JP2007275852A - Wind-force separator, and method and apparatus for separating and recovering fibrous component and resin component from waste product using it - Google Patents

Wind-force separator, and method and apparatus for separating and recovering fibrous component and resin component from waste product using it Download PDF

Info

Publication number
JP2007275852A
JP2007275852A JP2006109388A JP2006109388A JP2007275852A JP 2007275852 A JP2007275852 A JP 2007275852A JP 2006109388 A JP2006109388 A JP 2006109388A JP 2006109388 A JP2006109388 A JP 2006109388A JP 2007275852 A JP2007275852 A JP 2007275852A
Authority
JP
Japan
Prior art keywords
separation
circular plate
component
separation tower
vinyl chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006109388A
Other languages
Japanese (ja)
Inventor
Tamio Fujita
民雄 藤田
Toshiaki Inoue
敏明 井上
Hideyuki Onari
英之 大成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2006109388A priority Critical patent/JP2007275852A/en
Publication of JP2007275852A publication Critical patent/JP2007275852A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/275Recovery or reuse of energy or materials
    • B29C48/277Recovery or reuse of energy or materials of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/08Separating solids from solids by subjecting their mixture to gas currents while the mixtures are supported by sieves, screens, or like mechanical elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Disintegrating Or Milling (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus in which a fibrous component and a resin component of a waste product including a fibrous layer and a resin coating layer such as waste wall paper can be separated and recovered at high precision and high efficiency. <P>SOLUTION: A wind-force separator 7 in which a circular plate 20 is horizontally supported in a vertically cylindrical separation column 15 having an upper discharge port 17 for suction and a lower discharge port 18 serving also as an air supply port disposed therein so that a ventilation gap 24 is present between the periphery of the circular plate 20 and an inner wall surface of the separation column 15, a tip end opening 19c of an air transport pipe 19 inserted from outside of the separation column 15 is placed in a center portion of an upper surface of the circular plate 20, a ground material of waste wall paper is transferred to the center portion of the upper surface of the circular plate 20 through the air transport pipe 19, a resin component that is a component having a high specific gravity in the ground material is dropped from the periphery of the circular plate 20, and a fibrous component that is a component having a low specific gravity in the ground material is sucked riding on an air stream introduced from the lower discharge port 18 and moving upward inside of the separation column 15 from the upper discharge port 17 to discharge it. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、風力分離装置並びにそれを利用した分離方法及び分離装置に関するものである。更に詳しくは、建築物の内装材や産業用資材として用いられる、繊維質成分と合成樹脂成分(以下、「樹脂成分」という。)からなる複合の製品廃棄物(以下、「廃製品」という。)から、繊維質成分と樹脂成分とを分離回収する方法及び装置並びにこれらの方法や装置に使用される風力分離装置に関するものである。特に、繊維質である裏打ち紙基材に塩化ビニル系樹脂を被覆した壁紙等や塩化ビニル樹脂を布製原手の表面に塗布した作業手袋等の、繊維質層と合成樹脂被覆層(以下、「樹脂被覆層」という。)とを含む廃製品から、繊維質成分と樹脂成分を分離回収して、それぞれ再生原料として再資源化するための技術に関する。   The present invention relates to a wind power separating apparatus, a separating method and a separating apparatus using the same. More specifically, it is a composite product waste (hereinafter referred to as “waste product”) composed of a fibrous component and a synthetic resin component (hereinafter referred to as “resin component”), which is used as an interior material for buildings and industrial materials. ), A method and an apparatus for separating and recovering a fibrous component and a resin component, and a wind power separating apparatus used in these methods and apparatuses. In particular, a fibrous layer and a synthetic resin coating layer (hereinafter referred to as “a”) such as wallpaper coated with a vinyl chloride resin on a fiber backing paper base or a work glove in which a vinyl chloride resin is applied to the surface of a cloth hand. The present invention relates to a technique for separating and recovering a fibrous component and a resin component from a waste product including a resin coating layer ”) and recycling them as recycled materials.

