JP2007279021A - Optical defect inspection device - Google Patents

Optical defect inspection device Download PDF

Info

Publication number
JP2007279021A
JP2007279021A JP2007053223A JP2007053223A JP2007279021A JP 2007279021 A JP2007279021 A JP 2007279021A JP 2007053223 A JP2007053223 A JP 2007053223A JP 2007053223 A JP2007053223 A JP 2007053223A JP 2007279021 A JP2007279021 A JP 2007279021A
Authority
JP
Japan
Prior art keywords
plane mirror
reflecting mirror
mirror
laser beam
defect inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
JP2007053223A
Other languages
Japanese (ja)
Inventor
Noriyuki Aizawa
則之 会沢
Hiroyuki Kawakami
浩幸 河上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007053223A priority Critical patent/JP2007279021A/en
Publication of JP2007279021A publication Critical patent/JP2007279021A/en
Revoked legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein the surfaces of plane mirrors are deteriorated and reflectances thereof become low and cannot secure sufficient luminous energy, when the same portions of the first plane mirror and the second plane mirror are irradiated with a thin beam of high irradiation density over a long time, in case of using a laser beam as a light source, and to prolong the service life of the each plane mirror, without having to change the optical axis itself. <P>SOLUTION: A path of the laser beam L1, emitted from the laser light source, is deflected by the first and second plane mirrors 4a, 4b to be made incident into a beam expander 5. The surfaces are deteriorated, with the irradiation of the laser beam L1 in the first and second plane mirrors 4a, 4b, to make the reflectances get worse. This optical defect inspection device is formed into structure, capable of rotating specular faces on faces including the respective first and second plane mirrors 4a, 4b, or a structure capable rather than not of rotating but moving the specular faces in parallel, at positions on the first and second plane mirrors 4a, 4b irradiated with the laser beam L1, in order not to bring the luminous energy incident into the expander 5 into a reference value or smaller by the reduction in the reflectance in the each, and in order not to change the optical axis itself, when the irradiation of the laser beam L1 exceeds a fixed time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被検査物の検査装置及び検査方法に関する。例えば、半導体デバイスやフラットパネルディスプレイ、及び磁気ディスクやマスクの製造工程における被検査物の異物や欠陥等を検査する欠陥検査装置及び欠陥検査方法に適している。   The present invention relates to an inspection apparatus and inspection method for an inspection object. For example, it is suitable for a defect inspection apparatus and a defect inspection method for inspecting foreign matters, defects, and the like of an inspection object in a manufacturing process of a semiconductor device, a flat panel display, a magnetic disk, and a mask.

例えば、半導体デバイスやフラットパネルディスプレイパネルなどの被検査物に光を照射し、反射または散乱された光を検出して、それら被検査物上の欠陥を検出する光学式欠陥検査装置では、より微細な欠陥を検出するためには、より輝度の高い光源を用いる必要がある。そのため、レーザ光を光源として用いることが主流となっている。   For example, an optical defect inspection apparatus that irradiates an inspection object such as a semiconductor device or a flat panel display panel, detects reflected or scattered light, and detects defects on the inspection object. In order to detect a simple defect, it is necessary to use a light source with higher brightness. Therefore, the use of laser light as a light source has become the mainstream.

レーザ光を光源にした場合、光量を調整するNDフィルタまでは、NDフィルタ機構が大きくなることを避けるため、細く照射密度が高いビームを使用せざるを得ない。また、装置レイアウトの自由度を確保するため、通常は照射密度が高い細いビームを、反射鏡(例えば、平面鏡)を用いて装置筺体内で複数回反射させる構成をとっている。この場合、レーザ光が長時間、反射鏡の同じ位置に照射されると、照射部位の鏡表面が劣化し、反射率が落ち必要な照明強度が保てなくなるという課題が発生する。   When laser light is used as a light source, a thin beam having a high irradiation density must be used to avoid an increase in the ND filter mechanism up to the ND filter that adjusts the light amount. Further, in order to ensure the degree of freedom of the device layout, a configuration is generally adopted in which a thin beam having a high irradiation density is reflected a plurality of times in the device housing using a reflecting mirror (for example, a plane mirror). In this case, when the laser beam is irradiated to the same position of the reflecting mirror for a long time, the mirror surface of the irradiated part is deteriorated, and the problem arises that the reflectance decreases and the necessary illumination intensity cannot be maintained.

反射率が落ちてしまった場合は、反射鏡の交換が必要となる。交換後には、若干の光軸のずれの発生は避けられない。この光軸のずれを補正するため、特許文献1には平面鏡(反射鏡)の角度を変える機構を備えることが開示されている。   If the reflectivity drops, it is necessary to replace the reflector. After the replacement, a slight deviation of the optical axis is inevitable. In order to correct this optical axis shift, Patent Document 1 discloses that a mechanism for changing the angle of a plane mirror (reflecting mirror) is provided.

特開2004−45111号公報JP 2004-45111 A

従来の装置では、煩雑な光軸調整を避けるため反射鏡上の同一点にレーザ光が照射されるように構成されていた。しかし、反射率が低下する毎に反射鏡を交換するのはコスト的に問題がある。交換をさけるため、反射鏡上のレーザ照射点を変えることは従来の装置では容易ではなかった。   The conventional apparatus is configured such that the laser beam is irradiated to the same point on the reflecting mirror in order to avoid complicated optical axis adjustment. However, it is problematic in terms of cost to replace the reflecting mirror every time the reflectance decreases. In order to avoid the replacement, it is not easy for the conventional apparatus to change the laser irradiation point on the reflecting mirror.

本発明はレーザ光を光源として用いた場合、照射密度が高い細いビームが第一反射鏡及び第二反射鏡の同じ個所に長時間照射されると反射鏡の表面が劣化、反射率が低下し十分な光量が確保出来ないことに鑑み、光軸自体を変えないで、反射鏡の長寿命化を行うことを目的とする。   In the present invention, when a laser beam is used as a light source, if a thin beam having a high irradiation density is irradiated to the same part of the first reflecting mirror and the second reflecting mirror for a long time, the surface of the reflecting mirror deteriorates and the reflectance decreases. In view of the fact that a sufficient amount of light cannot be secured, the object is to extend the life of the reflecting mirror without changing the optical axis itself.

上記目的を解決する為に、ビームを折り返す第一反射鏡及び第二反射鏡上のビーム照射位置を、光軸自体が変わらない様、反射鏡を含むその面上にて、反射鏡を回転,平行移動、あるいはその両方を行い反射鏡上の反射位置を変更して反射率が低下していない箇所を使用する機構を設置したものである。また、それら機構は反射鏡の前後にて計測された照射強度を元に、手動、自動、あるいは予めプログラミングされた手順にて行う事ができる。
本発明の一つの特徴は、レーザ源と、該レーザ源から出射したビームを予め定められた角度で折り返す第一の反射鏡と、該第一の反射鏡で折り返されたビームを再度折り返して前記レーザ源から出射されたビームに対し予め定められた方向に進行するビームを生じさせる第二の反射鏡上と、からなるビーム偏向機構を備えた表面検査装置であって、前記第一の反射鏡上、前記第二の反射鏡上の少なくとも1つを、そのレーザ光の入射角及び反射角を維持したまま、移動させる反射鏡移動機構を備えたことである。
本発明の他の特徴は、前記第一の反射鏡の予め定められたレーザ光の折り返し角度、または前記第二の反射鏡の予め定められたレーザ光の折り返し角度の少なくとも一方は、略90度であり、前記反射鏡移動機構は、移動させる反射鏡を反射面にほぼ平行に移動させる機構を備えたことである。
本発明のさらに他の特徴は、前記該第一の反射鏡の予め定められたレーザ光の折り返し角度、または前記第二の反射鏡の予め定められたレーザ光の折り返し角度の少なくとも一方は、略90度であり、前記反射鏡移動機構は、前記第一の反射鏡または前記第二の反射鏡を、鏡面に対しほぼ平行を維持したまま回転させる機構を備えたことである。
本発明のさらに他の特徴は、前記反射鏡移動機構は、更に鏡面に対しほぼ平行を維持したまま直線移動させる機構を併せ持つことである。
本発明のさらに他の特徴は、前記第一の反射鏡、または前記第二の反射鏡の少なくともいずれかから反射されたレーザ光の光強度を測定する光強度測定機構を備えたことである。
In order to solve the above object, the beam irradiation position on the first reflecting mirror and the second reflecting mirror for folding the beam is rotated on the surface including the reflecting mirror so that the optical axis itself does not change. A mechanism that uses a portion where the reflectance is not lowered by changing the reflection position on the reflecting mirror by performing parallel movement or both is installed. These mechanisms can be performed manually, automatically, or in a preprogrammed procedure based on the irradiation intensity measured before and after the reflecting mirror.
One feature of the present invention is that the laser source, the first reflecting mirror that folds the beam emitted from the laser source at a predetermined angle, and the beam folded by the first reflecting mirror are folded again to A surface inspection apparatus having a beam deflection mechanism comprising: a second reflecting mirror that generates a beam traveling in a predetermined direction with respect to a beam emitted from a laser source, wherein the first reflecting mirror is provided. In addition, a reflecting mirror moving mechanism for moving at least one of the second reflecting mirrors while maintaining the incident angle and the reflecting angle of the laser beam is provided.
Another feature of the present invention is that at least one of the predetermined folding angle of the laser beam of the first reflecting mirror or the predetermined folding angle of the laser beam of the second reflecting mirror is approximately 90 degrees. The reflecting mirror moving mechanism includes a mechanism for moving the reflecting mirror to be moved substantially parallel to the reflecting surface.
Still another feature of the present invention is that at least one of the predetermined folding angle of the laser beam of the first reflecting mirror or the predetermined folding angle of the laser beam of the second reflecting mirror is substantially The reflecting mirror moving mechanism includes a mechanism for rotating the first reflecting mirror or the second reflecting mirror while maintaining substantially parallel to the mirror surface.
Still another feature of the present invention is that the reflecting mirror moving mechanism further includes a mechanism for linearly moving while maintaining substantially parallel to the mirror surface.
Still another feature of the present invention is that a light intensity measuring mechanism for measuring the light intensity of the laser beam reflected from at least one of the first reflecting mirror and the second reflecting mirror is provided.

