JP2007278836A - Method of analyzing mercury in exhaust gas, and device therefor - Google Patents

Method of analyzing mercury in exhaust gas, and device therefor Download PDF

Info

Publication number
JP2007278836A
JP2007278836A JP2006105315A JP2006105315A JP2007278836A JP 2007278836 A JP2007278836 A JP 2007278836A JP 2006105315 A JP2006105315 A JP 2006105315A JP 2006105315 A JP2006105315 A JP 2006105315A JP 2007278836 A JP2007278836 A JP 2007278836A
Authority
JP
Japan
Prior art keywords
mercury
exhaust gas
gas
organic matter
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006105315A
Other languages
Japanese (ja)
Other versions
JP4868356B2 (en
Inventor
Hitoshi Ogata
仁 緒形
Hiroyuki Matsuda
弘幸 松田
Takeshi Momotomi
武 百冨
Munehiro Hoshino
宗弘 星野
Koji Tanida
幸次 谷田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON INSTR KK
Mitsubishi Materials Corp
Nippon Instruments Corp
Original Assignee
NIPPON INSTR KK
Mitsubishi Materials Corp
Nippon Instruments Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON INSTR KK, Mitsubishi Materials Corp, Nippon Instruments Corp filed Critical NIPPON INSTR KK
Priority to JP2006105315A priority Critical patent/JP4868356B2/en
Publication of JP2007278836A publication Critical patent/JP2007278836A/en
Application granted granted Critical
Publication of JP4868356B2 publication Critical patent/JP4868356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of analyzing mercury in exhaust gas and a device therefor capable of preventing function decline of a decomposition filler caused by adhesion of organic matter, and correcting drift of a zero value of the mercury concentration caused by the organic matter when performing atomic absorption spectrometry. <P>SOLUTION: Since a decomposition temperature is heightened furthermore than a vaporization temperature of the organic matter, when divalent mercury in exhaust gas is decomposed to metal mercury, function decline of the decomposition filler 16b caused by surface adhesion of the organic matter is prevented. Since the exhaust gas just before entering a light absorbing cell 21 is brought into contact with gold in a mercury remover 28 to remove mercury, and the exhaust gas including the organic matter is subjected to the atomic absorption spectrometry at a zero adjusting time, a correction effect of the drift of the zero value of the mercury concentration of an atomic absorption spectrophotometer 29 caused by the organic matter is acquired for a longer period than a conventional technology using a mercury remover 28 into which activated carbon is input. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は排ガス中の水銀分析方法およびその装置、詳しくはごみ焼却場やセメント製造設備などからの排ガス中に含まれる水銀の濃度を連続的に測定、監視可能な排ガス中の水銀分析方法およびその装置に関する。   The present invention relates to a method and apparatus for analyzing mercury in exhaust gas, and more specifically, a method for analyzing mercury in exhaust gas capable of continuously measuring and monitoring the concentration of mercury contained in exhaust gas from a garbage incineration plant, cement production facility, etc. Relates to the device.

近年、ごみ焼却設備やセメント製造設備からの排ガス中の微量元素に対する関心が高まっている。その中でも水銀は、揮発性および毒性が共に高いことから、EUおよび米国では排出規制(Directive2000/76/EU:50μg/Nm)が実施されている。日本においても、平成15年9月、水銀の環境基準の指針値(年平均0.04μg/Nm以下)が出され、早晩、水銀の排出基準が制定されるものと推測される。
金属水銀(Hg)の沸点は約360℃である。そのため、例えばロータリーキルンなどのごみ焼却場やセメント製造設備の燃焼系に投入された水銀はその大半がここで気化し、燃焼ガスとともに煙道を通って煙突から大気開放されてしまう。従って、水銀の排出規制が実施されれば、セメント原料の調達、および、ロータリーキルンなどに系外から投入され焼却されている産業廃棄物の選択に対して、制約が発生することは必至である。
In recent years, interest in trace elements in exhaust gas from waste incineration facilities and cement production facilities has increased. Among them, since mercury is highly volatile and toxic, emission regulations (Directive 2000/76 / EU: 50 μg / Nm 3 ) have been implemented in the EU and the United States. In September 2003, guidelines for mercury environmental standards (annual average 0.04 μg / Nm 3 or less) were issued in September 2003, and it is estimated that mercury emission standards will be established sooner or later.
The boiling point of metallic mercury (Hg 0 ) is about 360 ° C. For this reason, for example, most of mercury introduced into a combustion system of a garbage incineration plant such as a rotary kiln or a cement manufacturing facility is vaporized here, and is released from the chimney through the flue along with the combustion gas. Therefore, if mercury emission regulations are implemented, it is inevitable that there will be restrictions on the procurement of cement raw materials and the selection of industrial waste that is thrown into the rotary kiln from outside the system and incinerated.

排ガス中の水銀の測定装置としては、従来、例えば非特許文献1に記載された水銀連続測定装置が知られている。次に、図3を参照して、非特許文献1の水銀連続測定装置を具体的に説明する。
図3に示すように、水銀連続測定装置100によれば、吸引ポンプ101の吸引力により、まず水銀や有機物などを含む排ガスが、第1の排ガス流通管A1が配管されたプローブユニット102に導入される。プローブユニット102では、ダストフィルタ103により排ガス中のダストが除去される。その後、排ガスは分解反応器104へ導入される。ここでは排ガス中の水銀が約200℃の雰囲気で分解充填剤104aと接触し、二価水銀(Hg2+)が金属水銀(Hg)に分解される。次いで、排ガスは気液分離器105の気液分離路105aを通過中に気液分離され、さらに除湿部106により2℃程度に冷却され、排ガス中の水分が除去される。次に、排ガスは第1のメンブレムフィルタ107を透過し、略完全に湿気が取り除かれた後、連通管120を通って、プローブユニット102から洗気ユニット108へと導かれる。
Conventionally, for example, a mercury continuous measuring device described in Non-Patent Document 1 is known as a device for measuring mercury in exhaust gas. Next, with reference to FIG. 3, the mercury continuous measurement apparatus of Non-Patent Document 1 will be specifically described.
As shown in FIG. 3, according to the continuous mercury measuring apparatus 100, the exhaust gas containing mercury or organic matter is first introduced into the probe unit 102 provided with the first exhaust gas circulation pipe A1 by the suction force of the suction pump 101. Is done. In the probe unit 102, dust in the exhaust gas is removed by the dust filter 103. Thereafter, the exhaust gas is introduced into the decomposition reactor 104. Here, mercury in the exhaust gas comes into contact with the decomposition filler 104a in an atmosphere of about 200 ° C., and divalent mercury (Hg 2+ ) is decomposed into metallic mercury (Hg 0 ). Next, the exhaust gas is gas-liquid separated while passing through the gas-liquid separation path 105a of the gas-liquid separator 105, and further cooled to about 2 ° C. by the dehumidifying unit 106, thereby removing moisture in the exhaust gas. Next, the exhaust gas passes through the first membrane filter 107, and after the moisture is almost completely removed, the exhaust gas is guided from the probe unit 102 to the air cleaning unit 108 through the communication pipe 120.