近年、環境に対する配慮、資源に対する循環活用などの観点から、可能な限りのものを再利用することが要求されている。製品の材料構成成分が合成樹脂単体又は紙、布等の繊維質単体からなる単一系成分である廃製品は、これを構成成分毎に分別回収することで、比較的容易に再利用されている。しかしながら、製品を構成する材料成分が単一系でない、例えば、建材分野で使用される製品の一つである壁紙、タイルカーペット、帆布、更には自動車内装材として使用されるトリムや天井材、塩化ビニル系樹脂を布製原手の表面に塗布した作業手袋等の複合材料は、相応のリサイクル方法を採用し、構成成分毎に分離しなければリサイクルすることが困難である。このため、繊維質と合成樹脂からなる複合材料は、それぞれの構成成分毎に精度良く分離するための分離回収方法が望まれていた。   In recent years, it has been required to reuse as much as possible from the viewpoints of environmental considerations and resource recycling. Waste products that are composed of a single component consisting of synthetic resin alone or fiber alone such as paper and cloth can be reused relatively easily by separating and collecting them separately for each component. Yes. However, the material composition of the product is not a single system, such as wallpaper, tile carpet, canvas, which is one of the products used in the building material field, and trim and ceiling materials used as automobile interior materials, It is difficult to recycle a composite material such as a work glove in which a vinyl-based resin is applied to the surface of a cloth original hand unless a corresponding recycling method is adopted and the constituent components are not separated. For this reason, the separation and recovery method for separating the composite material composed of the fiber and the synthetic resin with high accuracy for each constituent component has been desired.

一般に、前記壁紙は、基材として裏打ち紙を使用し、この紙基材の表面に、塩化ビニル系樹脂等の合成樹脂層がコーティング法又はカレンダー法等で被覆された複合材料である。この壁紙は、リフォームなどの貼り替え時や製造工程での不具合品、デザイン等の変更、長期在庫品の処分などにより廃棄物が発生する。しかし、これら壁紙の廃棄物をリサイクルするために、裏打ち基材の紙と表層の樹脂被覆層を分離することは非常に難しい。このため、これら壁紙の廃棄物は容易に再資源化することができず、大部分が埋立処理又は焼却処理等で処理せざるを得ないのが実情である。しかし、近年、大都市圏での埋立処理スペースの減少や焼却時の焼却排ガス対策の問題等から、処理施設の建設費や廃棄物の処理費用が高騰し、環境問題への関心の高まりと共に壁紙等の複合材料の廃棄物は処理困難な状況にある。これらの問題を解決するため、複合材料の廃棄物についての様々な再利用方法や、繊維質成分と樹脂成分とからなる複合材料の分離方法が種々検討され、開発されてきた。   In general, the wallpaper is a composite material in which a backing paper is used as a base material, and a synthetic resin layer such as a vinyl chloride resin is coated on the surface of the paper base material by a coating method or a calendar method. This wallpaper generates waste when it is renovated and replaced, defective products in the manufacturing process, changes in design, and disposal of long-term stock. However, in order to recycle these wallpaper wastes, it is very difficult to separate the paper of the backing substrate and the resin coating layer of the surface layer. For this reason, these wallpaper wastes cannot be easily recycled, and most of them must be treated by landfill or incineration. However, in recent years, construction costs for waste treatment facilities and waste disposal costs have risen due to a decrease in landfill disposal space in metropolitan areas and problems with incineration exhaust gas measures during incineration. It is difficult to dispose of waste materials such as composite materials. In order to solve these problems, various methods for recycling composite material waste and various methods for separating a composite material composed of a fibrous component and a resin component have been studied and developed.

