JP2007280699A - 発光デバイス - Google Patents

発光デバイス Download PDF

Info

Publication number
JP2007280699A
JP2007280699A JP2006103769A JP2006103769A JP2007280699A JP 2007280699 A JP2007280699 A JP 2007280699A JP 2006103769 A JP2006103769 A JP 2006103769A JP 2006103769 A JP2006103769 A JP 2006103769A JP 2007280699 A JP2007280699 A JP 2007280699A
Authority
JP
Japan
Prior art keywords
light emitting
light
microlens
refractive index
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006103769A
Other languages
English (en)
Inventor
Akiko Murata
晶子 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006103769A priority Critical patent/JP2007280699A/ja
Publication of JP2007280699A publication Critical patent/JP2007280699A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

【課題】発光層から出射された光を効率よく利用することができる発光デバイス、および発光デバイスの製造方法を提供する。
【解決手段】本発明の発光デバイスは、透明基板と、透明基板上に配置されたマイクロレンズおよび封止材からなるレンズ層と、レンズ層上に配置された透明電極層と透明電極層上に配置された発光層と、発光層上に配置された電極層とを有する。
【選択図】図1

Description

本発明は、発光デバイス、特に有機発光デバイスに関する。
近年、様々なディスプレイ用途として発光デバイスの開発が進められている。その中でもEL素子は、薄型化、高輝度化、省エネルギー化に優れるという期待から実用化が積極的に進められている。
しかしながら、有機EL素子は寿命が短く、商品化の妨げになっている。寿命が短い原因は、材料や素子構成以外に、光取り出し効率が低いことが挙げられる。つまり、発光層から出射した光がすべて外部に取り出せておらず、素子中に封じ込められたり消失したりする光が多く、光取り出し効率が低くなっている。そのため、十分な発光量を得るためには有機EL自体の光出力を大きくせざるを得なくなり、結果的に寿命が短くなってしまっていた。
この問題を解決するために、従来、透明基板の一方の面に透明電極層、有機EL層、他の電極層を順に形成し、光取り出し効率を向上させるためのマイクロレンズを設置した発光デバイスが製造されている(特許文献1、2)。
特許文献1の有機EL装置は、図4に示すように、透明基板101の一方の面の各発光領域に、少なくとも透明電極103、有機EL層104、前記透明電極とは異なる他の電極層105が順次積層されて形成され、前記透明基板106の他方の面の前記各発光領域に相当する領域に、複数の微小マイクロレンズ106の集合からなる全反射回避層が形成されている。
また、特許文献2の有機EL装置は、図5に示すような構造になっている。陰極205と陽極203間に発光層である有機EL膜204を有して基板201上に形成されており、有機EL素子の発光面側にマイクロレンズアレイ206を設けた構成となっている。
特開2004-127560号公報 特開2004-039500号公報
しかしながら、特許文献1では、基板上の発光層を形成した面の他方の面にマイクロレンズを形成しているため、マイクロレンズが発光層から離れてしまい、マイクロレンズの効果はほとんど得られず、光取り出し効率は十分ではないという問題点があった。また、基板上の他方の面に、各発光領域に1対1に対応してマイクロレンズを形成するのは困難であることから、各発光領域に複数のレンズを形成していたため、十分な光取り出し効率が得られないという問題があった。
一方、特許文献2では、レンズ材料が樹脂であるため、屈折率は高くても1.6から1.7程度まであり集光効率が不十分であるという問題があった。
上記課題を解決するため、本発明の発光デバイスは、透明基板と、透明基板上に配置されたマイクロレンズおよび封止材からなるレンズ層と、レンズ層上に配置された透明電極層と透明電極層上に配置された発光層と、発光層上に配置された電極層とを有する。
