12 having the highly reflective resin layer 3 on the side surface of the translucent laminate 12 d may be covered on the upper surface side of the light emitting element 6.
Thus, for example, according to the steps shown in FIGS. 5A to 5C, a part of the step of forming the highly reflective resin layer 3 and the step of covering the lens 12 can be performed simultaneously. The work process can be simplified.
As a result, even when a large number of light emitting element storage packages 4b are produced, the ceramic base 5 is partitioned into a grid pattern to simultaneously manufacture a plurality of light emitting element storage packages 4b, and then the light emitting element storage packages. It has an effect that it is possible to adopt a method in which each of 4b is separated into individual products.
As a result, mass production of the light emitting element storage package 4b is further facilitated, and an excellent effect that the cost for manufacturing the light emitting element storage package 4b can be greatly reduced is exhibited.

上述の実施例1乃至実施例3に記載される高反射性樹脂層3は、高反射性粉体材料の粒子表面に界面活性剤の被膜を形成したものを、エポキシ樹脂,シリコン樹脂,フェノール樹脂から選択されるいずれか1種又は複数種の組み合わせと混合したものであるが、特に樹脂が透明である場合には、樹脂に光が照射された際の光の減衰はほとんど起こらない。
このため、高反射性樹脂層3の反射率は、高反射性粉体材料自体の光の反射特性と、高反射性樹脂層3を形成する高反射性粉体材料と樹脂との濡れ性に影響されるといえる。
The highly reflective resin layer 3 described in Examples 1 to 3 described above is obtained by forming a surfactant coating on the particle surface of the highly reflective powder material, which is an epoxy resin, silicon resin, or phenol resin. In particular, when the resin is transparent, there is almost no attenuation of light when the resin is irradiated with light.
Therefore, the reflectivity of the highly reflective resin layer 3 depends on the light reflection characteristics of the highly reflective powder material itself and the wettability between the highly reflective powder material and the resin that form the highly reflective resin layer 3. It can be said that it is affected.

そこで、発明者らは、本発明に係る高反射性樹脂層を形成する高反射性粉体材料の反射特性を調査するために、可視光領域の光の反射率に関して実験を行なった。その実験結果について図6を参照しながら説明する。
図6は本発明に係る高反射性樹脂層を形成する高反射性粉体材料単体からなる試料A〜Cに可視光領域の光を照射した際の入射波長別の反射率の測定結果を示すグラフである。
なお、この度の実験には単体の高反射性粉体材料として、BaCO3(試料A),TiO2(試料B),MgO(試料C)の3種類を用いた。
なお、反射率の測定は、ミノルタ社製「CM−3600d」により行い、BaSO4を塗布した金属球に光を照射した際の反射率を100%として、試料A〜Cの反射率をそれぞれ計測した。
Therefore, the inventors conducted an experiment on the reflectance of light in the visible light region in order to investigate the reflection characteristics of the highly reflective powder material forming the highly reflective resin layer according to the present invention. The experimental results will be described with reference to FIG.
FIG. 6 shows the measurement results of the reflectance for each incident wavelength when samples A to C made of a single highly reflective powder material forming the highly reflective resin layer according to the present invention are irradiated with light in the visible light region. It is a graph.
In this experiment, three kinds of BaCO 3 (sample A), TiO 2 (sample B), and MgO (sample C) were used as a single highly reflective powder material.
The reflectance is measured with “CM-3600d” manufactured by Minolta, and the reflectance of each of samples A to C is measured with the reflectance when light is applied to a metal sphere coated with BaSO 4 being 100%. did.