本発明の反射鏡に光軸が変位しない平行移動機構や回転機構を備えることで、部品交換頻度を低減できる他、反射鏡(例えば、平面鏡)の光軸補正が不要になる。   By providing the reflecting mirror of the present invention with a translation mechanism and a rotating mechanism that do not displace the optical axis, the frequency of component replacement can be reduced, and optical axis correction of the reflecting mirror (for example, a plane mirror) becomes unnecessary.

本発明の欠陥検査装置は、反射鏡(例えば、平面鏡)の光軸を変位させない平行移動機構や回転機構を備えることで、反射鏡(例えば、平面鏡)の劣化に伴う光量の低下などの変動を抑えることを実現している。   The defect inspection apparatus of the present invention includes a parallel movement mechanism and a rotation mechanism that do not displace the optical axis of a reflecting mirror (for example, a plane mirror), so that fluctuations such as a decrease in light amount due to deterioration of the reflecting mirror (for example, a plane mirror) can be achieved. It is realized to suppress.

図1は、本発明装置の1実施例である。可視レーザ光や紫外レーザ光などの照明光を発生させるレーザ光源3、発振したレーザ光L1の進路方向を偏向する第一の平面鏡4aと第二の平面鏡4b等の複数の平面鏡(反射鏡)から構成されるビーム偏向機構4、光量を調節するNDフィルタ6、ビーム径を調節するエキスパンダ5、レーザ光L1を分岐するビームスプリッタ30、分岐した一方のレーザ光L1をビーム形状を整えて被検査物2表面に照射する対物レンズ11、分岐したもう一方のレーザ光L1を撮像するビームプロファイル観察カメラ31、装置全体を制御するホストコンピュータ71などから構成されている。
第一の平面鏡4aは、レーザ光L1を予め定められた角度で折返すように配設され、第二の平面鏡4bは、折返したレーザ光L1を予め定められた角度で再度折返し、レーザ光源3の出射方向に対して、予め定められた方向へレーザ光L1が進行するように構成されている。本実施例では、このレーザ光L1の折返し角度を、ともにほぼ90°で構成しており、レーザ光源3と光学素子等の段違い配置を可能とすることで、例えば光学系の調整やレーザ光源3の寿命による交換などのメンテナンス性を向上している。
この2つのレーザ光L1の折返し角度は、ほぼ90°と設定することに限定されるものではなく、少なくとも一方がほぼ90°であれば足りる。また、レーザ光L1の折返し角度が90°以外であれば、複数の平面鏡を交互に配置して、照射と反射のレーザ光L1を捕捉し合うように構成しても良い。平面鏡の角度は略平行であっても、途中の平面鏡の角度を変えても、予め定められた進路方向へ偏向できる構成であれば良い。
FIG. 1 shows an embodiment of the apparatus of the present invention. From a laser light source 3 that generates illumination light such as visible laser light and ultraviolet laser light, and a plurality of plane mirrors (reflecting mirrors) such as a first plane mirror 4a and a second plane mirror 4b that deflect the path of the oscillated laser beam L1. The configured beam deflection mechanism 4, the ND filter 6 for adjusting the amount of light, the expander 5 for adjusting the beam diameter, the beam splitter 30 for branching the laser beam L1, and the one of the branched laser beams L1 with the beam shape adjusted to be inspected It comprises an objective lens 11 that irradiates the surface of the object 2, a beam profile observation camera 31 that images the other branched laser beam L1, a host computer 71 that controls the entire apparatus, and the like.
The first plane mirror 4a is disposed so as to fold the laser beam L1 at a predetermined angle, and the second plane mirror 4b folds the folded laser beam L1 again at a predetermined angle, so that the laser light source 3 The laser beam L1 is configured to travel in a predetermined direction with respect to the emission direction. In this embodiment, the turning angles of the laser light L1 are both approximately 90 °, and the laser light source 3 and the optical element can be arranged in a different manner, for example, adjustment of the optical system or the laser light source 3 Maintenance such as replacement due to the service life of the product has been improved.
The folding angle of the two laser beams L1 is not limited to being set to approximately 90 °, and it is sufficient that at least one of them is approximately 90 °. Further, if the turning angle of the laser beam L1 is other than 90 °, a plurality of plane mirrors may be alternately arranged to capture the irradiation and reflection laser beam L1. Even if the angle of the plane mirror is substantially parallel or the angle of the plane mirror in the middle is changed, any configuration that can deflect in a predetermined course direction may be used.