例えば、壁紙の再利用方法としては、裏打ち紙が付着したままの塩化ビニル壁紙を粗粉砕し、更にこれを微粉砕もしくは加熱混練し、板状に固形したりペレット等に加工する方法が開示されている(特許文献1、特許文献2参照。)。しかし、これらの方法では、樹脂成分(塩化ビニル樹脂)から繊維質成分が除かれないため、再生材料の加工性、機械特性が劣り、使用用途が制限されるという問題があった。また、裏打ち基材と被覆層塩化ビニル樹脂の分離回収方法として、水又は温水を用いて裏打ち材を湿潤せしめ、あるいは有機溶剤を用いて塩化ビニル層を膨潤せしめたうえで、基材裏打ち紙と塩化ビニル樹脂を分離回収する方法が開示されている(特許文献3、特許文献4参照。)。しかし、これらの方法は、塩化ビニル樹脂の回収、再生を主とするものであって、基材裏打ち紙の回収、再生を考慮したものではなく、しかも排水処理装置、溶剤除去装置、溶剤回収装置等の大規模な処理装置が必要となり処理効率が悪いという問題があった。さらに、塩化ビニル樹脂と基材裏打ち紙の分離が充分でなく、回収した塩化ビニル樹脂中に裏打ち紙等の繊維質が混入し、良好な加工性、機械特性を有した再生塩化ビニルを得ることが出来ないという問題があった。更に、廃壁紙をジェット渦流中に投入して微粉砕後分離する方法が開示されている(特許文献5参照。)。しかし、この方法では、微粉砕に高エネルギーを必要とするうえに、基材裏打ち紙の繊維を細かく切断しているため、回収した基材紙成分を再生紙とするには、強度などの品質が劣り、用途が非常に狭く制限されるという問題があった。   For example, as a method of reusing wallpaper, a method of coarsely pulverizing vinyl chloride wallpaper with the backing paper attached, and further finely pulverizing or heating and kneading it to form a plate or process into a pellet or the like is disclosed. (See Patent Document 1 and Patent Document 2). However, in these methods, since the fibrous component is not removed from the resin component (vinyl chloride resin), there is a problem that the processability and mechanical properties of the recycled material are inferior and the usage is limited. Also, as a method for separating and recovering the backing substrate and the coating layer vinyl chloride resin, the backing material is wetted with water or warm water, or the vinyl chloride layer is swollen with an organic solvent, A method for separating and recovering a vinyl chloride resin is disclosed (see Patent Document 3 and Patent Document 4). However, these methods mainly recover and recycle the vinyl chloride resin, and do not consider the recovery and regeneration of the backing paper of the base material. Moreover, the wastewater treatment device, the solvent removal device, and the solvent recovery device Therefore, there is a problem that processing efficiency is poor. Furthermore, separation of the vinyl chloride resin and the backing paper of the substrate is not sufficient, and the recovered vinyl chloride resin is mixed with fibers such as backing paper to obtain recycled vinyl chloride with good processability and mechanical properties. There was a problem that was not possible. Furthermore, a method is disclosed in which waste wallpaper is put into a jet vortex and separated after being finely pulverized (see Patent Document 5). However, this method requires high energy for fine pulverization and finely cuts the fibers of the substrate backing paper. However, there was a problem that the use was limited very narrowly.

