JP2007278099A - Purifying method of exhaust gas, and cogeneration method of vehicle - Google Patents

Purifying method of exhaust gas, and cogeneration method of vehicle Download PDF

Info

Publication number
JP2007278099A
JP2007278099A JP2006102518A JP2006102518A JP2007278099A JP 2007278099 A JP2007278099 A JP 2007278099A JP 2006102518 A JP2006102518 A JP 2006102518A JP 2006102518 A JP2006102518 A JP 2006102518A JP 2007278099 A JP2007278099 A JP 2007278099A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
temperature
purification method
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006102518A
Other languages
Japanese (ja)
Inventor
Tomokazu Ishii
伴和 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006102518A priority Critical patent/JP2007278099A/en
Publication of JP2007278099A publication Critical patent/JP2007278099A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purifying method of exhaust gas for maintaining a high purifying rate, and a cogeneration method of a vehicle for efficiently utilizing energy recovered by the exhaust gas purifying method. <P>SOLUTION: In the purifying method of exhaust gas, a temperature control is performed so that a bed temperature of a catalyst is out of a temperature range of 250°C to 300°C, and the exhaust gas containing carbon monoxide is brought into contact with the catalyst so as to oxidatively-purify the exhaust gas. In a cogeneration method of a vehicle, waste heat recovered from the catalyst by the purifying method of the exhaust gas is used for air-conditioning, lighting of a light, or battery charge. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排ガスの浄化方法及び車両のコージェネレーション方法に関し、さらに詳しくは、高い浄化率を維持することができる排ガスの浄化方法及び車両のコージェネレーション方法に関する。   The present invention relates to an exhaust gas purification method and a vehicle cogeneration method, and more particularly to an exhaust gas purification method and a vehicle cogeneration method capable of maintaining a high purification rate.

自動車等のガソリンエンジン、トラック、バス等のディーゼルエンジンなどから排出される燃焼排ガス中には、有害物質の1つである一酸化炭素が含まれており、環境保全の立場からその除去方法の開発は重大かつ緊急の社会的課題である。
排ガス中の一酸化炭素を除去するために、様々な触媒が開発されている。例えば、結晶性シリケートに活性金属(銅やマンガン等)を担持させた一酸化炭素浄化性能を有する排ガス浄化触媒が開示されている(例えば、特許文献1参照。)。
特許第2772117号明細書
Combustion exhaust gas emitted from gasoline engines such as automobiles, diesel engines such as trucks and buses, etc. contains carbon monoxide, which is one of the harmful substances. Is a serious and urgent social issue.
Various catalysts have been developed to remove carbon monoxide in exhaust gases. For example, an exhaust gas purification catalyst having a carbon monoxide purification performance in which an active metal (such as copper or manganese) is supported on a crystalline silicate is disclosed (for example, refer to Patent Document 1).
Japanese Patent No. 2772117

しかし、排ガスの排出状態は多様であり、一定で且つ高い浄化性能を呈することは極めて困難である。
本発明は上記問題点を解決するためになされたものであり、本発明の目的は、高い浄化率を維持できる排ガスの浄化方法、及び該排ガスの浄化方法によって回収したエネルギーを効率的に利用できる車両のコージェネレーション方法を提供することである。
However, exhaust gas discharge states are diverse, and it is extremely difficult to exhibit a constant and high purification performance.
The present invention has been made to solve the above problems, and an object of the present invention is to efficiently use the exhaust gas purification method capable of maintaining a high purification rate and the energy recovered by the exhaust gas purification method. It is to provide a vehicle cogeneration method.

即ち、本発明は、
<1> 触媒の床温が250℃〜300℃の温度域外となるように温度制御を行い、一酸化炭素を含む排ガスを前記触媒に接触させて酸化的に浄化する排ガスの浄化方法である。
That is, the present invention
<1> A method for purifying exhaust gas, wherein temperature control is performed so that the bed temperature of the catalyst is outside the temperature range of 250 ° C. to 300 ° C., and exhaust gas containing carbon monoxide is contacted with the catalyst to oxidatively purify.

酸化触媒を用いて一酸化炭素を酸化させる場合、触媒上に一酸化炭素と酸素とが吸着し、これらの酸化反応が起こって二酸化炭素となっている。しかし、一酸化炭素は250℃〜300℃の温度域において触媒に対し強い吸着性を示し、且つ触媒から脱離し難くなるために、触媒表面が一酸化炭素で覆われてしまうというCO被毒が起こる。その結果、触媒上に酸素が吸着できず、酸化反応しにくくなることが明らかとなった。
そこで、上記<1>の発明では、触媒の床温が250℃〜300℃の温度域外となるように温度制御を行うことで、触媒のCO被毒を防ぎ、一酸化炭素の酸化反応が阻害されない。
したがって、上記<1>の発明によれば、触媒のCO被毒を防ぎ、一酸化炭素の高い浄化率を維持することができる。
When carbon monoxide is oxidized using an oxidation catalyst, carbon monoxide and oxygen are adsorbed on the catalyst, and these oxidation reactions occur to form carbon dioxide. However, since carbon monoxide exhibits strong adsorptivity to the catalyst in the temperature range of 250 ° C. to 300 ° C. and is difficult to desorb from the catalyst, CO poisoning that the catalyst surface is covered with carbon monoxide is not possible. Occur. As a result, it became clear that oxygen could not be adsorbed on the catalyst and oxidation reaction was difficult.
Therefore, in the invention <1>, by controlling the temperature so that the bed temperature of the catalyst is outside the temperature range of 250 ° C. to 300 ° C., CO poisoning of the catalyst is prevented and the oxidation reaction of carbon monoxide is inhibited. Not.
Therefore, according to the invention <1>, CO poisoning of the catalyst can be prevented, and a high purification rate of carbon monoxide can be maintained.

<2> 前記触媒が、銅及びマンガンを含む触媒、少なくともセリア及びジルコニアを含む担体に金を担持した触媒、少なくともチタニアを含む担体に金を担持した触媒、少なくともセリアとジルコニアと銀とを含む触媒、少なくともセリアとジルコニアと鉄とを含む触媒、及び少なくともセリアとジルコニアと銀と鉄とを含む触媒からなる群より選択される少なくとも1種であることを特徴とする前記<1>に記載の排ガスの浄化方法である。 <2> The catalyst is a catalyst containing copper and manganese, a catalyst having gold supported on a carrier containing at least ceria and zirconia, a catalyst having gold supported on a carrier containing at least titania, a catalyst containing at least ceria, zirconia and silver. The exhaust gas according to <1>, wherein the exhaust gas is at least one selected from the group consisting of a catalyst containing at least ceria, zirconia and iron, and a catalyst containing at least ceria, zirconia, silver and iron. It is a purification method.

上記<2>の発明では、白金、パラジウム又はロジウムを主成分としない触媒を用いるが、この場合であっても、触媒の床温が250℃〜300℃の温度域外となるように温度制御を行うことで、触媒のCO被毒を防ぎ、結果、高い浄化率を維持することができる。   In the above invention <2>, a catalyst that does not contain platinum, palladium, or rhodium as a main component is used. Even in this case, temperature control is performed so that the bed temperature of the catalyst is outside the temperature range of 250 ° C to 300 ° C. By doing so, the catalyst can be prevented from being poisoned by CO, and as a result, a high purification rate can be maintained.

<3> 前記触媒が、銅及びマンガンを含む触媒、又は少なくともセリア及びジルコニアを含む担体に金を担持した触媒であることを特徴とする前記<1>に記載の排ガスの浄化方法である。 <3> The exhaust gas purification method according to <1>, wherein the catalyst is a catalyst containing copper and manganese, or a catalyst in which gold is supported on a carrier containing at least ceria and zirconia.

上記<3>の発明によれば、活性の高い触媒を用いることになるので、特に高い浄化率を維持することができる。   According to the invention <3>, since a highly active catalyst is used, a particularly high purification rate can be maintained.

<4> 前記触媒の周囲に熱吸収材料及び加熱手段の少なくとも一方を配置して、触媒の床温が250℃〜300℃の温度域外となるように温度制御することを特徴とする前記<1>乃至<3>のいずれか1項に記載の排ガスの浄化方法である。 <4> The above-mentioned <1>, wherein at least one of a heat absorbing material and a heating unit is disposed around the catalyst, and the temperature of the catalyst is controlled so that the bed temperature is outside the temperature range of 250 ° C to 300 ° C. The method for purifying exhaust gas according to any one of <1> to <3>.

上記<4>の発明によれば、触媒の床温が250℃〜300℃の温度域外となるように、触媒の周囲に熱吸収材料及び加熱手段の少なくとも一方を配置することで、触媒のCO被毒を防止することができ、一酸化炭素の高い浄化率を維持することができる。   According to the above invention <4>, by disposing at least one of the heat absorbing material and the heating means around the catalyst such that the bed temperature of the catalyst is outside the temperature range of 250 ° C. to 300 ° C., the CO of the catalyst Poisoning can be prevented and a high purification rate of carbon monoxide can be maintained.

<5> 前記触媒に接触するときの前記排ガスの温度を熱吸収材料及び加熱手段の少なくとも一方により制御して、触媒の床温が250℃〜300℃の温度域外となるように温度制御することを特徴とする前記<1>乃至<4>のいずれか1項に記載の排ガスの浄化方法である。 <5> The temperature of the exhaust gas when contacting the catalyst is controlled by at least one of a heat absorption material and a heating means, and the temperature of the catalyst is controlled to be outside the temperature range of 250 ° C to 300 ° C. The method for purifying exhaust gas according to any one of <1> to <4>, characterized in that:

上記<5>の発明によれば、排ガスの温度を熱吸収材料及び加熱手段の少なくとも一方によって制御することで、温度制御された排ガスが触媒に接触するため、触媒の床温を250℃〜300℃の温度域外となるように制御でき、一酸化炭素の高い浄化率を維持することができる。
なお、排ガスの温度と触媒の床温とは必ずしも同じにはならないが、排ガスが触媒に接触し続けるにつれて、触媒の温度と排ガスの温度とが略同じとなる。したがって、触媒の床温は、排ガスの温度を制御することで達成できる。
According to the above invention <5>, the temperature of the exhaust gas is controlled by at least one of the heat absorbing material and the heating means so that the temperature-controlled exhaust gas contacts the catalyst. It can be controlled to be outside the temperature range of ° C., and a high purification rate of carbon monoxide can be maintained.
The exhaust gas temperature and the catalyst bed temperature are not necessarily the same, but as the exhaust gas continues to contact the catalyst, the catalyst temperature and the exhaust gas temperature become substantially the same. Therefore, the bed temperature of the catalyst can be achieved by controlling the temperature of the exhaust gas.

<6> 前記熱吸収材料が、熱電素子、冷却水、ドライアイス及び液体窒素からなる群より選択される少なくとも1種であることを特徴とする前記<4>又は<5>に記載の排ガスの浄化方法である。 <6> The exhaust gas according to <4> or <5>, wherein the heat absorbing material is at least one selected from the group consisting of a thermoelectric element, cooling water, dry ice, and liquid nitrogen. It is a purification method.