図6に示すように、試料Bと試料Cにおける可視光領域の光の反射率はいずれも97%以上であった。また、試料Aの反射率も96%以上であり、Ag薄膜と同等以上の高反射性を備えているといえる。
なお、対照として使用されるBaSO4は、反射率が最も高く、高反射性樹脂層3の高反射性粉体材料に適している。
よって、樹脂としてエポキシ樹脂,シリコン樹脂,フェノール樹脂から選択されるいずれか1種又は複数種の組み合わせと混合したものを用い、高反射性粉体材料として二酸化チタン,硫酸バリウム,炭酸バリウム,酸化マグネシウムから選択されるいずれか1種又は複数種の組み合わせたものを、樹脂に対して55体積%から65体積%混合することにより、Ag薄膜と同等以上の高反射性を有し、しかも熱伝導性や耐熱性、耐久性に優れた高反射性樹脂層3を形成することができるという優れた効果を発揮するのである。
また、高反射性粉体材料と樹脂との濡れ性は、混練前に高反射性粉体材料に対して界面活性剤による樹脂コートを形成させるなどの表面処理を行うことで向上させることができる。
さらに、樹脂と高反射性粉体材料との混合体の表面が略平滑となるよう高反射性粉体材料の粒子を可視光波長(約800nm)以下の微小粒子とすることで、高反射性を向上させることが可能である。
As shown in FIG. 6, the reflectance of light in the visible light region in Sample B and Sample C was 97% or more. Moreover, the reflectance of the sample A is 96% or more, and it can be said that it has high reflectivity equivalent to or higher than that of the Ag thin film.
BaSO 4 used as a control has the highest reflectance and is suitable for the highly reflective powder material of the highly reflective resin layer 3.
Therefore, a resin mixed with any one or a combination selected from epoxy resin, silicon resin, and phenol resin is used, and titanium dioxide, barium sulfate, barium carbonate, magnesium oxide are used as highly reflective powder materials. By mixing 55% to 65% by volume of any one or a combination of two or more selected from the above, it has high reflectivity equivalent to or higher than that of an Ag thin film, and also has thermal conductivity. In addition, an excellent effect that the highly reflective resin layer 3 excellent in heat resistance and durability can be formed is exhibited.
Also, the wettability between the highly reflective powder material and the resin can be improved by performing a surface treatment such as forming a resin coat with a surfactant on the highly reflective powder material before kneading. .
Furthermore, by making the particles of the highly reflective powder material fine particles having a wavelength of visible light (approximately 800 nm) or less so that the surface of the mixture of the resin and the highly reflective powder material becomes substantially smooth, the high reflectivity is achieved. It is possible to improve.

以上説明したように、本発明の請求項1乃至請求項4に記載された発明は、形成容易でかつ可視光領域の光を好適に正反射する高反射性樹脂層を反射面に有するリフレクター又は、発光素子搭載面の少なくとも一部に高反射性樹脂層を有する発光素子収納用パッケージ又は、発光素子収納用パッケージに接合されるリフレクターに設置されリフレクターとの接合面に高反射性樹脂層を有するレンズであり、照明装置の分野において利用可能である。   As described above, the invention described in the first to fourth aspects of the present invention is a reflector having a highly reflective resin layer on the reflecting surface that is easy to form and suitably regularly reflects light in the visible light region. The light-emitting element storage package having a highly reflective resin layer on at least a part of the light-emitting element mounting surface or the reflector that is bonded to the light-emitting element storage package has a highly reflective resin layer on the junction surface with the reflector. It is a lens and can be used in the field of lighting devices.