また、繊維質成分と樹脂成分からなる複合材料から、繊維質成分と樹脂成分を分離、回収してリサイクルするための風力分離装置として、上部に真空吸引口を、下部に空気補給口を設けた縦円筒形の分離塔内に、円形板を、その周囲に通気間隙が存するように水平に支持し、該円形板上の中心部に空気輸送管によって破砕チップと綿状ゴミとの混合物を搬入させ、破砕チップを円形板の周縁部から落下させるとともに、綿状ゴミを、空気補給口から入って分離塔内を上昇する空気流に乗せて真空吸引口に吸引させるようにしたダスト分離装置が提案されている(特許文献6参照。)。このダスト分離装置は、自動車の内装材等の複合材料から良好な樹脂成分を回収できる装置である。しかし、このダスト分離装置においても、破砕チップ(樹脂成分)からの綿状ゴミ(繊維質成分)の分離回収が十分とまではいえなかった。そこで、前記ダスト分離装置の分離塔により粉砕チップと綿状ゴミとに分離した後、前記分離塔から排出される粉砕チップを揺動皿に受け入れ、揺動させて粉砕チップ類を揺動皿の出口側に順次送り、この間、粉砕チップの外表面に付着していてダスト分離装置(分離塔)では取れなかった綿状ゴミを、互いに隣り合う粉砕チップが擦れ合うことにより落とし、揺動皿の出口側底面に設けた開口に配設したネット上で、下側から吹き上げられ上昇する空気流により軽い綿状ゴミを舞い上がらせて真空吸引する一方、重い破砕チップ類を前記揺動皿の出口から排出するようにしたダスト分離装置も提案されている(特許文献7参照。)。これにより、得られた破砕チップは更に純度が高くなるが、揺動皿などの装置構成が複雑となるうえに、この装置でも塩化ビニル壁紙などの繊維質成分と樹脂成分との分離回収には、分離精度が十分とはいえなかった。   In addition, a vacuum suction port is provided at the top and an air supply port is provided at the bottom as a wind power separation device for separating, collecting, and recycling the fiber component and the resin component from the composite material composed of the fiber component and the resin component. A circular plate is horizontally supported in a vertical cylindrical separation tower so that there is a ventilation gap around it, and a mixture of crushed chips and cotton-like dust is carried into the center of the circular plate by an air transport pipe. A dust separation device that drops crushing chips from the peripheral edge of the circular plate, and sucks cotton-like dust into the vacuum suction port by putting it in an air stream that enters the air supply port and rises in the separation tower. It has been proposed (see Patent Document 6). This dust separation device is a device that can recover a good resin component from a composite material such as an interior material of an automobile. However, even in this dust separation device, it cannot be said that the separation and recovery of cotton-like dust (fibrous component) from the crushed chips (resin component) is sufficient. Therefore, after separating into pulverized chips and cotton dust by the separation tower of the dust separation device, the pulverized chips discharged from the separation tower are received in an oscillating dish and are oscillated to remove the pulverized chips from the oscillating dish. Sequentially sent to the outlet side. During this time, cotton dust that adheres to the outer surface of the crushed chips and cannot be removed by the dust separation device (separation tower) is removed by rubbing the crushed chips adjacent to each other. On the net provided in the opening on the side bottom, light cotton-like dust is lifted by the air flow blown up from the lower side and lifted by vacuum, while heavy crushing chips are discharged from the outlet of the rocking dish. A dust separation device has also been proposed (see Patent Document 7). As a result, the obtained crushing chip has a higher purity, but the configuration of the apparatus such as a rocking dish is complicated, and this apparatus also separates and collects fiber components such as vinyl chloride wallpaper and resin components. The separation accuracy was not sufficient.

特開平06−114838号公報Japanese Patent Laid-Open No. 06-114838 特開平06−126745号公報Japanese Patent Laid-Open No. 06-126745 特開昭52−078979号公報JP-A-52-07979 特開平09−059423号公報JP 09-059423 A 特開平05−247863号公報JP 05-247863 A 特開2000−37663号公報JP 2000-37663 A 特開2002−219447号公報JP 2002-219447 A

本発明は、上述の課題を解消し、前記特許文献6(特開2000−37663号公報)に開示されたダスト分離装置(分離塔)を更に改良した分離装置を提供するとともに、この改良された分離装置を用いることで、繊維質層と樹脂被覆層とを含む廃製品、特に廃壁紙を、基材裏打ち紙と塩化ビニル樹脂被覆層のそれぞれ素材の品質を維持しつつ、高い精度で、かつ効率良く分離回収出来る方法及び装置を提供し、基材紙成分と塩化ビニル系樹脂成分をそれぞれ再生原料として再資源化することを目的とする。   The present invention solves the above-described problems and provides a separation apparatus in which the dust separation apparatus (separation tower) disclosed in Patent Document 6 (Japanese Patent Laid-Open No. 2000-37663) is further improved, and this improvement is provided. By using a separation device, waste products including a fiber layer and a resin coating layer, particularly waste wallpaper, while maintaining the quality of each material of the backing paper and the vinyl chloride resin coating layer, with high accuracy, and An object of the present invention is to provide a method and an apparatus capable of efficiently separating and recovering, and to recycle a base paper component and a vinyl chloride resin component as recycled raw materials.