上記<6>の発明によれば、触媒又は排ガスの温度を、熱電素子、冷却水、ドライアイス及び液体窒素からなる群より選択される少なくとも1種で冷却することで、触媒の床温を250℃よりも低い温度にすることができ、触媒のCO被毒を防ぐことができる。   According to the invention <6>, the temperature of the catalyst or exhaust gas is cooled by at least one selected from the group consisting of a thermoelectric element, cooling water, dry ice and liquid nitrogen, so that the bed temperature of the catalyst is 250. The temperature can be lower than 0 ° C., and CO poisoning of the catalyst can be prevented.

<7> 並列に設けた複数の前記排ガスの流路のうち少なくとも1つの流路に前記触媒を備え、該触媒を備えた流路における触媒の床温が250℃〜300℃となったときに、排ガスの流入を切り替える切替手段によって、他の流路に排ガスを流入させることを特徴とする前記<1>乃至<6>のいずれか1項に記載の排ガスの浄化方法である。 <7> When the catalyst is provided in at least one of the plurality of exhaust gas channels provided in parallel, and the bed temperature of the catalyst in the channel including the catalyst becomes 250 ° C. to 300 ° C. The exhaust gas purifying method according to any one of <1> to <6>, wherein the exhaust gas is caused to flow into another flow path by a switching unit that switches inflow of the exhaust gas.

上記<7>の発明によれば、並列に設けた複数の排ガスの流路と、排ガスの流入を切り替える切替手段とを備えることで、排ガスを流入した流路に備えた触媒の床温が250℃〜300℃となったときには、他の流路に切り替えることができるため、触媒の床温を250℃〜300℃の温度域外となるように制御でき、触媒の高い浄化率を維持することができる。   According to the above <7>, the bed temperature of the catalyst provided in the flow path into which the exhaust gas has flowed is 250 by including the plurality of exhaust gas flow paths provided in parallel and the switching means for switching the inflow of the exhaust gas. Since it can be switched to another flow path when the temperature becomes from ℃ to 300 ℃, the catalyst bed temperature can be controlled to be outside the temperature range of 250 ℃ to 300 ℃, and a high purification rate of the catalyst can be maintained. it can.

<8> 前記他の流路に熱吸収材料及び加熱手段の少なくとも一方を配置して、排ガスの温度が250℃〜300℃の温度域外となるように温度制御し、該熱吸収材料又は加熱手段よりも下流側に前記触媒を備えることを特徴とする前記<7>に記載の排ガスの浄化方法である。 <8> Disposing at least one of a heat absorbing material and a heating means in the other flow path, controlling the temperature so that the temperature of the exhaust gas is outside the temperature range of 250 ° C. to 300 ° C., and the heat absorbing material or the heating means The exhaust gas purification method according to <7>, wherein the catalyst is provided on the downstream side of the exhaust gas.

上記<8>の発明では、並列に設けた複数の排ガスの流路において、1の流路には前記触媒を備え、他の1の流路には熱吸収材料及び加熱手段の少なくとも一方を備える。触媒の床温が250℃〜300℃の温度域外の場合には、1の流路に排ガスを流入し、触媒の床温が250℃〜300℃の温度域内の場合には、他の1の流路に排ガスを流入する。
したがって、上記<8>の発明によれば、排ガスの温度が250℃〜300℃の温度域内の場合には、他の流路に切り替えるので、触媒の床温を250℃〜300℃の温度域外となるように制御でき、触媒の高い浄化率を維持することができる。
In the invention <8>, in the plurality of exhaust gas flow paths provided in parallel, one flow path includes the catalyst, and the other flow path includes at least one of a heat absorbing material and a heating unit. . When the bed temperature of the catalyst is outside the temperature range of 250 ° C. to 300 ° C., exhaust gas flows into one flow path, and when the bed temperature of the catalyst is within the temperature range of 250 ° C. to 300 ° C., the other 1 The exhaust gas flows into the flow path.
Therefore, according to the above invention <8>, when the temperature of the exhaust gas is in the temperature range of 250 ° C. to 300 ° C., the flow is switched to another flow path, so the bed temperature of the catalyst is outside the temperature range of 250 ° C. to 300 ° C. And a high purification rate of the catalyst can be maintained.

また、他の1の流路には、熱吸収材料及び加熱手段の少なくとも一方が設けられているため、排ガスの温度を250℃〜300℃の温度域外に制御することができる。250℃〜300℃の温度域外に制御された排ガスは、その下流に備えられた触媒によって、浄化される。
したがって、上記<8>の発明によれば、触媒の床温が250℃〜300℃となったときには、熱吸収材料及び加熱手段の少なくとも一方によって排ガスの温度を250℃〜300℃の温度域外に制御した後、排ガスを触媒に接触させて一酸化炭素を酸化させるので、処理する排ガスの温度に因ることなく、処理後に排出される排ガス中の一酸化炭素の含有率を低くすることができる。
Further, since at least one of the heat absorbing material and the heating means is provided in the other one flow path, the temperature of the exhaust gas can be controlled outside the temperature range of 250 ° C to 300 ° C. The exhaust gas controlled outside the temperature range of 250 ° C. to 300 ° C. is purified by a catalyst provided downstream thereof.
Therefore, according to the above invention <8>, when the bed temperature of the catalyst becomes 250 ° C. to 300 ° C., the temperature of the exhaust gas is outside the temperature range of 250 ° C. to 300 ° C. by at least one of the heat absorbing material and the heating means. After the control, the exhaust gas is brought into contact with the catalyst to oxidize carbon monoxide, so that the content of carbon monoxide in the exhaust gas discharged after treatment can be lowered without depending on the temperature of the exhaust gas to be treated. .

<9> 前記他の流路に、吸着剤を備えることを特徴とする前記<7>に記載の排ガスの浄化方法である。 <9> The exhaust gas purification method according to <7>, wherein an adsorbent is provided in the other channel.

上記<9>の発明では、並列に設けた複数の排ガスの流路において、1の流路には前記触媒を備え、他の1の流路には吸着剤を備える。触媒の床温が250℃〜300℃の温度域外の場合には、1の流路に排ガスを流入し、触媒の床温が250℃〜300℃の温度域内の場合には、他の1の流路に排ガスを流入する。
したがって、上記<9>の発明によれば、触媒の床温が250℃〜300℃の温度域内の場合には、他の流路に切り替えるので、触媒の床温を250℃〜300℃の温度域外となるように制御でき、触媒の高い浄化率を維持することができる。
In the above invention <9>, in the plurality of exhaust gas flow paths provided in parallel, one of the flow paths includes the catalyst, and the other one of the flow paths includes an adsorbent. When the bed temperature of the catalyst is outside the temperature range of 250 ° C. to 300 ° C., exhaust gas flows into one flow path, and when the bed temperature of the catalyst is within the temperature range of 250 ° C. to 300 ° C., the other 1 The exhaust gas flows into the flow path.
Therefore, according to the invention <9>, when the bed temperature of the catalyst is in the temperature range of 250 ° C. to 300 ° C., the flow is switched to another flow path, so the bed temperature of the catalyst is a temperature of 250 ° C. to 300 ° C. It can be controlled to be out of the region, and a high purification rate of the catalyst can be maintained.

また、他の1の流路には、吸着剤が備えられているため、排ガスを吸着することができる。なお、吸着剤は、排ガスの温度が250℃〜300℃の温度域内であっても、一酸化炭素を吸着することができる。
したがって、上記<9>の発明によれば、触媒の床温が250℃〜300℃の温度域外の場合には、触媒によって一酸化炭素を酸化して二酸化炭素として排出し、一方、触媒の床温が250℃〜300℃となったときには、吸着剤によって排ガス中の一酸化炭素を吸着させるので、処理後の排ガス中の一酸化炭素の含有率を低くすることができる。
Further, since the other one flow path is provided with the adsorbent, the exhaust gas can be adsorbed. The adsorbent can adsorb carbon monoxide even when the temperature of the exhaust gas is within a temperature range of 250 ° C to 300 ° C.
Therefore, according to the invention <9>, when the catalyst bed temperature is outside the temperature range of 250 ° C. to 300 ° C., the catalyst oxidizes carbon monoxide and discharges it as carbon dioxide. When the temperature becomes 250 ° C. to 300 ° C., the carbon monoxide in the exhaust gas is adsorbed by the adsorbent, so that the content of carbon monoxide in the exhaust gas after treatment can be lowered.

<10> 前記他の流路に、前記触媒を備えることを特徴とする前記<7>に記載の排ガスの浄化方法である。 <10> The exhaust gas purification method according to <7>, wherein the catalyst is provided in the other flow path.

上記<10>の発明では、並列に設けた複数の排ガスの流路において、複数の排ガスの流路に前記触媒を備える。まず、1の流路に排ガスを流入して流路中の触媒に排ガスを接触させることで排ガス中の一酸化炭素を酸化する。酸化反応の反応熱によって触媒の床温は上昇し、触媒の床温は250℃〜300℃の温度域内となる。
ここで、他の1の流路にも前記触媒を備えているが、この流路には排ガスを流入していなかったので、該流路に備えた触媒の床温は室温程度である。切替手段によって排ガスの流入を切り替えて、室温程度の触媒を備える流路に排ガスを流入する。排ガスがこの触媒に接触することで、排ガス中の一酸化炭素が反応して二酸化炭素に浄化される一方で、触媒の床温は上昇し、この触媒の床温も250℃〜300℃の温度域内となる。
このとき、先に排ガスを流入させていた流路の触媒は、酸化反応が起こらないために反応熱の発生が無いので、自然冷却によって触媒の床温は250℃〜300℃の温度域外となる。そこで、排ガスの流入を元に戻し、先に排ガスを流入させていた流路に排ガスの流入を切り替える。この操作を繰り返すことで、触媒の床温を常に250℃〜300℃の温度域外とすることができるので、触媒の高い浄化率を維持することができる。
なお、3以上の流路を備える場合には、更に他の流路に排ガスを流入させるように切り替えてもよい。
In the invention <10>, the catalyst is provided in a plurality of exhaust gas passages in a plurality of exhaust gas passages provided in parallel. First, exhaust gas is introduced into one flow path, and the exhaust gas is brought into contact with a catalyst in the flow path to oxidize carbon monoxide in the exhaust gas. The bed temperature of the catalyst rises due to the reaction heat of the oxidation reaction, and the bed temperature of the catalyst falls within a temperature range of 250 ° C to 300 ° C.
Here, the catalyst is also provided in the other channel, but since the exhaust gas did not flow into this channel, the bed temperature of the catalyst provided in the channel is about room temperature. The inflow of the exhaust gas is switched by the switching means, and the exhaust gas flows into the flow path having a catalyst at about room temperature. When the exhaust gas comes into contact with the catalyst, carbon monoxide in the exhaust gas reacts and is purified into carbon dioxide, while the bed temperature of the catalyst rises, and the bed temperature of the catalyst is also a temperature of 250 ° C to 300 ° C. Be in the region.
At this time, since the catalyst in the flow path into which the exhaust gas has flowed in does not generate an oxidation reaction because the oxidation reaction does not occur, the bed temperature of the catalyst is outside the temperature range of 250 ° C. to 300 ° C. by natural cooling. . Therefore, the inflow of the exhaust gas is returned to the original state, and the inflow of the exhaust gas is switched to the flow path into which the exhaust gas has been previously introduced. By repeating this operation, the catalyst bed temperature can always be outside the temperature range of 250 ° C. to 300 ° C., so that a high purification rate of the catalyst can be maintained.
When three or more flow paths are provided, switching may be performed so that the exhaust gas flows into another flow path.