レーザ光源3から発振したレーザ光L1は、第一の平面鏡4aで略90°変更され進路方向を下方に偏向し、第二の平面鏡4bによって更に略90°変更され、その進路方向を水平方向へ偏向する。軌道が偏向されたレーザ光L1は、NDフィルタ6で光量調節された後、ビームエキスパンダ5に入光し、ビーム径が調整される。
この第一平面鏡4aと第二平面鏡4bは平面鏡移動機構制御部41によって制御され、各平面鏡に対応した平面鏡移動機構40aと平面鏡移動機構40bにより、入射角及び反射角を維持した状態で、レーザ光L1の照射部位を移動できる。すなわち、レーザ光L1が照射される平面鏡4a及び平面鏡4bの照射部位を、光軸を変位させずに変更可能となっている。また、NDフィルタ6の光量調節はNDフィルタ可動機構61を介して、NDフィルタ可動機構制御部60によって制御され、ビームエキスパンダ5のビーム径調整はビームエキスパンダ調節機構50を介して、ビームエキスパンダ調節機構制御部51によって制御される。
次いで各種の光学素子を通過して偏光状態やビーム径などのビーム状態が制御されたレーザ光L1は、ビームスプリッタ30により2つに分岐される。分岐された一方のレーザ光L1は、いくつかの光学素子を通過してビームの形状や状態が整えられ、対物レンズ11を介して被検査物2表面に照射される。分岐された他方のレーザ光L1は、ビームプロファイル観察カメラ31により撮像され、レーザ光L1のビームの位置及びビーム内の照度分布がモニタ70に表示される。
ホストコンピュータ71は、キーボードやマウスなどの入力装置(図省略)の指令を基に、平面鏡移動機構制御部41、NDフィルタ可動機構制御部60、ビームエキスパンダ調節機構制御部51などの間でデータを送受信し、それらに対応した平面鏡移動機構40a、40b、NDフィルタ可動機構61、ビームエキスパンダ調節機構50などの機構部を駆動して、レーザ光L1のビーム状態を制御する。また、各種の設定条件の設定登録や検査結果及び検査装置の動作状態などをモニタ70に表示し、更には出力装置(図示せず)へ当該情報を出力するなど、欠陥検査装置全体の制御を行う。
The laser light L1 oscillated from the laser light source 3 is changed by about 90 ° by the first plane mirror 4a and deflected downward in the course direction, and further changed by about 90 ° by the second plane mirror 4b, and the course direction is changed to the horizontal direction. To deflect. The laser light L1 whose trajectory is deflected is adjusted in light quantity by the ND filter 6, and then enters the beam expander 5 to adjust the beam diameter.
The first plane mirror 4a and the second plane mirror 4b are controlled by the plane mirror moving mechanism control unit 41, and the laser beam is maintained while maintaining the incident angle and the reflection angle by the plane mirror moving mechanism 40a and the plane mirror moving mechanism 40b corresponding to each plane mirror. The irradiation site of L1 can be moved. That is, the irradiated portions of the plane mirror 4a and the plane mirror 4b irradiated with the laser beam L1 can be changed without displacing the optical axis. The light amount adjustment of the ND filter 6 is controlled by the ND filter moving mechanism control unit 60 via the ND filter moving mechanism 61, and the beam diameter adjustment of the beam expander 5 is adjusted via the beam expander adjusting mechanism 50. It is controlled by the panda adjustment mechanism control unit 51.
Next, the laser light L1 that has passed through various optical elements and whose beam state such as the polarization state and the beam diameter is controlled is branched into two by the beam splitter 30. One of the branched laser beams L1 passes through several optical elements to adjust the shape and state of the beam, and is irradiated onto the surface of the inspection object 2 through the objective lens 11. The other branched laser beam L1 is imaged by the beam profile observation camera 31, and the position of the beam of the laser beam L1 and the illuminance distribution in the beam are displayed on the monitor.
The host computer 71 receives data between the plane mirror movement mechanism control unit 41, the ND filter movable mechanism control unit 60, the beam expander adjustment mechanism control unit 51, and the like based on commands from an input device (not shown) such as a keyboard and a mouse. , And the mechanism parts such as the plane mirror moving mechanisms 40a and 40b, the ND filter movable mechanism 61, and the beam expander adjusting mechanism 50 corresponding to them are driven to control the beam state of the laser light L1. In addition, control of the entire defect inspection apparatus such as setting registration of various setting conditions, inspection results, the operation state of the inspection apparatus, etc. are displayed on the monitor 70, and further the information is output to an output device (not shown) Do.

図2は平面鏡移動機構40aの概略構成を示したものである。平面鏡移動機構40bは、同じ構成であるため、平面鏡移動機構40aを代表として示している。
平面鏡移動機構40aは、平面鏡4aを固定させるステージ45aと、平面鏡4aの反射面を略平行に移動させる進退駆動機構(直線駆動機構)42aと、反射面に対して略平行を維持した状態で平面鏡4aを回転させる回転駆動機構43aと、反射面の角度を補正する角度補正機構46aと、レーザ光源3と平面鏡4a、または平面鏡4a、4b間の距離を補正する距離補正機構47aによって構成される。進退駆動機構42a、回転駆動機構43a、角度補正機構46a、距離補正機構47aのそれぞれには、位置検出装置(図省略)が配設されている。
平面鏡移動機構制御部41は、位置検出装置(図省略)からの信号に基づき、平面鏡4aの位置座標を算出し、ホストコンピュータ71が指示する位置座標へ、進退駆動機構42aと回転駆動機構43aを介して制御する。なお、この位置座標の算出は、ホストコンピュータ71が行うようにしても良い。ステージ45aに固定された平面鏡4aは、例えば、レーザ光L1が照射される始点を平面鏡4aの略中心として、回転駆動機構43aの回転と進退駆動機構42aの一軸方向の移動により位置座標が変更される。よって、レーザ光L1の照射部位は、光軸の状態を維持しながら平面鏡4aの反射面を螺旋状、渦巻き状若しくは円状に相対的に移動し、反射面の使用可能領域を拡大する。この使用可能領域は、進退駆動機構42aの移動ピッチによって制御され、平面鏡4aの寿命が飛躍的に向上する。また、位置検出装置を備えることにより、照射部位の座標を正確に捉えることが可能となり、過去の検査状態の復元や、平面鏡4a内の良好な反射面を探索し、選択することができる。さらに、角度補正機構46aと距離補正機構47aを備えることで、平面鏡4aの取り付け精度や、厚さ、平行度、表面のたわみなどの個体差を吸収し、部品交換の際の光軸補正を容易(自動化)にするとともに、安定した光軸状態を保持できる。
FIG. 2 shows a schematic configuration of the plane mirror moving mechanism 40a. Since the plane mirror moving mechanism 40b has the same configuration, the plane mirror moving mechanism 40a is shown as a representative.
The plane mirror moving mechanism 40a includes a stage 45a for fixing the plane mirror 4a, an advancing / retreating drive mechanism (linear drive mechanism) 42a for moving the reflecting surface of the plane mirror 4a substantially in parallel, and a plane mirror while maintaining substantially parallel to the reflecting surface. The rotation drive mechanism 43a that rotates 4a, the angle correction mechanism 46a that corrects the angle of the reflecting surface, and the distance correction mechanism 47a that corrects the distance between the laser light source 3 and the plane mirror 4a or the plane mirrors 4a and 4b. Each of the advance / retreat drive mechanism 42a, the rotation drive mechanism 43a, the angle correction mechanism 46a, and the distance correction mechanism 47a is provided with a position detection device (not shown).
The plane mirror moving mechanism control unit 41 calculates the position coordinates of the plane mirror 4a based on a signal from a position detection device (not shown), and moves the advance / retreat drive mechanism 42a and the rotation drive mechanism 43a to the position coordinates indicated by the host computer 71. Control through. The calculation of the position coordinates may be performed by the host computer 71. The position of the plane mirror 4a fixed to the stage 45a is changed by rotating the rotation drive mechanism 43a and moving in one axial direction of the advance / retreat drive mechanism 42a with the start point irradiated with the laser light L1 as the approximate center of the plane mirror 4a. The Therefore, the irradiation part of the laser beam L1 moves relative to the reflection surface of the plane mirror 4a in a spiral shape, a spiral shape, or a circle shape while maintaining the state of the optical axis, and enlarges the usable area of the reflection surface. This usable area is controlled by the movement pitch of the advance / retreat drive mechanism 42a, and the life of the plane mirror 4a is dramatically improved. Further, by providing the position detection device, it is possible to accurately capture the coordinates of the irradiated region, and it is possible to restore the past examination state and to search and select a good reflection surface in the plane mirror 4a. Furthermore, by providing the angle correction mechanism 46a and the distance correction mechanism 47a, it is possible to absorb individual differences such as the mounting accuracy of the flat mirror 4a, thickness, parallelism, and surface deflection, and to easily correct the optical axis when replacing parts. (Automation) and stable optical axis state can be maintained.

本実施例では、平面鏡4aの使用効率が高く、高精度に光軸を保持する平面鏡移動機構40aを示しているが、平面鏡4aの反射面を略平行に移動させる移動機構だけで構成しても良い。また、平面鏡4aの反射面に対して略平行を維持した状態で平面鏡4aを回転させる移動機構だけで構成しても良い。本実施例よりは使用効率は劣るものの、平面鏡移動機構40aのサイズや製造コストを低減できる利点がある。また、進退駆動機構42a及び回転駆動機構43aに配設される位置検出装置は、過去の検査条件の復元や良好な反射面を選択する上では必要であるが、反射面の使用領域を拡大する上では不可欠な機構ではない。歯車やベルトなどで構成された当業者周知の機構を用いて、照射部位を所定量毎に移動する簡素な移動機構を用いても良い。   In the present embodiment, the plane mirror moving mechanism 40a is shown in which the use efficiency of the plane mirror 4a is high and the optical axis is held with high precision. However, the plane mirror 4a may be configured only by a moving mechanism that moves the reflecting surface of the plane mirror 4a substantially in parallel. good. Moreover, you may comprise only the moving mechanism which rotates the plane mirror 4a in the state which maintained substantially parallel with respect to the reflective surface of the plane mirror 4a. Although use efficiency is inferior to the present embodiment, there is an advantage that the size and manufacturing cost of the plane mirror moving mechanism 40a can be reduced. Further, the position detection device disposed in the advance / retreat drive mechanism 42a and the rotation drive mechanism 43a is necessary for restoring past inspection conditions and selecting a good reflection surface, but expands the use area of the reflection surface. Above is not an indispensable mechanism. A simple movement mechanism that moves the irradiation site by a predetermined amount may be used by using a mechanism known to those skilled in the art that is configured by a gear, a belt, or the like.