洗気ユニット108では、排ガスが水酸化カリウム溶液に接触して、排ガス中のSOxが除去される。その後、排ガスは第2の排ガス流通管A2を経由して水銀濃度を測定する測定部109へと導出される。
測定部109では、まず第2のメンブレンフィルタ110を透過することで水酸化カリウム溶液のミストが取り除かれる。次に、排ガスは水銀濃度を測定する原子吸光分析器111の吸光セル112に供給される。原子吸光分析器111では、この排ガスに光(水銀ランプ113などの紫外線領域の光線)を照射し、その透過光を光電管により受光することで、金属水銀の特定波長(254nm)の光の吸収量を連続的に検出し、排ガスに含まれる金属水銀の濃度が求められる。
図3中の114は、原子吸光分析時の測定値から排ガス中の水銀濃度を得る際に利用される検量線を求めるため、1日に1回程度、分解反応器104へ金属水銀を含むキャリアガスを供給する水銀標準ガス発生器である。115は、測定部109に収納された第2の排ガス流通管A2のうち、第2のメンブレンフィルタ110と吸光セル111との間の部分に連通されたバイパス管、116はバイパス管115の下流部と第2の排ガス流通管A2との連通部分に設けられた流路切換弁、117はバイパス管115の途中に設けられ、かつ活性炭117aが内蔵された水銀除去器、118は流量コントローラである。
In the air cleaning unit 108, the exhaust gas comes into contact with the potassium hydroxide solution, and SOx in the exhaust gas is removed. Thereafter, the exhaust gas is led out to the measurement unit 109 that measures the mercury concentration via the second exhaust gas circulation pipe A2.
In the measurement unit 109, the mist of the potassium hydroxide solution is first removed by passing through the second membrane filter 110. Next, the exhaust gas is supplied to the absorption cell 112 of the atomic absorption analyzer 111 that measures the mercury concentration. In the atomic absorption analyzer 111, the exhaust gas is irradiated with light (light rays in the ultraviolet region such as the mercury lamp 113), and the transmitted light is received by a phototube, thereby absorbing the amount of light of a specific wavelength (254 nm) of metallic mercury. Is detected continuously, and the concentration of metallic mercury contained in the exhaust gas is determined.
Reference numeral 114 in FIG. 3 indicates a carrier containing metallic mercury to the decomposition reactor 104 once a day in order to obtain a calibration curve used for obtaining the mercury concentration in the exhaust gas from the measured value during atomic absorption analysis. It is a mercury standard gas generator that supplies gas. Reference numeral 115 denotes a bypass pipe connected to a portion between the second membrane filter 110 and the light absorption cell 111 in the second exhaust gas circulation pipe A2 accommodated in the measurement unit 109, and 116 denotes a downstream part of the bypass pipe 115. And a second flow path switching valve provided at a communication portion between the second exhaust gas circulation pipe A2, 117 is a mercury removing device provided in the middle of the bypass pipe 115 and containing activated carbon 117a, and 118 is a flow rate controller.

また、水銀連続測定装置100では、例えば1時間に1回、吸光セル112による水銀濃度0値が調整される。このゼロ調整は、第2のメンブレンフィルタ110を通過した排ガスを、流路切換弁116の切り換えにより、活性炭117aを内蔵した水銀除去器117へ供給する。ここでは、排ガス中の水銀および有機物が活性炭117aに吸着される。その後、金属水銀および有機物が除去された排ガスは吸光セル112へと供給され、金属水銀と同じ波長の光の強度(吸収量)が測定される。非特許文献1では、金属水銀および有機物が存在しないこの排ガスの測定値(濃度値)が、ゼロ調整用の調整値となる。この調整値に基づき、吸光セル112による水銀濃度0値を調整する。   Further, in the mercury continuous measuring apparatus 100, for example, the mercury concentration 0 value by the light absorption cell 112 is adjusted once per hour. In this zero adjustment, the exhaust gas that has passed through the second membrane filter 110 is supplied to the mercury remover 117 containing the activated carbon 117 a by switching the flow path switching valve 116. Here, mercury and organic matter in the exhaust gas are adsorbed on the activated carbon 117a. Thereafter, the exhaust gas from which the metal mercury and organic substances have been removed is supplied to the light absorption cell 112, and the intensity (absorption amount) of light having the same wavelength as that of the metal mercury is measured. In Non-Patent Document 1, the measured value (concentration value) of this exhaust gas in which metallic mercury and organic matter do not exist is an adjustment value for zero adjustment. Based on this adjustment value, the mercury concentration 0 value by the light absorption cell 112 is adjusted.

一般的に有機物は、広範囲の波長領域にわたる吸光特性を有している。そのため、金属水銀の吸収波長を有した光も吸収する。その結果、吸光セル112により得られた吸光量は、金属水銀の吸光量と有機物の吸光量とが合算されたものとなる。非特許文献1の水銀除去器117では、水銀除去部材として活性炭117aが使用されている。よって、金属水銀だけでなく有機物も活性炭117aに吸着されて除かれるので、前記金属水銀の吸収波長の吸光量には金属水銀と有機物との何れの影響もなく、得られた調整値(ゼロ調整時の測定値)は略ゼロとなる。
日本インスツルメント社水銀濃度測定装置カタログ
In general, organic substances have light absorption characteristics over a wide wavelength range. Therefore, it also absorbs light having the absorption wavelength of metallic mercury. As a result, the light absorption obtained by the light absorption cell 112 is the sum of the light absorption of metallic mercury and the light absorption of organic matter. In the mercury removing device 117 of Non-Patent Document 1, activated carbon 117a is used as a mercury removing member. Therefore, since not only metallic mercury but also organic matter is adsorbed and removed by activated carbon 117a, the absorption value of the absorption wavelength of metallic mercury has no influence of metallic mercury and organic matter, and the obtained adjustment value (zero adjustment) The measured value at the time is almost zero.
Nihon Instruments Inc. Mercury Concentration Analyzer Catalog

しかしながら、非特許文献1の水銀連続測定装置100では、次の欠点があった。
すなわち、(1)排ガス中の二価水銀を分解するとき、分解反応器104内の温度は200℃程度とある種の有機物が気化する温度より低かった。そのため、分解充填剤104aの表面に排ガス中の有機物が付着し易く、分解充填剤104aの分解機能が低下していた。
(2)ゼロ調整時において、活性炭を使用した場合、高い吸着力を有するためガス中に含まれる有機物も吸着していた。一般的に有機物は広範囲の波長領域にわたって吸収特性を有しているため、吸光セル112により得られた吸光量は金属水銀の吸光量と有機物の吸光量との合算値となる。そのため、排ガス中の有機物量の変化に伴って水銀濃度0値(水銀濃度0点)のドリフトが発生している。
However, the mercury continuous measuring apparatus 100 of Non-Patent Document 1 has the following drawbacks.
That is, (1) when divalent mercury in the exhaust gas is decomposed, the temperature in the decomposition reactor 104 is about 200 ° C., which is lower than the temperature at which certain organic substances are vaporized. Therefore, organic substances in the exhaust gas easily adhere to the surface of the decomposition filler 104a, and the decomposition function of the decomposition filler 104a is lowered.
(2) At the time of zero adjustment, when activated carbon was used, organic substances contained in the gas were also adsorbed because of the high adsorption power. In general, since organic substances have absorption characteristics over a wide range of wavelengths, the amount of absorption obtained by the absorption cell 112 is the sum of the amount of absorption of metallic mercury and the amount of absorption of organic substances. Therefore, the drift of mercury concentration 0 value (mercury concentration 0 point) has occurred with the change in the amount of organic matter in the exhaust gas.

