JP2005077355A - Apparatus and method for measuring mercury concentration - Google Patents

Apparatus and method for measuring mercury concentration Download PDF

Info

Publication number
JP2005077355A
JP2005077355A JP2003311141A JP2003311141A JP2005077355A JP 2005077355 A JP2005077355 A JP 2005077355A JP 2003311141 A JP2003311141 A JP 2003311141A JP 2003311141 A JP2003311141 A JP 2003311141A JP 2005077355 A JP2005077355 A JP 2005077355A
Authority
JP
Japan
Prior art keywords
mercury
sample gas
gas
mercury concentration
amalgam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003311141A
Other languages
Japanese (ja)
Inventor
Takanori Nonaka
孝則 埜中
Nami Kurauchi
奈美 倉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP2003311141A priority Critical patent/JP2005077355A/en
Publication of JP2005077355A publication Critical patent/JP2005077355A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for measuring mercury concentration allowing high-precision measurement even when organic substances are contained in a sample gas. <P>SOLUTION: The apparatus includes a sample gas introduction channel which introduces the sample gas into a measurement cell which measures the mercury concentration in the sample gas by atomic absorption analysis and a reference gas introduction channel which introduces a reference gas obtained by removing mercury from the sample gas. The reference gas introduction channel has a structure provided with a honeycomb structure having, on its surface, a metal constituting amalgam through contact with mercury. Gold is used as the metal constituting amalgam. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、原子吸光分析法を用いた水銀濃度測定装置、及び水銀濃度測定方法に関する。   The present invention relates to a mercury concentration measuring apparatus using atomic absorption spectrometry and a mercury concentration measuring method.

乾電池等の水銀を含む物質が都市ごみに混入する等の理由により、ごみ焼却処理場等の焼却施設の排ガス中には水銀が含まれる恐れがある。また、焼却施設の排ガス以外にも、水銀が有害物質であることから、大気をはじめとする気体中に含まれる水銀の濃度や、液体又は固体試料に含まれる水銀量を検出することが求められることがある。   Mercury may be contained in the exhaust gas from incineration facilities such as waste incineration plants due to the fact that substances containing mercury such as dry cells are mixed into municipal waste. In addition to exhaust gas from incineration facilities, since mercury is a harmful substance, it is required to detect the concentration of mercury contained in gases such as the atmosphere and the amount of mercury contained in liquid or solid samples. Sometimes.

このような水銀濃度を測定する装置として、原子吸光分析法を用いた水銀濃度測定装置が利用されている。このような水銀濃度測定装置は、測定セルへ導入した試料ガス(試料が液体または固体の場合は、この試料を気化したガス)に光を照射して特定波長の光の吸収量を検出し、試料ガスに含まれる水銀の濃度を求めるものである(例えば、特許文献1参照。)。   As an apparatus for measuring such mercury concentration, a mercury concentration measuring apparatus using atomic absorption spectrometry is used. Such a mercury concentration measuring device detects the amount of light absorbed at a specific wavelength by irradiating light to a sample gas introduced into a measurement cell (if the sample is liquid or solid, the gas that vaporizes this sample), The concentration of mercury contained in the sample gas is obtained (for example, see Patent Document 1).

上記水銀濃度測定装置は、例えば、図6に示すように、水銀ランプ等の紫外線領域の光線を多く含む光源2から発光された光を測定セル1に入射して、その透過光を光電管等の受光器3で受光し、電気信号として演算手段16に出力するようになっている。   For example, as shown in FIG. 6, the mercury concentration measuring apparatus makes light emitted from a light source 2 containing a large amount of light in the ultraviolet region, such as a mercury lamp, enter a measurement cell 1 and transmit the transmitted light to a phototube or the like. Light is received by the light receiver 3 and output to the computing means 16 as an electrical signal.

また、測定セル1には、温度センサ、及び、圧力センサが設けられており、これらのセンサの出力は温度検出手段14、及び、圧力検出手段15に入力されて温度情報、圧力情報に変換され、演算手段16に入力される。演算手段16では、これらの情報に基づいて、測定した水銀濃度に対して補正を行うことが可能となっている。   Further, the measurement cell 1 is provided with a temperature sensor and a pressure sensor, and the outputs of these sensors are input to the temperature detection means 14 and the pressure detection means 15 and converted into temperature information and pressure information. , Input to the arithmetic means 16. The computing means 16 can correct the measured mercury concentration based on such information.