(a)は本発明の実施例1に係るリフレクターの概念図であり、(b)は図1(a)におけるA−A線断面図である。(A) is a conceptual diagram of the reflector which concerns on Example 1 of this invention, (b) is the sectional view on the AA line in Fig.1 (a). 本発明の実施例2に係る発光素子収納用パッケージの一例を示す断面図である。It is sectional drawing which shows an example of the package for light emitting element accommodation which concerns on Example 2 of this invention. (a)〜(e)はいずれも本発明の実施例2に係る発光素子収納用パッケージの製造工程の一例を示す概念図である。(A)-(e) is a conceptual diagram which shows an example of the manufacturing process of the light emitting element storage package which concerns on Example 2 of this invention. (a),(b)はいずれも本発明の実施例3に係るレンズの製造工程を示す概念図である。(A), (b) is a conceptual diagram which shows the manufacturing process of the lens which concerns on Example 3 of this invention. (a)〜(c)はいずれも本発明の実施例3に係るレンズを用いた発光素子収納用パッケージの製造工程の一例を示す概念図である。(A)-(c) is a conceptual diagram which shows an example of the manufacturing process of the light emitting element storage package using the lens which concerns on Example 3 of this invention. 本発明に係る高反射性樹脂層を形成する高反射性粉体材料単体からなる試料A〜Cに可視光領域の光を照射した際の入射波長別の反射率の測定結果を示すグラフであるIt is a graph which shows the measurement result of the reflectance according to incident wavelength at the time of irradiating the light of visible region to samples AC which consist of the highly reflective powder material single-piece | unit which forms the highly reflective resin layer based on this invention.

符号の説明Explanation of symbols

1…リフレクター 2…リフレクター本体 2a…反射面 3…高反射性樹脂層 3a〜3d…高反射性樹脂フィルム 4a,4b…発光素子収納用パッケージ 5…基体 6…発光素子 7…接合材 8…接続用バンプ 9…ビア 10…端子 11…レンズ 11a…レンズ本体 11b…透光性フィルム 11c…蛍光体 12…レンズ 12a…レンズ本体 12b,12b1〜12b6…透光性フィルム 12c…蛍光体 12d…透光性積層体
DESCRIPTION OF SYMBOLS 1 ... Reflector 2 ... Reflector main body 2a ... Reflective surface 3 ... High reflective resin layer 3a-3d ... High reflective resin film 4a, 4b ... Light emitting element storage package 5 ... Base | substrate 6 ... Light emitting element 7 ... Bonding material 8 ... Connection use bumps 9 ... via 10 ... terminal 11 ... lens 11a ... lens body 11b ... translucent film 11c ... phosphor 12 ... lens 12a ... lens body 12b, 12b 1 ~12b 6 ... translucent film 12c ... phosphor 12d ... Translucent laminate

Claims (4)