<11> 前記他の流路に、白金、パラジウム又はロジウムを主成分とする触媒を備えることを特徴とする前記<7>に記載の排ガスの浄化方法である。 <11> The exhaust gas purification method according to <7>, wherein the other channel includes a catalyst mainly composed of platinum, palladium, or rhodium.

白金、パラジウム又はロジウムを主成分とする触媒は、触媒の床温が250℃〜300℃の温度域内であっても、浄化率が低下しないので、他の触媒の床温が250℃〜300℃の温度域内となったときには、白金、パラジウム又はロジウムを主成分とする触媒を備えた流路に排ガスの流入を切り替える。
その結果、上記<11>の発明によれば、処理する排ガスの温度に因ることなく、処理後に排出される排ガス中の一酸化炭素の含有率を低くすることができる。
なお、触媒の床温が250℃〜300℃の温度域内となったときにのみ、白金、パラジウム又はロジウムを主成分とする触媒によって排ガスの浄化を行うため、白金、パラジウム又はロジウムを主成分とする触媒の寿命を長くすることができ、貴重な白金、パラジウム又はロジウムの使用量を抑えることができる。
Since the catalyst mainly composed of platinum, palladium or rhodium does not decrease the purification rate even when the bed temperature of the catalyst is in the temperature range of 250 ° C. to 300 ° C., the bed temperature of the other catalyst is 250 ° C. to 300 ° C. When the temperature falls within the temperature range, the inflow of the exhaust gas is switched to a flow path including a catalyst mainly composed of platinum, palladium, or rhodium.
As a result, according to the invention <11>, the content of carbon monoxide in the exhaust gas discharged after the treatment can be lowered without depending on the temperature of the exhaust gas to be treated.
In addition, in order to purify exhaust gas with a catalyst containing platinum, palladium or rhodium as a main component only when the bed temperature of the catalyst is in a temperature range of 250 ° C. to 300 ° C., platinum, palladium or rhodium is used as the main component. The life of the catalyst to be used can be prolonged, and the amount of valuable platinum, palladium or rhodium used can be suppressed.

<12> 排ガスの流路における前記触媒よりも上流側で空気を混入させて、混入する空気量によって触媒に接触する排ガスの温度を調節することを特徴とする前記<1>乃至<11>のいずれか1項に記載の排ガスの浄化方法である。 <12> The above items <1> to <11>, wherein air is mixed upstream of the catalyst in the exhaust gas flow path, and the temperature of the exhaust gas contacting the catalyst is adjusted according to the amount of air mixed therein. It is a purification method of exhaust gas given in any 1 paragraph.

排ガスよりも低い温度の空気を排ガスに混入することで、排ガスの温度を下げることができる。また、排ガスを空気で希釈することで、含有する一酸化炭素濃度が低くなり、触媒上での発熱量を抑えることができる。そこで、上記<12>の発明では、排ガスに混入する空気量を調節して、排ガスの温度又は触媒の床温を250℃よりも低くなるように温度制御する。
したがって、上記<12>の発明によれば、排ガスに混入する空気量の調節によって、触媒の床温を250℃〜300℃の温度域外となるように制御でき、触媒の高い浄化率を維持することができる。
The temperature of the exhaust gas can be lowered by mixing air having a temperature lower than that of the exhaust gas into the exhaust gas. Further, by diluting the exhaust gas with air, the concentration of carbon monoxide contained is reduced, and the amount of heat generated on the catalyst can be suppressed. Therefore, in the invention <12>, the amount of air mixed in the exhaust gas is adjusted, and the temperature of the exhaust gas or the catalyst bed temperature is controlled to be lower than 250 ° C.
Therefore, according to the invention <12>, the bed temperature of the catalyst can be controlled to be outside the temperature range of 250 ° C. to 300 ° C. by adjusting the amount of air mixed in the exhaust gas, and the high purification rate of the catalyst is maintained. be able to.

<13> 前記<1>〜<12>のいずれか1項に記載の排ガスの浄化方法によって回収された触媒からの排熱を空調、ライトの点灯又はバッテリーの充電に用いる車両のコージェネレーション方法である。 <13> A vehicle cogeneration method in which exhaust heat from the catalyst recovered by the exhaust gas purification method according to any one of <1> to <12> is used for air conditioning, lighting of a light, or charging of a battery. is there.

上記<13>の発明によれば、触媒の床温を制御するために回収した廃熱を、空調、ライトの点灯又はバッテリーの充電などに用いることで、エネルギーを効率的に利用することができる。   According to the invention <13>, energy can be efficiently used by using the waste heat recovered for controlling the bed temperature of the catalyst for air conditioning, lighting of a light, or charging of a battery. .

本発明によれば、高い浄化率を維持できる排ガスの浄化方法、及び該排ガスの浄化方法によって回収したエネルギーを効率的に利用できる車両のコージェネレーション方法を提供することができる。   According to the present invention, it is possible to provide an exhaust gas purification method capable of maintaining a high purification rate, and a vehicle cogeneration method that can efficiently use energy recovered by the exhaust gas purification method.

以下、本発明の排ガスの浄化方法及び車両のコージェネレーション方法を、詳細に説明する。   Hereinafter, the exhaust gas purification method and vehicle cogeneration method of the present invention will be described in detail.

本発明の排ガスの浄化方法は、触媒の床温が250℃〜300℃の温度域外となるように温度制御を行い、一酸化炭素を含む排ガスを前記触媒に接触させて酸化的に浄化する方法である。   In the exhaust gas purification method of the present invention, the temperature of the catalyst is controlled to be outside the temperature range of 250 ° C. to 300 ° C., and the exhaust gas containing carbon monoxide is contacted with the catalyst to oxidatively purify. It is.

触媒における一酸化炭素の酸化反応の様子を図1に示す。
図1(A)に示すように、一酸化炭素の酸化反応は、まず触媒の活性サイトに一酸化炭素と酸素とが吸着し、吸着した一酸化炭素と酸素とが反応して、二酸化炭素となる。
しかし、一酸化炭素ガスは、250℃〜300℃の温度域において触媒に対し強い吸着性を示し、且つ触媒から脱離し難くなるという性質を有する。そのため、図1(B)に示すように250℃〜300℃の温度域においては、触媒表面が一酸化炭素で覆われてしまいCO被毒が起こる。その結果、触媒上に酸素が吸着できず、一酸化炭素が酸化されにくくなってしまうという現象が起こる。なお、300℃を超えると、一酸化炭素が触媒に吸着しても、一酸化炭素ガスの分子運動によって触媒から脱離しやすくなる。
The state of the oxidation reaction of carbon monoxide in the catalyst is shown in FIG.
As shown in FIG. 1A, in the oxidation reaction of carbon monoxide, first, carbon monoxide and oxygen are adsorbed on the active site of the catalyst, and the adsorbed carbon monoxide and oxygen react to form carbon dioxide and Become.
However, carbon monoxide gas has a property of exhibiting strong adsorptivity to the catalyst in a temperature range of 250 ° C. to 300 ° C. and being difficult to desorb from the catalyst. Therefore, as shown in FIG. 1B, in the temperature range of 250 ° C. to 300 ° C., the catalyst surface is covered with carbon monoxide and CO poisoning occurs. As a result, a phenomenon occurs in which oxygen cannot be adsorbed on the catalyst and carbon monoxide is hardly oxidized. In addition, when it exceeds 300 degreeC, even if carbon monoxide adsorb | sucks to a catalyst, it will become easy to detach | desorb from a catalyst by the molecular motion of carbon monoxide gas.

CO被毒の状態が続くと、触媒上での酸化反応が起こり難くなり、反応熱の発生が少なくなる。その結果、触媒の床温が低下し、いずれ250℃〜300℃の温度域から脱する。すると、図1(C)に示すようにCO被毒が解除して、酸素が触媒上に吸着するようになり、再び一酸化炭素が触媒によって酸化し始める。   If the state of CO poisoning continues, the oxidation reaction on the catalyst hardly occurs and the generation of reaction heat is reduced. As a result, the bed temperature of the catalyst is lowered and eventually departs from the temperature range of 250 ° C to 300 ° C. Then, as shown in FIG. 1C, CO poisoning is released, oxygen is adsorbed on the catalyst, and carbon monoxide begins to be oxidized again by the catalyst.

しかし、再度酸化反応が続くと、その反応熱によって触媒の床温は上昇し始め、250℃〜300℃の温度域に達する。この温度領域では触媒のCO被毒が起こり、触媒上に酸素が吸着できず、一酸化炭素が酸化されにくくなってしまう。   However, when the oxidation reaction continues again, the bed temperature of the catalyst starts to rise due to the reaction heat and reaches a temperature range of 250 ° C to 300 ° C. In this temperature range, CO poisoning of the catalyst occurs, oxygen cannot be adsorbed on the catalyst, and carbon monoxide is hardly oxidized.

このように、触媒の床温の上昇と降下によって、CO被毒とその解除とが繰り返されるため、排ガスの浄化率を一定に保つことができず、浄化率も低下する。   Thus, since the CO poisoning and its release are repeated by the increase and decrease of the catalyst bed temperature, the exhaust gas purification rate cannot be kept constant, and the purification rate also decreases.

そこで、本発明では、触媒の床温が250℃〜300℃の温度域外となるように温度制御を行い、一酸化炭素の浄化率を一定に且つ高く維持させる。   Therefore, in the present invention, temperature control is performed so that the bed temperature of the catalyst is outside the temperature range of 250 ° C. to 300 ° C., and the purification rate of carbon monoxide is kept constant and high.

図2に、触媒の床温と浄化率との関係を示す。図2のグラフ中、AはCeO2−ZrO2固溶体に金を担持した触媒を用いた場合であり、BはCuO−2.7MnO2を触媒として用いた場合である。いずれの触媒の場合も触媒の床温が250℃〜300℃のときには、浄化率が低下していることが分かる。 FIG. 2 shows the relationship between the catalyst bed temperature and the purification rate. In the graph of FIG. 2, A is a case where a catalyst having gold supported on a CeO 2 —ZrO 2 solid solution is used, and B is a case where CuO-2.7MnO 2 is used as a catalyst. In any case, it can be seen that when the catalyst bed temperature is 250 ° C. to 300 ° C., the purification rate is lowered.

浄化率の低下を回避するための触媒の床温は、250℃〜300℃の温度域外の場合であり、150℃以上250℃未満又は300℃を超えて600℃以下とすることが実用上好ましく、200℃以上240℃以下又は350℃以上500℃以下とすることが高い浄化率を達成する観点から更に好ましい。
なお、触媒の床温が150℃〜180℃の場合は、浄化率が約60%〜80%であり、250℃〜300℃場合の浄化率の約80%と同程度或いはそれよりも低くなっているが、低温のため触媒の劣化が抑制される結果、触媒寿命が長くなる観点から、150℃〜180℃の場合の方が250℃〜300℃の場合よりも好適である。
The catalyst bed temperature for avoiding a reduction in the purification rate is outside the temperature range of 250 ° C. to 300 ° C., and it is practically preferable to set it to 150 ° C. or more and less than 250 ° C. or more than 300 ° C. and 600 ° C. From the viewpoint of achieving a high purification rate, it is more preferably 200 ° C. or higher and 240 ° C. or lower or 350 ° C. or higher and 500 ° C. or lower.
In addition, when the bed temperature of the catalyst is 150 ° C. to 180 ° C., the purification rate is about 60% to 80%, which is about the same as or lower than about 80% of the purification rate at 250 ° C. to 300 ° C. However, as a result of suppressing the deterioration of the catalyst due to the low temperature, the case of 150 ° C. to 180 ° C. is more preferable than the case of 250 ° C. to 300 ° C. from the viewpoint of extending the catalyst life.