この発明は、有機物の分解充填剤表面への付着を防止し、この有機物の付着による分解充填剤の機能低下を防止するとともに、原子吸光分析時における有機物に起因した水銀濃度0値のドリフトを補正することができる排ガス中の水銀分析方法およびその装置を提供することを目的としている。
また、この発明は、気液分離路への有機物および水銀の付着を防止し、これらの付着を原因とした水銀濃度の測定値の誤差を低減することができる排ガス中の水銀分析方法およびその装置を提供することを目的としている。
This invention prevents adhesion of organic substances to the surface of the decomposition filler, prevents degradation of the function of the decomposition filler due to the adhesion of organic substances, and corrects drift of zero mercury concentration caused by organic substances during atomic absorption analysis. It is an object of the present invention to provide a method and apparatus for analyzing mercury in exhaust gas.
Further, the present invention provides a method and apparatus for analyzing mercury in exhaust gas, which prevents organic substances and mercury from adhering to the gas-liquid separation path and can reduce errors in the measured value of mercury concentration caused by these adhesions. The purpose is to provide.

請求項1に記載の発明は、有機物を含む排ガスを分解反応器に供給し、前記有機物の気化温度以上に加熱しながら、分解充填剤により前記排ガス中の二価水銀を金属水銀に分解する水銀分解工程と、該水銀分解工程で分解された排ガスを、気液分離路に通して気液分離する気液分離工程と、該気液分離工程で気液分離された排ガスを原子吸光分析用の吸光セルに導入し、前記排ガス中の水銀の濃度を測定する水銀分析工程と、所定時間が経過する毎に、前記吸光セルに導入される直前の排ガスを水銀除去器に導入し、該水銀除去器内の金と前記排ガスとを接触させることにより、該排ガス中の水銀を金アマルガムとして除去する水銀除去工程と、前記水銀が除去された排ガスを前記吸光セルへ導き、水銀と同じ波長の光の強度を測定することで調整値を求め、該調整値に基づき、前記吸光セルによる水銀濃度0値の調整を行うゼロ調整工程とを備えた排ガス中の水銀分析方法である。   The invention according to claim 1 is a mercury that decomposes divalent mercury in the exhaust gas into metallic mercury by a decomposition filler while supplying the exhaust gas containing the organic material to the decomposition reactor and heating it above the vaporization temperature of the organic material. A gas separation process, a gas-liquid separation process for separating the exhaust gas decomposed in the mercury decomposition process through a gas-liquid separation channel, and an exhaust gas separated in the gas-liquid separation process for atomic absorption analysis. Mercury analysis step for introducing mercury into the light absorption cell and measuring the concentration of mercury in the exhaust gas, and introducing the exhaust gas immediately before being introduced into the light absorption cell into a mercury remover every time a predetermined time elapses. A mercury removal step for removing mercury in the exhaust gas as gold amalgam by bringing the gold in the vessel into contact with the exhaust gas, and the exhaust gas from which the mercury has been removed is guided to the absorption cell, and light having the same wavelength as mercury Measuring the strength of It obtains an adjustment value based on the adjustment value, a mercury analysis method in the exhaust gas and a zero adjustment step of adjusting the concentration of mercury 0 value by the absorption cell.

請求項1に記載の発明によれば、分解反応器内の温度が有機物の気化温度より高いので、分解反応器に排ガスが供給されると、排ガス中の有機物は気化する。そのため、排ガス中の二価水銀を金属水銀に分解する際、分解充填剤の表面に排ガス中の有機物が付着し難い。その結果、この有機物の付着による分解充填剤の機能低下を防止することができる。
また、水銀濃度0値の調整時には、吸光セルに導入される直前の排ガスを水銀除去器に導入して排ガスを金と接触させ、排ガス中の水銀のみを金アマルガムとして除去し、有機物はそのまま排ガス中に残す。その後、水銀のみが除去された排ガスを吸光セルへ導き、水銀と同じ波長の光の強度を測定すれば、水銀の波長に重なる特定の有機物の光の強度が測定される。この測定値をゼロ調整用の調整値として求める。その後、調整値に基づき、吸光セルによる水銀濃度0値の調整を行う。
このようにゼロ調整することで、水銀除去器に活性炭を利用した従来技術の場合より長期間、有機物に起因した原子吸光分析器の水銀濃度0値のドリフト(自然発生する経時的な測定値の変移)の補正効果が得られる。
According to the first aspect of the present invention, since the temperature in the decomposition reactor is higher than the vaporization temperature of the organic matter, when the exhaust gas is supplied to the decomposition reactor, the organic matter in the exhaust gas is vaporized. For this reason, when divalent mercury in the exhaust gas is decomposed into metallic mercury, organic substances in the exhaust gas hardly adhere to the surface of the decomposition filler. As a result, it is possible to prevent the degradation of the function of the decomposition filler due to the adhesion of the organic matter.
Also, when adjusting the mercury concentration to zero, the exhaust gas immediately before being introduced into the absorption cell is introduced into a mercury remover, the exhaust gas is brought into contact with gold, and only the mercury in the exhaust gas is removed as gold amalgam, and the organic matter remains as it is. Leave in. Then, if the exhaust gas from which only mercury has been removed is guided to the absorption cell and the intensity of light having the same wavelength as that of mercury is measured, the intensity of light of a specific organic substance overlapping the wavelength of mercury can be measured. This measured value is obtained as an adjustment value for zero adjustment. Thereafter, based on the adjustment value, the mercury concentration is adjusted to zero by the absorption cell.
By zero adjustment in this way, the drift of the mercury concentration zero value of the atomic absorption analyzer due to organic matter (naturally occurring time-dependent measured values over time) is longer than in the case of the prior art using activated carbon for the mercury remover. (Transition) correction effect can be obtained.

有機物の気化とは、有機物が固相(液相)から気相に転移することで、蒸発または昇華と、沸騰の場合がある。
有機物としては、例えば鎖式炭化水素から多環芳香族炭化水素などである。
有機物の気化温度以上とは、例えば400℃以上をいう。
The vaporization of the organic matter may be evaporation or sublimation and boiling by the transition of the organic matter from the solid phase (liquid phase) to the gas phase.
Examples of organic substances include chain hydrocarbons to polycyclic aromatic hydrocarbons.
The term “above the vaporization temperature of the organic substance” means, for example, 400 ° C. or more.

排ガスとしては、例えばセメント製造設備からの排ガス、ごみ焼却場からのそれである。
有機物の気化温度以上でも分解作用が得られる分解充填剤としては、例えば特開昭63−201552号公報に記載された「活性炭と酸化カルシウムとの混合物」を使用することができる。
ゼロ調整を行う時期は、例えば数時間毎、数日毎など任意である。
吸光セルに導入される直前の排ガスを水銀除去器に導入することは、この水銀除去器を経た排ガスがそのまま吸光セルに導入されることを意味する。
水銀除去工程で除去される水銀は、例えば二価水銀、金属水銀である。ただし、分解反応器によりあらかじめ二価水銀が金属水銀に分解されることから、主として金属水銀が除去される。
Examples of the exhaust gas include exhaust gas from a cement manufacturing facility and that from a waste incineration plant.
As a decomposition filler that can be decomposed even at a temperature higher than the vaporization temperature of the organic substance, for example, a “mixture of activated carbon and calcium oxide” described in JP-A-63-201552 can be used.
The timing for performing the zero adjustment is arbitrary, for example, every several hours or every several days.
Introducing the exhaust gas immediately before being introduced into the light absorption cell into the mercury remover means that the exhaust gas that has passed through the mercury remover is directly introduced into the light absorption cell.
The mercury removed in the mercury removing process is, for example, divalent mercury or metallic mercury. However, since the divalent mercury is previously decomposed into metallic mercury by the decomposition reactor, metallic mercury is mainly removed.