上面に発光素子の搭載部を有するセラミック製の基体上に接合されるリフレクターであって、
前記リフレクターの反射面は、高反射性粉体材料を樹脂に混合して成る高反射性樹脂層で被覆され、
前記高反射性粉体材料は、二酸化チタン,硫酸バリウム,炭酸バリウム,酸化マグネシウム,二酸化珪素から選択されるいずれか1種又は複数種の組み合わせであることを特徴とするリフレクター。
A reflector bonded on a ceramic substrate having a light emitting element mounting portion on an upper surface,
The reflective surface of the reflector is coated with a highly reflective resin layer formed by mixing a highly reflective powder material with a resin,
The highly reflective powder material is a reflector selected from the group consisting of titanium dioxide, barium sulfate, barium carbonate, magnesium oxide, and silicon dioxide.
上面に発光素子の搭載部を有するセラミック製の基体と、この基体の表面に接合されるリング状のリフレクターとを有する発光素子収納用パッケージであって、
前記リフレクターは、請求項1に記載されるリフレクターであることを特徴とする発光素子収納用パッケージ。
A light emitting element storage package having a ceramic base having a light emitting element mounting portion on an upper surface and a ring-shaped reflector bonded to the surface of the base,
The said reflector is a reflector as described in Claim 1, The package for light emitting element accommodation characterized by the above-mentioned.
上面に発光素子の搭載部を有するセラミック製の基体と、この基体の表面に接合されるリング状のリフレクターとを有する発光素子収納用パッケージであって、
前記基体の上面の少なくとも一部は、高反射性粉体材料を樹脂に混合して成る高反射性樹脂層で被覆され、
前記高反射性粉体材料は、二酸化チタン,硫酸バリウム,炭酸バリウム,酸化マグネシウム,二酸化珪素から選択されるいずれか1種又は複数種の組み合わせであることを特徴とする発光素子収納用パッケージ。
A light emitting element storage package having a ceramic base having a light emitting element mounting portion on an upper surface and a ring-shaped reflector bonded to the surface of the base,
At least a part of the upper surface of the substrate is coated with a highly reflective resin layer formed by mixing a highly reflective powder material with a resin,
The light-emitting element storage package, wherein the highly reflective powder material is any one or a combination selected from titanium dioxide, barium sulfate, barium carbonate, magnesium oxide, and silicon dioxide.
上面に発光素子の搭載部を有するセラミック製の基体の表面に接合されるリング状のリフレクターに設置されるレンズであって、
前記レンズは、レンズ本体と蛍光体を含有する透光性フィルムとが積層された透光性積層体と、高反射性粉体材料を樹脂に混合して成り前記透光性積層体の側面を被覆する高反射性樹脂層とを備え、
前記高反射性粉体材料は、二酸化チタン,硫酸バリウム,炭酸バリウム,酸化マグネシウム,二酸化珪素から選択されるいずれか1種又は複数種の組み合わせであることを特徴とするレンズ。
A lens installed on a ring-shaped reflector bonded to the surface of a ceramic substrate having a light-emitting element mounting portion on the upper surface;
The lens comprises a translucent laminate in which a lens body and a translucent film containing a phosphor are laminated, and a highly reflective powder material mixed with a resin. With a highly reflective resin layer to cover,
The lens according to claim 1, wherein the highly reflective powder material is one or a combination of plural kinds selected from titanium dioxide, barium sulfate, barium carbonate, magnesium oxide, and silicon dioxide.
JP2006106944A 2006-04-07 2006-04-07 Reflector, package for housing light-emitting element using the same, and lens used for reflector Pending JP2007281260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006106944A JP2007281260A (en) 2006-04-07 2006-04-07 Reflector, package for housing light-emitting element using the same, and lens used for reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006106944A JP2007281260A (en) 2006-04-07 2006-04-07 Reflector, package for housing light-emitting element using the same, and lens used for reflector

Publications (1)

Publication Number Publication Date
JP2007281260A true JP2007281260A (en) 2007-10-25

Family

ID=38682392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106944A Pending JP2007281260A (en) 2006-04-07 2006-04-07 Reflector, package for housing light-emitting element using the same, and lens used for reflector

Country Status (1)