一方、試料ガス10は、上記測定セル1の排気側に備えた吸引ポンプ9により測定セル1内に導入されるが、測定セル1に導入される前に、還元手段4により塩化物等の化合物の状態で存在する水銀は原子状水銀に還元される。   On the other hand, the sample gas 10 is introduced into the measurement cell 1 by the suction pump 9 provided on the exhaust side of the measurement cell 1, but before being introduced into the measurement cell 1, a compound such as a chloride is reduced by the reducing means 4. Mercury present in this state is reduced to atomic mercury.

この還元手段4と測定セル1との間において、試料ガス10の輸送路は、一旦、二手に分岐した後、再度合流する構成となっており、合流点に備えた電磁弁8により、どちらか1つの経路を選択するようになっている。   Between the reducing means 4 and the measurement cell 1, the transport path of the sample gas 10 is once branched into two and then joined again, and either of them is provided by an electromagnetic valve 8 provided at the joining point. One route is selected.

上記2つの経路のうち、一方の経路は、還元処理後の試料ガス10をそのまま測定セル1に輸送し(試料ガス導入路5)、他方の経路は、その経路中に備えた水銀除去手段7により、試料ガス10中の水銀を除去して測定セル1に輸送する(基準ガス導入路6)。   One of the two paths transports the sample gas 10 after the reduction treatment to the measurement cell 1 as it is (sample gas introduction path 5), and the other path is the mercury removing means 7 provided in the path. Thus, mercury in the sample gas 10 is removed and transported to the measurement cell 1 (reference gas introduction path 6).

上記水銀除去手段7は、図7に示すように、表面に貴金属が担持されたセラミックのペレットからなる触媒12を充填したものであり、内部を通過する試料ガス10に含まれている原子状水銀は、触媒12の表面の貴金属とアマルガム化することにより吸収される。なお、以下では、この水銀除去手段7を通過した試料ガスを基準ガス11と記述する。   As shown in FIG. 7, the mercury removing means 7 is filled with a catalyst 12 made of ceramic pellets having a noble metal supported on the surface, and the atomic mercury contained in the sample gas 10 passing through the inside. Is absorbed by amalgamating with the noble metal on the surface of the catalyst 12. Hereinafter, the sample gas that has passed through the mercury removing means 7 will be referred to as a reference gas 11.

上記構成において、水銀濃度測定装置は、以下の手順で試料ガス10中の水銀濃度を求める。   In the above configuration, the mercury concentration measuring device obtains the mercury concentration in the sample gas 10 according to the following procedure.

まず、水銀除去手段7を通過した基準ガス11を測定セル1に導入し、特定の波長、例えば、原子状水銀の吸収波長である254nmの光強度を計測する。次に、電磁弁を切り替えて測定セル1に試料ガス10を導入し、上記特定の波長の光強度を計測する。このとき、両光強度の差は、上記水銀除去手段7により試料ガス10から除去された物質の吸光量となる。従って、この吸光量から、特定波長における吸光量と水銀濃度との既知の関係に基づいて、試料ガス10中の水銀濃度を求めることができる。
特願2002−168773号公報
First, the reference gas 11 that has passed through the mercury removing means 7 is introduced into the measuring cell 1, and the light intensity at a specific wavelength, for example, 254 nm, which is the absorption wavelength of atomic mercury, is measured. Next, the electromagnetic valve is switched to introduce the sample gas 10 into the measurement cell 1, and the light intensity of the specific wavelength is measured. At this time, the difference between the two light intensities becomes the light absorption amount of the substance removed from the sample gas 10 by the mercury removing means 7. Therefore, the mercury concentration in the sample gas 10 can be obtained from this absorbance based on the known relationship between the absorbance at a specific wavelength and the mercury concentration.
Japanese Patent Application No. 2002-168773