この第一の平面鏡4aと第二の平面鏡4bは、レーザ光L1が照射されていると表面が劣化し、反射率が低下する。この低下によりビームエキスパンダ5に入光される光量が基準値以下とならないように、例えばレーザ光L1の照射が一定時間を越えたところで、光軸自体が変わらない様に、平面鏡移動機構40aと平面鏡移動機構40bを駆動して、レーザ光源3から出射されたレーザ光L1が照射される第一の平面鏡4a上及び第二の平面鏡4b上の位置を変更する。または、光量の変化を監視しながら、予め記録した閾値以下となった時点で、ホストコンピュータ71が平面鏡移動機構制御部41を制御して、照射部位を変更してもよい。
上述のように、ビーム偏向機構4の各平面鏡の鏡面を回転させられる構造、または鏡面を平行移動させられる構造、さらにはそのどちらも備えた構造とすることにより、平面鏡の交換頻度を飛躍的に低減できる他、光軸調整が不要となる。さらには、部品交換に伴う光学機構部への塵埃の混入が抑えられ、光学機構部に起因した異物増加を抑制できる。
When the first plane mirror 4a and the second plane mirror 4b are irradiated with the laser light L1, the surfaces are deteriorated and the reflectance is lowered. In order to prevent the amount of light entering the beam expander 5 from falling below the reference value due to this decrease, for example, when the irradiation with the laser light L1 exceeds a certain time, the plane mirror moving mechanism 40a The plane mirror moving mechanism 40b is driven to change the positions on the first plane mirror 4a and the second plane mirror 4b to which the laser light L1 emitted from the laser light source 3 is irradiated. Alternatively, the host computer 71 may control the plane mirror moving mechanism control unit 41 to change the irradiation site at a time when the light intensity becomes equal to or less than a pre-recorded threshold while monitoring the change in the amount of light.
As described above, the structure in which the mirror surface of each plane mirror of the beam deflection mechanism 4 can be rotated, the structure in which the mirror surface can be moved in parallel, or a structure provided with both of them can dramatically increase the frequency of replacement of the plane mirror. In addition to reduction, optical axis adjustment is not necessary. In addition, dust can be prevented from being mixed into the optical mechanism part due to component replacement, and an increase in foreign matter caused by the optical mechanism part can be suppressed.

図3はその具体的一実用例である。レーザ光源3と光軸が変わることなく回転、平行移動することが出来る第一の平面鏡4a間に、光量を計測出来る前段光量モニタ13を配置する(第一の光強度測定手段)。また、光軸が変わることなく回転、平行移動することが出来る第二の平面鏡4bの後段に、反射光の光量を測定する後段光量モニタ14を配置する(第二の光強度測定手段)。本実施例では、第一の平面鏡4a及び第二の平面鏡4b表面の合算した劣化量を計測しているが、劣化の度合いは略同等に進行するため、少なくとも何れか一方の反射光を計測すれば良い。例えば、第一の平面鏡4aと第二の平面鏡4bとの間に第二の光量測定手段を配置しても、同様の機能を得ることができる。また、照射部位の移動によっても光量の変化を生じなければ、レーザ光源3の化と判別できるため、光強度測定手段を後段光量モニタ14だけで構成し、レーザ光源3の劣化と劣第一の平面鏡4a及び第二の平面鏡4b劣化を合算して計測してもよい。のこの前段光量モニタ13と後段光量モニタ14からなる複数の光強度測定機構は、それぞれに対応した前段光量モニタ駆動機構(図省略)と後段光量モニタ駆動機構(図省略)により、光量測定時のみ光軸上に移動し、被検査物2の欠陥を検査する際には、光軸上から外される。   FIG. 3 shows one specific practical example. Between the laser light source 3 and the first plane mirror 4a which can be rotated and translated without changing the optical axis, a pre-stage light quantity monitor 13 capable of measuring the light quantity is arranged (first light intensity measuring means). Further, a post-stage light quantity monitor 14 for measuring the quantity of reflected light is disposed after the second plane mirror 4b that can be rotated and translated without changing the optical axis (second light intensity measuring means). In the present embodiment, the total deterioration amount of the surfaces of the first plane mirror 4a and the second plane mirror 4b is measured. However, since the degree of deterioration progresses substantially equally, at least one of the reflected lights can be measured. It ’s fine. For example, the same function can be obtained even if the second light quantity measuring means is arranged between the first plane mirror 4a and the second plane mirror 4b. Further, if the amount of light does not change due to the movement of the irradiated part, it can be determined that the laser light source 3 has been changed. You may add and measure degradation of the plane mirror 4a and the 2nd plane mirror 4b. The plurality of light intensity measuring mechanisms including the front-stage light quantity monitor 13 and the rear-stage light quantity monitor 14 can be used only when measuring the light quantity by the corresponding front-stage light quantity monitor drive mechanism (not shown) and rear-stage light quantity monitor drive mechanism (not shown). When moving on the optical axis and inspecting the defect of the inspection object 2, it is removed from the optical axis.

レーザ光源3から発振したレーザ光L1の初期光量は、前段光量モニタ13で計測され、電気信号(アナログ信号)に変えて第一のA/D変換器22aに入力される。第一の平面鏡4aと第二の平面鏡4bでの反射によって減衰したレーザ光L1は、後段光量モニタ14で計測され、電気信号(アナログ信号)に変えて第二のA/D変換器22bに入力される。前段光量モニタ13と後段光量モニタ14で計測されたレーザ光L1のそれぞれの光量は、モニタ70に表示される。ビーム偏向機構4での光量の減衰の他、レーザ光源3の劣化状態を確認できるようになっている。   The initial light amount of the laser light L1 oscillated from the laser light source 3 is measured by the front light amount monitor 13, and is input to the first A / D converter 22a instead of an electric signal (analog signal). The laser light L1 attenuated by the reflection at the first plane mirror 4a and the second plane mirror 4b is measured by the post-stage light amount monitor 14, and is converted into an electric signal (analog signal) and input to the second A / D converter 22b. Is done. The respective light amounts of the laser light L1 measured by the front light amount monitor 13 and the rear light amount monitor 14 are displayed on the monitor 70. In addition to the attenuation of the amount of light by the beam deflection mechanism 4, the deterioration state of the laser light source 3 can be confirmed.

第一のA/D変換器22aと第二のA/D変換器22bに入力されたアナログ信号は、ここでデジタル信号に変換されて比較器23へ入力される。レーザ光L1の初期光量である第一のA/D変換器22aからの信号と、ビーム偏向機構4で減衰したレーザ光L1である第二のA/D変換器22bからの信号に基づき、第一の平面鏡4aと第二の平面鏡4bの劣化量を比較器23で計算し、CPU24へデータを送信する。当該劣化量は、CPU24を介してモニタ70に表示される。   The analog signals input to the first A / D converter 22 a and the second A / D converter 22 b are converted into digital signals here and input to the comparator 23. Based on the signal from the first A / D converter 22a, which is the initial light amount of the laser light L1, and the signal from the second A / D converter 22b, which is the laser light L1 attenuated by the beam deflection mechanism 4, The amount of deterioration of the one plane mirror 4 a and the second plane mirror 4 b is calculated by the comparator 23, and data is transmitted to the CPU 24. The deterioration amount is displayed on the monitor 70 via the CPU 24.

