JP5877540B2 - Mercury concentration measuring device and pretreatment device - Google Patents

Mercury concentration measuring device and pretreatment device Download PDF

Info

Publication number
JP5877540B2
JP5877540B2 JP2012072654A JP2012072654A JP5877540B2 JP 5877540 B2 JP5877540 B2 JP 5877540B2 JP 2012072654 A JP2012072654 A JP 2012072654A JP 2012072654 A JP2012072654 A JP 2012072654A JP 5877540 B2 JP5877540 B2 JP 5877540B2
Authority
JP
Japan
Prior art keywords
mercury
gas
sample gas
concentration measuring
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012072654A
Other languages
Japanese (ja)
Other versions
JP2013205128A (en
Inventor
長武 瀬渡
長武 瀬渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2012072654A priority Critical patent/JP5877540B2/en
Publication of JP2013205128A publication Critical patent/JP2013205128A/en
Application granted granted Critical
Publication of JP5877540B2 publication Critical patent/JP5877540B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、廃棄物や化石燃料の燃焼排ガス中の水銀濃度を定量する水銀濃度測定装置、特に、試料ガス中の水銀化合物を金属水銀に変換する前処理器に関する。   The present invention relates to a mercury concentration measuring apparatus for quantifying the mercury concentration in waste gas and combustion exhaust gas of fossil fuel, and more particularly to a pretreatment device for converting a mercury compound in a sample gas into metallic mercury.

近年、ごみ焼却処理場等からの排ガス中の微量元素に対する関心が高まっている。その中でも水銀は、揮発性および毒性が共に高いことから、ヨーロッパや米国では排出規制が実施されており、日本においても、早晩、水銀の排出基準が制定されるもの思われる。
金属水銀の沸点は約360℃であるため、ごみ焼却場の燃焼系に投入された水銀はその大半がここで気化し、燃焼ガスとともに煙道を通って煙突から大気開放されてしまう。
In recent years, interest in trace elements in exhaust gas from refuse incineration plants has increased. Among them, mercury is highly volatile and toxic, so emission regulations are being implemented in Europe and the United States. In Japan, mercury emission standards are likely to be established sooner or later.
Since the boiling point of metallic mercury is about 360 ° C., most of the mercury introduced into the combustion system of the waste incinerator is vaporized here and is released from the chimney through the flue along with the combustion gas.

このような焼却施設の排気等に含まれる水銀の濃度を検出する装置として、例えば原子吸光分析法を用いた水銀濃度測定装置が使用されている。この水銀濃度測定装置は、測定部へ導入した試料ガスに光を照射して特定波長の光の吸収量を検出し、この吸光量に基づいて試料ガスに含まれる水銀の濃度を求める。   As an apparatus for detecting the concentration of mercury contained in the exhaust of such an incineration facility, for example, a mercury concentration measuring apparatus using atomic absorption spectrometry is used. This mercury concentration measuring device irradiates the sample gas introduced into the measuring unit with light to detect the absorption amount of light of a specific wavelength, and obtains the concentration of mercury contained in the sample gas based on this absorption amount.

水銀濃度測定装置の測定部では、原子状水銀(金属水銀)の吸光量に基づいて水銀濃度の検出を行うため、試料ガス中の水銀濃度を正確に測定するには、試料ガス中に含まれる水銀化合物を原子状水銀に還元する必要がある。このため、測定部に試料ガスを導入する導入路には、水銀化合物を原子状水銀に還元するための還元部が設けられている。特に、焼却施設等の排気では、水銀化合物は主に塩化水銀であり、この塩化水銀を還元するための還元部が設けられる。   Since the mercury concentration is detected based on the absorbance of atomic mercury (metallic mercury) in the measurement unit of the mercury concentration measurement device, it is included in the sample gas to accurately measure the mercury concentration in the sample gas. Mercury compounds need to be reduced to atomic mercury. For this reason, the introduction path for introducing the sample gas into the measurement section is provided with a reduction section for reducing the mercury compound to atomic mercury. In particular, in the exhaust from an incineration facility or the like, the mercury compound is mainly mercury chloride, and a reducing section is provided for reducing this mercury chloride.

この還元部には種々の還元方式が利用されており、例えば、塩化錫溶液等の液相の還元剤を使用する方式があるが、このような液相方式では、還元剤が液体であるため還元剤の交換時の取り扱いに手数を要する上、大量の還元剤の溶液を廃液として処理する必要がある等のメンテナンス性の悪さが問題となる。   Various reducing methods are used for the reducing unit, for example, there is a method using a liquid phase reducing agent such as a tin chloride solution. In such a liquid phase method, the reducing agent is liquid. In addition to troublesome handling at the time of replacement of the reducing agent, there is a problem of poor maintainability such as the need to treat a large amount of reducing agent solution as waste liquid.