本発明に適用できる触媒としては、排ガス中の一酸化炭素を二酸化炭素に酸化できる酸化触媒であれば特に制限されること無く適用することができる。具体的には、銅及びマンガンを含む触媒、少なくともセリア及びジルコニアを含む担体に金を担持した触媒、少なくともチタニアを含む担体に金を担持した触媒、少なくともセリアとジルコニアと銀とを含む触媒、少なくともセリアとジルコニアと鉄とを含む触媒、少なくともセリアとジルコニアと銀と鉄とを含む触媒などを適用することができ、この中でも、銅及びマンガンを含む触媒、少なくともセリア及びジルコニアを含む担体に金を担持した触媒、少なくともチタニアを含む担体に金を担持した触媒、少なくともセリアとジルコニアと銀とを含む触媒、少なくともセリアとジルコニアと鉄とを含む触媒、又は少なくともセリアとジルコニアと銀と鉄とを含む触媒からなる群より選択される少なくとも1種であることが、CO酸化活性が高い観点から好ましく、特に触媒活性の観点から、銅及びマンガンを含む触媒、少なくともセリア及びジルコニアを含む担体に金を担持した触媒であることが好適である。   The catalyst applicable to the present invention is not particularly limited as long as it is an oxidation catalyst capable of oxidizing carbon monoxide in exhaust gas to carbon dioxide. Specifically, a catalyst containing copper and manganese, a catalyst having gold supported on a support containing at least ceria and zirconia, a catalyst supporting gold on a support containing at least titania, a catalyst containing at least ceria, zirconia and silver, A catalyst containing ceria, zirconia and iron, a catalyst containing at least ceria, zirconia, silver and iron, etc. can be applied. Among them, a catalyst containing copper and manganese, and at least gold on a support containing ceria and zirconia. Supported catalyst, catalyst having gold supported on a carrier containing at least titania, catalyst containing at least ceria, zirconia and silver, catalyst containing at least ceria, zirconia and iron, or at least containing ceria, zirconia, silver and iron CO oxidation activity is at least one selected from the group consisting of catalysts Preferably a high point of view, particularly in view of catalytic activity, the catalyst comprising copper and manganese, it is preferable that a catalyst supported with gold carrier including at least ceria, and zirconia.

なお、白金、パラジウム又はロジウムを主成分とする触媒を用いると、触媒の床温が250℃〜300℃の温度域内となってもCO被毒を起こしにくいので、この温度領域においても利用することが可能であるが、資源的な問題から白金、パラジウム又はロジウムを極力使用しないことが望まれている。   In addition, if a catalyst mainly composed of platinum, palladium, or rhodium is used, it is difficult to cause CO poisoning even if the bed temperature of the catalyst is in the temperature range of 250 ° C to 300 ° C. However, it is desired not to use platinum, palladium, or rhodium as much as possible because of resource problems.

本発明において、触媒の形状は特に限定は無く、粒子状やペレット状のものをガス流路の一部をカラムとして充填してもよいし、ハニカム構造としてもよい。ハニカム構造の触媒は、市販のハニカム担体表面に触媒粉末をコーティングした後、焼成を行うことで得ることができる。   In the present invention, the shape of the catalyst is not particularly limited, and particles or pellets may be filled with a part of the gas flow path as a column, or may have a honeycomb structure. A catalyst having a honeycomb structure can be obtained by coating the surface of a commercially available honeycomb carrier with a catalyst powder and then firing the catalyst powder.

次に、触媒の床温が250℃〜300℃の温度域外とする温度制御の方法について、図を参照しながら第一の態様から第七の態様について説明するが、本発明は、これらの温度制御方法に制限されない。下記の第一の態様から第七の態様では、触媒の床温の制御方法としては、大きく分けて、触媒自体の温度を制御するか、触媒に接触する排ガスの温度を制御するかである。   Next, the temperature control method in which the bed temperature of the catalyst is outside the temperature range of 250 ° C. to 300 ° C. will be described with reference to the drawings from the first aspect to the seventh aspect. It is not limited by the control method. In the first to seventh aspects described below, the method for controlling the bed temperature of the catalyst is roughly divided by controlling the temperature of the catalyst itself or controlling the temperature of the exhaust gas contacting the catalyst.

<第一の態様>
図3に触媒の床温の温度制御方法の第一の態様を示す。
図3に示すように、第一の態様では、触媒10の周囲に熱吸収材料12及び加熱手段14の少なくとも一方を配置する。触媒自体の温度を制御することで、触媒の床温を制御する方法である。なお、触媒の床温とは、充填した触媒において充填内部の温度を測定したものをいう。このような温度は、熱電対等の温度計測器によって測定することができる。
<First aspect>
FIG. 3 shows a first embodiment of the temperature control method for the catalyst bed temperature.
As shown in FIG. 3, in the first embodiment, at least one of the heat absorbing material 12 and the heating means 14 is arranged around the catalyst 10. In this method, the bed temperature of the catalyst is controlled by controlling the temperature of the catalyst itself. In addition, the bed temperature of a catalyst means what measured the temperature inside filling in the filled catalyst. Such temperature can be measured by a temperature measuring instrument such as a thermocouple.

前記熱吸収材料12としては、熱電素子、冷却水、ドライアイス、液体窒素又はこれらの組み合わせ等を適用することができる。この中でも、温度制御のし易さから、熱電素子又は冷却水を適用することが好ましい。
熱電素子によって触媒の床温の温度制御を行う場合には、熱電対等の温度計測器16によって触媒の床温を検知し、この温度によって熱電素子の電源をオン/オフすることで制御することができる。
冷却水によって触媒の床温の温度制御を行う場合には、熱電対16等によって触媒の床温を検知し、この温度によって冷却水のバルブを開閉することで制御することができる。
熱電素子の電源のオン/オフや冷却水のバルブの開閉は手動によって行ってもよいが、中央演算処理装置(CPU)18などを用いて自動制御してもよい。
As the heat absorbing material 12, a thermoelectric element, cooling water, dry ice, liquid nitrogen, or a combination thereof can be applied. Among these, it is preferable to apply a thermoelectric element or cooling water from the viewpoint of easy temperature control.
When the temperature control of the catalyst bed temperature is performed by the thermoelectric element, the temperature of the catalyst bed temperature is detected by the temperature measuring device 16 such as a thermocouple, and the control can be performed by turning on / off the thermoelectric element based on this temperature. it can.
When the temperature of the catalyst bed temperature is controlled by the cooling water, it can be controlled by detecting the bed temperature of the catalyst by the thermocouple 16 or the like and opening and closing the cooling water valve based on this temperature.
Turning on / off the power supply of the thermoelectric element and opening / closing the cooling water valve may be performed manually, but may be automatically controlled using a central processing unit (CPU) 18 or the like.

加熱手段14としては、ヒーターなどを適用することができるが、これに限定されない。
以下、第二の態様以降においても、熱吸収材料又は加熱手段を備える場合には、第一の態様の場合と同様の方法によって温度を制御することができる。
A heater or the like can be applied as the heating means 14, but is not limited thereto.
Hereinafter, also in the second and subsequent embodiments, when the heat absorbing material or the heating means is provided, the temperature can be controlled by the same method as in the first embodiment.

<第二の態様>
図4に触媒の床温の温度制御方法の第二の態様を示す。
第二の態様では触媒に接触する排ガスの温度を制御する。図4に示すように、第二の態様では、排ガスの流れにおいて、触媒20よりも上流側の排ガスの流路22に熱吸収材料24及び加熱手段26の少なくとも一方を配置する。配置した熱吸収材料24や加熱手段26によって排ガスの温度を制御して、触媒の床温が250℃〜300℃の温度域外となるように温度制御する。
<Second aspect>
FIG. 4 shows a second embodiment of the temperature control method for the catalyst bed temperature.
In the second embodiment, the temperature of the exhaust gas in contact with the catalyst is controlled. As shown in FIG. 4, in the second mode, in the exhaust gas flow, at least one of the heat absorbing material 24 and the heating means 26 is arranged in the exhaust gas flow path 22 upstream of the catalyst 20. The temperature of the exhaust gas is controlled by the arranged heat absorbing material 24 and the heating means 26, and the temperature is controlled so that the bed temperature of the catalyst is outside the temperature range of 250 ° C to 300 ° C.

第二の態様では、触媒20に接触する排ガスの温度を制御することで、触媒20の床温を制御する。排ガスの温度と触媒の床温とは必ずしも同じとはならないが、排ガスが触媒20に接触し続けるにつれて、触媒20の温度と排ガスの温度とが略同じとなる。したがって、触媒の床温は、排ガスの温度を制御することも制御可能である。   In the second aspect, the bed temperature of the catalyst 20 is controlled by controlling the temperature of the exhaust gas in contact with the catalyst 20. The temperature of the exhaust gas and the bed temperature of the catalyst are not necessarily the same, but as the exhaust gas continues to contact the catalyst 20, the temperature of the catalyst 20 and the temperature of the exhaust gas become substantially the same. Therefore, the catalyst bed temperature can be controlled by controlling the temperature of the exhaust gas.

<第三の態様>
図5に触媒の床温の温度制御方法の第三の態様を示す。
第三の態様では触媒に接触する排ガスの温度を制御する。第三の態様では、並列に設けた複数の排ガスの流路を備える。なお、図5(A)(B)では、2つの並列する排ガスの流路30,31を備える場合を示すが、3以上の並列する排ガスの流路を備えていてもよい。
図5(A)(B)では、流路30に前記触媒32を備える。流路30における触媒32の床温が250℃〜300℃となったときに、排ガスの流入を切り替えるバルブなどの切替手段34によって、流路31に排ガスが流入するよう切り替える。この切り替えによって、触媒32の床温が250℃〜300℃の温度域外となるように制御でき、触媒32の高い浄化率を維持することができる。
切替手段34による流路30,31の切り替えは、熱電対等の温度計測器33によって触媒32の床温を検知し、この温度のデータを基に手動又は中央演算処理装置(CPU)35などによる自動制御によって行う。
<Third embodiment>
FIG. 5 shows a third embodiment of the temperature control method for the catalyst bed temperature.
In the third aspect, the temperature of the exhaust gas contacting the catalyst is controlled. In a 3rd aspect, the flow path of the some exhaust gas provided in parallel is provided. 5A and 5B show a case where two parallel exhaust gas flow paths 30, 31 are provided, but three or more parallel exhaust gas flow paths may be provided.
5A and 5B, the catalyst 32 is provided in the flow path 30. When the bed temperature of the catalyst 32 in the flow path 30 becomes 250 ° C. to 300 ° C., the switching means 34 such as a valve for switching the flow of the exhaust gas is switched so that the exhaust gas flows into the flow path 31. By this switching, the bed temperature of the catalyst 32 can be controlled to be outside the temperature range of 250 ° C. to 300 ° C., and a high purification rate of the catalyst 32 can be maintained.
Switching of the flow paths 30 and 31 by the switching means 34 is performed by detecting the bed temperature of the catalyst 32 by a temperature measuring device 33 such as a thermocouple, and automatically or manually by a central processing unit (CPU) 35 based on this temperature data. Perform by control.