記録装置25には劣化量の基準となる閾値が、入力装置(図省略)を通じて予め記憶されている。CPU24は比較器23で計算した劣化量と比較し、当該閾値を超えた時点で、第一の平面鏡4aと第二の平面鏡4bの照射部位の移動を促す警告をモニタ70に表示する(平面鏡の警告表示手段)。また、レーザ光源3の劣化状態が所定値を超えた場合も同様に、レーザ光源3の交換を促す警告が表示される(レーザ光源の警告表示手段)。   The recording device 25 stores in advance a threshold value that serves as a reference for the deterioration amount through an input device (not shown). The CPU 24 compares the amount of deterioration calculated by the comparator 23, and when the threshold value is exceeded, displays a warning on the monitor 70 prompting the movement of the irradiated portions of the first plane mirror 4a and the second plane mirror 4b (on the plane mirror). Warning display means). Similarly, when the deterioration state of the laser light source 3 exceeds a predetermined value, a warning prompting replacement of the laser light source 3 is displayed (laser light source warning display means).

上記において設置された前段光量モニタ13、後段光量モニタ14は、アライメント開始前または開始時に実行できるように表示画面に選択機能を表示させる。   The front-stage light quantity monitor 13 and the rear-stage light quantity monitor 14 installed in the above display a selection function on the display screen so that it can be executed before or at the start of alignment.

上記において設置された前段光量モニタ13、後段光量モニタ14の計測開始は、メンテナンス用画面上に表示されたボタンまたはアイコンによって実行出来る。   The measurement start of the front-stage light quantity monitor 13 and the rear-stage light quantity monitor 14 installed in the above can be executed by a button or an icon displayed on the maintenance screen.

上記においてモニタ70への表示は、測定後ダイアログまたは、移動を実施するまで常時画面の一部に表示させ、移動実施を促す。   In the above, the display on the monitor 70 is always displayed on a part of the screen after the measurement or until the movement is performed, and the movement is promoted.

上記において寿命判断として、期限表示を行う。   In the above, the term display is performed as the life judgment.

平面鏡4a,4bを移動させるにあたり、移動距離を操作者が任意に設定し、動作させる。   When the plane mirrors 4a and 4b are moved, the operator arbitrarily sets the movement distance and operates it.

平面鏡4a,4bを移動させるにあたり、パラメータに設定されたピッチごとに動作させる。   When moving the plane mirrors 4a and 4b, the plane mirrors 4a and 4b are operated for each pitch set in the parameters.

平面鏡4a,4bを移動させるにあたり、自動で最適な光量になるように動作させる。   When the plane mirrors 4a and 4b are moved, the plane mirrors 4a and 4b are automatically operated so as to obtain an optimum light amount.

図4は本一実施例の設定画面を示したものである。診断条件設定手段80は、モニタ70上に表示されるメンテナンス用の設定画面の中に組込まれている。特に限定されるものではなく、メイン画面に設けたボタンやアイコンで当該画面を表示させるようにしても良い。診断条件設定手段80は、光強度を測定する時点を設定する計測タイミング設定手段81と、診断の採否および劣化判断の基準を設定する診断条件設定手段82と、第一の平面鏡4aと第二の平面鏡4bの移動条件を設定する移動条件設定手段83と、平面鏡を移動した際にレーザ光L1の光量を調節するか否かを設定する光量調節条件設定手段112によって構成される。   FIG. 4 shows the setting screen of this embodiment. The diagnosis condition setting means 80 is incorporated in a setting screen for maintenance displayed on the monitor 70. The screen is not particularly limited, and the screen may be displayed using buttons and icons provided on the main screen. The diagnosis condition setting means 80 includes a measurement timing setting means 81 for setting a time point at which the light intensity is measured, a diagnosis condition setting means 82 for setting a criterion for determining whether to accept or deteriorate the diagnosis, the first plane mirror 4a, and the second The moving condition setting unit 83 sets the moving condition of the plane mirror 4b, and the light amount adjustment condition setting unit 112 sets whether to adjust the light amount of the laser light L1 when the plane mirror is moved.

計測タイミング設定手段81は、被検査物2のアラメント処理の際に計測を実施させるアライメント時指示手段84と、基板搬送処理の際に計測を実施させる搬送時指示手段85と、定まった時間に計測を実施させる定時計測指示手段86を含んで構成される。アライメント時指示手段84は、計測の開始(始点)がアラメント処理の開始前か開始時、あるいは終了後かのステップを選択するアラメントステップ選択手段87を備えている。また、搬送時指示手段85は、計測の開始(始点)がカセットやフープ内の被検査物2をサーチする際か、被検査物2の搬入時か、あるいは搬出時かのステップを選択する搬送ステップ選択手段88を備えている。定時計測指示手段86では、計測の時刻を入力する1以上の時刻入力スペース89が配設され、計測する時刻を1以上選択できる時刻選択手段90を備えている。スペースへの計測時刻の入力は、図示しないキーボードやマウスなどの入力装置を介して入力可能となっている。計測を実施させるタイミングは、アラメント処理時や基板搬送処理時又は定時計測の何れか、若しくは複数の計測タイミングを選択可能となっている。   The measurement timing setting unit 81 includes an alignment time instruction unit 84 that performs measurement during the alignment process of the inspection object 2, a transfer time instruction unit 85 that performs measurement during the substrate transfer process, and a measurement at a predetermined time. It is comprised including the scheduled measurement instruction | indication means 86 which implements. The alignment time instruction means 84 includes an alignment step selection means 87 for selecting a step of whether the measurement start (starting point) is before the start of the alignment process, at the start of the alignment process, or after the completion. Further, the conveying time instruction means 85 selects the step of whether the measurement start (starting point) is to search the inspection object 2 in the cassette or the hoop, when the inspection object 2 is carried in, or when the inspection object 2 is carried out. Step selection means 88 is provided. The scheduled measurement instruction means 86 is provided with one or more time input spaces 89 for inputting measurement times, and includes time selection means 90 for selecting one or more measurement times. The measurement time can be input to the space via an input device such as a keyboard or a mouse (not shown). The timing at which the measurement is performed can be selected from among the alignment processing, the substrate transfer processing, the scheduled measurement, or a plurality of measurement timings.

診断条件設定手段82は、前段光量モニタ設定手段91と、後段光量モニタ設定手段92と、劣化基準設定手段93を含んで構成される。前段光量モニタ設定手段91は、前段光量モニタ13での光量測定の要否を指示する第一の光強度測定指示手段115と、光量の閾値を入力する第一の閾値入力スペース94を備えている。レーザ光L1の光量が、第一の閾値を満たさない場合には、レーザ光源3の劣化の警告と交換を促す表示がモニタ70上に表示される。後段光量モニタ設定手段92も同様に、第二の光強度測定指示手段95と、第二の閾値入力スペース96を備えている。劣化基準設定手段93を使用しない場合には、後段光量モニタ14の光量測定値と第二の閾値により、第一の平面鏡4aと第二の平面鏡4bの劣化診断を行っても良い。劣化基準設定手段93では、第一の平面鏡4aと第二の平面鏡4bの劣化診断をするか否かを指示する劣化診断指示手段97と、劣化判断の基準値を入力する第三の閾値入力スペース98を備えている。比較器23で計算した劣化量が、第三の閾値を満たさない場合には、第一の平面鏡4aと第二の平面鏡4bの劣化警告と照射部位の変更を促す表示がモニタ70上に表示される。   The diagnosis condition setting unit 82 includes a front-stage light amount monitor setting unit 91, a rear-stage light amount monitor setting unit 92, and a deterioration reference setting unit 93. The pre-stage light quantity monitor setting means 91 includes a first light intensity measurement instruction means 115 for instructing whether or not the light quantity measurement by the pre-stage light quantity monitor 13 is necessary, and a first threshold value input space 94 for inputting a light quantity threshold value. . When the light quantity of the laser light L1 does not satisfy the first threshold value, a warning of deterioration of the laser light source 3 and a display prompting replacement are displayed on the monitor 70. Similarly, the post-stage light intensity monitor setting unit 92 includes a second light intensity measurement instruction unit 95 and a second threshold value input space 96. When the deterioration reference setting means 93 is not used, deterioration diagnosis of the first plane mirror 4a and the second plane mirror 4b may be performed based on the light amount measurement value of the rear-stage light amount monitor 14 and the second threshold value. In the deterioration reference setting means 93, a deterioration diagnosis instructing means 97 for instructing whether or not to perform deterioration diagnosis of the first plane mirror 4a and the second plane mirror 4b, and a third threshold value input space for inputting a reference value for deterioration determination. 98. When the deterioration amount calculated by the comparator 23 does not satisfy the third threshold value, a deterioration warning for the first plane mirror 4a and the second plane mirror 4b and a display for prompting the change of the irradiated part are displayed on the monitor 70. The