本発明の構成により、発光デバイスの光取り出し効率は大幅に向上する。これにより、発光層から出射された光をより効率よく利用することができ、発光量を維持したまま発光層の光出力を低減することが可能となる。
以下、本発明の実施の形態を、図面を参照しながら説明する。
(実施の形態1)
図1(a)は本発明の発光デバイスの断面図である。図1(a)は1発光部の構成を示しており、実際にはこの発光部が複数並んだ状態になっている。図1(a)に示すように、透明基板1上にレンズ層2、透明電極層3、発光層4、電極層5が積層されており、レンズ層2は、マイクロレンズ6と封止材7からなることを特徴とする。発光層4から出射した光は、図1(a)に矢印で示すように、透明電極層を透過し、レンズ層のマイクロレンズにおいて光が集束する方向に変更されたのち、透明基板を透過し外部に取り出される。マイクロレンズのサイズは発光部のサイズ(図1(a)では透明電極層3のサイズ)より大きいことが好ましい。
また、図1(b)に示すように、透明電極層3とマイクロレンズ6の間に封止材7が入っている状態でもよい。
また、図1(c)に示すように、1つの発光部あたり複数のマイクロレンズが設置されている構成でもよい。
また、図1(d)に示すように、透明電極層3とマイクロレンズ6の間に焦点調節層8を形成してもよい。なお、焦点調節層は、マイクロレンズ6の焦点位置が発光層4の内部にくるように厚みを調節するためのものである。焦点調節層としては、透明な樹脂やフィルムなどを用いることができる。また、透光性を有すれば、無機材料や、有機と無機の複合材料なども用いることができる。
透明基板1としては、例えばガラスなどの透光性を有する材料を用いる。なお、透光性を有しておれば、プラスチックなどの材質も使用可能であり、またフィルムのような柔軟な材質、形状であってもよい。
マイクロレンズ6としては、樹脂、無機材料、樹脂と無機材料のコンポジットなどを用いることができる。マイクロレンズ6に用いる材料の屈折率は、封止材よりも高いほうが好ましい。マイクロレンズ6の屈折率と曲率をバランスよく調整し、封止材の厚さを最適化することで光取り出し効率を大幅に向上させることができる。
上記樹脂と無機粒子のコンポジット材料に関しては、コンポジット材料の調整方法に限定はなく、物理的な方法で調整してもよく、化学的な方法で調整してもよい。例えば、次の(1)から(4)のいずれかでコンポジット材料を調整することができる。
(1)樹脂または樹脂を溶解した溶液と1次粒径が1μm未満のサイズである無機粒子とを、機械的・物理的に混合する方法。
(2)樹脂の原料(単量体やオリゴマーなど)と1次粒径が1μm未満のサイズである無機粒子とを、機械的・物理的に混合して混合物を得たのち、樹脂の原料を重合する方法。
(3)樹脂または樹脂を溶解した溶液と無機粒子の原料とを混合したのち、無機粒子の原料を反応させ、樹脂中で無機粒子を形成する方法。
(4)樹脂の原料(単量体やオリゴマーなど)と無機粒子の原料とを混合したのち、無機粒子の原料を反応させて無機粒子を合成する工程と、樹脂の原料を重合して樹脂を合成する工程とを行う方法。
なお、上記方法に加え、無機粒子の樹脂に対する親和性を向上させるために、無機粒子の表面を変性(表面処理、表面修飾)してから樹脂に混合する工程を組み入れることもできる。また、既に変性させた無機粒子を用いてもよい。
なお、必要に応じて、塗布を容易にするために溶剤成分を添加してもよい。溶剤成分としては、例えばプロピレングリコールモノメチルエーテルなどが挙げられる。
なお、コンポジット材料に吸湿性の樹脂が含まれる場合には塗布は乾燥雰囲気中で行うのが好ましい。
コンポジット材料を構成する樹脂としては、熱硬化性樹脂、熱可塑性樹脂および光硬化性樹脂を用いることができる。このような樹脂は、材料の主剤が高分子材料のものと低分子材料のものがある。高分子材料のものとしては、例えばエポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、シリコーン樹脂、ポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリスチレン、アクリロニトリル/ブタジエン/スチレン樹脂、メチルメタクリレート/ブタジエン/スチレン樹脂、ポリプロピレン、あるいはこれらの誘導体などが挙げられる。
また、低分子材料としては、例えばポリアミドオリゴマー、アクリルモノマー、不飽和ポリエステルオリゴマー、ポリアクリルオリゴマー、エンチオールモノマー、アルキルポリシロキサンオリゴマー、あるいはこれらの誘導体などを挙げることができる。
コンポジット材料を構成する無機粒子は、可視光域(400nm〜700nm)において、吸収、散乱が少ないことが必要である。粒子径は1nm〜100nmの範囲であることが好ましい。ここで、「1nm〜100nmの範囲である」とは、コンポジット材料に含まれる無機粒子全体のうち、粒度分布計の測定による粒径頻度分布において50%以上が粒径1nm〜100nmの範囲にあることを意味する。粒子径が大きいと無機粒子と樹脂の屈折率差によりレーリー散乱が多く発生してしまうため、好ましくない。