更に、第三の態様では、流路31に熱吸収材料36及び加熱手段37の少なくとも一方を配置し、この熱吸収材料36や加熱手段37よりも排ガス流路の下流側に、触媒39を備える。流路31には、熱吸収材料36及び加熱手段37の少なくとも一方が設けられているため、触媒39に接触する排ガスの温度は250℃〜300℃の温度域外に制御することができ、触媒39の高い浄化率を維持することができる。
したがって、第三の態様では、触媒32及び触媒39の両方の触媒について、高い浄化率を維持することができる。
なお、図5(A)では、触媒39を流路31に設けており、図5(B)では、流路30と流路31とを合流させた後に触媒39を設けている。いずれの場合も触媒39に接する排ガス温度は250℃〜300℃の温度域外となっているため、触媒39のCO被毒を防ぐことができる。
Furthermore, in the third aspect, at least one of the heat absorbing material 36 and the heating means 37 is disposed in the flow path 31, and the catalyst 39 is provided downstream of the heat absorbing material 36 and the heating means 37 in the exhaust gas flow path. . Since at least one of the heat absorbing material 36 and the heating means 37 is provided in the flow path 31, the temperature of the exhaust gas contacting the catalyst 39 can be controlled outside the temperature range of 250 ° C. to 300 ° C. High purification rate can be maintained.
Therefore, in the third aspect, a high purification rate can be maintained for both the catalyst 32 and the catalyst 39.
5A, the catalyst 39 is provided in the flow path 31, and in FIG. 5B, the catalyst 39 is provided after the flow path 30 and the flow path 31 are merged. In either case, the exhaust gas temperature in contact with the catalyst 39 is outside the temperature range of 250 ° C. to 300 ° C., so that CO poisoning of the catalyst 39 can be prevented.

<第四の態様>
図6に触媒の床温の温度制御方法の第四の態様を示す。
第四の態様では触媒に接触する排ガスの温度を制御する。第四の態様では、並列に設けた複数の排ガスの流路を備える。なお図6では、2つの並列する排ガスの流路40,41を備える場合を示すが、3以上の並列する排ガスの流路を備えていてもよい。
流路40に前記触媒42を備える。流路40における触媒42の床温が250℃〜300℃となったときに、排ガスの流入を切り替えるバルブなどの切替手段44によって、流路41に排ガスが流入するよう切り替える。この切り替えによって、触媒42の床温が250℃〜300℃の温度域外となるように制御でき、触媒42の高い浄化率を維持することができる。切替手段44による流路40,41の切り替えは、熱電対等の温度計測器45によって触媒42の床温を検知し、この温度のデータを基に手動又は中央演算処理装置(CPU)46などによる自動制御によって行う。
<Fourth aspect>
FIG. 6 shows a fourth embodiment of the temperature control method for the catalyst bed temperature.
In the fourth aspect, the temperature of the exhaust gas in contact with the catalyst is controlled. In a 4th aspect, the flow path of the some exhaust gas provided in parallel is provided. Although FIG. 6 shows a case where two parallel exhaust gas flow paths 40 and 41 are provided, three or more parallel exhaust gas flow paths may be provided.
The flow path 40 includes the catalyst 42. When the bed temperature of the catalyst 42 in the flow path 40 reaches 250 ° C. to 300 ° C., the switching means 44 such as a valve for switching the flow of the exhaust gas is switched so that the exhaust gas flows into the flow path 41. By this switching, the bed temperature of the catalyst 42 can be controlled to be outside the temperature range of 250 ° C. to 300 ° C., and a high purification rate of the catalyst 42 can be maintained. Switching of the flow paths 40 and 41 by the switching means 44 is performed by detecting the bed temperature of the catalyst 42 by a temperature measuring device 45 such as a thermocouple, and automatically or automatically by a central processing unit (CPU) 46 based on this temperature data. Perform by control.

更に、第四の態様では、流路41に吸着剤48を備える。吸着剤48は、排ガス温度が250℃〜300℃の場合でも一酸化炭素を吸着することができる。
したがって、第四の態様では、触媒の床温が250℃〜300℃の温度域外の場合には、触媒42によって一酸化炭素を酸化して二酸化炭素として排出し、一方、触媒42の床温が250℃〜300℃となったときには、吸着剤48によって排ガス中の一酸化炭素を吸着させるので、処理後の排ガス中の一酸化炭素の含有率を低くすることができる。
Furthermore, in the fourth aspect, the adsorbent 48 is provided in the flow path 41. The adsorbent 48 can adsorb carbon monoxide even when the exhaust gas temperature is 250 ° C to 300 ° C.
Therefore, in the fourth aspect, when the bed temperature of the catalyst is outside the temperature range of 250 ° C. to 300 ° C., carbon monoxide is oxidized by the catalyst 42 and discharged as carbon dioxide, while the bed temperature of the catalyst 42 is When the temperature reaches 250 ° C. to 300 ° C., the carbon monoxide in the exhaust gas is adsorbed by the adsorbent 48, so that the content of carbon monoxide in the exhaust gas after treatment can be lowered.

吸着剤48としては、例えば、ゼオライト、活性炭、Pt、Pd、Rh、Ce、Ba、K、Li、Neなど公知のものを適宜適用することができる。   As the adsorbent 48, for example, known materials such as zeolite, activated carbon, Pt, Pd, Rh, Ce, Ba, K, Li, and Ne can be appropriately applied.

<第五の態様>
図7に触媒の床温の温度制御方法の第五の態様を示す。
第五の態様では触媒に接触する排ガスの温度を制御する。第五の態様では、並列に設けた複数の排ガスの流路を備える。なお図7では、2つの並列する排ガスの流路50,51を備える場合を示すが、3以上の並列する排ガスの流路を備えていてもよい。
流路50に前記触媒52を備える。流路50における触媒52の床温が250℃〜300℃となったときに、排ガスの流入を切り替えるバルブなどの切替手段54によって、流路51に排ガスが流入するように切り替える。この切り替えによって、触媒52の床温が250℃〜300℃の温度域外となるように制御でき、触媒52の高い浄化率を維持することができる。切替手段54による流路50,51の切り替えは、熱電対等の温度計測器55によって触媒52の床温を検知し、この温度のデータを基に手動又は中央演算処理装置(CPU)56などによる自動制御によって行う。
<Fifth aspect>
FIG. 7 shows a fifth embodiment of the temperature control method for the catalyst bed temperature.
In the fifth aspect, the temperature of the exhaust gas in contact with the catalyst is controlled. In a 5th aspect, the flow path of the some exhaust gas provided in parallel is provided. Although FIG. 7 shows a case where two parallel exhaust gas flow paths 50 and 51 are provided, three or more parallel exhaust gas flow paths may be provided.
The flow path 50 includes the catalyst 52. When the bed temperature of the catalyst 52 in the flow channel 50 becomes 250 ° C. to 300 ° C., the switching is performed so that the exhaust gas flows into the flow channel 51 by the switching means 54 such as a valve for switching the inflow of the exhaust gas. By this switching, the bed temperature of the catalyst 52 can be controlled to be outside the temperature range of 250 ° C. to 300 ° C., and a high purification rate of the catalyst 52 can be maintained. Switching of the flow paths 50 and 51 by the switching means 54 is performed by detecting the bed temperature of the catalyst 52 by a temperature measuring device 55 such as a thermocouple, and automatically or manually by a central processing unit (CPU) 56 based on the temperature data. Perform by control.

更に、第五の態様では、流路51に触媒58を備える。流路51にはそれまでに排ガスを流入していなかったので、流路51に備えた触媒58の床温は室温程度であり、触媒58はCO被毒が起こっていない。したがって、排ガスがこの触媒58に接触することで、排ガス中の一酸化炭素が反応して二酸化炭素に浄化される。
しかし、この触媒58も反応が進むにつれて触媒の床温は上昇し、いずれ250℃〜300℃にまで達する。
Furthermore, in the fifth aspect, the catalyst 58 is provided in the flow path 51. Since the exhaust gas has not flowed into the flow channel 51 so far, the bed temperature of the catalyst 58 provided in the flow channel 51 is about room temperature, and the catalyst 58 is not poisoned with CO. Therefore, when the exhaust gas comes into contact with the catalyst 58, carbon monoxide in the exhaust gas reacts and is purified into carbon dioxide.
However, as the reaction of the catalyst 58 proceeds, the bed temperature of the catalyst rises and eventually reaches 250 ° C to 300 ° C.

このとき、先に排ガスを流入させていた流路50の触媒52は、排ガスの流路を切り替えたために酸化反応しておらず反応熱の発生が無いので、自然冷却によって触媒52の床温は250℃〜300℃の温度域外となる。
そこで、排ガスの流入を切替手段54によって元に戻し、先に排ガスを流入させていた流路50に排ガスの流入を切り替える。切替手段54による流路50,51の切り替えは、熱電対等の温度計測器59によって触媒58の床温を検知し、この温度のデータを基に手動又は中央演算処理装置(CPU)56などによる自動制御によって行う。
この操作を繰り返すことで、触媒52,58の床温を常に250℃〜300℃の温度域外とすることができるので、触媒の高い浄化率を維持することができる。
At this time, since the catalyst 52 of the flow path 50 into which the exhaust gas has been flown is switched, the oxidation reaction does not occur and no reaction heat is generated. Therefore, the bed temperature of the catalyst 52 is reduced by natural cooling. Outside the temperature range of 250 ° C to 300 ° C.
Therefore, the inflow of the exhaust gas is returned to the original state by the switching means 54, and the inflow of the exhaust gas is switched to the flow path 50 in which the exhaust gas has been previously introduced. The switching of the flow paths 50 and 51 by the switching means 54 is carried out by detecting the bed temperature of the catalyst 58 by a temperature measuring device 59 such as a thermocouple, and automatically or automatically by a central processing unit (CPU) 56 based on this temperature data. Perform by control.
By repeating this operation, the bed temperature of the catalysts 52 and 58 can always be outside the temperature range of 250 ° C. to 300 ° C., so that a high purification rate of the catalyst can be maintained.

なお、第五の態様において3以上の流路を備える場合には、切替手段54によって排ガスの流入を元に戻さず、更に他の流路に排ガスを流入させるように切り替えてもよい。   In the fifth aspect, when three or more flow paths are provided, the switching means 54 may switch so that the exhaust gas flows into another flow path without returning the flow of the exhaust gas back to the original state.

第五の態様の触媒の床温の温度制御方法は、自然冷却の原理を利用しているため、排ガスの温度が250℃よりも低い場合に適用できる。   Since the temperature control method of the catalyst bed temperature of the fifth aspect uses the principle of natural cooling, it can be applied when the temperature of the exhaust gas is lower than 250 ° C.