しかしながら、試料ガス10中に有機物が含まれている場合、上記構成に使用した触媒12は、水銀だけでなく有機物をも表面に付着させる。その結果、得られた基準ガス11は、後で詳述するが、有機物の含有量が本来含まれている有機物の量より少なくなる。一般に、有機物は広範囲の波長領域に渡るブロードな吸光特性を有しており、原子状水銀の吸収波長をもつ光も吸収する。このため、上記従来の水銀濃度測定装置により求めた吸光量は、水銀の吸光量と減少した有機物の吸光量とが合算されたものとなる。従って、この吸光量から求めた水銀濃度には、触媒12に吸着された有機物の吸光量に相当する誤差が含まれることになる。   However, when the sample gas 10 contains an organic substance, the catalyst 12 used in the above configuration attaches not only mercury but also an organic substance to the surface. As a result, the reference gas 11 obtained will be described later in detail, but the content of organic matter is smaller than the amount of organic matter that is originally contained. In general, an organic substance has a broad light absorption characteristic over a wide wavelength range, and absorbs light having an absorption wavelength of atomic mercury. For this reason, the light absorption obtained by the conventional mercury concentration measuring apparatus is the sum of the light absorption of mercury and the light absorption of the reduced organic matter. Accordingly, the mercury concentration obtained from the light absorption amount includes an error corresponding to the light absorption amount of the organic matter adsorbed on the catalyst 12.

本発明は、上記従来の事情に鑑みて提案されたものであって、試料ガス中に有機物が含まれていても、高精度な測定を行うことができる水銀濃度測定装置、及び水銀濃度測定方法を提供することを目的とする。   The present invention has been proposed in view of the above-described conventional circumstances, and a mercury concentration measuring apparatus and a mercury concentration measuring method capable of performing highly accurate measurement even when an organic substance is contained in a sample gas. The purpose is to provide.

本発明は、上記目的を達成するために、以下の手段を採用している。   In order to achieve the above object, the present invention employs the following means.

本発明の水銀濃度測定装置は、原子吸光分析法により試料ガス中の水銀濃度を測定する測定セルに対して、試料ガスを導入する試料ガス導入路と、前記試料ガスから水銀を除去した基準ガスを導入する基準ガス導入路を備えている。   The mercury concentration measuring apparatus of the present invention includes a sample gas introduction path for introducing a sample gas to a measurement cell for measuring the mercury concentration in the sample gas by atomic absorption spectrometry, and a reference gas obtained by removing mercury from the sample gas. A reference gas introduction path is introduced.

また、上記基準ガス導入路は、基準ガス精製のために、水銀との直接の接触によりアマルガムを構成する金属を表面に有するハニカム構造体を設けている。   In addition, the reference gas introduction path is provided with a honeycomb structure having a metal constituting the amalgam on the surface by direct contact with mercury for purification of the reference gas.

上記構成によれば、試料ガスから有機物を除去することなく水銀だけを除去した基準ガスの吸光量と試料ガスの吸光量を計測することが可能となる。   According to the above configuration, it is possible to measure the light absorption amount of the reference gas and the light absorption amount of the sample gas from which only mercury is removed without removing organic substances from the sample gas.

このため、両吸光量の差から試料ガス中に含まれる水銀の吸光量、すなわち、水銀濃度を高精度に検出することが可能となる。   For this reason, it is possible to detect the amount of absorption of mercury contained in the sample gas, that is, the concentration of mercury with high accuracy from the difference between both amounts of absorption.

上記の水銀とアマルガムを構成する金属は、金であることが好ましい。これにより、水銀を効率よく吸収させることができるからである。   The metal constituting the mercury and the amalgam is preferably gold. This is because mercury can be absorbed efficiently.

また、他の観点では、本発明は、上述の手順からなる水銀濃度測定方法を提供することができる。   In another aspect, the present invention can provide a mercury concentration measurement method comprising the above-described procedure.

本発明によると、試料ガスを水銀との直接の接触によりアマルガムを構成する金属を表面に有するハニカム構造体を備えることにより、試料ガス中の水銀だけを効率よく除去して基準ガスを精製することができる。このため、基準ガスの透過光量と試料ガスの透過光量との差から水銀の吸光量を高精度に求めることが可能となる。   According to the present invention, the reference gas is purified by efficiently removing only mercury in the sample gas by providing the honeycomb structure having the metal constituting the amalgam on the surface by direct contact of the sample gas with mercury. Can do. For this reason, it is possible to obtain the mercury absorption amount with high accuracy from the difference between the transmitted light amount of the reference gas and the transmitted light amount of the sample gas.