無機粒子は、屈折率が高い材料で形成され、例えば屈折率は2以上が好ましい。コンポジット材料は、1種類の無機粒子のみを含んでもよいし、複数種の無機粒子を含んでもよい。
無機粒子の材料としては、屈折率が2以上である金属酸化物、例えば酸化チタン(屈折率2.2〜2.5)、酸化タンタル(屈折率2.0〜2.3)、酸化ニオブ(屈折率2.1〜2.3)、酸化タングステン(屈折率2.2)、酸化ジルコニウム(屈折率2.1)、酸化亜鉛(屈折率1.9〜2.0)、酸化インジウム(屈折率2.0)、酸化スズ(屈折率2.0)、酸化ハフニウム(屈折率2.0)などを用いてもよい。
また、屈折率が2以下でも、酸化スカンジウム(屈折率1.89)、酸化ランタン、酸化イットリウム(屈折率1.8)などの材料を用いることもできる。
封止材としては、樹脂などを用いることができる。封止材の屈折率はマイクロレンズの屈折率よりも低いことが好ましい。透明電極層とマイクロレンズの間にある部分の封止材の厚さはレンズの焦点位置が発光層内にくるような厚さが好ましく、焦点調節層として膜厚の制御がしやすい別の材料で形成してもよい。
透明電極層としては、ITO(インジウム錫酸化物合金)、IZO(インジウム亜鉛酸化物合金)、インジウム酸化物、スズ酸化物などが使用できる。
発光層は、有機分子の層からなり、主に低分子と高分子に大別できる。高分子の場合は例えばポリフェニレンビニレン、低分子の場合は例えばアルミニウムキノリノール錯体などが用いられる。
電極層としては、例えばナトリウム、リチウムなどのアルカリ金属単体、又はその合金を用いることができる。また、カルシウム、マグネシウムなどのアルカリ土類金属、またはその合金を用いることができる。合金はアルミニウム、銀、インジウムなどとなされる。また、ガリウム、インジウムなど一部の第3族金属を用いることもできる。
(発光デバイスの製造方法)
図1(a)に示すように、透明基板1上にマイクロレンズ6および封止材7からなるレンズ層2、透明電極層3、発光層4、電極層5を順次積層して形成して、透明電極層3と電極層5とで挟まれた部分が発光部となるように構成する。
製造方法の概略としては、まず、基板上に樹脂などの封止材材料をスピンコートなどで塗り、マイクロレンズ形状の金型で押し付けてから、乾燥および硬化を行う。樹脂などの硬化は、光硬化、熱硬化が特に望ましい。その後、金型をはずしてマイクロレンズ形状の凹部を形成する。なお、マイクロレンズの金型を取り外す際に離型性を良くするために離型材を使用してもよい。また、乾燥して溶媒を除去し、金型を押し付けてから硬化してもよい。その上にマイクロレンズの材料(樹脂、コンポジット材料など)をスピンコートなどで塗り、乾燥および硬化させる。なお、マイクロレンズの材料の粘度によっては、ディスペンサによる滴下やインクジェット法による滴下などを用いてもよい。
その後、透明電極層、発光層、電極層を順次積層して発光デバイスを作製する。なお、透明電極層を形成する前に、封止材または焦点調節層を形成してもよい(図1(b)、(d)参照)。
また、マイクロレンズの向きが逆の場合には、上記の方法以外に、以下のような方法でマイクロレンズを形成してもよい。
マイクロレンズの材料で層を形成し、その上にレジストでマイクロレンズ形状を形成し、ドライエッチングを用いてレンズ形状を転写する方法。
樹脂を円柱形状にパターニング後、加熱リフローしてレンズ形状を作る方法。この後、封止材をスピンコートなどで塗布し、乾燥・硬化させる。
マイクロレンズ形状を金型で成形し、その後封止材、透明電極層、発光層、電極層を順次形成する方法。
マイクロレンズのみを射出成形などで作製し、これを基板に貼り付け、その後封止材、透明電極層、発光層、電極層を順次形成する方法。
以上述べたような構成と方法で作製した発光デバイスは、透明基板と透明電極層の間にレンズ層が設けられており、このマイクロレンズにより、発光層で発光した光は屈折され、出射される。これにより、透明基板に入射する光の入射角が変わり、光の取り出し効率が改善される。
さらに、従来に比べてデバイスの光量を増加させることができるとともに、従来と同等の光量を維持するのであれば、その駆動電力を下げることが可能になる。また、駆動電力により発光材料の劣化が著しい材料を用いた発光デバイスの場合は、その寿命を延ばすことも可能になる。
次に、光学系の設計等において多用されているソフトウェアである『ZEMAX』(ZEMAX Development Corporation社製)を用いて、発光部からの光をマイクロレンズで屈折させるシミュレーションを行ったシミュレーション結果について説明する。
図2は、このシミュレーションの実行条件を示す。