移動条件設定手段83は、第一の平面鏡4a及び第二の平面鏡4bの移動距離を設定する移動距離設定手段99と、移動させる判断基準を設定する判断基準設定手段100を含んで構成される。移動距離設定手段99は、第一の平面鏡4aの移動様態を指定する移動様態指示手段101と、回転方向と直線方向のピッチを指定する移動角度指定手段102及び移動距離指定手段103を備えている。移動様態は、回転移動、平行移動、回転移動と平行移動の併用(螺旋移動)の3様態から選択可能となっており、移動角度指定手段102と移動距離指定手段103で指定したピッチに従い、第一の平面鏡4aが駆動される。第二の平面鏡4bも同様に構成される。判断基準設定手段100は、手動操作指示手段104と自動操作指示手段105を含んで構成される。
手動操作指示手段104は、移動距離設定手段99で指定された条件で第一の平面鏡4a及び第二の平面鏡4bを移動させる設定条件選定手段106と、オペレーターの指示に応じて移動させる任意条件選定手段107の2つの様態から選択可能となっている。設定条件選定手段106を選定した場合には、前記照射部位の変更警告がモニタ70上に表示された際に移動要否確認画面が表示され、必要(OK)のボタンをクリックすることで、第一の平面鏡4a及び第二の平面鏡4bが移動する。任意条件選定手段107の場合には、移動距離設定手段99と同様の設定画面が表示され、各移動ピッチの入力と画面上の移動指示手段のボタンをクリックすることで移動する。自動操作指示手段105は、指定された期限に基づいて自動的に移動させる定期移動指定手段108と劣化診断の結果に基づいて移動させる劣化診断結果指定手段109の2つの様態から選択可能となっている。自動操作モードにおいては、2つの様態ともに移動距離設定手段99の条件に基づいて、第一の平面鏡4a及び第二の平面鏡4bは移動される。定期移動指定手段108には、第一の平面鏡4a及び第二の平面鏡4bを移動させる期限指定手段110を備えている。本実施例では、この期限を先の移動からのレーザ光L1の累積実照射時間としている。特にこれに限定されるものではないが、先の移動からの経過時間や装置の定期診断の日、メンテナンスの日、検査開始数時間前など、暦やスケジュールに合せて設定してもよい。検査累積実照射時間が、期限指定手段110で指定した時間を超過した時点で、第一の平面鏡4a及び第二の平面鏡4bを移動する。累積実照射時間(経過時間)及び移動までの残り時間は、モニタ70上の一部に設けられた期限表示手段111により、常時表示される。また、劣化診断結果指定手段109にて診断結果で平面鏡を移動させる条件を選択した場合には、計測タイミング設定手段81と診断条件設定手段82の設定条件に基づいてCPU24が判断し、移動距離設定手段99に設定した条件が実施される。
The movement condition setting unit 83 includes a movement distance setting unit 99 that sets a movement distance of the first plane mirror 4a and the second plane mirror 4b, and a determination criterion setting unit 100 that sets a determination criterion for movement. The movement distance setting unit 99 includes a movement state instruction unit 101 that specifies the movement state of the first plane mirror 4a, a movement angle specification unit 102 that specifies a pitch in the rotation direction and the linear direction, and a movement distance specification unit 103. . The movement mode can be selected from three modes: rotational movement, parallel movement, and combined use of rotational movement and parallel movement (spiral movement). According to the pitches designated by the movement angle designation means 102 and the movement distance designation means 103, the movement mode can be selected. One plane mirror 4a is driven. The second plane mirror 4b is similarly configured. The criterion setting unit 100 includes a manual operation instruction unit 104 and an automatic operation instruction unit 105.
The manual operation instruction unit 104 includes a setting condition selection unit 106 that moves the first plane mirror 4a and the second plane mirror 4b under the conditions specified by the movement distance setting unit 99, and an arbitrary condition selection that moves according to the operator's instruction. It is possible to select from two modes of the means 107. When the setting condition selection means 106 is selected, a movement necessity confirmation screen is displayed when the irradiation site change warning is displayed on the monitor 70. By clicking the necessary (OK) button, One plane mirror 4a and the second plane mirror 4b move. In the case of the optional condition selection means 107, a setting screen similar to that of the movement distance setting means 99 is displayed, and movement is performed by inputting each movement pitch and clicking a button of the movement instruction means on the screen. The automatic operation instruction means 105 can be selected from two modes: a periodic movement designation means 108 that automatically moves based on a designated time limit, and a deterioration diagnosis result designation means 109 that moves based on the result of deterioration diagnosis. Yes. In the automatic operation mode, the first plane mirror 4a and the second plane mirror 4b are moved based on the conditions of the movement distance setting means 99 in both modes. The periodic movement designation means 108 is provided with a time limit designation means 110 for moving the first plane mirror 4a and the second plane mirror 4b. In this embodiment, this time limit is set as the accumulated actual irradiation time of the laser light L1 from the previous movement. Although not particularly limited to this, it may be set according to the calendar or schedule such as the elapsed time from the previous movement, the date of periodic diagnosis of the apparatus, the date of maintenance, and several hours before the start of the inspection. When the inspection cumulative actual irradiation time exceeds the time specified by the deadline specifying means 110, the first plane mirror 4a and the second plane mirror 4b are moved. The accumulated actual irradiation time (elapsed time) and the remaining time until the movement are always displayed by the term display means 111 provided in a part on the monitor 70. Further, when the condition for moving the plane mirror is selected based on the diagnosis result by the deterioration diagnosis result specifying means 109, the CPU 24 makes a determination based on the setting conditions of the measurement timing setting means 81 and the diagnosis condition setting means 82, and sets the movement distance. The conditions set in the means 99 are implemented.

光量調節条件設定手段112は、光量調節の採否を指示する調整採否指示手段113と、調整する光量値を指定する調整光量指定手段114を含んで構成される。調整採否指示手段113は、第一の平面鏡4a及び第二の平面鏡4bの移動後に、レーザ光L1の光量調節を採用するか否かの2様態から選択できる。調整光量指定手段114は入力スペースで構成され、入力装置を介して調整する光量の目標値が設定できる。
例えば、光量調節を採用した場合には、レーザ光L1の光量を後段光量モニタ14で計測しながら、調整光量指定手段114の設定値となるように、レーザ光源3の出力が制御される。レーザ光L1の光量と設定値が略同一とCPU24が判断した時点で、光量調節処理は終了し、レーザ光源3の出力値が固定される。
The light quantity adjustment condition setting means 112 includes an adjustment acceptance / indication instruction means 113 for instructing acceptance / rejection of light quantity adjustment, and an adjustment light quantity designation means 114 for designating a light quantity value to be adjusted. The adjustment acceptance / rejection instruction means 113 can be selected from two modes of whether or not to adopt the light amount adjustment of the laser light L1 after the movement of the first plane mirror 4a and the second plane mirror 4b. The adjustment light quantity designation means 114 is constituted by an input space, and a target value of the light quantity to be adjusted can be set via the input device.
For example, when the light amount adjustment is adopted, the output of the laser light source 3 is controlled so as to become the set value of the adjustment light amount designation means 114 while measuring the light amount of the laser light L1 with the subsequent light amount monitor 14. When the CPU 24 determines that the set value is substantially the same as the light amount of the laser light L1, the light amount adjustment process ends and the output value of the laser light source 3 is fixed.

図5は過去の光量の状態や平面鏡移動機構40a,40bの駆動状態の来歴を示すものである。前段光量モニタ13や後段光量モニタ14の光量測定値、及び比較器で計算された劣化量、更には第一の平面鏡4aと第二の平面鏡4bの移動期日及び照射部位の座標などの来歴は、CPU24を通じて記憶装置25に記憶されている。モニタ70上に設けられた来歴表示手段119のボタンを入力装置を介してクリックすることで来歴管理図116が表示される。光量の測定結果や平面鏡移動機構40a,40bの駆動来歴は、プロットされたマークをポインター117で選択することによりコメントとして表示される。このコメント欄118をクリックすることにより、その時点の状態へ光学系の状態を復元する。定時計測指示手段86で定時計測を実施させることにより、光学系の変化を、より正確に把握することができる。   FIG. 5 shows the history of the past light quantity state and the driving state of the plane mirror moving mechanisms 40a and 40b. The history of the light quantity measurement values of the front-stage light quantity monitor 13 and the rear-stage light quantity monitor 14, the deterioration amount calculated by the comparator, the moving dates of the first plane mirror 4a and the second plane mirror 4b, and the coordinates of the irradiated part, etc. It is stored in the storage device 25 through the CPU 24. The history management chart 116 is displayed by clicking the button of the history display means 119 provided on the monitor 70 via the input device. The measurement result of the light quantity and the driving history of the plane mirror moving mechanisms 40a and 40b are displayed as comments by selecting the plotted marks with the pointer 117. By clicking on the comment field 118, the state of the optical system is restored to the state at that time. By causing the scheduled measurement instruction means 86 to perform the scheduled measurement, the change in the optical system can be grasped more accurately.