以下、本発明の実施の形態を図面にしたがって詳細に説明する。図1は、本発明を適用した水銀濃度測定装置の概略機能ブロック図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic functional block diagram of a mercury concentration measuring apparatus to which the present invention is applied.

本実施の形態の水銀濃度測定装置は、上記従来の水銀除去手段7に代えて、ハニカム状水銀除去手段13を備えた点以外は、上記従来の水銀濃度測定装置の構成と同様である。また、ハニカム状水銀除去手段13により基準ガスの精製を行う点を除けば、測定手順も従来技術と同様である。   The mercury concentration measuring apparatus of the present embodiment is the same as the configuration of the conventional mercury concentration measuring apparatus except that a honeycomb-like mercury removing means 13 is provided instead of the conventional mercury removing means 7. The measurement procedure is the same as that of the prior art except that the reference gas is purified by the honeycomb-like mercury removing means 13.

ハニカム状水銀除去手段13は、図2に示すように、筐体21の内部に、ハニカム構造体22を収納している。このハニカム構造体22は、軸方向の貫通孔が多数集合した構造を有しており、導入口23から進入した試料ガス10は、ハニカム構造体22の内部を通過し、排出口24から排出されるようになっている。   As shown in FIG. 2, the honeycomb-like mercury removing means 13 houses a honeycomb structure 22 inside a housing 21. The honeycomb structure 22 has a structure in which a large number of through-holes in the axial direction are gathered, and the sample gas 10 entering from the introduction port 23 passes through the inside of the honeycomb structure 22 and is discharged from the discharge port 24. It has become so.

図3は、上記ハニカム構造体22の断面図(図2における、A−A断面)である。図3に示す例では、ハニカム構造の基材を、板材26の外表面に、波板27を配置した部材を同心円上に複数層重ねて構成している。   FIG. 3 is a sectional view of the honeycomb structure 22 (AA section in FIG. 2). In the example shown in FIG. 3, a substrate having a honeycomb structure is formed by stacking a plurality of layers on a concentric circle with members on which corrugated plates 27 are arranged on the outer surface of a plate material 26.

上記板材26、及び、波板27の表面には、図4の断面図に示すように、ウォッシュコート処理(ゲル体に浸漬して表面をコーティングした後に焼成を行うことで表面に固着させる処理)により固体酸化物や炭素繊維等のウォッシュコート層28が形成され、さらに、このウォッシュコート層28の表面には、ウォッシュコート処理と同様の処理により、多数の金粒子29を分散担持させている。   As shown in the cross-sectional view of FIG. 4, the surface of the plate material 26 and the corrugated plate 27 is washed by a coating process (process of fixing the surface by baking after being immersed in a gel body and coating the surface). As a result, a wash coat layer 28 such as a solid oxide or carbon fiber is formed, and a large number of gold particles 29 are dispersed and supported on the surface of the wash coat layer 28 by a process similar to the wash coat process.

なお、ハニカム構造体22の基材である板材26、波板27の材質は、上述のウォッシュコート処理で行う焼成に耐えうるものであれば良く、例えば、ステンレス等の金属やセラミックス等を使用することができる。   The material of the plate material 26 and the corrugated plate 27 that are the base material of the honeycomb structure 22 may be any material that can withstand the firing performed in the above-described washcoat treatment, and for example, a metal such as stainless steel or ceramics is used. be able to.

また、上記筐体21には、任意の材質を使用することができるが、原子状水銀とアマルガムを構成することのない、例えば、ポリプロピレン等の樹脂であることが好ましい。このようにすれば、長期間の使用によりハニカム状水銀除去手段13の水銀除去能力が低下した場合であっても、筐体21はアマルガム化により材質が変化しないため、その内部にあるハニカム構造体22を交換するだけで、水銀除去能力を回復させることができる。   The casing 21 may be made of any material, but is preferably a resin such as polypropylene that does not form atomic mercury and amalgam. In this way, even if the mercury removal capability of the honeycomb-like mercury removing means 13 is lowered due to long-term use, the material of the casing 21 does not change due to amalgamation. The mercury removal capability can be restored simply by exchanging 22.