また、塩化第1錫の皮膜を有する金属錫の粒子からなる固体の還元剤を使用する技術もある。この技術では、錫粒子表面の塩化第1錫が塩化水銀の還元に寄与しており、塩化水銀を還元することで塩化第1錫の皮膜は消耗されるが、試料ガス中に多量の塩化水素が含まれる場合は、錫粒子の表面が塩化水素と反応して新たな塩化第1錫の皮膜が形成されるため、長期間の使用が可能である。しかしながら、近年の焼却施設等の排気中に含まれる塩化水素は低濃度であるため、塩化水素との反応により塩化第1錫の皮膜を再生して還元能力を持続することができず、結果的に短期間で還元剤を交換しなければならないという問題があった。還元剤の交換周期が短いことは、例えば、焼却施設における排気のモニタ等の連続的に水銀濃度を測定する用途では、水銀濃度を測定できない時間が増大することになるため好ましくない。   There is also a technique using a solid reducing agent made of metallic tin particles having a stannous chloride coating. In this technique, stannous chloride on the surface of tin particles contributes to the reduction of mercury chloride. By reducing mercury chloride, the film of stannous chloride is consumed, but a large amount of hydrogen chloride is contained in the sample gas. When tin is included, the surface of the tin particles reacts with hydrogen chloride to form a new film of stannous chloride, so that it can be used for a long time. However, since the hydrogen chloride contained in the exhaust gas from incineration facilities in recent years has a low concentration, it is not possible to regenerate the stannous chloride film by the reaction with hydrogen chloride and maintain the reducing ability, resulting in a result. However, there was a problem that the reducing agent had to be replaced in a short period of time. It is not preferable that the replacement period of the reducing agent is short because, for example, in an application where the mercury concentration is continuously measured, such as an exhaust monitor in an incineration facility, the time during which the mercury concentration cannot be measured increases.

水銀化合物は800度以上に加熱することで原子状水銀に分解(還元)されることが知られており、導入した試料ガスを800度以上に加熱する還元方式も存在するが、この方式では、試料ガスの温度を800度以上に加熱できる高価な加熱炉が必要であり、装置が高価格になるという問題がある。   Mercury compounds are known to be decomposed (reduced) into atomic mercury when heated to 800 ° C or higher, and there is a reduction method in which the introduced sample gas is heated to 800 ° C or higher. There is a problem that an expensive heating furnace capable of heating the temperature of the sample gas to 800 ° C. or more is necessary, and the apparatus becomes expensive.

一方、水酸化カルシウム、炭酸カルシウム、炭酸ナトリウム等のアルカリ金属またはアルカリ土類金属の塩基性化合物を含有する還元剤を使用する方式があり、この方式によれば塩化水銀を原子状水銀に還元することができるとともに、試料ガス中に塩化水素が含まれていても、塩化水素は還元剤である塩基性化合物と反応して試料ガス中から除去されるため、原子状水銀と結合して塩化水銀を生成することがなく、錫等の還元剤を採用している測定装置や測定方法と比較して、塩化水銀を原子状水銀に還元する還元能力を長期間持続させることができる。   On the other hand, there is a method using a reducing agent containing a basic compound of alkali metal or alkaline earth metal such as calcium hydroxide, calcium carbonate, sodium carbonate, etc. According to this method, mercury chloride is reduced to atomic mercury. In addition, even if the sample gas contains hydrogen chloride, it reacts with the basic compound, which is the reducing agent, and is removed from the sample gas. As compared with a measuring device and a measuring method that employ a reducing agent such as tin, the reducing ability to reduce mercury chloride to atomic mercury can be maintained for a long period of time.

しかしながら、アルカリ金属またはアルカリ土類金属の塩基性化合物を還元剤とする還元フィルタの還元能力は、塩化水素と塩化水銀のみを含む試料ガスに対して得られた塩化水銀の還元能力および塩化水素吸収能力が使用環境によっては大きく低下するという現象が生じる。
この性能低下現象が発生する原因は試料ガス中に含まれる炭酸ガス(CO)であり、塩化水素と塩化水銀を含む試料ガスに濃度が10%程度の炭酸ガスが共存する環境下では、ソーダライム(水酸化カルシウム)を充填した還元カラムを使用すると、還元効率が低下する。また、還元効率が低下した状態で炭酸ガスの供給を停止しても、還元効率の上昇は確認できるものの100%には回復しない。このような環境下では、ソーダライムと炭酸ガスとの反応により多量の炭酸カルシウムが生成されており、当該炭酸カルシウムが還元フィルタの主成分になっていると推測される。
However, the reduction ability of a reduction filter that uses a basic compound of alkali metal or alkaline earth metal as the reducing agent is the reduction ability of mercury chloride and absorption of hydrogen chloride obtained for a sample gas containing only hydrogen chloride and mercury chloride. A phenomenon occurs in which the ability is greatly reduced depending on the use environment.
The cause of this performance degradation phenomenon is carbon dioxide (CO 2 ) contained in the sample gas. In an environment where carbon dioxide having a concentration of about 10% coexists in the sample gas containing hydrogen chloride and mercury chloride, soda When a reduction column filled with lime (calcium hydroxide) is used, the reduction efficiency decreases. Even if the supply of carbon dioxide gas is stopped in a state where the reduction efficiency is lowered, an increase in the reduction efficiency can be confirmed, but it does not recover to 100%. Under such an environment, a large amount of calcium carbonate is generated by the reaction between soda lime and carbon dioxide, and it is assumed that the calcium carbonate is the main component of the reduction filter.

このため、アルカリ金属またはアルカリ土類金属の炭酸塩を主成分とする還元触媒を使用する水銀濃度測定装置が提案されている(例えば、特許文献1参照)。このように、アルカリ金属またはアルカリ土類金属の炭酸塩を主成分とする還元触媒を使用すれば、試料ガス中に塩化水素や炭酸ガスが含まれる場合であっても、塩化水素は還元剤と反応して試料ガス中から除去されるため、原子状水銀と結合して塩化水銀を生成することがなく、試料ガス中の水銀濃度を正確に測定することができるとともに、炭酸ガスとの反応がなく、塩化水銀を原子状水銀に還元する還元能力および試料ガス中から塩化水素を除去する能力を長期間持続することができる。   For this reason, a mercury concentration measuring apparatus using a reduction catalyst mainly composed of an alkali metal or alkaline earth metal carbonate has been proposed (for example, see Patent Document 1). As described above, when a reduction catalyst mainly composed of an alkali metal or alkaline earth metal carbonate is used, even if hydrogen chloride or carbon dioxide gas is contained in the sample gas, the hydrogen chloride is separated from the reducing agent. Since it reacts and is removed from the sample gas, it does not generate mercury chloride by combining with atomic mercury, and the mercury concentration in the sample gas can be accurately measured, and the reaction with carbon dioxide gas The ability to reduce mercury chloride to atomic mercury and the ability to remove hydrogen chloride from the sample gas can be maintained for a long period of time.