Country Link
JP (1) JP2007281260A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066670A1 (en) * 2007-11-20 2009-05-28 Nanoteco Corporation White led device and method for manufacturing the same
JP2009147312A (en) * 2007-11-20 2009-07-02 Nanoteco Corp White led device and method of manufacturing the same
WO2009133870A1 (en) * 2008-04-30 2009-11-05 アルプス電気株式会社 Illuminating apparatus and method for manufacturing the same
JP2010010261A (en) * 2008-06-25 2010-01-14 Stanley Electric Co Ltd Color-converting light-emitting device
JP2010130000A (en) * 2008-11-27 2010-06-10 Lighthouse Technology Co Ltd Optical film
JP2010199234A (en) * 2009-02-24 2010-09-09 Panasonic Corp Package for optical semiconductor device, and optical semiconductor device using the same
JP2010283244A (en) * 2009-06-05 2010-12-16 Mitsubishi Chemicals Corp Semiconductor light emitting device, lighting device and image display
WO2011099384A1 (en) 2010-02-09 2011-08-18 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
KR101087065B1 (en) 2010-10-13 2011-11-25 (주) 아모엘이디 Method for manufacturing led package
CN102280564A (en) * 2011-08-19 2011-12-14 华南师范大学 Light emitting diode (LED) possessing phosphor heat dissipating layer
EP2482346A1 (en) 2011-01-28 2012-08-01 Nichia Corporation Light emitting device
JP2013502695A (en) * 2009-08-20 2013-01-24 イルミテックス, インコーポレイテッド System and method for phosphor-coated lenses
JP2013512556A (en) * 2009-11-25 2013-04-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic component housing and housing manufacturing method
US8475007B2 (en) 2008-06-09 2013-07-02 Nec Lighting, Ltd Light emitting device
JP2014509086A (en) * 2011-03-18 2014-04-10 コーニンクレッカ フィリップス エヌ ヴェ Method for providing a reflective coating on a substrate for a light emitting device
US8896003B2 (en) 2006-01-05 2014-11-25 Illumitex, Inc. Separate optical device for directing light from an LED
EP2819190A1 (en) * 2008-03-26 2014-12-31 Shimane Prefectural Government Semiconductor light emitting module and method for manufacturing the same
US9086211B2 (en) 2009-08-20 2015-07-21 Illumitex, Inc. System and method for color mixing lens array
KR20150098350A (en) * 2014-02-20 2015-08-28 엘지이노텍 주식회사 Light Emitting Device Package
KR20160055417A (en) * 2014-11-10 2016-05-18 엘지이노텍 주식회사 Light emitting device pachage and lighting system having the same
US9412918B2 (en) 2012-07-19 2016-08-09 Nichia Corporation Light emitting device and method of manufacturing the same
US9514663B2 (en) 2012-07-30 2016-12-06 Ultravision Technologies, Llc Method of uniformly illuminating a billboard
JP2017118205A (en) * 2015-12-21 2017-06-29 パナソニック デバイスSunx竜野株式会社 Remote controller
DE102019218203A1 (en) * 2019-11-25 2021-05-27 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung LED BACKLIGHTING SYSTEM
DE102008038748B4 (en) 2008-08-12 2022-08-04 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Surface-mount optoelectronic semiconductor component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786640A (en) * 1993-06-17 1995-03-31 Nichia Chem Ind Ltd Light emitting device
JP2000183407A (en) * 1998-12-16 2000-06-30 Rohm Co Ltd Optical semiconductor device
JP2002026382A (en) * 2000-07-12 2002-01-25 Citizen Electronics Co Ltd Light emitting diode
JP2003188422A (en) * 2001-12-20 2003-07-04 Alps Electric Co Ltd Light emitter and its manufacturing method
JP2004095516A (en) * 2002-09-04 2004-03-25 Seiko Epson Corp Photoconductive unit, backlight unit, electro-optical device, electronic device, and manufacturing method for the photoconductive unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786640A (en) * 1993-06-17 1995-03-31 Nichia Chem Ind Ltd Light emitting device
JP2000183407A (en) * 1998-12-16 2000-06-30 Rohm Co Ltd Optical semiconductor device
JP2002026382A (en) * 2000-07-12 2002-01-25 Citizen Electronics Co Ltd Light emitting diode
JP2003188422A (en) * 2001-12-20 2003-07-04 Alps Electric Co Ltd Light emitter and its manufacturing method
JP2004095516A (en) * 2002-09-04 2004-03-25 Seiko Epson Corp Photoconductive unit, backlight unit, electro-optical device, electronic device, and manufacturing method for the photoconductive unit