上記のようなハニカム構造体22に試料ガス10を通過させた場合、試料ガス10に含まれる原子状水銀は、ハニカム構造体22の表面に分散担持されている金粒子29との接触して合金化しアマルガムを構成する。このため、試料ガス10から原子状水銀は除去される。   When the sample gas 10 is passed through the honeycomb structure 22 as described above, the atomic mercury contained in the sample gas 10 comes into contact with the gold particles 29 dispersedly supported on the surface of the honeycomb structure 22 to form an alloy. To make up amalgam. For this reason, atomic mercury is removed from the sample gas 10.

一方、試料ガス10に含まれる有機物は、試料ガス10から除去されない。   On the other hand, organic substances contained in the sample gas 10 are not removed from the sample gas 10.

この有機物が除去されないことを示す具体例として、図5(A)に、本発明のハニカム状水銀除去手段13に、有機物のみを混入した試料ガス(水銀は含んでいない)を通過させた場合の透過光量を示す。また、比較例として、従来の水銀除去手段7の透過光量を図5(B)に示す。   As a specific example showing that the organic matter is not removed, FIG. 5A shows a case where a sample gas (containing no mercury) is allowed to pass through the honeycomb-like mercury removing means 13 of the present invention. Indicates the amount of transmitted light. As a comparative example, the amount of transmitted light of the conventional mercury removing means 7 is shown in FIG.

図5では、測定セル1に対して、時間の経過とともに、有機物を含まないガス、有機物を含むガス、及び、ハニカム状水銀除去手段13(あるいは、水銀除去手段7)を通過させた有機物を含むガスを順に導入している。   In FIG. 5, the measurement cell 1 includes a gas not containing an organic substance, a gas containing an organic substance, and an organic substance that has passed through the honeycomb-like mercury removing unit 13 (or the mercury removing unit 7) as time passes. Gas is introduced in order.

ハニカム状水銀除去手段13には、直径30mm×長さ50mm、セル密度が600セル/平方インチの円柱状ハニカム構造体22を使用している。このハニカム構造体22の表面は、アルミナのウォッシュコート層28が形成されており、このウォッシュコート層28上に金粒子を分散担持させている。   The honeycomb-shaped mercury removing means 13 uses a cylindrical honeycomb structure 22 having a diameter of 30 mm × a length of 50 mm and a cell density of 600 cells / square inch. An alumina washcoat layer 28 is formed on the surface of the honeycomb structure 22, and gold particles are dispersed and supported on the washcoat layer 28.

一方、従来の水銀除去手段7には、ガラス管内に、直径3mm×長さ3.5mmの円柱状のアルミナからなるペレットの表面に貴金属が担持された触媒12を充填したものを使用している。   On the other hand, the conventional mercury removing means 7 uses a glass tube filled with a catalyst 12 in which a noble metal is supported on the surface of a pellet made of cylindrical alumina having a diameter of 3 mm and a length of 3.5 mm. .

上記両水銀除去手段の表面には、定量的な数値は特定できていないが、上記基準ガス11を精製する(試料ガスから原子状水銀を除去する)のに十分な金(貴金属)が存在している。   Although quantitative values cannot be specified on the surfaces of both mercury removing means, there is sufficient gold (noble metal) to purify the reference gas 11 (remove atomic mercury from the sample gas). ing.

なお、試料ガスのガス流量は300ml/minとし、有機物としてパラジクロロベンゼンを混入した。   The gas flow rate of the sample gas was 300 ml / min, and paradichlorobenzene was mixed as an organic substance.

図5(A)及び(B)から、有機物を含まないガスを導入した時間領域31、及び、有機物を含むガスを導入した時間領域32では、両者に差異は無く、共に有機物を含むガスを導入したときに、有機物の吸光により透過光量が低下していることが確認できる。   5A and 5B, there is no difference between the time region 31 in which a gas not containing an organic material is introduced and the time region 32 in which a gas containing an organic material is introduced, and a gas containing an organic material is introduced. When this is done, it can be confirmed that the amount of transmitted light is reduced by the absorption of the organic matter.