特開2012−21908号公報JP 2012-21908 A

上記のように、排ガス中の水銀化合物を金属水銀に変換する還元触媒としてアルカリ金属またはアルカリ土類金属の炭酸塩、例えば、炭酸ナトリウムを使用する場合、粒径0.3mm未満の炭酸塩粒子のみ選別して使用することにより、反応表面積を増やし、応答特性を向上させることができるが、圧損が大きくなって応答特性が悪くなる、という問題が生じる。また、微粉のみでは空隙率が小さくなり、連続使用していると、排ガス中の成分や水蒸気により炭酸ナトリウムの粒子同士が結合して管の閉塞が起きやすく、還元剤の寿命が短くなるという問題も生じる。   As described above, when an alkali metal or alkaline earth metal carbonate, for example, sodium carbonate, is used as a reduction catalyst for converting a mercury compound in exhaust gas into metallic mercury, only carbonate particles having a particle size of less than 0.3 mm are used. By selecting and using, the reaction surface area can be increased and the response characteristics can be improved, but there arises a problem that the pressure loss increases and the response characteristics deteriorate. In addition, the porosity becomes small only with fine powder, and when used continuously, sodium carbonate particles are easily bonded to each other by components in the exhaust gas and water vapor, and the tube is likely to be clogged, and the life of the reducing agent is shortened. Also occurs.

本発明は、上記の課題を解決するために創案されたものであり、排ガス中の水銀化合物を金属水銀に変換する還元触媒の応答特性を向上するとともに、還元触媒の寿命を延ばすことができる水銀濃度測定装置及びその前処理器を提供することを目的とする。   The present invention was devised to solve the above-described problems, and is capable of improving the response characteristics of a reduction catalyst that converts a mercury compound in exhaust gas into metallic mercury and extending the life of the reduction catalyst. It is an object of the present invention to provide a concentration measuring device and a pretreatment device thereof.

請求項1に係る発明の水銀濃度測定装置の前処理器は、石英管の前段に粒径の大きなアルカリ金属またはアルカリ土類金属の炭酸塩結晶を充填し、石英管の後段に粒径の小さいアルカリ金属またはアルカリ土類金属の炭酸塩結晶と耐熱性繊維とを混合したものを充填した還元カラムであることを特徴とする。 In the pretreatment device of the mercury concentration measuring apparatus according to the first aspect of the present invention, an alkali metal or alkaline earth metal carbonate crystal having a large particle size is filled in the previous stage of the quartz tube, and a small particle diameter is placed in the subsequent stage of the quartz tube. It is a reducing column packed with a mixture of alkali metal or alkaline earth metal carbonate crystals and heat-resistant fibers.

また、請求項2に係る発明の水銀濃度測定装置は、排ガス中の水銀化合物を金属水銀に変換する還元カラムと、前記還元カラムを加熱するヒータと、前記還元カラムにより試料ガス中の水銀化合物が金属水銀に変換された後の試料ガス中の液体を分離する気液分離手段と、前記気液分離手段を通過した試料ガスが導入され、当該試料ガス中に含まれる原子状水銀を定量する測定部とを備えた水銀濃度測定装置において、前記還元カラムとして請求項1に記載された前処理器を用いたことを特徴とする。 In addition, the mercury concentration measuring apparatus according to the second aspect of the present invention provides a reduction column that converts a mercury compound in exhaust gas into metallic mercury, a heater that heats the reduction column, and a mercury compound in a sample gas by the reduction column. Gas-liquid separation means for separating the liquid in the sample gas after being converted to metallic mercury, and measurement for quantifying atomic mercury contained in the sample gas after the sample gas that has passed through the gas-liquid separation means is introduced In the mercury concentration measuring apparatus provided with a section , the pretreatment device according to claim 1 is used as the reduction column.

さらに、請求項3に係る発明の水銀濃度測定装置は、請求項2に係る発明の水銀濃度測定装置において、前記ヒータが前記還元カラムを400℃またはそれ以下に加熱することを特徴とする。 Furthermore, the mercury concentration measuring device according to a third aspect of the invention is characterized in that, in the mercury concentration measuring device according to the second aspect , the heater heats the reducing column to 400 ° C. or lower.

本発明の水銀濃度測定装置の前処理器によれば、還元触媒としての炭酸塩粒子に耐熱性繊維が混合されており、圧損が生じず、粒径の小さな炭酸塩粒子を使用することができるので、反応表面積を増やして応答性を向上させることができ、水銀排出抑制のための燃焼炉制御をより的確に実施することができる。また、還元触媒としての炭酸塩粒子に耐熱性繊維が混合されているので、連続使用しても、排ガス中の成分や水蒸気により炭酸塩の粒子同士が結合することがなく、管の閉塞が起きないので、還元剤の寿命を延ばすことができ、還元剤交換頻度が低下し、メンテナンスコストを低減することが可能となる。   According to the pretreatment device of the mercury concentration measuring apparatus of the present invention, carbonate particles as a reduction catalyst are mixed with heat-resistant fibers, pressure loss does not occur, and carbonate particles having a small particle diameter can be used. Therefore, the reaction surface area can be increased and the responsiveness can be improved, and the combustion furnace control for suppressing mercury emission can be more accurately performed. In addition, since heat-resistant fibers are mixed with carbonate particles as a reduction catalyst, carbonate particles are not bonded to each other by components in the exhaust gas or water vapor even when continuously used, and the tube is clogged. Therefore, the life of the reducing agent can be extended, the reducing agent replacement frequency can be reduced, and the maintenance cost can be reduced.