本発明者らは、上記の目的を達成するため、前記特許文献6に開示されたダスト分離装置による分離回収方法について鋭意検討を重ねた結果、以下のような知見を得た、即ち、該ダスト分離装置においては、縦円筒形の分離塔の下部側面から空気輸送管を分離塔内に水平に挿入し、その先端開口を下向きにして円形板上の中心に相対向させたものであり、空気輸送管が先端開口の直前で水平方向から鉛直方向に直角に折れ曲がっている。このため、空気輸送管内を移動する気流に大きな乱れや偏流が発生し、先端開口から吐出される、廃壁紙の粉砕物を含む空気の速度が、円形板上の周方向で不均一となり、円形板上の一部に、綿状ゴミが付着したままの塩化ビニルの破砕チップが残り、これが円形板から落下して分離塔下部の空気補給口から排出されてしまう。このため、回収した塩化ビニル樹脂(破砕チップ)中に繊維質成分(綿状ゴミ)が混入し、分離精度が十分でない。しかし、前記円形板上に廃壁紙等の破砕物(破砕チップと綿状ダストとの混合物)を搬入する空気輸送管を、その先端開口部から所定の長さにわって、前記円形板に対して、ほぼ直交する直線状に形成すると、前記の問題を解決できる、との知見を得た。   In order to achieve the above object, the present inventors have made extensive studies on the separation and recovery method using the dust separation device disclosed in Patent Document 6, and as a result, have obtained the following knowledge, that is, the dust. In the separation device, an air transport pipe is horizontally inserted into the separation tower from the lower side surface of the vertical cylindrical separation tower, and its front end opening is directed downward to face the center on the circular plate. The transport pipe is bent at right angles from the horizontal direction to the vertical direction just before the opening of the tip. For this reason, large turbulence and drift occur in the airflow moving in the air transport pipe, and the velocity of the air containing the pulverized waste wallpaper discharged from the tip opening becomes uneven in the circumferential direction on the circular plate. A piece of vinyl chloride crushing chips with cotton-like debris still remains on a part of the plate, which falls from the circular plate and is discharged from the air supply port at the bottom of the separation tower. For this reason, fibrous components (cotton dust) are mixed in the collected vinyl chloride resin (crushing chips), and the separation accuracy is not sufficient. However, an air transport pipe for carrying a crushed material such as waste wallpaper (a mixture of crushed chips and cotton dust) onto the circular plate over a predetermined length from the opening at its tip, Thus, it has been found that the above-mentioned problem can be solved by forming a substantially orthogonal straight line.

即ち、本発明に係る風力分離装置は、上部に吸引の上部排出口を設け、下部に空気補給口を兼ねる下部排出口を設けた縦円筒形の分離塔内に、円形板を、その周囲に分離塔内壁面との間に通気間隙が存するように水平に支持し、分離塔外から分離塔内に挿入した空気輸送管の先端開口部を前記円形板上面の中心部に配置し、該空気輸送管を通して、比重の異なる成分からなる混合物を前記円形板上面の中心部に搬入し、該混合物中の比重の大きな成分(以下、「重成分」という。)を円形板の周縁部から落下させる一方、混合物中の比重の小さな成分(以下、「軽成分」という。)は、下部排出口から入って分離塔内を上昇する空気流に乗せて上部排出口から吸引して排出させるようにした風力分離装置であって、前記空気輸送管が、その先端開口部から該空気輸送管の管径(D3)の4倍以上の長さ(L)にわたって、前記円形板に対してほぼ直交する直管部を有することを特徴とする。   That is, the wind power separating apparatus according to the present invention is provided with a circular plate in the periphery of a vertical cylindrical separation tower provided with an upper discharge port for suction at the upper portion and a lower discharge port serving also as an air supply port at the lower portion. It is supported horizontally so that there is a ventilation gap between the inner wall of the separation tower, and the tip opening of the air transport pipe inserted from the outside of the separation tower into the separation tower is disposed in the center of the upper surface of the circular plate, and the air Through the transport pipe, a mixture of components having different specific gravities is carried into the center of the upper surface of the circular plate, and a component having a large specific gravity (hereinafter referred to as “heavy component”) in the mixture is dropped from the peripheral portion of the circular plate. On the other hand, components with a small specific gravity (hereinafter referred to as “light components”) in the mixture are sucked and discharged from the upper discharge port on the air flow that enters the lower discharge port and rises in the separation tower. A wind separator, wherein the pneumatic transport pipe 4 times the length of the tube diameter of the air transport tube from the opening (D3) over (L), characterized by having a straight pipe section that is substantially perpendicular to the circular plate.