請求項2に記載の発明は、前記気液分離路を所定時間ごとに水洗する請求項1に記載の排ガス中の水銀分析方法である。   The invention according to claim 2 is the method for analyzing mercury in exhaust gas according to claim 1, wherein the gas-liquid separation path is washed with water every predetermined time.

請求項2に記載の発明によれば、気液分離路を所定時間ごとに水洗することで、気液分離路の路壁に付着した金属水銀および有機物が洗い流される。その結果、気液分離路への有機物および水銀の付着を原因とした水銀濃度の測定値の誤差を低減することができる。   According to the second aspect of the present invention, by washing the gas-liquid separation path with water every predetermined time, metallic mercury and organic matter adhering to the road wall of the gas-liquid separation path are washed away. As a result, it is possible to reduce an error in the measurement value of the mercury concentration due to the adhesion of organic substances and mercury to the gas-liquid separation path.

請求項3に記載の発明は、有機物を含む排ガスを前記有機物の気化温度以上に加熱しながら、分解充填剤により前記排ガス中の二価水銀を金属水銀に分解する分解反応器と、該分解反応器により分解された排ガスを気液分離路に通して気液分離する気液分離器と、該気液分離器により気液分離された排ガス中の水銀の濃度を測定する原子吸光分析用の吸光セルと、所定時間が経過する毎に、該吸光セルによる水銀濃度0値の調整を行うゼロ調整手段とを備え、前記ゼロ調整手段は、前記吸光セルに導入される直前の排ガスを導入し、該排ガスを金と接触させ、前記排ガス中の水銀を金アマルガムとして除去する水銀除去器を有した排ガス中の水銀分析装置である。   According to a third aspect of the present invention, there is provided a decomposition reactor that decomposes divalent mercury in the exhaust gas into metallic mercury by a decomposition filler while heating the exhaust gas containing the organic material to a temperature higher than the vaporization temperature of the organic material, and the decomposition reaction A gas-liquid separator that separates the exhaust gas decomposed by the gas through a gas-liquid separation path, and an absorption for atomic absorption spectrometry that measures the concentration of mercury in the exhaust gas separated from the gas-liquid by the gas-liquid separator A zero adjustment unit that adjusts the mercury concentration by the absorption cell every time a predetermined time elapses, and the zero adjustment unit introduces the exhaust gas just before being introduced into the absorption cell, An apparatus for analyzing mercury in exhaust gas, comprising a mercury remover for contacting the exhaust gas with gold and removing mercury in the exhaust gas as gold amalgam.

請求項4に記載の発明は、前記気液分離路を水洗する水洗手段を有した請求項3に記載の排ガス中の水銀分析装置である。   A fourth aspect of the present invention is the mercury analyzer for exhaust gas according to the third aspect, further comprising water washing means for washing the gas-liquid separation path.

この発明の請求項1に記載の排ガス中の水銀分析方法および請求項3に記載の排ガス中の水銀分析装置によれば、分解反応器内の温度を有機物の気化温度より高くしたので、排ガス中の二価水銀を金属水銀に分解する際、分解充填剤の表面に排ガス中の有機物が付着し難い。その結果、この有機物の付着による分解充填剤の機能低下を防止することができる。
また、水銀濃度0値の調整時には、吸光セルに導入される直前の排ガスを水銀除去器の金と接触させて水銀のみを除去し、有機物を含む排ガスを原子吸光分析するので、有機物の光の強度をゼロ調整用の調整値とし、この調整値に基づき、吸光セルによる水銀濃度0値の調整を行うことができる。その結果、水銀除去器に活性炭を利用した従来技術の場合より長期間、有機物に起因した原子吸光分析器の水銀濃度0値のドリフト補正効果が得られる。
According to the method for analyzing mercury in exhaust gas according to claim 1 of the present invention and the mercury analyzer for exhaust gas according to claim 3, since the temperature in the decomposition reactor is made higher than the vaporization temperature of the organic matter, When divalent mercury is decomposed into metallic mercury, organic substances in the exhaust gas hardly adhere to the surface of the decomposition filler. As a result, it is possible to prevent the degradation of the function of the decomposition filler due to the adhesion of the organic matter.
In addition, when adjusting the mercury concentration to zero, the exhaust gas immediately before being introduced into the absorption cell is brought into contact with the gold in the mercury remover to remove only the mercury, and the exhaust gas containing organic matter is analyzed by atomic absorption. The intensity is set as an adjustment value for zero adjustment, and the mercury concentration 0 value can be adjusted by the absorption cell based on the adjustment value. As a result, a drift correction effect of zero mercury concentration of the atomic absorption analyzer due to the organic substance can be obtained for a longer period than in the case of the prior art using activated carbon for the mercury remover.

特に、請求項2および請求項4の発明によれば、気液分離路を所定時間ごとに水洗するようにしたので、気液分離路への有機物および水銀の付着を原因とした水銀濃度の測定値の誤差発生を低減することができる。   In particular, according to the inventions of claim 2 and claim 4, since the gas-liquid separation path is washed with water every predetermined time, measurement of mercury concentration caused by adhesion of organic matter and mercury to the gas-liquid separation path It is possible to reduce the occurrence of value errors.

以下、この発明の実施例を具体的に説明する。ここでは、セメント製造設備の煙道の途中に設けられた電気集塵機からの排ガスに含まれる水銀の濃度を測定するものを例とする。   Examples of the present invention will be specifically described below. Here, an example of measuring the concentration of mercury contained in the exhaust gas from the electrostatic precipitator provided in the middle of the flue of the cement manufacturing facility will be described.