また、還元カラムの前段に粒径の大きなアルカリ金属またはアルカリ土類金属の炭酸塩結晶を充填すれば、初期には水銀還元にも寄与するとともに、粒径の大きな還元剤は水銀還元能力喪失後も酸性ガス除去剤として機能するので、還元カラムの後段の粒径の小さい還元剤の劣化を防ぐことができる。   In addition, if an alkali metal or alkaline earth metal carbonate crystal having a large particle size is packed in the front stage of the reduction column, it contributes to mercury reduction in the initial stage, and a reducing agent having a large particle size is used after the loss of mercury reducing ability. Since it also functions as an acid gas removing agent, it is possible to prevent deterioration of the reducing agent having a small particle size at the latter stage of the reduction column.

さらに、本発明の水銀濃度測定装置によれば、塩化水素と炭酸ガスを含有する試料ガス中の水銀濃度を連続的に測定する場合、試料ガスを加熱下でアルカリ金属の炭酸塩を主成分とする還元剤に接触させることにより、試料ガス中の塩化水素が除去されるとともに、当該試料ガス中に含まれる塩化水銀が原子状水銀に還元されるので、試料ガス中に塩化水素や炭酸ガスが含まれる場合であっても、試料ガス中の水銀濃度を正確に測定することができるとともに、炭酸ガスとの反応がなく、塩化水銀を原子状水銀に還元する還元能力および試料ガス中から塩化水素を除去する能力を長期間持続することができる。   Furthermore, according to the mercury concentration measuring apparatus of the present invention, when continuously measuring the mercury concentration in the sample gas containing hydrogen chloride and carbon dioxide, the alkali metal carbonate is the main component under heating of the sample gas. By contacting with the reducing agent, hydrogen chloride in the sample gas is removed and mercury chloride contained in the sample gas is reduced to atomic mercury, so that hydrogen chloride or carbon dioxide gas is contained in the sample gas. Even if it is contained, the mercury concentration in the sample gas can be accurately measured, there is no reaction with carbon dioxide gas, the reducing ability to reduce mercury chloride to atomic mercury, and hydrogen chloride from the sample gas The ability to remove can be sustained for a long time.

本発明の前処理器を備えた水銀濃度測定装置の概略を示すブロック図である。It is a block diagram which shows the outline of the mercury concentration measuring apparatus provided with the preprocessor of this invention. 本発明の前処理器である還元手段の詳細な構造を示す図である。It is a figure which shows the detailed structure of the reduction | restoration means which is a pre-processor of this invention. 粒径の大きな還元剤を使用した前処理器を備えた水銀濃度測定装置による水銀濃度の連続測定結果を示すグラフである。It is a graph which shows the continuous measurement result of the mercury concentration by the mercury concentration measuring apparatus provided with the pretreatment device using the reducing agent with a large particle size. 本発明の前処理器を備えた水銀濃度測定装置による水銀濃度の連続測定結果を示すグラフである。It is a graph which shows the continuous measurement result of the mercury concentration by the mercury concentration measuring apparatus provided with the pretreatment device of the present invention. 本発明の前処理器である還元手段の他の実施例の詳細な構造を示す図である。It is a figure which shows the detailed structure of the other Example of the reduction | restoration means which is a pre-processor of this invention.

以下、本発明の前処理器を備えた水銀濃度測定装置について図面により説明する。
図1は本発明の前処理器を備えた水銀濃度測定装置の概略を示すブロック図であり、1は本発明の前処理器である塩化水銀の還元を行う還元手段、2は気液分離手段、3はハニカム状水銀除去手段、4は電磁弁、5は測定セル、6は光源、7は受光器、8は吸引ポンプ、9は温度検出手段、10は圧力検出手段、11は演算手段である。
Hereinafter, a mercury concentration measuring apparatus equipped with a pretreatment device of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an outline of a mercury concentration measuring apparatus equipped with a pretreatment device of the present invention, wherein 1 is a reduction means for reducing mercury chloride, which is a pretreatment device of the present invention, and 2 is a gas-liquid separation means. 3 is a honeycomb mercury removing means, 4 is a solenoid valve, 5 is a measuring cell, 6 is a light source, 7 is a light receiver, 8 is a suction pump, 9 is a temperature detecting means, 10 is a pressure detecting means, and 11 is a computing means. is there.