ガラス基板1上にマイクロレンズ6、封止材7、透明電極層3、発光層4、電極層5を順に配置し、発光層内に点光源10を配置した。そして、点光源10からモンテカルロ法に従ってランダムに出射された50000本の光線のうち、2.1mm離れたディテクター9に到達する光線の本数の割合を、「光取り出し効率」として計測した。また、図2のように、ガラス基板1とマイクロレンズ6との間の封止材7の厚みを5μmとし、マイクロレンズ6と透明電極3との間の封止材7の厚みをdとした。
(実施例1)
ガラス基板(屈折率1.5、厚さ500μm)上に、マイクロレンズ(屈折率2.0、半径10μmの半球形状)、封止材(屈折率1.5、厚さd=11μm)、透明電極層(屈折率1.9、厚さ1500Å)、発光層(屈折率1.7、厚み4000Å)を順に設定し、発光層内より透明基板を通して光を出射し、2.1mm離れたディテクター(半径0.427μmの円板状)に入る光を計算した。その結果、光取り出し効率は5.4%であった。
(実施例2)
上記実施例1において、封止材の厚さdを5μmに変更して、シミュレーションを行ったところ、光取り出し効率は4.9%であった。
(実施例3)
上記実施例1において、封止材の厚さdを15μmに変更して、シミュレーションを行ったところ、光取り出し効率は4.9%であった。
(実施例4)
上記実施例1において、マイクロレンズの屈折率を1.8に変更して、シミュレーションを行ったところ、光取り出し効率は4.5%であった。
(比較例1)
比較例として、実施例1の構成において、マイクロレンズと封止材を除いた点以外は同じ構成で同様にシミュレーションを行ったところ、光取り出し効率は2.1%であった。
(比較例2)
比較例として、実施例1の構成において、マイクロレンズの屈折率を1.5とし、封止材をなし(封止材の部分の屈折率は空気と同じ1とした)以外は同じ構成で同様にシミュレーションを行ったところ、光取り出し効率は2.8%であった。
以上のシュミレーション結果を、以下の表1に示す。
Figure 2007280699
表1から明らかなように、本実施例1〜4の構成で光取り出し効率の計算を行った結果は、マイクロレンズのない比較例1、および比較例2のレンズの屈折率を1.5にした場合(封止材の部分の屈折率は空気と同じ1とした)よりも高い光取り出し効率が得られるという点で優れている。
なお、実際の発光部は点ではなく面光源であるが、点光源の積分として考えれば同様の効果を得ることができる。
また、マイクロレンズの屈折率は封止材の屈折率よりも高いものが好ましい。さらにマイクロレンズの屈折率はマイクロレンズの曲率とのバランスを考慮して最適な屈折率を設計する必要がある。なお、本シミュレーションではマイクロレンズの形状を半球形状としたが、実際に製造する場合は球の一部や非球面形状でもよい。
なお、以上の例では有機ELに本発明を適用しているが、その他の発光デバイスにおいて光取り出し効率を向上させるためにも本発明を適用してよい。
(実施の形態2)
図3は、本発明の発光デバイスを用いたプリンタ光源の基本構成を示す模式断面図であり、実施形態1の発光デバイス13と、その下方のレンズアレイ11(例えばセルフォックレンズアレイなど)から構成されている。
このような構成のプリンタ光源によれば、発光デバイスの発光素子が、駆動回路(図示せず)により駆動制御されることにより、適宜発光する。そして、当該発光層から出射する光が当該レンズ層のマイクロレンズにより集束され、レンズアレイ11を通して感光体12の表面に結像させることにより、感光体12の当該箇所が感光するようになっている。
なお、RGBの各色のカラーフィルターを透明基板とレンズ層の間に設置してカラー式としても利用できる。その際、各色に対応してマイクロレンズの形状や焦点調節層の厚さを変えることにより、マイクロレンズの焦点が各色で同じになるようにしてもよい。
以上述べたような構成と方法で作製した発光デバイスは、透明基板と透明電極層の間にレンズ層が設けられており、このマイクロレンズにより、発光層で発光した光は屈折され、出射される。これにより、透明基板に入射する光の入射角が変わり、光の取り出し効率が改善される。
さらに光の取り出し効率を改善することにより、光源としての寿命が長くなり、ひいてはプリンタ光源の寿命を延ばす効果もある。
本発明にかかる発光デバイスは、プリンタやディスプレイなどの用途に適用できる。
本発明の発光デバイスの構成図 シミュレーションの実行条件を示す図 本発明の実施形態2の構成図 従来の発光デバイスの構成図 従来の発光デバイスの構成図
符号の説明
1 透明基板
2 レンズ層
3 透明電極層
4 発光層
5 電極層
6 マイクロレンズ
7 封止材
8 焦点調節層
9 ディテクター
10 点光源
11 レンズアレイ
12 感光体
101 透明基板
103 透明電極
104 有機EL層
105 電極層
106 微小マイクロレンズ
201 基板
203 陽極
204 有機EL膜
205 陰極
206 マイクロレンズアレイ