<第六の態様>
図8に触媒の床温の温度制御方法の第六の態様を示す。
第六の態様では触媒に接触する排ガスの温度を制御する。第六の態様では、並列に設けた複数の排ガスの流路を備える。なお図8では、2つの並列する排ガスの流路60,61を備える場合を示すが、3以上の並列する排ガスの流路を備えていてもよい。
流路60に前記触媒62を備える。流路60における触媒62の床温が250℃〜300℃となったときに、排ガスの流入を切り替えるバルブなどの切替手段64によって、流路61に排ガスが流入するよう切り替える。この切り替えによって、触媒62の床温が250℃〜300℃の温度域外となるように制御でき、触媒62の高い浄化率を維持することができる。切替手段64による流路60,61の切り替えは、熱電対等の温度計測器65によって触媒62の床温を検知し、この温度のデータを基に手動又は中央演算処理装置(CPU)66などによる自動制御によって行う。
<Sixth aspect>
FIG. 8 shows a sixth embodiment of the temperature control method for the catalyst bed temperature.
In the sixth aspect, the temperature of the exhaust gas in contact with the catalyst is controlled. In the sixth aspect, a plurality of exhaust gas flow paths provided in parallel are provided. Although FIG. 8 shows a case where two parallel exhaust gas flow paths 60 and 61 are provided, three or more parallel exhaust gas flow paths may be provided.
The catalyst 62 is provided in the flow path 60. When the bed temperature of the catalyst 62 in the flow path 60 reaches 250 ° C. to 300 ° C., the switching means 64 such as a valve for switching the flow of the exhaust gas is switched so that the exhaust gas flows into the flow path 61. By this switching, the bed temperature of the catalyst 62 can be controlled to be outside the temperature range of 250 ° C. to 300 ° C., and a high purification rate of the catalyst 62 can be maintained. Switching of the flow paths 60 and 61 by the switching means 64 is performed by detecting the bed temperature of the catalyst 62 by a temperature measuring device 65 such as a thermocouple, and automatically or manually by a central processing unit (CPU) 66 based on this temperature data. Perform by control.

更に、第六の態様では、流路61に白金、パラジウム又はロジウムを主成分とする触媒68を備える。白金、パラジウム又はロジウムを主成分とする触媒68は、触媒の床温が250℃〜300℃の温度域内であっても、浄化率が低下しないので、触媒62の床温が250℃〜300℃の温度域内となったときには、白金、パラジウム又はロジウムを主成分とする触媒68を備えた流路61に排ガスの流入を切り替える。
白金、パラジウム又はロジウムを主成分とする触媒68は、触媒62の床温が250℃〜300℃の温度域内となった場合に使用し、この温度領域以外では触媒62を使用するため、触媒68の寿命を長くすることができる。その結果、白金など資源的に貴重な金属の使用量を減らすことができる。
Furthermore, in the sixth embodiment, the flow path 61 is provided with a catalyst 68 mainly composed of platinum, palladium, or rhodium. Since the catalyst 68 mainly composed of platinum, palladium, or rhodium does not decrease the purification rate even if the bed temperature of the catalyst is in the temperature range of 250 ° C. to 300 ° C., the bed temperature of the catalyst 62 is 250 ° C. to 300 ° C. When the temperature is within the temperature range, the inflow of the exhaust gas is switched to the flow path 61 including the catalyst 68 mainly composed of platinum, palladium, or rhodium.
The catalyst 68 mainly composed of platinum, palladium, or rhodium is used when the bed temperature of the catalyst 62 falls within a temperature range of 250 ° C. to 300 ° C., and the catalyst 62 is used outside this temperature range. Can extend the lifetime of As a result, it is possible to reduce the amount of valuable metals such as platinum used.

<第七の態様>
図9に触媒の床温の温度制御方法の第七の態様を示す。
第七の態様では触媒に接触する排ガスの温度を制御する。第七の態様では、排ガスの流路において触媒70よりも上流側に、空気を混入させて混入する空気量を調節する混入空気量調節手段72を備える。排ガスの温度よりも低い温度の空気を排ガスに混入することで、排ガスの温度を下げることができる。また、排ガスに空気を混合することで、一酸化炭素の濃度が下がるので、触媒上の発熱量を抑えることができる。
<Seventh aspect>
FIG. 9 shows a seventh embodiment of the temperature control method for the catalyst bed temperature.
In the seventh aspect, the temperature of the exhaust gas in contact with the catalyst is controlled. In the seventh aspect, the mixed air amount adjusting means 72 for adjusting the amount of mixed air by mixing air is provided upstream of the catalyst 70 in the exhaust gas flow path. By mixing air having a temperature lower than the temperature of the exhaust gas into the exhaust gas, the temperature of the exhaust gas can be lowered. Moreover, since the concentration of carbon monoxide is reduced by mixing air with the exhaust gas, the amount of heat generated on the catalyst can be suppressed.

触媒70の床温が250℃〜300℃となったときに、混入空気量調節手段72によって、排ガスに空気を導入する。この空気の導入量によって、触媒70の床温が250℃〜300℃の温度域外となるように制御でき、触媒70の高い浄化率を維持することができる。混入空気量調節手段72による空気の導入は、熱電対等の温度計測器74によって触媒70の床温を検知し、この温度のデータを基に手動又は中央演算処理装置(CPU)76などによる自動制御によって行う。   When the bed temperature of the catalyst 70 reaches 250 ° C. to 300 ° C., the mixed air amount adjusting means 72 introduces air into the exhaust gas. Depending on the amount of air introduced, the bed temperature of the catalyst 70 can be controlled to be outside the temperature range of 250 ° C. to 300 ° C., and a high purification rate of the catalyst 70 can be maintained. The introduction of air by the mixed air amount adjusting means 72 detects the bed temperature of the catalyst 70 by a temperature measuring device 74 such as a thermocouple, and is automatically controlled manually or by a central processing unit (CPU) 76 based on this temperature data. Do by.

上記第一の態様から第七の態様の触媒の床温の制御方法は、それぞれを適宜組み合わせて適用することができる。
また、第一の態様から第七の態様では、触媒の床温を熱電対などの温度計測器によって測定し、このデータを基に触媒の床温を温度制御しているが、上述のように、排ガスが触媒に接触し続けると、排ガス温度と触媒床温とが略一致するようになるので、排ガスの温度を温度計測器によって測定し、そのデータを基に温度制御することも可能である。
The methods for controlling the bed temperature of the catalyst according to the first to seventh aspects can be applied in an appropriate combination.
In the first to seventh aspects, the catalyst bed temperature is measured by a temperature measuring instrument such as a thermocouple, and the temperature of the catalyst bed temperature is controlled based on this data. If the exhaust gas keeps in contact with the catalyst, the exhaust gas temperature and the catalyst bed temperature almost coincide with each other. Therefore, it is possible to measure the temperature of the exhaust gas with a temperature measuring instrument and control the temperature based on the data. .

上記本発明の排ガスの浄化方法によって、触媒から廃熱が回収される。この廃熱を利用して、空調、ライトの点灯又はバッテリーの充電に用いることで、エネルギーを効率的に利用することができる。特に、車両の排ガスの浄化方法においては車両のコージェネレーション方法となる。   Waste heat is recovered from the catalyst by the exhaust gas purification method of the present invention. By using this waste heat for air conditioning, lighting of lights, or charging of a battery, energy can be used efficiently. In particular, the vehicle exhaust gas purification method is a vehicle cogeneration method.

以下に実施例を挙げて本発明をさらに具体的に説明するが、原材料、使用量、操作等は本発明の主旨から逸脱しない限り適宜変更することができる。従って本発明の範囲は以下の実施例に制限されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, raw materials, amounts used, operations, and the like can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following examples.

[実施例1]
<触媒1の調製>
水300mlにCeO2−ZrO2固溶体を19.0g加え、その後、1質量%のHAuCl4・4H2O水溶液を5.08×10-3mol加えて、準備液−1を調製した。
この準備液−1に、0.5mol/LのNa2CO3水溶液の1.23×10-2molを、4.00×10-5mol/秒の滴下速度でpH=7になるまで滴下した。その後、遠心分離して、80℃の水で5回洗浄した後、乾燥した。これを400℃で4時間、空気雰囲気下で焼成し、Auを5質量%担持したCeO2−ZrO2を調製した。
[Example 1]
<Preparation of catalyst 1>
Preparation liquid-1 was prepared by adding 19.0 g of CeO 2 —ZrO 2 solid solution to 300 ml of water and then adding 5.08 × 10 −3 mol of 1% by mass of HAuCl 4 .4H 2 O aqueous solution.
To this preparation liquid-1, 1.23 × 10 −2 mol of 0.5 mol / L Na 2 CO 3 aqueous solution was dropped at a dropping rate of 4.00 × 10 −5 mol / sec until pH = 7. did. Thereafter, it was centrifuged, washed 5 times with water at 80 ° C., and then dried. This was fired at 400 ° C. for 4 hours in an air atmosphere to prepare CeO 2 —ZrO 2 supporting 5% by mass of Au.

なお、Auを5質量%担持したCeO2−ZrO2の触媒の調製は、各原料を下記の量に変更しても同様に得ることができる。
・水:300ml
・CeO2−ZrO2固溶体:28.5g
・1質量%HAuCl4・4H2O水溶液:7.62×10-3mol
・0.5mol/LのNa2CO3水溶液:1.93×10-2mol
The preparation of the CeO 2 —ZrO 2 catalyst supporting 5% by mass of Au can be obtained in the same manner even if each raw material is changed to the following amounts.
・ Water: 300ml
CeO 2 —ZrO 2 solid solution: 28.5 g
1 mass% HAuCl 4 .4H 2 O aqueous solution: 7.62 × 10 −3 mol
・ 0.5 mol / L Na 2 CO 3 aqueous solution: 1.93 × 10 −2 mol

<触媒2の調製>
水300mlに0.100molのCu(NO32・H2Oと、0.270molのMn(NO3)・3H2O19.0gを加えて、準備液−2を調製した。
この準備液−2に、0.5mol/LのNa2CO3水溶液の0.594molを、4.00×10-5mol/秒の滴下速度でpH=7になるまで滴下した。その後、遠心分離して、80℃の水で5回洗浄した後、乾燥した。これを500℃で4時間、空気雰囲気下で焼成して、CuO−2.7MnO2を調製した。
<Preparation of catalyst 2>
Preparation liquid-2 was prepared by adding 0.100 mol of Cu (NO 3 ) 2 .H 2 O and 0.270 mol of Mn (NO 3 ) .3H 2 O 19.0 g to 300 ml of water.
This preparation was -2 to 0.594mol of aqueous Na 2 CO 3 0.5 mol / L, it was added dropwise until pH = 7 at a dropping rate of 4.00 × 10 -5 mol / sec. Thereafter, it was centrifuged, washed 5 times with water at 80 ° C., and then dried. This was calcined at 500 ° C. for 4 hours in an air atmosphere to prepare CuO-2.7MnO 2 .