気液分離手段2は還元手段1により試料ガス中の水銀化合物が金属水銀に変換された後の試料ガスの結露水を分離する。ハニカム状水銀除去手段3は、水銀との直接の接触によりアマルガムを構成する金属、例えば金粒子を表面に有するハニカム構造体を備えることにより、試料ガス12中の水銀だけを効率よく除去して基準ガス13を生成し、この基準ガス13の透過光量と試料ガス12の透過光量との差から水銀の吸光量を高精度に求めることが可能となる。
電磁弁4は二つの流路のうちの一方の流路を選択する弁であり、試料ガス12は電磁弁4の方向とハニカム状水銀除去手段3の方向とに分岐した後、再度合流する構成となっており、合流点に備えた電磁弁4によりどちらか1つの経路が選択される。
The gas-liquid separation means 2 separates the condensed water of the sample gas after the mercury compound in the sample gas is converted into metallic mercury by the reducing means 1. The honeycomb-shaped mercury removing means 3 is provided with a honeycomb structure having a metal that forms amalgam by direct contact with mercury, for example, gold particles on the surface, thereby efficiently removing only the mercury in the sample gas 12 as a reference. It is possible to generate the gas 13 and obtain the mercury absorption amount with high accuracy from the difference between the transmitted light amount of the reference gas 13 and the transmitted light amount of the sample gas 12.
The electromagnetic valve 4 is a valve that selects one of the two flow paths, and the sample gas 12 branches in the direction of the electromagnetic valve 4 and the direction of the honeycomb-like mercury removing means 3 and then merges again. One of the paths is selected by the electromagnetic valve 4 provided at the junction.

測定セル5は試料ガス12または基準ガス13が通過するセルであり、光を透過する。この測定セル5には温度センサ、及び、圧力センサ(図示せず)が設けられている。光源6は水銀ランプ等の紫外線領域の光線を多く含む光を発光し、受光器7は光電管等よりなり、光源6から発光された光の測定セル5による透過光を受光し、受光量を演算手段11に出力する。吸引ポンプ8は煙道等から試料ガス12を吸引するものであり、この吸引ポンプ8の吸引により試料ガス12が還元手段1、気液分離手段2、ハニカム状水銀除去手段3、電磁弁4及び測定セル5を流れる。
温度検出手段9、圧力検出手段10は、測定セル5に設けられた温度センサ、及び、圧力センサからの出力を温度情報、圧力情報に変換して演算手段11に入力し、演算手段11は、これらの情報に基づいて、測定した水銀濃度に対して補正を行う。
The measurement cell 5 is a cell through which the sample gas 12 or the reference gas 13 passes, and transmits light. The measurement cell 5 is provided with a temperature sensor and a pressure sensor (not shown). The light source 6 emits light containing a large amount of light in the ultraviolet region, such as a mercury lamp, and the light receiver 7 is composed of a photoelectric tube or the like, receives light transmitted from the light source 6 through the measurement cell 5 and calculates the amount of light received. Output to means 11. The suction pump 8 sucks the sample gas 12 from a flue or the like, and the suction pump 8 sucks the sample gas 12 into the reducing means 1, the gas-liquid separation means 2, the honeycomb-like mercury removing means 3, the electromagnetic valve 4, and the like. Flows through the measurement cell 5.
The temperature detection means 9 and the pressure detection means 10 convert the temperature sensor provided in the measurement cell 5 and the output from the pressure sensor into temperature information and pressure information and input them to the calculation means 11, and the calculation means 11 Based on this information, the measured mercury concentration is corrected.

水銀濃度測定装置は上記のように構成されており、以下の手順で試料ガス12中の水銀濃度を求める。
試料ガス12は、測定セル5の排気側に備えた吸引ポンプ8により吸引され、還元手段1、気液分離手段2を通過するが、まず、還元手段1、気液分離手段2及びハニカム状水銀除去手段3を通過した基準ガス13を測定セル5に導入し、特定の波長、例えば、原子状水銀の吸収波長である254nmの光強度を計測する。次に、電磁弁4を切り替えて測定セル5に還元手段1、気液分離手段2のみを通過した試料ガス11を導入し、上記特定の波長の光強度を計測する。このとき、両光強度の差は、ハニカム状水銀除去手段3により試料ガス12から除去された物質の吸光量となるので、この吸光量から特定波長における吸光量と水銀濃度との既知の関係に基づいて、試料ガス12中の水銀濃度を求めることができる。
The mercury concentration measuring apparatus is configured as described above, and obtains the mercury concentration in the sample gas 12 by the following procedure.
The sample gas 12 is sucked by a suction pump 8 provided on the exhaust side of the measurement cell 5 and passes through the reducing means 1 and the gas-liquid separating means 2. First, the reducing means 1, the gas-liquid separating means 2, and the honeycomb-like mercury. The reference gas 13 that has passed through the removing means 3 is introduced into the measurement cell 5, and the light intensity at a specific wavelength, for example, 254 nm, which is the absorption wavelength of atomic mercury, is measured. Next, the electromagnetic valve 4 is switched to introduce the sample gas 11 that has passed only the reducing means 1 and the gas-liquid separating means 2 into the measurement cell 5, and the light intensity of the specific wavelength is measured. At this time, the difference between the two light intensities is the light absorption amount of the substance removed from the sample gas 12 by the honeycomb-like mercury removing means 3, and therefore, from this light absorption amount, a known relationship between the light absorption amount at a specific wavelength and the mercury concentration is obtained. Based on this, the mercury concentration in the sample gas 12 can be determined.