前記空気輸送管は、前記分離塔の上部から分離塔内に挿入されていることが好ましく、更に、前記分離塔の上部から分離塔内に斜め挿入されていることがより好ましい。   The air transport pipe is preferably inserted into the separation tower from the upper part of the separation tower, and more preferably, is inserted obliquely from the upper part of the separation tower into the separation tower.

また、前記分離塔の円筒部の高さ(H)と直径(D)との比(H/D)が0.8≦H/D≦2.5の範囲内であることが好ましい。   The ratio (H / D) of the height (H) and the diameter (D) of the cylindrical portion of the separation tower is preferably in the range of 0.8 ≦ H / D ≦ 2.5.

前記円形板と分離塔内壁面との間に存する通気間隙の大きさとしては、円形板直径(D1)と分離塔内壁面の直径(D2)の比(D1/D2)が0.4≦D1/D2≦0.98の範囲内となる大きさであることが好ましい。   As the size of the air gap between the circular plate and the inner wall surface of the separation tower, the ratio (D1 / D2) of the diameter (D1) of the circular plate and the inner wall surface of the separation tower (D1 / D2) is 0.4 ≦ D1. The size is preferably within the range of /D2≦0.98.

また、前記円形板の周縁部が、円形板における水平面部に対する接線角度が5°〜75°の範囲内となるように、直線的又は湾曲して上方向に立ち上げ形成されていると好ましい。   In addition, it is preferable that the peripheral edge of the circular plate is formed so as to rise linearly or curved upward so that a tangential angle with respect to a horizontal plane portion of the circular plate is within a range of 5 ° to 75 °.

更に、前記分離筒の上部に、前記上部排出口を囲む排出ガイド筒を垂設することも好ましい。   Furthermore, it is also preferable that a discharge guide cylinder surrounding the upper discharge port is suspended from the upper part of the separation cylinder.

また、本発明に係る、廃製品からの繊維質成分と樹脂成分との分離回収方法は、上記のような風力分離装置を用いてなる、繊維質層と樹脂被覆層とを含む廃製品から繊維質成分と樹脂成分とを分離回収する方法であって、A)廃製品を粉砕する大きさを規制するパンチングメタルあるいは格子の目開きが1mm以上25mm以下であるスクリーンを設置した粉砕機により前記廃製品を粉砕する粉砕工程と、B)本発明の風力分離装置を用い、前記粉砕工程にて粉砕された、繊維質成分と樹脂成分との混合物からなる粉砕物を、前記空気輸送管により分離塔内の円形板上面の中心部に搬入し、破砕物中の樹脂成分を円形板の周縁部から落下させて下部排出口から排出する一方、破砕物中の繊維質成分は、下部排出口から入って分離塔内を上昇する空気流に乗せて上部排出口から吸引して排出することで、繊維質成分と樹脂成分とを分離する分離工程と、を備えることを特徴とする。   Further, according to the present invention, a method for separating and recovering a fiber component and a resin component from a waste product includes a fiber layer and a resin coating layer, and the fiber from the waste product including the fiber layer and the resin coating layer. A method for separating and recovering a quality component and a resin component, and A) the above-mentioned waste by using a punching metal that regulates the size of the waste product to be crushed or a screen having a grid opening of 1 mm to 25 mm. A pulverization step for pulverizing the product, and B) using the wind power separation device of the present invention, a pulverized product comprising a mixture of a fiber component and a resin component pulverized in the pulverization step is separated by the air transport pipe The resin component in the crushed material is dropped from the peripheral edge of the circular plate and discharged from the lower discharge port, while the fibrous component in the crushed material enters from the lower discharge port. Up the separation tower By sucking and discharging from the upper discharge port placed on the air flow, characterized in that it comprises a separation step of separating the fibrous component and a resin component.