なお、本実施例では、設定値の入力や表示手段がスペースとボタンなどを用いて構成されているが、信号の入力と伝達、表示できるものであれば良く、アイコンやキーボードまたはその他の信号入力伝達手段や表示手段を用いても良い。   In this embodiment, the setting value input and display means are configured using spaces and buttons. However, any device that can input, transmit, and display signals may be used. An icon, a keyboard, or other signal input may be used. Transmission means and display means may be used.

本実施例ではレーザ光を用いて被検査物の欠陥(異物、汚れ、クラック、結晶欠陥、COP、パターン欠陥等)を検出する欠陥検査装置ついて説明したが、これに限定されるものではなく、表面検査装置や異物検査装置、又はディスク検査装置などにも適用することができる。
また、レーザ光に限らず、ハロゲンランプや水銀ランプ、またはXeランプなどの照明光を利用する光学系にも広く適用することができる。例えば、外観検査装置やマスク検査装置、またはベベル検査装置など、光を応用した検査装置であれば、如何なるものにも適用する事ができる。
また、本実施例では、反射鏡の一例として平面鏡4a,4bを用いて説明したが、これに限定されるものではなく、例えば、凹面鏡、凸面鏡など他の形状の反射鏡も適用可能である。
In this embodiment, the defect inspection apparatus for detecting defects (foreign matters, dirt, cracks, crystal defects, COPs, pattern defects, etc.) of the inspection object using laser light has been described. However, the present invention is not limited to this. The present invention can also be applied to a surface inspection device, a foreign matter inspection device, or a disk inspection device.
Further, the present invention can be widely applied not only to laser light but also to an optical system using illumination light such as a halogen lamp, a mercury lamp, or an Xe lamp. For example, any inspection apparatus using light, such as an appearance inspection apparatus, a mask inspection apparatus, or a bevel inspection apparatus, can be applied.
In the present embodiment, the planar mirrors 4a and 4b are used as an example of the reflecting mirror. However, the present invention is not limited to this, and other shapes of reflecting mirrors such as a concave mirror and a convex mirror are also applicable.

本発明に係わる照明光学機構の構成を示す図。The figure which shows the structure of the illumination optical mechanism concerning this invention. 本発明の平面鏡移動機構の概略構成を示した図であるIt is the figure which showed schematic structure of the plane mirror moving mechanism of this invention 本発明の平面鏡移動機構部、および制御部の実施方法を示した説明図である。It is explanatory drawing which showed the implementation method of the plane mirror moving mechanism part of this invention, and a control part. 本発明に係る平面鏡の劣化診断条件を設定する設定画面を説明する図である。It is a figure explaining the setting screen which sets the deterioration diagnostic condition of the plane mirror which concerns on this invention. 本発明に係る来歴を表示する画面を説明する図である。It is a figure explaining the screen which displays the log which concerns on this invention.

符号の説明Explanation of symbols

L1 レーザ光
2 被検査物
3 レーザ光源
4 ビーム偏向機構
4a 第一の平面鏡
4b 第二の平面鏡
5 エキスパンダ
6 NDフィルタ
11 対物レンズ
13 前段光量モニタ
14 後段光量モニタ
22a,22b A/D変換器
23 比較器
24 CPU
25 記憶装置
26a,26b モータドライバ
30 ビームスプリッタ
31 ビームプロファイル観察カメラ
40a,40b 平面鏡移動機構
41 平面鏡移動機構制御部
42 進退駆動機構
43 回転駆動機構
45 ステージ
46a 角度補正機構
47a 距離補正機構
50 ビームエキスパンダ調節機構
51 ビームエキスパンダ調節機構制御部
60 NDフィルタ機構制御部
61 NDフィルタ可動機構
70 モニタ
71 ホストコンピュータ
80 診断条件設定手段
81 計測タイミング設定手段
82 診断条件設定手段
83 移動条件設定手段
84 アライメント時指示手段
85 搬送時指示手段
86 定時計測指示手段
87 アラメントステップ選択手段
88 搬送ステップ選択手段
89 時刻入力スペース
90 時刻選択手段
91 前段光量モニタ設定手段
92 後段光量モニタ設定手段
93 劣化基準設定手段
94 第一の閾値入力スペース
95 第二の光強度測定指示手段
96 第二の閾値入力スペース
97 劣化診断指示手段
98 第三の閾値入力スペース
99 移動距離設定手段
100 判断基準設定手段
101 移動様態指示手段
102 移動角度指定手段
103 移動距離指定手段
104 手動操作指示手段
105 自動操作指示手段
106 設定条件選定手段
107 任意条件選定手段
108 定期移動指定手段
109 劣化診断結果指定手段
110 期限指定手段
111 期限表示手段
112 光量調節条件設定手段
113 調整採否指示手段
114 調整光量指定手段
115 第一の光強度測定指示手段
116 来歴管理図
117 ポインター
118 コメント欄
119 来歴表示手段
L1 Laser light 2 Inspected object 3 Laser light source 4 Beam deflection mechanism 4a First plane mirror 4b Second plane mirror 5 Expander 6 ND filter 11 Objective lens 13 Pre-stage light quantity monitor 14 Rear-stage light quantity monitors 22a and 22b A / D converter 23 Comparator 24 CPU
25 storage devices 26a and 26b motor driver 30 beam splitter 31 beam profile observation cameras 40a and 40b plane mirror moving mechanism 41 plane mirror moving mechanism control unit 42 advance / retreat driving mechanism 43 rotation driving mechanism 45 stage 46a angle correction mechanism 47a distance correction mechanism 50 beam expander Adjustment mechanism 51 Beam expander adjustment mechanism control unit 60 ND filter mechanism control unit 61 ND filter movable mechanism 70 Monitor 71 Host computer 80 Diagnostic condition setting means 81 Measurement timing setting means 82 Diagnostic condition setting means 83 Movement condition setting means 84 Alignment instruction Means 85 Transport time instruction means 86 Regular measurement instruction means 87 Arament step selection means 88 Transport step selection means 89 Time input space 90 Time selection means 91 Pre-stage light intensity monitor setting means 92 Subsequent stage Quantity monitor setting means 93 Deterioration reference setting means 94 First threshold input space 95 Second light intensity measurement instruction means 96 Second threshold input space 97 Deterioration diagnosis instruction means 98 Third threshold input space 99 Travel distance setting means 100 Judgment standard setting means 101 Movement state instruction means 102 Movement angle designation means 103 Movement distance designation means 104 Manual operation instruction means 105 Automatic operation instruction means 106 Setting condition selection means 107 Arbitrary condition selection means 108 Periodic movement designation means 109 Deterioration diagnosis result designation means 110 Time limit designation means 111 Time limit display means 112 Light quantity adjustment condition setting means 113 Adjustment acceptance / rejection instruction means 114 Adjustment light quantity designation means 115 First light intensity measurement instruction means 116 History management diagram 117 Pointer 118 Comment field 119 History display means

Claims (5)