次に、本発明の前処理器である還元手段1の詳細について図2の還元カラムの構造図により説明する。
図2において、21は石英管、22は耐熱性繊維であるシリカウール、23は還元剤としての粒径が0.2mmの炭酸ナトリウム結晶と耐熱性繊維であるシリカウールの混合物であり、図に示すように、石英管21の内部に炭酸ナトリウム結晶とシリカウールの混合物23を充填し、その両端にシリカウール22を詰めて封止している。なお、この還元カラムの周囲にはこの還元カラムを外部から加熱するヒータ(図示せず)を備え、加熱された還元カラムを保温する断熱材が還元カラムを外部から覆っており、測定時には還元カラムの温度が所定の温度、例えば400℃に保たれるようにヒータの発熱量が制御される。
Next, the details of the reducing means 1 which is the pretreatment device of the present invention will be described with reference to the structural diagram of the reducing column in FIG.
In FIG. 2, 21 is a quartz tube, 22 is a silica wool that is a heat-resistant fiber, 23 is a mixture of sodium carbonate crystal having a particle size of 0.2 mm as a reducing agent and silica wool that is a heat-resistant fiber. As shown, a quartz tube 21 is filled with a mixture 23 of sodium carbonate crystals and silica wool, and both ends thereof are filled with silica wool 22 and sealed. A heater (not shown) for heating the reduction column from the outside is provided around the reduction column, and a heat insulating material for keeping the heated reduction column covers the reduction column from the outside. The amount of heat generated by the heater is controlled so that the temperature of the heater is maintained at a predetermined temperature, for example, 400 ° C.

この還元カラムに試料ガス25が流入すると、試料ガス25中に含まれる塩化水銀は、還元カラムを通過するときに、炭酸ナトリウムにより原子状水銀に還元されるとともに、試料ガス25中に含まれる塩化水素は炭酸ナトリウムにより中和される。   When the sample gas 25 flows into the reduction column, the mercury chloride contained in the sample gas 25 is reduced to atomic mercury by sodium carbonate when passing through the reduction column, and the chloride contained in the sample gas 25. Hydrogen is neutralized with sodium carbonate.

図3、図4は、粒径が0.5mmの炭酸ナトリウム結晶のみを石英管に充填した還元カラムと、粒径0.2mmの炭酸ナトリウム結晶とシリカウールの混合物を充填した還元カラムとに、それぞれ、金属水銀として170μg/m相当の塩化水銀蒸気を含有するガスを水分30%、塩化水素900ppmと共存状態でガス流量300mL/分で通過させて水銀濃度を連続測定した結果を示す。図3、図4に示すように、粒径0.2mmの炭酸ナトリウム結晶とシリカウールの混合物を充填した還元カラムでは、90%応答時間が粒径が0.5mmの炭酸ナトリウム結晶のみを石英管に充填した還元カラムの15分以上から6分に短縮している。 3 and 4 show a reduction column in which only a sodium carbonate crystal having a particle size of 0.5 mm is packed in a quartz tube, and a reduction column in which a mixture of sodium carbonate crystal having a particle size of 0.2 mm and silica wool is packed. Each shows a result of continuous measurement of mercury concentration by passing a gas containing mercury chloride vapor equivalent to 170 μg / m 3 as metallic mercury at a gas flow rate of 300 mL / min in a coexistence state with 30% moisture and 900 ppm hydrogen chloride. As shown in FIGS. 3 and 4, in a reduction column packed with a mixture of sodium carbonate crystals having a particle size of 0.2 mm and silica wool, only a sodium carbonate crystal having a 90% response time of 0.5 mm in particle size is used as a quartz tube. It is shortened from 15 minutes or more of the reducing column packed in 6 minutes to 6 minutes.

以上説明したように、還元触媒として炭酸ナトリウム結晶にシリカウールを混合したものを使用することにより、圧損が生じないので、粒径の小さな炭酸ナトリウムを使用することができ、反応表面積を増やして応答性を向上させることができ、水銀排出抑制のための燃焼炉制御がより的確に実施できるとともに、連続使用しても、排ガス中の成分や水蒸気により炭酸ナトリウムの粒子同士が結合することがなく、管の閉塞が起きないので、還元剤の寿命を延ばすことができ、還元剤交換頻度が低下し、メンテナンスコストを低減することが可能となる。   As described above, by using a mixture of silica carbonate and silica wool as the reduction catalyst, pressure loss does not occur, so sodium carbonate with a small particle size can be used, and the reaction surface area is increased to respond. The combustion furnace control for suppressing mercury emissions can be carried out more accurately, and even when continuously used, the sodium carbonate particles are not bound to each other by the components and water vapor in the exhaust gas, Since the clogging of the pipe does not occur, the life of the reducing agent can be extended, the reducing agent replacement frequency is lowered, and the maintenance cost can be reduced.

次に、本発明の前処理器である還元手段1の他の実施例について、図5の還元カラムの構造図により説明する。この還元カラムは図2の還元カラムに酸性ガス除去部を付加したものである。
図2と同様に、21は石英管、22はシリカウール、23は粒径0.2mmの炭酸ナトリウム結晶とシリカウールの混合物であり、24は粒径0.5mmの炭酸ナトリウム結晶である。図に示すように、石英管21の中心部にシリカウール22を充填し、その両側に炭酸ナトリウム結晶とシリカウールの混合物23と炭酸ナトリウム結晶24を充填し、その外側にシリカウール22を詰めて封止している。なお、この還元カラムの周囲にも還元カラムを外部から加熱するヒータが設けられ、測定時には還元カラムの温度が所定の温度、例えば400℃に保たれる。
Next, another embodiment of the reducing means 1 which is the pretreatment device of the present invention will be described with reference to the structural diagram of the reducing column in FIG. This reduction column is obtained by adding an acid gas removal unit to the reduction column of FIG.
As in FIG. 2, 21 is a quartz tube, 22 is silica wool, 23 is a mixture of sodium carbonate crystals and silica wool having a particle size of 0.2 mm, and 24 is sodium carbonate crystals having a particle size of 0.5 mm. As shown in the figure, the silica tube 22 is filled in the center of the quartz tube 21, the mixture 23 of sodium carbonate crystal and silica wool and the sodium carbonate crystal 24 are filled on both sides, and the silica wool 22 is packed on the outside. It is sealed. A heater for heating the reduction column from the outside is also provided around the reduction column, and the temperature of the reduction column is maintained at a predetermined temperature, for example, 400 ° C. during measurement.