前記風力分離装置の分離塔内に供給する空気量と上部排出口からの吸引排出量を調整することにより、該分離塔内に設置した円形板の周縁部での風速を1m/sec〜20m/secの範囲内に調整して繊維質成分と樹脂成分とを分離することが好ましい。   By adjusting the amount of air supplied into the separation tower of the wind separator and the amount of suction and discharge from the upper discharge port, the wind speed at the peripheral edge of the circular plate installed in the separation tower is adjusted to 1 m / sec to 20 m / It is preferable to separate the fibrous component and the resin component by adjusting within a range of sec.

前記分離回収方法では、分離工程を2回以上繰り返して行うことや、前記粉砕工程と分離工程とを、交互に2回以上繰り返して行うことも好ましい。   In the separation and recovery method, it is also preferable that the separation step is repeated twice or more, or the pulverization step and the separation step are alternately repeated twice or more.

本発明の分離回収方法は、塩化ビニル樹脂製壁紙から繊維質成分と樹脂成分とを分離回収に好適である。   The separation and recovery method of the present invention is suitable for separating and recovering a fibrous component and a resin component from a vinyl chloride resin wallpaper.

また、本発明に係る、廃製品からの繊維質成分と樹脂成分との分離回収装置は、上記のような本発明の風力分離装置を用いてなる、繊維質層と樹脂被覆層とを含む廃製品から繊維質成分と樹脂成分とを分離回収する装置であって、A)廃製品を粉砕する大きさを規制するパンチングメタルあるいは格子の目開きが1mm以上25mm以下であるスクリーンを設置した粉砕機と、B)本発明の風力分離装置とを備えることを特徴とする。   Further, the separation and recovery device for the fiber component and the resin component from the waste product according to the present invention includes a waste layer including the fiber layer and the resin coating layer formed by using the wind power separation device of the present invention as described above. A device for separating and collecting fiber components and resin components from a product, and A) a crusher provided with a punching metal for regulating the size of crushing waste products or a screen with a grid opening of 1 mm to 25 mm And B) the wind power separation device of the present invention.

前記粉砕機としては、剪断式粉砕機又は衝撃粉砕機が好ましく、衝撃粉砕機としては、スイングハンマークラッシャー型粉砕機が好ましい。   The pulverizer is preferably a shear pulverizer or an impact pulverizer, and the impact pulverizer is preferably a swing hammer crusher type pulverizer.

更に、前記風力分離装置を2機以上連設したり、前記粉砕機と風力分離装置とを、交互に2機以上連設した装置とすることも好ましい。   Furthermore, it is also preferable that two or more wind power separating devices are connected in series, or two or more wind power separating devices are alternately connected in series.