これに対し、本発明のハニカム状水銀除去手段13と従来の水銀除去手段7を通過させたガスを導入した時間領域33では、両者で異なる結果を示している。すなわち、従来の水銀除去手段7を通過した試料ガスは、試料ガス中の有機物が除去されたため、時間領域31の有機物を含まない試料ガスを導入したときと同じ光透過量を示しているが、本発明のハニカム状水銀除去手段13を通過した試料ガスは、一旦、有機物を含まない試料ガスと同じ光透過量を示した後、直ぐに時間領域32の有機物を含むガスを導入したときと同じ光透過量となっている。   On the other hand, in the time region 33 in which the gas passed through the honeycomb-shaped mercury removing means 13 of the present invention and the conventional mercury removing means 7 is introduced, both show different results. That is, the sample gas that has passed through the conventional mercury removing means 7 shows the same amount of light transmission as when the sample gas containing no organic matter in the time domain 31 was introduced because the organic matter in the sample gas was removed. The sample gas that has passed through the honeycomb-shaped mercury removing means 13 of the present invention once shows the same light transmission amount as the sample gas not containing organic matter, and then the same light as when the gas containing organic matter in the time region 32 was introduced immediately. The amount of transmission.

この時間領域33における光透過量の低下Aから、ハニカム状水銀除去手段13を使用した場合には、有機物が除去されていないことが理解できる。   From the decrease A of the light transmission amount in the time region 33, it can be understood that the organic matter is not removed when the honeycomb-like mercury removing means 13 is used.

以上説明したように、上記ハニカム状水銀除去手段13に試料ガス10を通過させることにより、試料ガス10中の有機物を除去することなく、原子状水銀だけを除去した基準ガス11を精製することが可能となる。   As described above, by passing the sample gas 10 through the honeycomb-shaped mercury removing means 13, the reference gas 11 from which only atomic mercury has been removed can be purified without removing the organic matter in the sample gas 10. It becomes possible.

したがって、測定セル1に導入した試料ガス10の透過光量と基準ガス11の透過光量とを上記電磁弁8を切り替えて個別に計測し、この差より、試料ガス10の吸光量を求めることで、試料ガス10に含まれる原子状水銀の量を高精度に求めることが可能となる。このとき、電磁弁8の切替周期を短く(数秒〜数十秒)することで、よりリアルタイムに近い水銀濃度の測定が可能になる。   Therefore, the amount of transmitted light of the sample gas 10 introduced into the measurement cell 1 and the amount of transmitted light of the reference gas 11 are individually measured by switching the electromagnetic valve 8, and from this difference, the amount of absorption of the sample gas 10 is obtained, The amount of atomic mercury contained in the sample gas 10 can be obtained with high accuracy. At this time, by shortening the switching cycle of the solenoid valve 8 (several seconds to several tens of seconds), it is possible to measure mercury concentration closer to real time.

なお、上記実施の形態で示した、ハニカム状水銀除去手段の構成は具体例を示すものであり、本発明の技術的範囲を制限するものではない。例えば、金に代えて、銀、銅、錫、亜鉛、鉛、ナトリウム、カリウム、カドミウム等の水銀とアマルガムを構成する金属を担持させてもよい。また、その形状も、ハニカム構造を有し、その表面にアマルガムを構成する金属が存在すればどのような形状であってもよく、本発明の効果を有する範囲において、適宜変更することが可能である。   The configuration of the honeycomb-like mercury removing means shown in the above embodiment shows a specific example, and does not limit the technical scope of the present invention. For example, instead of gold, mercury, such as silver, copper, tin, zinc, lead, sodium, potassium, and cadmium, and a metal constituting amalgam may be supported. Further, the shape thereof may be any shape as long as it has a honeycomb structure and a metal constituting the amalgam exists on the surface thereof, and can be appropriately changed within a range having the effect of the present invention. is there.

本発明を適用した水銀濃度測定装置の概略機能ブロック図。1 is a schematic functional block diagram of a mercury concentration measuring apparatus to which the present invention is applied. 本発明のハニカム状水銀除去手段の断面図。Sectional drawing of the honeycomb-like mercury removal means of this invention. 本発明のハニカム構造体の断面図。Sectional drawing of the honeycomb structure of this invention. 本発明のハニカム構造体の断面図。Sectional drawing of the honeycomb structure of this invention. 本発明のハニカム状水銀除去手段と従来の水銀除去手段における有機物の吸着力の差を示す説明図。Explanatory drawing which shows the difference of the adsorption power of the organic substance in the honeycomb-like mercury removal means of this invention, and the conventional mercury removal means. 従来の水銀濃度測定装置の概略機能ブロック図。Schematic functional block diagram of a conventional mercury concentration measuring device. 従来の水銀除去手段の断面図。Sectional drawing of the conventional mercury removal means.