この還元カラムに試料ガス25が流入すると、まず、炭酸ナトリウム結晶24を流通することにより試料ガス25から酸性ガスが除去されるとともに、塩化水銀が炭酸ナトリウムにより原子状水銀に還元された後、炭酸ナトリウム結晶とシリカウールの混合物23に流入し、ここでも炭酸ナトリウムにより塩化水銀が原子状水銀に還元されるとともに、試料ガス25中に含まれる塩化水素が炭酸ナトリウムにより中和される。
なお、粒径の大きな炭酸ナトリウム結晶24は初期には水銀還元にも寄与するが、早く水銀還元能力を喪失してしまう。しかしながら、粒径の大きな炭酸ナトリウム結晶24は、水銀還元能力喪失後も酸性ガス除去剤として機能するので、還元カラムの後段の粒径の小さい炭酸ナトリウムの劣化を防ぐことができる。
When the sample gas 25 flows into the reduction column, first, the acidic gas is removed from the sample gas 25 by flowing through the sodium carbonate crystal 24, and after mercury chloride is reduced to atomic mercury by sodium carbonate, It flows into the mixture 23 of sodium crystals and silica wool, and again, mercury chloride is reduced to atomic mercury by sodium carbonate, and hydrogen chloride contained in the sample gas 25 is neutralized by sodium carbonate.
Although the sodium carbonate crystal 24 having a large particle size contributes to mercury reduction at an early stage, the mercury reducing ability is quickly lost. However, since the sodium carbonate crystal 24 having a large particle size functions as an acid gas removing agent even after the mercury reducing ability is lost, deterioration of the sodium carbonate having a small particle size in the latter stage of the reduction column can be prevented.

なお、上記の二つの実施例では、炭酸塩として炭酸ナトリウムを使用したが、
炭酸カリウム、炭酸リチウム、炭酸ルビジウム、炭酸セシウム等を使用することも可能である。
また、上記の二つの実施例では、耐熱性繊維としてシリカウールを使用したが、アラミド繊維や炭素繊維を使用することも可能である。
In the above two examples, sodium carbonate was used as the carbonate,
It is also possible to use potassium carbonate, lithium carbonate, rubidium carbonate, cesium carbonate or the like.
In the above two embodiments, silica wool is used as the heat-resistant fiber, but it is also possible to use an aramid fiber or a carbon fiber.

さらに、上記の二つの実施例では、粒径の小さな炭酸ナトリウム結晶として粒径0.2mmのものを使用し、粒径の大きな炭酸ナトリウム結晶として粒径0.5mmのものを使用したが、これらは一例であり、粒径の小さな炭酸ナトリウム結晶として粒径0.3mm未満のもの、粒径の大きな炭酸ナトリウム結晶として粒径0.3〜1.0mmのものを使用することができる。   Further, in the above two examples, a sodium carbonate crystal having a particle size of 0.2 mm was used as a sodium carbonate crystal having a small particle size, and a sodium carbonate crystal having a particle size of 0.5 mm was used as a sodium carbonate crystal having a large particle size. Is an example, and a sodium carbonate crystal having a particle size of less than 0.3 mm can be used as a sodium carbonate crystal having a small particle size, and a sodium carbonate crystal having a particle size of 0.3 to 1.0 mm can be used.

1 還元手段
2 気液分離手段
3 ハニカム状水銀除去手段
4 電磁弁
5 測定セル
6 光源
7 受光器
8 吸引ポンプ
9 温度検出手段
10 圧力検出手段
11 演算手段
21 石英管
22 シリカウール
23 炭酸ナトリウム結晶とシリカウールの混合物
24 粒径0.5mmの炭酸ナトリウム結晶
DESCRIPTION OF SYMBOLS 1 Reduction | restoration means 2 Gas-liquid separation means 3 Honeycomb-like mercury removal means 4 Electromagnetic valve 5 Measurement cell 6 Light source 7 Light receiver 8 Suction pump 9 Temperature detection means 10 Pressure detection means 11 Calculation means 21 Quartz tube 22 Silica wool 23 Sodium carbonate crystal Mixture of silica wool 24 Sodium carbonate crystals with a particle size of 0.5 mm

Claims (3)

石英管の前段に粒径の大きなアルカリ金属またはアルカリ土類金属の炭酸塩結晶を充填し、石英管の後段に粒径の小さいアルカリ金属またはアルカリ土類金属の炭酸塩結晶と耐熱性繊維とを混合したものを充填した還元カラムであることを特徴とする水銀濃度測定装置の前処理器。   The quartz tube with a large particle size alkali metal or alkaline earth metal carbonate crystal is filled in the front stage of the quartz tube, and the alkali metal or alkaline earth metal carbonate crystal with a small particle size and heat resistant fiber are placed in the subsequent stage of the quartz tube. A pretreatment device for a mercury concentration measuring device, characterized by being a reduction column filled with a mixture. 排ガス中の水銀化合物を金属水銀に変換する還元カラムと、前記還元カラムを加熱するヒータと、前記還元カラムにより試料ガス中の水銀化合物が金属水銀に変換された後の試料ガス中の液体を分離する気液分離手段と、前記気液分離手段を通過した試料ガスが導入され、当該試料ガス中に含まれる原子状水銀を定量する測定部とを備えた水銀濃度測定装置において、前記還元カラムとして請求項1に記載された前処理器を用いたことを特徴とする水銀濃度測定装置。 A reduction column that converts mercury compounds in the exhaust gas into metallic mercury, a heater that heats the reduction column, and a liquid in the sample gas after the mercury compounds in the sample gas are converted into metallic mercury by the reduction column In the mercury concentration measuring apparatus, comprising: a gas-liquid separation means that performs measurement; and a measurement unit that introduces the sample gas that has passed through the gas-liquid separation means and quantifies atomic mercury contained in the sample gas. A mercury concentration measuring apparatus using the pretreatment device according to claim 1 . 請求項2に記載された水銀濃度測定装置において、前記ヒータが前記還元カラムを400℃またはそれ以下に加熱することを特徴とする水銀濃度測定装置。 3. The mercury concentration measuring apparatus according to claim 2 , wherein the heater heats the reducing column to 400 ° C. or lower.
JP2012072654A 2012-03-28 2012-03-28 Mercury concentration measuring device and pretreatment device Active JP5877540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072654A JP5877540B2 (en) 2012-03-28 2012-03-28 Mercury concentration measuring device and pretreatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072654A JP5877540B2 (en) 2012-03-28 2012-03-28 Mercury concentration measuring device and pretreatment device