<評価方法>
熱電素子を備えた図3の装置において、上記調製したペレット状の触媒1又は触媒2を3g用いて、評価を行った。また、図3において触媒中心から端部まで熱伝導が均一となるように、金属粉を表面に撒いた。図3の装置の大きさは、幅は約3cmで、高さは約4cmである。
流入したガスの組成は以下の通りである。
(Rich)
36:2500ppmC、NO:2200ppm、CO2:10vol%、H2O:10vol%、CO:2.8vol%、O2:0.77vol%、H2:2700ppm、N2:残分
(Lean)
36:2500ppmC、NO:2200ppm、CO2:10vol%、H2O:10vol%、CO:0.81vol%、O2:1.7vol%、H2:0ppm、N2:残部
<Evaluation method>
Evaluation was carried out using 3 g of the pellet-shaped catalyst 1 or catalyst 2 prepared above in the apparatus of FIG. 3 equipped with a thermoelectric element. Further, in FIG. 3, metal powder was spread on the surface so that heat conduction was uniform from the center of the catalyst to the end. The size of the device of FIG. 3 is about 3 cm wide and about 4 cm high.
The composition of the inflowing gas is as follows.
(Rich)
C 3 H 6 : 2500 ppmC, NO: 2200 ppm, CO 2 : 10 vol%, H 2 O: 10 vol%, CO: 2.8 vol%, O 2 : 0.77 vol%, H 2 : 2700 ppm, N 2 : residue ( Lean)
C 3 H 6 : 2500 ppmC, NO: 2200 ppm, CO 2 : 10 vol%, H 2 O: 10 vol%, CO: 0.81 vol%, O 2 : 1.7 vol%, H 2 : 0 ppm, N 2 : balance

流入させるガス温度は、200℃、260℃、290℃、350℃で、ガスの流入速度を20L/分として、RichガスとLeanガスを各1秒ずつ流入した。
流入させるガス温度が200℃及び350℃の場合には、熱電素子によって触媒の床温を制御せず、そのままガスを流した。
流入させるガス温度が260℃の場合には、熱電素子によって触媒の床温が220℃の一定温度となるように制御し、流入させるガス温度が290℃の場合には、熱電素子によって触媒の床温が240℃の一定温度となるように制御した。
The gas temperatures to be introduced were 200 ° C., 260 ° C., 290 ° C., and 350 ° C., the gas inflow rate was 20 L / min, and Rich gas and Lean gas were introduced for 1 second each.
When the gas temperatures to be introduced were 200 ° C. and 350 ° C., the gas was allowed to flow without controlling the bed temperature of the catalyst by the thermoelectric element.
When the inflowing gas temperature is 260 ° C., the thermoelectric element controls the catalyst bed temperature to be a constant temperature of 220 ° C., and when the inflowing gas temperature is 290 ° C., the thermoelectric element controls the catalyst bed temperature. The temperature was controlled to be a constant temperature of 240 ° C.

触媒を通過した後のガスの組成を測定し、COの含有率からCO浄化率(%)[(1−触媒通過後のCO含有率/流入ガスのCO含有率)×100]を求めた。   The composition of the gas after passing through the catalyst was measured, and the CO purification rate (%) [(1-CO content after passing through catalyst / CO content of inflow gas) × 100] was determined from the CO content.

<評価結果>
流入させるガス温度が200℃の場合は、触媒の床温が200℃で一定であることがわかった。また、CO浄化率(%)は、触媒1で85%、触媒2で90%であり、いずれの触媒も流入時間に対して一定の浄化率を示した。
流入させるガス温度が260℃の場合に、触媒の床温が220℃で一定となるように温度制御したとき、CO浄化率(%)は、触媒1で87%、触媒2で91%であり、いずれの触媒も流入時間に対して一定の浄化率を示した。
流入させるガス温度が290℃の場合に、触媒の床温が240℃で一定となるように温度制御したとき、CO浄化率(%)は、触媒1で90%、触媒2で92%であり、いずれの触媒も流入時間に対して一定の浄化率を示した。
流入させるガス温度が350℃の場合は、温度制御しなくとも触媒の床温が350℃で一定であった。また、CO浄化率(%)は、触媒1で90%、触媒2で95%であり、いずれの触媒も流入時間に対して一定の浄化率を示した。
<Evaluation results>
It was found that when the gas temperature to be introduced was 200 ° C., the bed temperature of the catalyst was constant at 200 ° C. The CO purification rate (%) was 85% for catalyst 1 and 90% for catalyst 2, and both catalysts showed a constant purification rate with respect to the inflow time.
When the temperature of the gas to be introduced is 260 ° C. and the temperature is controlled so that the bed temperature of the catalyst is constant at 220 ° C., the CO purification rate (%) is 87% for catalyst 1 and 91% for catalyst 2. Both catalysts showed a certain purification rate with respect to the inflow time.
When the inflowing gas temperature is 290 ° C. and the temperature is controlled so that the catalyst bed temperature is constant at 240 ° C., the CO purification rate (%) is 90% for catalyst 1 and 92% for catalyst 2. Both catalysts showed a certain purification rate with respect to the inflow time.
When the gas temperature to be introduced was 350 ° C., the bed temperature of the catalyst was constant at 350 ° C. without temperature control. The CO purification rate (%) was 90% for catalyst 1 and 95% for catalyst 2, and both catalysts showed a constant purification rate with respect to the inflow time.

また、CuO−2.7MnO2の触媒を用いた場合、CO浄化率が90%のときには酸化反応による発熱量は104Wであり、CO浄化率が91%の場合には発熱量は105Wであり、CO浄化率が92%の場合には発熱量は107Wであり、CO浄化率が95%の場合には発熱量は110Wであった。したがって、熱吸収材料から回収し得る熱量は、100W〜150W程度であると思われる。 When a CuO-2.7MnO 2 catalyst is used, the calorific value due to the oxidation reaction is 104 W when the CO purification rate is 90%, and the calorific value is 105 W when the CO purification rate is 91%. When the CO purification rate was 92%, the heat generation amount was 107 W, and when the CO purification rate was 95%, the heat generation amount was 110 W. Therefore, the amount of heat that can be recovered from the heat-absorbing material seems to be about 100W to 150W.

[実施例2]
実施例1において調製した触媒1及び触媒2を用いて、触媒の床温を100℃〜500℃まで変更したときの浄化率について測定を行った。使用したガス組成及びガス流入条件については、実施例1の場合と同様である。
その結果を図2に示す。図2のグラフ中、Aは触媒1を用いた結果であり、Bは触媒2を用いた場合の結果である。いずれの触媒でも、触媒の床温が250℃〜300℃の温度域内にある場合には、浄化率が低下していることが分かる。
[Example 2]
Using the catalyst 1 and the catalyst 2 prepared in Example 1, the purification rate when the catalyst bed temperature was changed from 100 ° C. to 500 ° C. was measured. The gas composition and gas inflow conditions used are the same as in the case of Example 1.
The result is shown in FIG. In the graph of FIG. 2, A is the result using the catalyst 1, and B is the result when using the catalyst 2. In any catalyst, it is understood that the purification rate is lowered when the bed temperature of the catalyst is in the temperature range of 250 ° C to 300 ° C.

[比較例1]
実施例1において調製した触媒1及び触媒2を用いて、CO浄化率を測定した。実施例1と異なる条件は、流入させるガス温度が260℃及び290℃の場合にも、温度制御をせずにそのままガスを通過させた点であり、それ以外は実施例1と同様の方法で評価を行った。
[Comparative Example 1]
Using the catalyst 1 and the catalyst 2 prepared in Example 1, the CO purification rate was measured. The condition different from that in Example 1 was that the gas was allowed to pass through without temperature control even when the inflowing gas temperature was 260 ° C. and 290 ° C., and the other conditions were the same as in Example 1. Evaluation was performed.

得られた結果を図10に示す。図10では流入経過時間に対するCO浄化率(%)を示す。流入させるガス温度が260℃及び290℃の場合には、CO浄化率が時間に対して一定でなかった。これは、触媒のCO被毒の影響と思われる。   The obtained result is shown in FIG. FIG. 10 shows the CO purification rate (%) with respect to the inflow elapsed time. When the gas temperature to be introduced was 260 ° C. and 290 ° C., the CO purification rate was not constant with respect to time. This seems to be due to CO poisoning of the catalyst.

触媒における一酸化炭素の酸化反応の様子を示す図である。図1(A)は、触媒に一酸化炭素と酸素とが吸着する様子を示し、図1(B)は触媒のCO被毒の様子を示し、図1(C)はCO被毒が解除した様子を示す。It is a figure which shows the mode of the oxidation reaction of the carbon monoxide in a catalyst. 1A shows how carbon monoxide and oxygen are adsorbed on the catalyst, FIG. 1B shows the state of CO poisoning of the catalyst, and FIG. 1C shows that CO poisoning has been released. Show the state. 触媒の床温と浄化率との関係を示すグラフである。It is a graph which shows the relationship between the bed temperature of a catalyst, and a purification rate. 触媒の床温の温度制御方法の第一の態様を示す図である。It is a figure which shows the 1st aspect of the temperature control method of the bed temperature of a catalyst. 触媒の床温の温度制御方法の第二の態様を示す図である。It is a figure which shows the 2nd aspect of the temperature control method of the bed temperature of a catalyst. 触媒の床温の温度制御方法の第三の態様を示す図である。It is a figure which shows the 3rd aspect of the temperature control method of the bed temperature of a catalyst. 触媒の床温の温度制御方法の第四の態様を示す図である。It is a figure which shows the 4th aspect of the temperature control method of the bed temperature of a catalyst. 触媒の床温の温度制御方法の第五の態様を示す図である。It is a figure which shows the 5th aspect of the temperature control method of the bed temperature of a catalyst. 触媒の床温の温度制御方法の第六の態様を示す図である。It is a figure which shows the 6th aspect of the temperature control method of the bed temperature of a catalyst. 触媒の床温の温度制御方法の第七の態様を示す図である。It is a figure which shows the 7th aspect of the temperature control method of the bed temperature of a catalyst. 比較例1における流入経過時間に対するCO浄化率(%)を示したグラフである。6 is a graph showing the CO purification rate (%) with respect to the inflow elapsed time in Comparative Example 1.