Claims (8)

  1. 透明基板と、
    前記透明基板上に配置されたマイクロレンズおよび封止材からなるレンズ層と、
    前記レンズ層上に配置された透明電極層と
    前記透明電極層上に配置された発光層と、
    前記発光層上に配置された電極層と
    を有する発光デバイス。
  2. 前記マイクロレンズは、前記封止材よりも屈折率の高い材料からなる請求項1記載の発光デバイス。
  3. 前記マイクロレンズは、樹脂と無機粒子のコンポジット材料からなる請求項1記載の発光デバイス。
  4. 前記コンポジット材料の屈折率が1.7以上である請求項1記載の発光デバイス。
  5. 前記無機粒子が、酸化チタン、酸化タンタル、酸化ジルコニウム、酸化亜鉛、酸化インジウムおよび酸化タングステンからなる群より選ばれる少なくとも1つの酸化物を主成分とする無機粒子である請求項3に記載の発光デバイス。
  6. 前記無機粒子の屈折率が2以上である請求項3に記載の発光デバイス。
  7. 前記樹脂は透光性であり且つ屈折率が1.4〜1.7の範囲にある請求項3に記載の発光デバイス。
  8. 前記樹脂は透光性であり且つ屈折率が1.5以上であり、
    前記無機粒子は粒径が実質的に1nm〜100nmの範囲であり且つ屈折率が2以上の無機酸化物からなり、
    前記コンポジット材料の屈折率が1.8以上である請求項3に記載の発光デバイス。
JP2006103769A 2006-04-05 2006-04-05 発光デバイス Pending JP2007280699A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103769A JP2007280699A (ja) 2006-04-05 2006-04-05 発光デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103769A JP2007280699A (ja) 2006-04-05 2006-04-05 発光デバイス

Publications (1)

Publication Number Publication Date
JP2007280699A true JP2007280699A (ja) 2007-10-25

Family

ID=38681942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103769A Pending JP2007280699A (ja) 2006-04-05 2006-04-05 発光デバイス

Country Status (1)