図1において、10はこの発明の実施例1に係る排ガス中の水銀分析装置で、この排ガス中の水銀分析装置10は、セメント製造設備の煙道の途中に設けられた電気集塵機からの排ガスが導入され、排ガスに水銀濃度測定の前処理を施すプローブユニット11と、プローブユニット11から導出された排ガス中の水銀濃度を測定する測定部12とを備えている。
プローブユニット11は、外装用の大型ケーシング13内に配管された第1の排ガス流通管14の上流から下流へ向かって順に、電気集塵機からの排ガスに含まれたダストを除去するダストフィルタ15と、有機物を含む排ガスをこの有機物の気化温度以上に加熱しながら、分解充填剤16bにより排ガス中の二価水銀を金属水銀に分解する分解反応器16と、分解反応器16により分解された排ガスを気液分離路17aに通して気液分離する気液分離器17と、気液分離器17により気液分離された排ガスを除湿路18aを通しながら冷却し、かつそのガス中の湿気を除去する除湿部18と、気液分離路17aおよび除湿路18aを所定時間ごとに水洗する水洗手段19と、除湿部18により除湿された排ガスを濾過し、排ガス中の水分を略完全に除去するメンブレンフィルタ20とが順次配設されている。
In FIG. 1, reference numeral 10 denotes a mercury analyzer in exhaust gas according to Embodiment 1 of the present invention. The mercury analyzer 10 in this exhaust gas receives exhaust gas from an electrostatic precipitator provided in the middle of a flue of a cement manufacturing facility. A probe unit 11 that is introduced and performs pretreatment for mercury concentration measurement on the exhaust gas, and a measurement unit 12 that measures the mercury concentration in the exhaust gas derived from the probe unit 11 are provided.
The probe unit 11 has a dust filter 15 for removing dust contained in the exhaust gas from the electrostatic precipitator in order from the upstream to the downstream of the first exhaust gas circulation pipe 14 piped in the large casing 13 for exterior, While the exhaust gas containing organic matter is heated to a temperature higher than the vaporization temperature of the organic matter, the decomposition reactor 16 decomposes the divalent mercury in the exhaust gas into metallic mercury by the decomposition filler 16b, and the exhaust gas decomposed by the decomposition reactor 16 is gasified. A gas-liquid separator 17 that performs gas-liquid separation through the liquid separation path 17a, and a dehumidifier that cools the exhaust gas separated by the gas-liquid separator 17 while passing through the dehumidification path 18a and removes moisture in the gas. Section 18, water washing means 19 for washing gas-liquid separation path 17 a and dehumidification path 18 a every predetermined time, and exhaust gas dehumidified by dehumidification section 18 is filtered to remove moisture in the exhaust gas. And a membrane filter 20 are sequentially disposed to completely remove.

ダストフィルタ15は、カプセル形状のケーシング15a内に、フィルタ材15bを収納したものである。
分解反応器16は、カプセル形状のケーシング16a内に、400℃の高温でもその分解作用が低下しない分解充填剤16b、例えば特開昭63−201552号公報に記載されている「活性炭と酸化カルシウムとの混合物」を充填している。
気液分離器17は、U字形状に屈曲した気液分離管17bを本体とし、その上流部に水洗手段(蒸留水タンク19)から供給された蒸留水(洗浄水)の流入管19aが連通されている。また、この気液分離管17bの材質は、有機分が付着しにくいテフロン(登録商標)に変更されている。
水洗手段は、1時間に1回、蒸留水タンク19に貯液された蒸留水を、図示していない排水ポンプによって吸い込んで流入管19aへ圧送する。気液分離管17bのU字の屈曲部には、使用済みの蒸留水を管外へ排出する横向きの短尺なドレン管17cが連通されている。気液分離管17bの管内の空間が、気液分離路17aを構成している。
The dust filter 15 is obtained by housing a filter material 15b in a capsule-shaped casing 15a.
The decomposition reactor 16 is provided in a capsule-shaped casing 16a with a decomposition filler 16b whose decomposition action does not decrease even at a high temperature of 400 ° C., for example, “activated carbon and calcium oxide described in JP-A-63-201552”. The mixture is filled with.
The gas-liquid separator 17 has a gas-liquid separation pipe 17b bent in a U shape as a main body, and an upstream pipe of the gas-liquid separation pipe 17b communicates with an inflow pipe 19a for distilled water (washing water) supplied from the water washing means (distilled water tank 19). Has been. Further, the material of the gas-liquid separation tube 17b is changed to Teflon (registered trademark) to which organic components hardly adhere.
The water washing means sucks distilled water stored in the distilled water tank 19 once an hour by a drain pump (not shown) and pumps it to the inflow pipe 19a. The U-shaped bent portion of the gas-liquid separation tube 17b communicates with a short horizontal drain tube 17c for discharging used distilled water to the outside of the tube. A space in the gas-liquid separation pipe 17b constitutes a gas-liquid separation path 17a.

除湿部18は電子クーラの断熱を兼ねたケーシング18bを本体とし、その内部空間には略V字形状を有した除湿管18cが内蔵されている。除湿管18cのV字形状の屈曲部には、使用済みの蒸留水が排出される下向きの短尺なドレン管18eが連通されている。除湿部18に送られた排気ガスは、ここでガス中の水分が冷却して除湿され、凝縮した水分はドレン管18eから外部に排出される。両ドレン管17c,18eには開閉弁が配設されている。
メンブレンフィルタ20は、軸線方向が垂直な縦向きの円盤形状のケーシング内に、多数の微細孔を有する例えばニトロセルロースなどの膜フィルタ20aが展張されたものである。
The dehumidifying section 18 has a casing 18b that also serves as heat insulation for the electronic cooler as a main body, and a dehumidifying tube 18c having a substantially V-shape is built in the internal space. A downward short drain pipe 18e through which used distilled water is discharged is communicated with the V-shaped bent portion of the dehumidifying pipe 18c. The exhaust gas sent to the dehumidifying unit 18 is dehumidified by cooling the moisture in the gas, and the condensed moisture is discharged to the outside from the drain pipe 18e. Both drain pipes 17c and 18e are provided with on-off valves.
The membrane filter 20 is a membrane filter 20a made of, for example, nitrocellulose having a large number of micropores in a vertical disk-shaped casing having a vertical axis direction.

次に、測定部12を詳細に説明する。
測定部12は、別の外装用の大型ケーシング13A内に配管された第2の排ガス流通管14Aの上流から下流へ向かって順に、フィルタリングされた排ガス中の水銀濃度を測定する原子吸光分析用の吸光セル21と、流量コントローラ22と、排ガス中の水銀分析装置全体における排ガスの吸引ポンプ23と、所定時間が経過する毎に、吸光セル21による水銀濃度0値の調整を行うゼロ調整手段24と、原子吸光分析時の測定値から排ガス中の水銀濃度を得る際に利用する検量線を求めるため、所定時間毎に、金属水銀を含むキャリアガスを所定量だけ分解反応器16に供給する水銀標準ガス発生器25とを備えている。
Next, the measuring unit 12 will be described in detail.
The measurement unit 12 is for atomic absorption analysis that measures the mercury concentration in the filtered exhaust gas in order from the upstream side to the downstream side of the second exhaust gas circulation pipe 14A piped in another large casing 13A for exterior use. An absorption cell 21, a flow rate controller 22, an exhaust gas suction pump 23 in the entire mercury analyzer in the exhaust gas, and a zero adjustment means 24 for adjusting the mercury concentration 0 value by the absorption cell 21 every time a predetermined time elapses. In order to obtain a calibration curve to be used when obtaining the mercury concentration in the exhaust gas from the measured value at the time of atomic absorption analysis, a mercury standard for supplying a predetermined amount of carrier gas containing metallic mercury to the decomposition reactor 16 at predetermined time intervals. And a gas generator 25.

第2の排ガス流通管14Aは、外配置された連通管31により第1の排ガス流通管14と連通されている。
ゼロ調整手段24は、第2の排ガス流通管14Aのうち、吸光セル21の取り付け位置より上流部に設けられたバイパス管26と、バイパス管26の下流部と第2の排ガス流通管14Aとの連通部分に配された流路切換弁27と、バイパス管26の途中部に設けられ、吸光セル21に導入される直前の排ガスをバイパス管26を通して導き、排ガスを金と接触させることで、排ガス中の水銀を金アマルガムとして除去する水銀除去器28とを有している。
The second exhaust gas circulation pipe 14 </ b> A is communicated with the first exhaust gas circulation pipe 14 by a communication pipe 31 arranged outside.
The zero adjustment means 24 includes a bypass pipe 26 provided upstream from the attachment position of the light absorption cell 21 in the second exhaust gas circulation pipe 14A, a downstream part of the bypass pipe 26, and the second exhaust gas circulation pipe 14A. By providing the flow path switching valve 27 disposed in the communicating portion and the middle part of the bypass pipe 26, the exhaust gas immediately before being introduced into the light absorption cell 21 is guided through the bypass pipe 26, and the exhaust gas is brought into contact with gold. And a mercury remover 28 for removing mercury contained therein as gold amalgam.