符号の説明Explanation of symbols

10,20,32,39,42,52,58,62,68,70 触媒
16,33,45,55,59,65,74 温度計測器
18,35,46,56,66,76 CPU
12,24,36 熱吸収材料
14,26,37 加熱手段
34,44,54,64 切替手段
48 吸着剤
72 混入空気量調節手段
10, 20, 32, 39, 42, 52, 58, 62, 68, 70 Catalyst 16, 33, 45, 55, 59, 65, 74 Temperature measuring device 18, 35, 46, 56, 66, 76 CPU
12, 24, 36 Heat absorbing material 14, 26, 37 Heating means 34, 44, 54, 64 Switching means 48 Adsorbent 72 Mixed air amount adjusting means

Claims (13)

触媒の床温が250℃〜300℃の温度域外となるように温度制御を行い、一酸化炭素を含む排ガスを前記触媒に接触させて酸化的に浄化する排ガスの浄化方法。   A method for purifying exhaust gas, wherein temperature control is performed so that the bed temperature of the catalyst is outside a temperature range of 250 ° C to 300 ° C, and exhaust gas containing carbon monoxide is contacted with the catalyst to oxidatively purify. 前記触媒が、銅及びマンガンを含む触媒、少なくともセリア及びジルコニアを含む担体に金を担持した触媒、少なくともチタニアを含む担体に金を担持した触媒、少なくともセリアとジルコニアと銀とを含む触媒、少なくともセリアとジルコニアと鉄とを含む触媒、及び少なくともセリアとジルコニアと銀と鉄とを含む触媒からなる群より選択される少なくとも1種であることを特徴とする請求項1に記載の排ガスの浄化方法。   The catalyst is a catalyst containing copper and manganese, a catalyst having gold supported on a carrier containing at least ceria and zirconia, a catalyst having gold supported on a carrier containing at least titania, a catalyst containing at least ceria, zirconia and silver, at least ceria. 2. The exhaust gas purification method according to claim 1, wherein the exhaust gas purification method is at least one selected from the group consisting of a catalyst containing at least one of ceria, zirconia, iron, and a catalyst containing at least ceria, zirconia, silver, and iron. 前記触媒が、銅及びマンガンを含む触媒、又は少なくともセリア及びジルコニアを含む担体に金を担持した触媒であることを特徴とする請求項1に記載の排ガスの浄化方法。   2. The exhaust gas purification method according to claim 1, wherein the catalyst is a catalyst containing copper and manganese, or a catalyst in which gold is supported on a carrier containing at least ceria and zirconia. 前記触媒の周囲に熱吸収材料及び加熱手段の少なくとも一方を配置して、触媒の床温が250℃〜300℃の温度域外となるように温度制御することを特徴とする請求項1乃至請求項3のいずれか1項に記載の排ガスの浄化方法。   The temperature control is performed by arranging at least one of a heat absorbing material and a heating means around the catalyst so that the bed temperature of the catalyst is outside the temperature range of 250 ° C to 300 ° C. 4. The exhaust gas purification method according to any one of 3 above. 前記触媒に接触するときの前記排ガスの温度を熱吸収材料及び加熱手段の少なくとも一方により制御して、触媒の床温が250℃〜300℃の温度域外となるように温度制御することを特徴とする請求項1乃至請求項4のいずれか1項に記載の排ガスの浄化方法。   The temperature of the exhaust gas when contacting the catalyst is controlled by at least one of a heat absorbing material and a heating means, and the temperature of the catalyst is controlled to be outside the temperature range of 250 ° C to 300 ° C. The exhaust gas purification method according to any one of claims 1 to 4. 前記熱吸収材料が、熱電素子、冷却水、ドライアイス及び液体窒素からなる群より選択される少なくとも1種であることを特徴とする請求項4又は請求項5に記載の排ガスの浄化方法。   6. The exhaust gas purification method according to claim 4, wherein the heat absorbing material is at least one selected from the group consisting of a thermoelectric element, cooling water, dry ice, and liquid nitrogen. 並列に設けた複数の前記排ガスの流路のうち少なくとも1つの流路に前記触媒を備え、該触媒を備えた流路における触媒の床温が250℃〜300℃となったときに、排ガスの流入を切り替える切替手段によって、他の流路に排ガスを流入させることを特徴とする請求項1乃至請求項6のいずれか1項に記載の排ガスの浄化方法。   The catalyst is provided in at least one of the plurality of exhaust gas passages provided in parallel, and when the bed temperature of the catalyst in the passage including the catalyst becomes 250 ° C. to 300 ° C., the exhaust gas The exhaust gas purification method according to any one of claims 1 to 6, wherein the exhaust gas is caused to flow into another flow path by a switching means for switching inflow. 前記他の流路に熱吸収材料及び加熱手段の少なくとも一方を配置して、排ガスの温度が250℃〜300℃の温度域外となるように温度制御し、該熱吸収材料又は加熱手段よりも下流側に前記触媒を備えることを特徴とする請求項7に記載の排ガスの浄化方法。   At least one of the heat absorbing material and the heating means is disposed in the other flow path, and the temperature is controlled so that the temperature of the exhaust gas is outside the temperature range of 250 ° C. to 300 ° C. The exhaust gas purification method according to claim 7, comprising the catalyst on a side. 前記他の流路に、吸着剤を備えることを特徴とする請求項7に記載の排ガスの浄化方法。   The exhaust gas purification method according to claim 7, wherein an adsorbent is provided in the other flow path. 前記他の流路に、前記触媒を備えることを特徴とする請求項7に記載の排ガスの浄化方法。   The exhaust gas purification method according to claim 7, wherein the catalyst is provided in the other flow path. 前記他の流路に、白金、パラジウム又はロジウムを主成分とする触媒を備えることを特徴とする請求項7に記載の排ガスの浄化方法。   The exhaust gas purification method according to claim 7, wherein a catalyst having platinum, palladium, or rhodium as a main component is provided in the other channel. 排ガスの流路における前記触媒よりも上流側で空気を混入させて、混入する空気量によって触媒に接触する排ガスの温度を調節することを特徴とする請求項1乃至請求項11のいずれか1項に記載の排ガスの浄化方法。   12. The air according to claim 1, wherein air is mixed upstream of the catalyst in the exhaust gas flow path, and the temperature of the exhaust gas contacting the catalyst is adjusted according to the amount of mixed air. 2. A method for purifying exhaust gas according to 1. 請求項1〜請求項12のいずれか1項に記載の排ガスの浄化方法によって回収された触媒からの排熱を空調、ライトの点灯又はバッテリーの充電に用いる車両のコージェネレーション方法。   A vehicle cogeneration method using exhaust heat from the catalyst recovered by the exhaust gas purification method according to any one of claims 1 to 12 for air conditioning, lighting of a light, or charging of a battery.
JP2006102518A 2006-04-03 2006-04-03 Purifying method of exhaust gas, and cogeneration method of vehicle Pending JP2007278099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006102518A JP2007278099A (en) 2006-04-03 2006-04-03 Purifying method of exhaust gas, and cogeneration method of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006102518A JP2007278099A (en) 2006-04-03 2006-04-03 Purifying method of exhaust gas, and cogeneration method of vehicle

Publications (1)

Publication Number Publication Date
JP2007278099A true JP2007278099A (en) 2007-10-25

Family

ID=38679803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006102518A Pending JP2007278099A (en) 2006-04-03 2006-04-03 Purifying method of exhaust gas, and cogeneration method of vehicle

Country Status (1)

Country Link
JP (1) JP2007278099A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056365A (en) * 2007-08-30 2009-03-19 Miura Co Ltd Cleaning apparatus and boiler using the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895365A (en) * 1972-03-21 1973-12-07
JPH02188405A (en) * 1989-01-13 1990-07-24 Fuji Electric Co Ltd Water cooled carbon monoxide conversion reactor of fuel cell
JPH04175416A (en) * 1989-12-06 1992-06-23 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JPH0579791A (en) * 1991-09-17 1993-03-30 Calsonic Corp Heat exchanger for recovering heat from exhaust
JPH0633747A (en) * 1992-07-17 1994-02-08 Honda Motor Co Ltd Exhaust emission control device for engine
JPH0886214A (en) * 1994-09-14 1996-04-02 Komatsu Ltd Exhaust gas denitration device of diesel engine
JPH09203314A (en) * 1996-01-25 1997-08-05 Nissan Motor Co Ltd Exhaust gas purifying device for engine
JP2003206105A (en) * 2002-01-11 2003-07-22 Honda Motor Co Ltd Catalyst reactor
JP2004049961A (en) * 2002-07-17 2004-02-19 Nissan Motor Co Ltd Co-selective oxidation catalyst and its production method
JP2004308613A (en) * 2003-04-09 2004-11-04 Denso Corp Exhaust temperature control device for internal combustion engine
JP2005087963A (en) * 2003-09-19 2005-04-07 Toyota Motor Corp Exhaust gas cleaning apparatus
JP2005131584A (en) * 2003-10-31 2005-05-26 Ebara Corp Processing method and apparatus of gas containing co and h2
JP2007237171A (en) * 2006-03-09 2007-09-20 Haldor Topsoe As Cleaning method of sulfur-containing exhaust gas

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895365A (en) * 1972-03-21 1973-12-07
JPH02188405A (en) * 1989-01-13 1990-07-24 Fuji Electric Co Ltd Water cooled carbon monoxide conversion reactor of fuel cell
JPH04175416A (en) * 1989-12-06 1992-06-23 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JPH0579791A (en) * 1991-09-17 1993-03-30 Calsonic Corp Heat exchanger for recovering heat from exhaust
JPH0633747A (en) * 1992-07-17 1994-02-08 Honda Motor Co Ltd Exhaust emission control device for engine
JPH0886214A (en) * 1994-09-14 1996-04-02 Komatsu Ltd Exhaust gas denitration device of diesel engine
JPH09203314A (en) * 1996-01-25 1997-08-05 Nissan Motor Co Ltd Exhaust gas purifying device for engine
JP2003206105A (en) * 2002-01-11 2003-07-22 Honda Motor Co Ltd Catalyst reactor
JP2004049961A (en) * 2002-07-17 2004-02-19 Nissan Motor Co Ltd Co-selective oxidation catalyst and its production method
JP2004308613A (en) * 2003-04-09 2004-11-04 Denso Corp Exhaust temperature control device for internal combustion engine
JP2005087963A (en) * 2003-09-19 2005-04-07 Toyota Motor Corp Exhaust gas cleaning apparatus
JP2005131584A (en) * 2003-10-31 2005-05-26 Ebara Corp Processing method and apparatus of gas containing co and h2
JP2007237171A (en) * 2006-03-09 2007-09-20 Haldor Topsoe As Cleaning method of sulfur-containing exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056365A (en) * 2007-08-30 2009-03-19 Miura Co Ltd Cleaning apparatus and boiler using the same

Similar Documents

Publication Publication Date Title
US8151742B2 (en) Exhaust gas cleaner
KR20030091975A (en) Catalyst and Method for Removing NOx and SOx from a Gaseous Stream
JP2009112967A (en) Apparatus and method for cleaning exhaust gas of internal combustion engine
JP4189337B2 (en) Exhaust gas purification system
JP2012159029A (en) Apparatus and method for producing nitrogen dioxide, and exhaust emission control system
JP6107487B2 (en) N2O decomposition catalyst and N2O-containing gas decomposition method using the same
JP2001289035A (en) Exhaust emission control method and system
JP2006329018A (en) Sulfur content absorption material and exhaust emission control system
JP3555694B2 (en) Exhaust gas purification device
JP2009208039A (en) Catalyst for removing particulate matter and method for removing particulate matter by using the same
JP2007278099A (en) Purifying method of exhaust gas, and cogeneration method of vehicle
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP4114581B2 (en) Exhaust purification device
JP2006299912A (en) Gas engine device and method for operating gas engine device
JP2007162526A (en) Method for regenerating normal temperature nox adsorption material
JP2006061803A (en) Catalyst for emission gas purification
JPH1015353A (en) Removal of nitrogen oxide
JP4470829B2 (en) Sulfur remover and exhaust purification system for internal combustion engine
JP2007292066A (en) Exhaust gas purification system
JP5007691B2 (en) Particulate matter purification catalyst and particulate matter purification method using the same
JP2011050855A (en) Exhaust gas purifying apparatus
JP2006102628A (en) Sulfur oxide absorber and its manufacturing method, and emission gas purifying facility
JP2012052469A (en) NOx ABSORBING-DISCHARGING MATERIAL, EXHAUST EMISSION CONTROL CATALYST AND EXHAUST EMISSION CONTROL SYSTEM
JP2009000624A (en) Exhaust gas treatment catalyst
JP2004060587A (en) Exhaust emission control method and exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120