Country Link
JP (1) JP2007280699A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057514A1 (en) 2007-10-29 2009-05-07 Ricoh Company, Ltd. Organic transistor, organic transistor array, and display device
JP2009110873A (ja) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd 表示装置
JP2010157421A (ja) * 2008-12-26 2010-07-15 Panasonic Electric Works Co Ltd 有機el発光装置
WO2010134419A1 (ja) * 2009-05-20 2010-11-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、それを用いた照明装置
JP2011054407A (ja) * 2009-09-01 2011-03-17 Panasonic Electric Works Co Ltd 有機発光素子
EP2403316A1 (en) * 2009-02-24 2012-01-04 Sumitomo Chemical Company, Limited Substrate and organic el device
CN111092168A (zh) * 2019-12-25 2020-05-01 上海视欧光电科技有限公司 一种显示面板及显示装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057514A1 (en) 2007-10-29 2009-05-07 Ricoh Company, Ltd. Organic transistor, organic transistor array, and display device
JP2009110873A (ja) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd 表示装置
JP2010157421A (ja) * 2008-12-26 2010-07-15 Panasonic Electric Works Co Ltd 有機el発光装置
EP2403316A1 (en) * 2009-02-24 2012-01-04 Sumitomo Chemical Company, Limited Substrate and organic el device
CN102326447A (zh) * 2009-02-24 2012-01-18 住友化学株式会社 基板和有机el发光装置
EP2403316A4 (en) * 2009-02-24 2013-05-01 Sumitomo Chemical Co SUBSTRATE AND ORGANIC EL DEVICE
WO2010134419A1 (ja) * 2009-05-20 2010-11-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、それを用いた照明装置
JP2011054407A (ja) * 2009-09-01 2011-03-17 Panasonic Electric Works Co Ltd 有機発光素子
US8519610B2 (en) 2009-09-01 2013-08-27 Panasonic Corporation Organic luminescent element
CN111092168A (zh) * 2019-12-25 2020-05-01 上海视欧光电科技有限公司 一种显示面板及显示装置
CN111092168B (zh) * 2019-12-25 2022-11-18 视涯科技股份有限公司 一种显示面板及显示装置
US11616213B2 (en) 2019-12-25 2023-03-28 Seeya Optronics Co., Ltd. Display panel and display device having light extraction structure

Similar Documents

Publication Publication Date Title
JP2007280699A (ja) 発光デバイス
JP2010212204A (ja) El素子、表示装置、ディスプレイ装置及び液晶ディスプレイ装置
JP2009110873A (ja) 表示装置
KR101968769B1 (ko) 유기 발광 소자(oleds)를 위한 광 추출 필름
JP2010266829A (ja) 光学部材およびこれを用いたデバイス
CN101048685A (zh) 用于集成光学的平面透镜
Zhang et al. Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes
CN1877370A (zh) 光学片、背光灯组件、电光学装置及电子机器以及光学片的制造方法
JP6878285B2 (ja) 光抽出層の製造方法、発光ダイオード表示装置及び発光ダイオード表示基板
CN114335382A (zh) 显示模组及其制备方法
JP5131166B2 (ja) El素子
US7745840B2 (en) Solide-state light source
KR20170066281A (ko) 광-발생원들을 이용한 광 확산
JP2009146654A (ja) 面光源装置及びその製造方法
KR20180013992A (ko) 유기 el 소자
JP6413266B2 (ja) El素子、照明装置、ディスプレイ装置、液晶ディスプレイ装置、およびel素子の製造方法
JP2004198536A (ja) レンズアレイシート及び成形方法
JP2010176928A (ja) 有機el発光装置
CN113015384A (zh) 壳体组件及电子设备
JP4393788B2 (ja) エレクトロルミネッセンス素子、面光源および表示装置
JP2010218839A (ja) El素子、液晶ディスプレイ用バックライト装置、照明装置、電子看板装置、ディスプレイ装置及び光取り出しフィルム
JP2010123322A (ja) 面光源素子およびそれを備えた表示装置
KR101363473B1 (ko) 무반사 나노구조층을 구비하는 고분자 렌즈 및 이의 제조 방법
JP2011082032A (ja) 飛散防止シート及びこれを備えたel素子、並びにこのel素子を発光源として備えたel発光装置
JP5985396B2 (ja) 面光源素子及びそれを備えた照明装置