吸光セル21は、原子吸光分析器29における実際の測定部12である。原子吸光分析器29では、吸光セル21に常時供給された排ガスに、水銀ランプ30からの紫外線領域の光線を照射し、その透過光を光電管により受光する。これにより、金属水銀の特定波長(254nm)の光の吸収量を連続的に検出し、排ガスに含まれる金属水銀の濃度が求られる。
水銀標準ガス発生器25は、原子吸光分析時の測定値から排ガス中の水銀濃度を得る際に利用される検量線を求めるため、例えば1日に1回、ダストフィルタ15へ例えば60μg/Nmの金属水銀を含むキャリアガス(空気)を所定量だけ供給する機器である。
The absorption cell 21 is the actual measurement unit 12 in the atomic absorption analyzer 29. In the atomic absorption analyzer 29, the exhaust gas constantly supplied to the absorption cell 21 is irradiated with light in the ultraviolet region from the mercury lamp 30, and the transmitted light is received by the photoelectric tube. Thereby, the light absorption amount of the specific wavelength (254 nm) of metallic mercury is continuously detected, and the concentration of metallic mercury contained in the exhaust gas is obtained.
The mercury standard gas generator 25 obtains a calibration curve to be used when obtaining the mercury concentration in the exhaust gas from the measured value at the time of atomic absorption analysis, for example, once a day, for example, 60 μg / Nm 3 to the dust filter 15. Is a device that supplies a predetermined amount of carrier gas (air) containing metallic mercury.

次に、この発明の実施例1に係る排ガス中の水銀分析装置10を用いた排ガス中の水銀分析方法を説明する。以下の一連の動作は、水銀分析装置10の図示しない制御装置の制御により実行される。
まず、セメント製造設備の電気集塵機からの排ガスが、吸引ポンプ23の吸引力によりプローブユニット11のダストフィルタ15に導入され、ここで排ガス中のダストが除去される。ダストが除去された排ガスは分解反応器16に送られ、ここで、400℃の高温雰囲気に晒された分解充填剤16aにより、排ガス中の二価水銀が金属水銀に分解される。このとき、分解反応器16内の温度は、多環芳香族炭化水素類の気化温度を超える400℃としたので、分解反応器16内の有機物はガス化し、粒子状の分解充填剤16aの表面に付着し難い。その結果、この有機物の付着による分解充填剤16aの機能低下を防止することができる。
Next, a method for analyzing mercury in exhaust gas using the mercury analyzer 10 in exhaust gas according to Embodiment 1 of the present invention will be described. The following series of operations is executed by control of a control device (not shown) of the mercury analyzer 10.
First, the exhaust gas from the electrostatic precipitator of the cement manufacturing facility is introduced into the dust filter 15 of the probe unit 11 by the suction force of the suction pump 23, and the dust in the exhaust gas is removed here. The exhaust gas from which the dust has been removed is sent to the decomposition reactor 16, where the divalent mercury in the exhaust gas is decomposed into metallic mercury by the decomposition filler 16a exposed to a high temperature atmosphere at 400 ° C. At this time, since the temperature in the cracking reactor 16 is 400 ° C., which exceeds the vaporization temperature of the polycyclic aromatic hydrocarbons, the organic matter in the cracking reactor 16 is gasified, and the surface of the particulate cracking filler 16a It is hard to adhere to. As a result, it is possible to prevent the degradation of the function of the decomposition filler 16a due to the adhesion of the organic matter.

分解後の排ガスは、気液分離器17の気液分離路17aに通され、ここで気液分離される。液分は前記ドレン管18eを通して外部に排出される。一方、ガス分は除湿部18へ送られる。除湿部18では、2℃に冷却された除湿管18cで除湿される。凝縮した水分はドレン管18eから外部に排出される。
除湿後の排ガスは、メンブレンフィルタ20に供給され、ここで膜フィルタ20aを透過することで、排ガス中の湿気(水分)が略完全に除去される。こうして前処理を終えた排ガスは、連通管31を通して、プローブユニット11から測定部12へ供給される。具体的には、この前処理後の排ガスは、吸光セル21に常時供給される。吸光セル21内では、排ガスに水銀ランプ30からの紫外線領域の光線が照射される。その透過光は、光電管により受光される。これにより、金属水銀の特定波長(254nm)の光の吸収量が連続的に検出され、排ガスに含まれる金属水銀の濃度が求られる。
The decomposed exhaust gas is passed through the gas-liquid separation path 17a of the gas-liquid separator 17, where it is gas-liquid separated. The liquid is discharged to the outside through the drain pipe 18e. On the other hand, the gas component is sent to the dehumidifying unit 18. In the dehumidifying part 18, the dehumidifying pipe 18 c cooled to 2 ° C. dehumidifies. The condensed moisture is discharged to the outside from the drain pipe 18e.
The exhaust gas after dehumidification is supplied to the membrane filter 20, and moisture (moisture) in the exhaust gas is almost completely removed by passing through the membrane filter 20a. The exhaust gas thus pretreated is supplied from the probe unit 11 to the measuring unit 12 through the communication pipe 31. Specifically, the exhaust gas after the pretreatment is constantly supplied to the light absorption cell 21. In the light absorption cell 21, the exhaust gas is irradiated with light in the ultraviolet region from the mercury lamp 30. The transmitted light is received by the phototube. Thereby, the absorption amount of the light of the specific wavelength (254 nm) of metallic mercury is continuously detected, and the concentration of metallic mercury contained in the exhaust gas is obtained.

次に、原子吸光分析器29における水銀濃度0値の調整方法を説明する。
まず、流路切換弁27を操作し、吸光セル21に導入される直前の排ガスをバイパス管26へ導く。これにより、排ガスは水銀除去器28内へ導入され、ここで排ガスは金と接触し、排ガス中の水銀が金アマルガムとして除去される。しかも、有機物はそのまま排ガス中に残る。
こうして金属水銀のみが除かれた排ガスは、吸光セル21に達し、ここで前述した吸光分析を行う。そのとき、金属水銀と同じ波長の光の強度を測定すれば、金属水銀の波長に重なる特定の有機物の光の強度が測定される。この測定値をゼロ調整用の調整値として求める。その後、制御装置において、この調整値に基づき、吸光セル21による水銀濃度0値の調整を行う。具体的には、有機物の光の強度分だけ嵩上げされていた金属水銀の波長部分から、有機物の光の強度分を差し引く。
Next, a method for adjusting the mercury concentration 0 value in the atomic absorption analyzer 29 will be described.
First, the flow path switching valve 27 is operated to guide the exhaust gas immediately before being introduced into the light absorption cell 21 to the bypass pipe 26. As a result, the exhaust gas is introduced into the mercury remover 28, where the exhaust gas comes into contact with gold, and the mercury in the exhaust gas is removed as gold amalgam. Moreover, the organic matter remains in the exhaust gas as it is.
The exhaust gas from which only metallic mercury has been removed in this way reaches the absorption cell 21 and performs the above-described absorption analysis. At that time, if the intensity of light having the same wavelength as that of metallic mercury is measured, the intensity of light of a specific organic substance overlapping the wavelength of metallic mercury is measured. This measured value is obtained as an adjustment value for zero adjustment. Thereafter, the control device adjusts the mercury concentration 0 value by the light absorption cell 21 based on the adjustment value. Specifically, the light intensity of the organic matter is subtracted from the wavelength portion of the metallic mercury that has been raised by the light intensity of the organic matter.