符号の説明Explanation of symbols

1 測定セル
2 光源
3 受光器
5 試料ガス導入路
6 基準ガス導入路
7 水銀除去手段
8 電磁弁
10 試料ガス
11 基準ガス
13 ハニカム状水銀除去手段
22 ハニカム構造体
DESCRIPTION OF SYMBOLS 1 Measurement cell 2 Light source 3 Light receiver 5 Sample gas introduction path 6 Reference gas introduction path 7 Mercury removal means 8 Electromagnetic valve 10 Sample gas 11 Reference gas 13 Honeycomb-like mercury removal means 22 Honeycomb structure

Claims (4)

原子吸光分析法により試料ガス中の水銀濃度を測定する水銀濃度測定装置において、
吸光分析を行う測定セルに前記試料ガスを導入する試料ガス導入路と、
前記試料ガスから水銀を除去した基準ガスを前記測定セルに導入する基準ガス導入路と、
前記基準ガス導入路に設けた、水銀との直接の接触によりアマルガムを構成する金属を担持したハニカム構造体と、
を備えたことを特徴とする水銀濃度測定装置。
In a mercury concentration measurement device that measures the mercury concentration in a sample gas by atomic absorption spectrometry,
A sample gas introduction path for introducing the sample gas into a measurement cell for performing absorption analysis;
A reference gas introduction path for introducing a reference gas obtained by removing mercury from the sample gas into the measurement cell;
Provided in the reference gas introduction path, a honeycomb structure carrying a metal constituting the amalgam by direct contact with mercury;
A mercury concentration measuring device characterized by comprising:
上記アマルガムを構成する金属が金である請求項1に記載の水銀濃度測定装置。 The mercury concentration measuring apparatus according to claim 1, wherein the metal constituting the amalgam is gold. 原子吸光分析法により試料ガス中の水銀濃度を測定する水銀濃度測定方法において、
水銀との直接の接触によりアマルガムを構成する金属を担持したハニカム構造体に前記試料ガスを通過させて基準ガスを精製するステップと、
前記基準ガスの吸光分析を行うステップと、
前記試料ガスの吸光分析を行うステップと、
前記基準ガスの吸光分析結果と前記試料ガスの吸光分析結果との差を演算するステップと、
を有することを特徴とする水銀濃度測定方法。
In the mercury concentration measurement method that measures the mercury concentration in the sample gas by atomic absorption spectrometry,
A step of purifying the reference gas by passing the sample gas through a honeycomb structure supporting a metal constituting the amalgam by direct contact with mercury;
Performing an absorption analysis of the reference gas;
Performing an absorption analysis of the sample gas;
Calculating a difference between an absorption analysis result of the reference gas and an absorption analysis result of the sample gas;
A method for measuring mercury concentration, comprising:
上記アマルガムを構成する金属が金である請求項3に記載の水銀濃度測定方法。 The mercury concentration measuring method according to claim 3, wherein the metal constituting the amalgam is gold.
JP2003311141A 2003-09-03 2003-09-03 Apparatus and method for measuring mercury concentration Pending JP2005077355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003311141A JP2005077355A (en) 2003-09-03 2003-09-03 Apparatus and method for measuring mercury concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003311141A JP2005077355A (en) 2003-09-03 2003-09-03 Apparatus and method for measuring mercury concentration

Publications (1)

Publication Number Publication Date
JP2005077355A true JP2005077355A (en) 2005-03-24

Family

ID=34412779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003311141A Pending JP2005077355A (en) 2003-09-03 2003-09-03 Apparatus and method for measuring mercury concentration

Country Status (1)

Country Link
JP (1) JP2005077355A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278836A (en) * 2006-04-06 2007-10-25 Mitsubishi Materials Corp Method of analyzing mercury in exhaust gas, and device therefor
JP2008089580A (en) * 2006-09-08 2008-04-17 National Institute Of Advanced Industrial & Technology Mercury content measuring element, mercury content measuring device, and mercury content measuring method
JP2008286656A (en) * 2007-05-18 2008-11-27 Babcock Hitachi Kk Method and device for measuring mercury concentration
JP2008292215A (en) * 2007-05-23 2008-12-04 Nippon Instrument Kk Measuring gas dilution device, method therefor, mercury analyzer, and method therefor
JP2009503437A (en) * 2005-05-02 2009-01-29 サーモ エレクトロン コーポレーション Method and apparatus for monitoring mercury in a gas sample
JP2010096753A (en) * 2008-09-22 2010-04-30 Nippon Instrument Kk Mercury collector, mercury collecting unit, mercury analyzer, and its method
CN104280268A (en) * 2014-09-17 2015-01-14 力合科技(湖南)股份有限公司 Trapping device and trapping system
CN109569440A (en) * 2018-12-15 2019-04-05 力合科技(湖南)股份有限公司 Integrated device and method occur for bivalent mercury reduction and bivalent mercury standard gas