レーザ源と、
該レーザ源から出射したビームを予め定められた角度で折り返す第一の反射鏡と、
該第一の反射鏡で折り返されたビームを再度折り返して前記レーザ源から出射されたビームに対し予め定められた方向に進行するビームを生じさせしめる第二の反射鏡上と、からなるビーム偏向機構を備えた光学式欠陥検査装置であって、
前記第一反射鏡上、前記第二の反射鏡上の少なくとも1つを、そのレーザ光の入射角及び反射角を維持したまま、移動させる反射鏡移動機構を備えたことを特徴とする光学式欠陥検査装置。
A laser source;
A first reflecting mirror that folds the beam emitted from the laser source at a predetermined angle;
A beam deflecting comprising: a second reflecting mirror that folds the beam folded by the first reflecting mirror again to produce a beam traveling in a predetermined direction with respect to the beam emitted from the laser source; An optical defect inspection apparatus equipped with a mechanism,
An optical system comprising a reflecting mirror moving mechanism for moving at least one of the first reflecting mirror and the second reflecting mirror while maintaining the incident angle and the reflecting angle of the laser beam. Defect inspection equipment.
請求項1記載の光学式欠陥検査装置において、
前記該第一の反射鏡の予め定められたレーザ光の折り返し角度、または前記第二の反射鏡の予め定められたレーザ光の折り返し角度の少なくとも一方は、ほぼ90度であり、
前記反射鏡移動機構は、移動させる反射鏡を反射面にほぼ平行に移動させる機構であることを特徴とする光学式欠陥検査装置。
The optical defect inspection apparatus according to claim 1,
At least one of the predetermined turning angle of the laser beam of the first reflecting mirror or the turning angle of the predetermined laser beam of the second reflecting mirror is approximately 90 degrees,
The optical defect inspection apparatus, wherein the reflecting mirror moving mechanism is a mechanism for moving a reflecting mirror to be moved substantially parallel to a reflecting surface.
請求項1記載の光学式欠陥検査装置において、
前記該第一の反射鏡の予め定められたレーザ光の折り返し角度、または前記第二の反射鏡の予め定められたレーザ光の折り返し角度の少なくとも一方は、ほぼ90度であり、
前記反射鏡移動機構は、前記第一の反射鏡または前記第二の反射鏡を、鏡面に対しほぼ平行を維持したまま回転させる機構であることを特徴とする光学式欠陥検査装置。
The optical defect inspection apparatus according to claim 1,
At least one of the predetermined turning angle of the laser beam of the first reflecting mirror or the turning angle of the predetermined laser beam of the second reflecting mirror is approximately 90 degrees,
The optical defect inspection apparatus, wherein the reflecting mirror moving mechanism is a mechanism for rotating the first reflecting mirror or the second reflecting mirror while maintaining substantially parallel to the mirror surface.
請求項3記載の光学式欠陥検査装置において、
前記反射鏡移動機構は、更に鏡面に対しほぼ平行を維持したまま直線移動させる機構を併せ持つことを特徴とする光学式欠陥検査装置。
In the optical defect inspection apparatus according to claim 3,
The optical defect inspection apparatus, wherein the reflecting mirror moving mechanism further has a mechanism for linearly moving the mirror while maintaining substantially parallel to the mirror surface.
請求項1〜4のいずれかに記載の光学式欠陥検査装置において、
前記第一の反射鏡、または前記第二の反射鏡の少なくともいずれかから反射されたレーザ光の光強度を測定する光強度測定機構を備えたことを特徴とする光学式欠陥検査装置。
In the optical defect inspection apparatus according to any one of claims 1 to 4,
An optical defect inspection apparatus comprising: a light intensity measuring mechanism that measures the light intensity of laser light reflected from at least one of the first reflecting mirror and the second reflecting mirror.
JP2007053223A 2006-03-14 2007-03-02 Optical defect inspection device Revoked JP2007279021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007053223A JP2007279021A (en) 2006-03-14 2007-03-02 Optical defect inspection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006068476 2006-03-14
JP2007053223A JP2007279021A (en) 2006-03-14 2007-03-02 Optical defect inspection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011273174A Division JP2012053073A (en) 2006-03-14 2011-12-14 Optical defect inspection apparatus

Publications (1)

Publication Number Publication Date
JP2007279021A true JP2007279021A (en) 2007-10-25

Family

ID=38680597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007053223A Revoked JP2007279021A (en) 2006-03-14 2007-03-02 Optical defect inspection device

Country Status (1)

Country Link
JP (1) JP2007279021A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064472A (en) * 2009-09-15 2011-03-31 Toshiba Corp Pattern inspection system
JP2019117107A (en) * 2017-12-27 2019-07-18 日本信号株式会社 Line scanner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448693A (en) * 1987-08-20 1989-02-23 Mitsubishi Electric Corp Laser beam machine
JPH03124390A (en) * 1989-10-06 1991-05-27 Nec Corp Laser beam machine
JPH1197781A (en) * 1997-09-19 1999-04-09 Nikon Corp Laser beam reflection device and optical device provided with the same
JP2002307743A (en) * 2001-04-10 2002-10-23 Noritsu Koki Co Ltd Laser exposure device
JP2004045111A (en) * 2002-07-10 2004-02-12 Hitachi High-Technologies Corp Illumination optical mechanism apparatus and defect inspection apparatus
JP2004301751A (en) * 2003-03-31 2004-10-28 Toshiba Corp Inspection device for inspecting flaw of pattern
JP2005276251A (en) * 2004-03-23 2005-10-06 Mitsumi Electric Co Ltd Raising mirror adjusting mechanism
JP2007050415A (en) * 2005-08-16 2007-03-01 Matsushita Electric Ind Co Ltd Laser beam machining apparatus and its correction method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448693A (en) * 1987-08-20 1989-02-23 Mitsubishi Electric Corp Laser beam machine
JPH03124390A (en) * 1989-10-06 1991-05-27 Nec Corp Laser beam machine
JPH1197781A (en) * 1997-09-19 1999-04-09 Nikon Corp Laser beam reflection device and optical device provided with the same
JP2002307743A (en) * 2001-04-10 2002-10-23 Noritsu Koki Co Ltd Laser exposure device
JP2004045111A (en) * 2002-07-10 2004-02-12 Hitachi High-Technologies Corp Illumination optical mechanism apparatus and defect inspection apparatus
JP2004301751A (en) * 2003-03-31 2004-10-28 Toshiba Corp Inspection device for inspecting flaw of pattern
JP2005276251A (en) * 2004-03-23 2005-10-06 Mitsumi Electric Co Ltd Raising mirror adjusting mechanism
JP2007050415A (en) * 2005-08-16 2007-03-01 Matsushita Electric Ind Co Ltd Laser beam machining apparatus and its correction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064472A (en) * 2009-09-15 2011-03-31 Toshiba Corp Pattern inspection system
JP2019117107A (en) * 2017-12-27 2019-07-18 日本信号株式会社 Line scanner

Similar Documents

Publication Publication Date Title
US7746461B2 (en) Optical defect inspection apparatus
US6693293B2 (en) Surface inspection apparatus using radiation or light
KR101273739B1 (en) Inspection method of polycrystalline silicon thin film and the same apparatus
JP2009283633A (en) Surface inspection device, and surface inspection method
JP2004012301A (en) Method and apparatus for detecting pattern defect
JP2012243929A (en) Inspection method and device of polycrystalline silicon thin film
JP2007326132A (en) Laser beam machining apparatus
JP2001272208A (en) Superposing deviation inspection apparatus, and mark for inspecting superposing deviation and superposing deviation inspection method
JP2006284211A (en) Unevenness inspection device and unevenness inspection method
JP2012053073A (en) Optical defect inspection apparatus
JP2007279021A (en) Optical defect inspection device
JPH11166901A (en) Inspecting device and method
JP2001091469A (en) Surface defect inspection device
JP5210056B2 (en) Laser processing equipment
JP2001013388A (en) Optical axis adjustment method for lens system and optical axis adjustment device for lens system
JP5973472B2 (en) Lithographic apparatus, method for measuring radiation beam spot focus, and device manufacturing method
JP4468400B2 (en) Inspection apparatus and inspection method
JP2010107355A (en) Optical filter adjusting method and irregularity inspection device
TWI817991B (en) Optical system, illumination module and automated optical inspection system
JP2010145313A (en) Autocollimator apparatus
JP2005274156A (en) Flaw inspection device
JP4206234B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
JP2013258181A (en) Polycrystalline silicon film inspecting method and device therefor
JP2000206388A (en) Optical axis adjusting method and device for lens system
KR100767498B1 (en) Uneveness inspecting apparatus and uneveness inspecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080213

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Effective date: 20101124

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20110517

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110719

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809

AA91 Notification of revocation by ex officio

Effective date: 20111108

Free format text: JAPANESE INTERMEDIATE CODE: A971091

A02 Decision of refusal

Effective date: 20111122

Free format text: JAPANESE INTERMEDIATE CODE: A02