このようにゼロ調整することで、水銀除去器28に活性炭を利用した従来技術の場合より長期間、有機物に起因した原子吸光分析器29の水銀濃度0値のドリフト補正効果が得られる。
なお、例えば1日に1回は排ガスの供給を止め、水銀標準ガス発生器25からダストフィルタ15へ60μg/Nmの金属水銀を含むキャリアガスを流し、原子吸光分析時の測定値から排ガス中の水銀濃度を得る際に利用される検量線の修正を行う。
図2は、この実施例に係る水銀分析装置を使用して排ガス中の水銀濃度を測定したその結果の有効性を示すグラフである。縦軸は当該分析装置による水銀濃度測定値を実測値で除した値を示し、横軸には従来の改造前の測定装置による場合と、上記実施例による場合とを示す。このグラフに示すように、従来の改造前の測定装置による計器指示値と実測値との比率が0.4程度であるのに対して、上記実施例に係る改良を施した測定装置による計器指示値と実測値との比率が略1と高精度に対応している結果を示す。改造前の測定装置による測定と改良後の測定装置による測定では、同じセメント製造設備の電気集塵機からの排ガスを試料ガスとし、それぞれ3回ずつ行った。
By performing zero adjustment in this way, it is possible to obtain a drift correction effect of the mercury concentration 0 value of the atomic absorption analyzer 29 caused by organic substances for a longer period than in the case of the prior art using activated carbon for the mercury remover 28.
For example, once a day, the supply of the exhaust gas is stopped, a carrier gas containing 60 μg / Nm 3 of metallic mercury is flowed from the mercury standard gas generator 25 to the dust filter 15, and the exhaust gas is detected from the measured value at the time of atomic absorption analysis. The calibration curve used to obtain the mercury concentration is corrected.
FIG. 2 is a graph showing the effectiveness of the result of measuring the mercury concentration in the exhaust gas using the mercury analyzer according to this example. The vertical axis shows the value obtained by dividing the measured mercury concentration value by the analyzer by the actual measurement value, and the horizontal axis shows the case of the conventional measuring device before modification and the case of the above embodiment. As shown in this graph, while the ratio between the measured value and the measured value by the conventional measuring device before remodeling is about 0.4, the measured value by the measuring device improved according to the above embodiment The result of the ratio between the value and the actual measurement value corresponding to approximately 1 and high accuracy is shown. In the measurement with the measurement device before the modification and the measurement device after the improvement, the exhaust gas from the electrostatic precipitator of the same cement production facility was used as the sample gas, and each was performed three times.

この発明の実施例1に係る排ガス中の水銀分析装置の全体構成図である。1 is an overall configuration diagram of a mercury analyzer in exhaust gas according to Embodiment 1 of the present invention. FIG. この発明の実施例1に係る排ガス中の水銀分析装置により得られた水銀濃度実測値で計器指示値を除した値を示すグラフである。It is a graph which shows the value which remove | divided the instrument instruction | indication value by the mercury concentration actual value obtained by the mercury analyzer in the waste gas concerning Example 1 of this invention. 従来手段に係る排ガス中の水銀分析装置の全体構成図である。It is a whole block diagram of the mercury analyzer in the waste gas concerning the conventional means.

符号の説明Explanation of symbols

10 排ガス中の水銀分析装置、
16 分解反応器、
16b 分解充填剤、
17a 気液分離路、
17 気液分離器、
21 吸光セル、
19 水洗手段、
24 ゼロ調整手段、
28 水銀除去器。
10 Mercury analyzer in exhaust gas,
16 cracking reactor,
16b decomposition filler,
17a gas-liquid separation path,
17 Gas-liquid separator,
21 Absorption cell,
19 Flushing means,
24 zero adjustment means,
28 Mercury remover.

Claims (4)

有機物を含む排ガスを分解反応器に供給し、前記有機物の気化温度以上に加熱しながら、分解充填剤により前記排ガス中の二価水銀を金属水銀に分解する水銀分解工程と、
該水銀分解工程で分解された排ガスを、気液分離路に通して気液分離する気液分離工程と、
該気液分離工程で気液分離された排ガスを原子吸光分析用の吸光セルに導入し、前記排ガス中の水銀の濃度を測定する水銀分析工程と、
所定時間が経過する毎に、前記吸光セルに導入される直前の排ガスを水銀除去器に導入し、該水銀除去器内の金と前記排ガスとを接触させることにより、該排ガス中の水銀を金アマルガムとして除去する水銀除去工程と、
前記水銀が除去された排ガスを前記吸光セルへ導き、水銀と同じ波長の光の強度を測定することで調整値を求め、該調整値に基づき、前記吸光セルによる水銀濃度0値の調整を行うゼロ調整工程とを備えた排ガス中の水銀分析方法。
A mercury decomposition step of decomposing divalent mercury in the exhaust gas into metal mercury by a decomposition filler while supplying exhaust gas containing organic matter to a decomposition reactor and heating the organic matter to a vaporization temperature or higher;
A gas-liquid separation step of separating the exhaust gas decomposed in the mercury decomposition step through a gas-liquid separation path;
A mercury analysis step of introducing the exhaust gas separated in the gas-liquid separation step into an absorption cell for atomic absorption analysis and measuring the concentration of mercury in the exhaust gas;
Every time a predetermined time elapses, the exhaust gas immediately before being introduced into the absorption cell is introduced into a mercury remover, and the gold in the mercury remover is brought into contact with the exhaust gas, whereby the mercury in the exhaust gas is converted into gold. Mercury removal process to remove as amalgam,
The exhaust gas from which the mercury has been removed is guided to the light absorption cell, an adjustment value is obtained by measuring the intensity of light having the same wavelength as mercury, and the mercury concentration is adjusted to zero by the light absorption cell based on the adjustment value. A method for analyzing mercury in exhaust gas, comprising a zero adjustment step.
前記気液分離路を所定時間ごとに水洗する請求項1に記載の排ガス中の水銀分析方法。   The method for analyzing mercury in exhaust gas according to claim 1, wherein the gas-liquid separation path is washed with water every predetermined time. 有機物を含む排ガスを前記有機物の気化温度以上に加熱しながら、分解充填剤により前記排ガス中の二価水銀を金属水銀に分解する分解反応器と、
該分解反応器により分解された排ガスを気液分離路に通して気液分離する気液分離器と、
該気液分離器により気液分離された排ガス中の水銀の濃度を測定する原子吸光分析用の吸光セルと、
所定時間が経過する毎に、該吸光セルによる水銀濃度0値の調整を行うゼロ調整手段とを備え、
前記ゼロ調整手段は、前記吸光セルに導入される直前の排ガスを導入し、該排ガスを金と接触させ、前記排ガス中の水銀を金アマルガムとして除去する水銀除去器を有した排ガス中の水銀分析装置。
A decomposition reactor that decomposes divalent mercury in the exhaust gas into metallic mercury by a decomposition filler while heating the exhaust gas containing the organic material to a temperature higher than the vaporization temperature of the organic material;
A gas-liquid separator for separating the exhaust gas decomposed by the decomposition reactor through a gas-liquid separation path;
An absorption cell for atomic absorption analysis for measuring the concentration of mercury in the exhaust gas gas-liquid separated by the gas-liquid separator;
Zero adjustment means for adjusting the mercury concentration 0 value by the light absorption cell each time a predetermined time elapses,
The zero adjustment means introduces the exhaust gas immediately before being introduced into the light absorption cell, contacts the exhaust gas with gold, and removes mercury in the exhaust gas as gold amalgam to analyze mercury in the exhaust gas apparatus.
前記気液分離路を水洗する水洗手段を有した請求項3に記載の排ガス中の水銀分析装置。   The mercury analyzer for exhaust gas according to claim 3, further comprising a water washing means for washing the gas-liquid separation path.
JP2006105315A 2006-04-06 2006-04-06 Method and apparatus for analyzing mercury in exhaust gas Active JP4868356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006105315A JP4868356B2 (en) 2006-04-06 2006-04-06 Method and apparatus for analyzing mercury in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006105315A JP4868356B2 (en) 2006-04-06 2006-04-06 Method and apparatus for analyzing mercury in exhaust gas