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503437A (en) * 2005-05-02 2009-01-29 サーモ エレクトロン コーポレーション Method and apparatus for monitoring mercury in a gas sample
JP2007278836A (en) * 2006-04-06 2007-10-25 Mitsubishi Materials Corp Method of analyzing mercury in exhaust gas, and device therefor
JP2008089580A (en) * 2006-09-08 2008-04-17 National Institute Of Advanced Industrial & Technology Mercury content measuring element, mercury content measuring device, and mercury content measuring method
JP2008286656A (en) * 2007-05-18 2008-11-27 Babcock Hitachi Kk Method and device for measuring mercury concentration
JP2008292215A (en) * 2007-05-23 2008-12-04 Nippon Instrument Kk Measuring gas dilution device, method therefor, mercury analyzer, and method therefor
JP2010096753A (en) * 2008-09-22 2010-04-30 Nippon Instrument Kk Mercury collector, mercury collecting unit, mercury analyzer, and its method
CN104280268A (en) * 2014-09-17 2015-01-14 力合科技(湖南)股份有限公司 Trapping device and trapping system
CN109569440A (en) * 2018-12-15 2019-04-05 力合科技(湖南)股份有限公司 Integrated device and method occur for bivalent mercury reduction and bivalent mercury standard gas
CN109569440B (en) * 2018-12-15 2021-09-10 力合科技(湖南)股份有限公司 Bivalent mercury reduction and bivalent mercury standard gas generation integrated device and method

Similar Documents

Publication Publication Date Title
US10295517B2 (en) Heated graphite scrubber to reduce interferences in ozone monitors
WO1997025612A1 (en) Method and apparatus for monitoring mercury emissions
CN100410649C (en) On-line atmospheric mercury analyzer
WO1991013362A1 (en) Method and apparatus for the determination of dissolved carbon in water
EP1831665A2 (en) Ammonia gas sensor method and device
JP5001419B2 (en) Heated combustion tube, pyrolysis device and mercury analyzer for mercury analysis
JP2005077355A (en) Apparatus and method for measuring mercury concentration
US3652227A (en) Nitric oxide analysis
WO2008042027A1 (en) System and method for limiting sensor exposure to ozone
EP1558361B1 (en) Apparatus and methods for removing mercury from fluid streams
WO2010062566A2 (en) Ammonia gas sensor method and device
JP2010096688A (en) Pyrolytically decomposing apparatus for analyzing mercury, mercury analyzer, and its method
US11047838B2 (en) Method for elemental analysis
JP4538604B2 (en) Photoreaction tube built-in photoreaction apparatus and water quality monitoring apparatus using the same
JP2010096753A (en) Mercury collector, mercury collecting unit, mercury analyzer, and its method
JP4868356B2 (en) Method and apparatus for analyzing mercury in exhaust gas
CN105699160A (en) Method and device for removing trace mercury in carrier gas
JP2000065699A (en) Analytical sample-burning device, method for controlling supply of inert gas, oxygen-containing gas in analytical sample-burning device, and analytical system having sample-burning device
JP2006090732A (en) Method and instrument for measuring total organic carbon content
JP2010122160A (en) Mercury analyzing apparatus and method therefor
JP2004108913A (en) Gas measuring method using reaction with electrode material of crystal oscillator
JP6207749B2 (en) Chemical analyzer with membrane
GB1562225A (en) Detection and measurement of no and o
JP2003035647A (en) Volatile organic chlorine compound sensor
JP2004138467A (en) Ultraviolet absorption type measuring instrument and method for treating measurement specimen

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060621

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Effective date: 20080704

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A131 Notification of reasons for refusal

Effective date: 20081105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090304