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896003B2 (en) 2006-01-05 2014-11-25 Illumitex, Inc. Separate optical device for directing light from an LED
US9574743B2 (en) 2006-01-05 2017-02-21 Illumitex, Inc. Separate optical device for directing light from an LED
WO2009066670A1 (en) * 2007-11-20 2009-05-28 Nanoteco Corporation White led device and method for manufacturing the same
JP2009147312A (en) * 2007-11-20 2009-07-02 Nanoteco Corp White led device and method of manufacturing the same
US9022613B2 (en) 2008-03-26 2015-05-05 Shimane Prefectural Government Semiconductor light emitting device comprising cut-and-bent portions
EP2819190A1 (en) * 2008-03-26 2014-12-31 Shimane Prefectural Government Semiconductor light emitting module and method for manufacturing the same
US9484515B2 (en) 2008-03-26 2016-11-01 S.E.I Inc. Semiconductor light emitting module comprising an exposed plate surface
WO2009133870A1 (en) * 2008-04-30 2009-11-05 アルプス電気株式会社 Illuminating apparatus and method for manufacturing the same
US8475007B2 (en) 2008-06-09 2013-07-02 Nec Lighting, Ltd Light emitting device
JP2010010261A (en) * 2008-06-25 2010-01-14 Stanley Electric Co Ltd Color-converting light-emitting device
DE102008038748B4 (en) 2008-08-12 2022-08-04 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Surface-mount optoelectronic semiconductor component
JP2010130000A (en) * 2008-11-27 2010-06-10 Lighthouse Technology Co Ltd Optical film
JP2010199234A (en) * 2009-02-24 2010-09-09 Panasonic Corp Package for optical semiconductor device, and optical semiconductor device using the same
JP2010283244A (en) * 2009-06-05 2010-12-16 Mitsubishi Chemicals Corp Semiconductor light emitting device, lighting device and image display
JP2013502695A (en) * 2009-08-20 2013-01-24 イルミテックス, インコーポレイテッド System and method for phosphor-coated lenses
US9086211B2 (en) 2009-08-20 2015-07-21 Illumitex, Inc. System and method for color mixing lens array
JP2013512556A (en) * 2009-11-25 2013-04-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic component housing and housing manufacturing method
US9006773B2 (en) 2009-11-25 2015-04-14 Osram Opto Semiconductors Gmbh Housing for an optoelectronic component and method for producing a housing
US10230034B2 (en) 2010-02-09 2019-03-12 Nichia Corporation Light emitting device and method for manufacturing light emitting device
US9887329B2 (en) 2010-02-09 2018-02-06 Nichia Corporation Light emitting device and method for manufacturing light emitting device
WO2011099384A1 (en) 2010-02-09 2011-08-18 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device
US9196805B2 (en) 2010-02-09 2015-11-24 Nichia Corporation Light emitting device and method for manufacturing light emitting device
EP3547380A1 (en) 2010-02-09 2019-10-02 Nichia Corporation Light emitting device
KR101087065B1 (en) 2010-10-13 2011-11-25 (주) 아모엘이디 Method for manufacturing led package
US9123867B2 (en) 2011-01-28 2015-09-01 Nichia Corporation Light emitting device
EP2482346A1 (en) 2011-01-28 2012-08-01 Nichia Corporation Light emitting device
JP2014509086A (en) * 2011-03-18 2014-04-10 コーニンクレッカ フィリップス エヌ ヴェ Method for providing a reflective coating on a substrate for a light emitting device
CN102280564A (en) * 2011-08-19 2011-12-14 华南师范大学 Light emitting diode (LED) possessing phosphor heat dissipating layer
US9412918B2 (en) 2012-07-19 2016-08-09 Nichia Corporation Light emitting device and method of manufacturing the same
US10223946B2 (en) 2012-07-30 2019-03-05 Ultravision Technologies, Llc Lighting device with transparent substrate, heat sink and LED array for uniform illumination regardless of number of functional LEDs
US10410551B2 (en) 2012-07-30 2019-09-10 Ultravision Technologies, Llc Lighting assembly with LEDs and four-part optical elements
US9685102B1 (en) 2012-07-30 2017-06-20 Ultravision Technologies, Llc LED lighting assembly with uniform output independent of number of number of active LEDs, and method
US9524661B2 (en) 2012-07-30 2016-12-20 Ultravision Technologies, Llc Outdoor billboard with lighting assemblies
US9734737B2 (en) 2012-07-30 2017-08-15 Ultravision Technologies, Llc Outdoor billboard with lighting assemblies
US9732932B2 (en) 2012-07-30 2017-08-15 Ultravision Technologies, Llc Lighting assembly with multiple lighting units
US9734738B2 (en) 2012-07-30 2017-08-15 Ultravision Technologies, Llc Apparatus with lighting units
US9542870B2 (en) 2012-07-30 2017-01-10 Ultravision Technologies, Llc Billboard and lighting assembly with heat sink and three-part lens
US9947248B2 (en) 2012-07-30 2018-04-17 Ultravision Technologies, Llc Lighting assembly with multiple lighting units
US10891881B2 (en) 2012-07-30 2021-01-12 Ultravision Technologies, Llc Lighting assembly with LEDs and optical elements
US9812043B2 (en) 2012-07-30 2017-11-07 Ultravision Technologies, Llc Light assembly for providing substantially uniform illumination
US9514663B2 (en) 2012-07-30 2016-12-06 Ultravision Technologies, Llc Method of uniformly illuminating a billboard
US10339841B2 (en) 2012-07-30 2019-07-02 Ultravision Technologies, Llc Lighting assembly with multiple lighting units
US9659511B2 (en) 2012-07-30 2017-05-23 Ultravision Technologies, Llc LED light assembly having three-part optical elements
KR102127445B1 (en) * 2014-02-20 2020-06-26 엘지이노텍 주식회사 Light Emitting Device Package
KR20150098350A (en) * 2014-02-20 2015-08-28 엘지이노텍 주식회사 Light Emitting Device Package
KR20160055417A (en) * 2014-11-10 2016-05-18 엘지이노텍 주식회사 Light emitting device pachage and lighting system having the same
KR102224242B1 (en) * 2014-11-10 2021-03-08 엘지이노텍 주식회사 Light emitting device pachage and lighting system having the same
JP2017118205A (en) * 2015-12-21 2017-06-29 パナソニック デバイスSunx竜野株式会社 Remote controller
DE102019218203A1 (en) * 2019-11-25 2021-05-27 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung LED BACKLIGHTING SYSTEM