Publications (2)

Publication Number Publication Date
JP2007278836A true JP2007278836A (en) 2007-10-25
JP4868356B2 JP4868356B2 (en) 2012-02-01

Family

ID=38680429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006105315A Active JP4868356B2 (en) 2006-04-06 2006-04-06 Method and apparatus for analyzing mercury in exhaust gas

Country Status (1)

Country Link
JP (1) JP4868356B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237111A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp Analyzer of mercury in exhaust gas
CN102221489A (en) * 2010-04-15 2011-10-19 中国科学院城市环境研究所 Method and device for combined collection of trace level mercury species in atmosphere
KR101496677B1 (en) * 2013-08-22 2015-03-02 고려대학교 산학협력단 Colorimetric detection of mercury ion using nanogolds
CN106198159A (en) * 2016-08-24 2016-12-07 成都丝迈尔科技有限公司 A kind of high flux dyeing platform for the order-checking of high flux biology
CN117030377A (en) * 2023-08-17 2023-11-10 河北华测检测服务有限公司 Atmospheric pollution concentration sampler and sampling method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101849672B1 (en) 2017-04-13 2018-04-19 (주)하이모 Processing method of hair for wig and manufacturing method for wig using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326556A (en) * 1986-07-18 1988-02-04 Hitachi Zosen Corp Continuous analysis of mercury in exhaust gas
JPS63201552A (en) * 1987-02-13 1988-08-19 ケルンフオルシユングスツエントルム・カールスルーエ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method of continuously monitoring emission and immission of mercury
JP2001033434A (en) * 1999-07-21 2001-02-09 Nippon Instrument Kk Method and apparatus for analysis of mercury in gas
JP2004354067A (en) * 2003-05-27 2004-12-16 Central Res Inst Of Electric Power Ind Method for measuring mercury in gas and measuring instrument therefor
JP2005077355A (en) * 2003-09-03 2005-03-24 Kyoto Electron Mfg Co Ltd Apparatus and method for measuring mercury concentration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326556A (en) * 1986-07-18 1988-02-04 Hitachi Zosen Corp Continuous analysis of mercury in exhaust gas
JPS63201552A (en) * 1987-02-13 1988-08-19 ケルンフオルシユングスツエントルム・カールスルーエ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method of continuously monitoring emission and immission of mercury
JP2001033434A (en) * 1999-07-21 2001-02-09 Nippon Instrument Kk Method and apparatus for analysis of mercury in gas
JP2004354067A (en) * 2003-05-27 2004-12-16 Central Res Inst Of Electric Power Ind Method for measuring mercury in gas and measuring instrument therefor
JP2005077355A (en) * 2003-09-03 2005-03-24 Kyoto Electron Mfg Co Ltd Apparatus and method for measuring mercury concentration

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237111A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp Analyzer of mercury in exhaust gas
CN102221489A (en) * 2010-04-15 2011-10-19 中国科学院城市环境研究所 Method and device for combined collection of trace level mercury species in atmosphere
CN102221489B (en) * 2010-04-15 2013-02-13 中国科学院城市环境研究所 Method and device for combined collection of trace level mercury species in atmosphere
KR101496677B1 (en) * 2013-08-22 2015-03-02 고려대학교 산학협력단 Colorimetric detection of mercury ion using nanogolds
CN106198159A (en) * 2016-08-24 2016-12-07 成都丝迈尔科技有限公司 A kind of high flux dyeing platform for the order-checking of high flux biology
CN117030377A (en) * 2023-08-17 2023-11-10 河北华测检测服务有限公司 Atmospheric pollution concentration sampler and sampling method

Also Published As

Publication number Publication date
JP4868356B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4868356B2 (en) Method and apparatus for analyzing mercury in exhaust gas
Lyman et al. Release of mercury halides from KCl denuders in the presence of ozone
JP2007248114A (en) Gas analyzer
WO2002021122A1 (en) Method and apparatus for continuous fractional analysis of metallic mercury and water-soluble mercury in a gas
JP2010096688A (en) Pyrolytically decomposing apparatus for analyzing mercury, mercury analyzer, and its method
CN106248595B (en) System and method for testing bivalent mercury and zero-valent mercury in flue gas of coal-fired power plant
JP2010096753A (en) Mercury collector, mercury collecting unit, mercury analyzer, and its method
US20190015773A1 (en) Apparatus for treating mercury-containing waste and method for recovering high purity elemental mercury using same apparatus
JP5010498B2 (en) On-line simplified measuring device and method for PCB in gas, monitoring system for PCB processing equipment
JP5182195B2 (en) Mercury analyzer in exhaust gas
JP2006284422A (en) Method and instrument for measuring organohalogen compound
JP4828443B2 (en) Method for separating organic halogens, measuring method for low-volatile organic halogens, and measuring method for dioxins
Ostapczuk et al. Polycyclic aromatic hydrocarbons in coal combustion flue gas under electron beam irradiation
WO2017073447A1 (en) Method and system for recovering acidic gas, and method and system for analysis for iron ion
JP2004138467A (en) Ultraviolet absorption type measuring instrument and method for treating measurement specimen
JP5877540B2 (en) Mercury concentration measuring device and pretreatment device
JP5411833B2 (en) Analysis method of siloxane
JP2006266736A (en) Exhaust gas analyzer
JP5371624B2 (en) Plasma emission analysis method and apparatus therefor
JP2004138466A (en) Method and unit for treating sample
US11865496B2 (en) Mitigation of mercury vapor emissions
JP2018025429A (en) Reduction filter of mercury concentration measuring apparatus
Brown et al. Characterising and reducing the blank response from mercury vapour sorbent tubes
JP4235028B2 (en) Analysis method of air pollutants
WO2016142494A1 (en) Equipment for identifying mercury species in solids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111108

R150 Certificate of patent or registration of utility model

Ref document number: 4868356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250