Publications (2)

Publication Number Publication Date
JP2013205128A JP2013205128A (en) 2013-10-07
JP5877540B2 true JP5877540B2 (en) 2016-03-08

Family

ID=49524365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072654A Active JP5877540B2 (en) 2012-03-28 2012-03-28 Mercury concentration measuring device and pretreatment device

Country Status (1)

Country Link
JP (1) JP5877540B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095445A (en) * 2019-05-15 2019-08-06 北京诺德泰科仪器仪表有限公司 A kind of Ultraluminescence analysis of total sulfur instrument combustion tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7461025B2 (en) 2020-03-16 2024-04-03 国立大学法人高知大学 Completely closed cell type mercury analyzer and completely closed cell type mercury analysis method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150042A (en) * 1984-08-20 1986-03-12 Kankyo Gijutsu Kenkyusho:Kk Continuous analysis method of gaseous total mercury
JPH075410Y2 (en) * 1987-03-20 1995-02-08 株式会社堀場製作所 SO ▲ 2 ▼ Pretreatment device for analyzer
JP3783820B2 (en) * 1998-10-09 2006-06-07 東洋紡績株式会社 Air purification filter
JP2005098713A (en) * 2003-09-22 2005-04-14 Kyoto Electron Mfg Co Ltd Apparatus and method for measuring mercury concentration
JP4515903B2 (en) * 2004-12-28 2010-08-04 日本インスツルメンツ株式会社 Automatic cleaning of measuring equipment for mercury in gas
JP2007271460A (en) * 2006-03-31 2007-10-18 Horiba Ltd Method and instrument for measuring mercury in coal combustion exhaust gas
JP4226049B1 (en) * 2007-08-27 2009-02-18 日本インスツルメンツ株式会社 Mercury measuring device for measuring mercury in hydrocarbon-based samples
JP5468483B2 (en) * 2010-07-15 2014-04-09 京都電子工業株式会社 Mercury concentration measuring apparatus and mercury concentration measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110095445A (en) * 2019-05-15 2019-08-06 北京诺德泰科仪器仪表有限公司 A kind of Ultraluminescence analysis of total sulfur instrument combustion tube
CN110095445B (en) * 2019-05-15 2021-11-23 北京诺德泰科仪器仪表有限公司 Ultraviolet fluorescence total sulfur analyzer combustion tube

Also Published As

Publication number Publication date
JP2013205128A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
US8312822B2 (en) Mercury control using moderate-temperature dissociation of halogen compounds
JP5001419B2 (en) Heated combustion tube, pyrolysis device and mercury analyzer for mercury analysis
JP2011121036A (en) Mercury removing method for combustion exhaust gas and cleaning apparatus for combustion exhaust gas
Wang et al. A wet process for oxidation-absorption of nitric oxide by persulfate/calcium peroxide
CN107389547B (en) Intelligent environment-friendly light source drift automatic correction atomic fluorescence spectrometer
JP5877540B2 (en) Mercury concentration measuring device and pretreatment device
JP2010096688A (en) Pyrolytically decomposing apparatus for analyzing mercury, mercury analyzer, and its method
CN109142017A (en) Separation, collecting device and the method for mercury in a kind of crude oil
JP2011158451A (en) Mercury measuring device
JP4868356B2 (en) Method and apparatus for analyzing mercury in exhaust gas
JP5169006B2 (en) Analysis equipment
JP5468483B2 (en) Mercury concentration measuring apparatus and mercury concentration measuring method
JP6124436B2 (en) Mercury concentration measuring device
JP2010096753A (en) Mercury collector, mercury collecting unit, mercury analyzer, and its method
JP2007271460A (en) Method and instrument for measuring mercury in coal combustion exhaust gas
JP2014518769A (en) Method for separating mercury from flue gas in high-temperature plants
JP2008200544A (en) Melt treatment method of waste
JP2007181757A (en) Method of removing mercury from exhaust gas
JP2010122160A (en) Mercury analyzing apparatus and method therefor
JP2005077355A (en) Apparatus and method for measuring mercury concentration
WO2012026114A1 (en) Exhaust gas processing device
JP5182195B2 (en) Mercury analyzer in exhaust gas
JP2005098713A (en) Apparatus and method for measuring mercury concentration
JP3613146B2 (en) Method and apparatus for analyzing trace components in gas
JP2018025429A (en) Reduction filter of mercury concentration measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160120

R150 Certificate of patent or registration of utility model

Ref document number: 5877540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250