Similar Documents

Publication Publication Date Title
JP2007281260A (en) Reflector, package for housing light-emitting element using the same, and lens used for reflector
US10586901B2 (en) LED module having a highly reflective carrier
KR101639353B1 (en) Semiconductor light-emitting device and method for manufacturing thereof
US9252342B2 (en) LED module with improved light output
JP5515992B2 (en) Light emitting device
TWI766032B (en) Light-emitting device and method of manufacturing same
JP6229953B2 (en) Light emitting device
TWI599078B (en) Moisture-resistant chip scale packaging light emitting device
US11043615B2 (en) Light-emitting device having a dielectric multilayer film arranged on the side surface of the light-emitting element
TW201044645A (en) Light emitting semiconductor device and method of manufacture thereof
JP2013247067A5 (en) Inorganic molded body for wavelength conversion and light emitting device
JPWO2006090834A1 (en) Light emitting device and lighting device
JP2010016029A (en) Led light source
JP2018120959A (en) Light emitting device and lighting system
TW201314973A (en) Optoelectronic component and method for manufacturing an optoelectronic component
JP2009193994A (en) Led light source and chromaticity adjustment method thereof
JP2009193995A (en) Led light source and chromaticity adjustment method thereof
JP2009046326A (en) Ceramic sintered compact, reflector using the same, package for mounting light-emitting element using the same and light-emitting device using the same
JP2009064842A (en) Ceramic sintered compact, substrate using the ceramic sintered compact, package for mounting light-emitting element using the compact, and light emitting device using the compact
US20170040506A1 (en) Light-emitting apparatus and illumination apparatus
JP2010182878A (en) Package for mounting light-emitting element
JP2012138435A (en) Package for light emitting element
CN102479909B (en) Light emitting diode
JP5678462B2 (en) Light emitting device
JP6583673B2 (en) Light emitting device and lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110819