本発明の風力分離装置では、廃壁紙の粉砕物等を分離塔の円形板上に搬入する空気輸送管を、その先端開口部から所定の長さにわって、前記円形板に対して、ほぼ直交する直線状に形成したので、空気輸送管内を移動する重成分と軽成分との混合物を含む空気流は、前記直管部を通過する間に気流の大きな乱れや偏流が抑えられて、空気輸送管の周方向における各位置での速度が均一化され、前記混合物を含む空気流が、前記空気輸送管の先端開口部から、円形板上の周方向の各位置においてほぼ均一な速度で吐出される。これにより、円形板上の一部に、重成分、例えば、綿状ゴミが付着したままの塩化ビニルの破砕チップが残り、円形板から落下して分離塔下部の空気補給口から排出されてしまうといったことがなく、回収した塩化ビニル樹脂等の重成分中への繊維質成分等の軽成分の混入が抑制され、分離精度が高くなる。これにより、軽成分(繊維質層)と重成分(樹脂被覆層)を含む複合廃製品から、軽成分(繊維成分)と重成分(樹脂成分)とを効率良く分離、回収できる。また、本発明によれば、廃壁紙等の複合材料から、有機溶剤、水および温水などによる前処理を加えることなく、高精度に分離した繊維成分と樹脂成分を回収することができ、排水処理装置、溶剤除去装置、溶剤回収装置といった大規模な処理装置も不要で、分離回収コストも低く抑えることができる。   In the wind power separating apparatus of the present invention, an air transport pipe for carrying pulverized waste wallpaper or the like onto the circular plate of the separation tower is substantially the same as the circular plate over a predetermined length from the opening at the tip thereof. Since it is formed in an orthogonal straight line, the air flow containing a mixture of heavy and light components that move in the air transport pipe is suppressed from large turbulence and drift of the air flow while passing through the straight pipe section, The speed at each position in the circumferential direction of the transport pipe is made uniform, and the air flow including the mixture is discharged from the tip opening of the air transport pipe at a substantially uniform speed at each position in the circumferential direction on the circular plate. Is done. As a result, crushing chips of vinyl chloride with heavy components such as cotton dust remaining on a part of the circular plate remain and fall from the circular plate and are discharged from the air supply port at the bottom of the separation tower. Therefore, mixing of light components such as fibrous components into heavy components such as recovered vinyl chloride resin is suppressed, and the separation accuracy is improved. Thereby, the light component (fiber component) and the heavy component (resin component) can be efficiently separated and recovered from the composite waste product including the light component (fiber layer) and the heavy component (resin coating layer). Further, according to the present invention, it is possible to recover the fiber component and the resin component separated with high accuracy from a composite material such as waste wallpaper without adding a pretreatment with an organic solvent, water, hot water, etc. A large-scale processing apparatus such as an apparatus, a solvent removal apparatus, and a solvent recovery apparatus is unnecessary, and the separation and recovery costs can be kept low.

また、本発明の分離回収方法や分離回収装置で壁紙を処理すれば、紙繊維長が長く良質な紙成分(繊維質成分)を回収でき、再度、壁紙用裏打ち紙に混入して再利用する他、ペーパーシート、モールド、緩衝材などの再生紙用途に利用できる。また、本発明の分離回収方法や分離回収装置で回収された樹脂が塩化ビニル系樹脂であれば、混入している繊維質成分の比率が小さいことから、塩化ビニル系樹脂製床材、遮音シートなどの他、射出成形材料、押出成形材料として塩化ビニル系樹脂製品に再利用可能な再生原料とすることができる。   In addition, if the wallpaper is processed by the separation and recovery method or the separation and recovery apparatus of the present invention, a high quality paper component (fiber component) having a long paper fiber length can be recovered and mixed again into the wallpaper backing paper for reuse. In addition, it can be used for recycled paper applications such as paper sheets, molds, and cushioning materials. Further, if the resin recovered by the separation / recovery method or separation / recovery apparatus of the present invention is a vinyl chloride resin, since the ratio of the mixed fiber component is small, the vinyl chloride resin flooring, the sound insulation sheet In addition to the above, it can be used as a recycled raw material that can be reused for vinyl chloride resin products as an injection molding material and an extrusion molding material.

また、本発明の風力分離装置では、分離される成分のうち、重成分、例えば壁紙の塩化ビニル樹脂は円形板の周縁部から落下する一方で、軽成分、例えば壁紙の紙成分は、下部排出口から入って分離塔内を上昇する空気流に乗って分離筒内を上昇し、最終的には上部排出口から吸引して排出される。このとき、前記分離筒内には円形板から舞い上がった軽成分が浮遊している。この分離塔内を浮遊している軽成分が、分離塔外部から挿入されている空気輸送管の上に堆積し、集合して絡み合って塊となると、分離塔下部に設けた下部排出口から重成分とともに排出され、壁紙の場合には、回収された塩化ビニル樹脂中への紙成分の混入率が高くなる。この点、空気輸送管を、前記分離塔の上部から分離塔内に挿入する、更には分離塔の上部から分離塔内に斜め挿入することで、分離塔内を浮遊している軽成分の空気輸送管上への堆積量が少なくなり、重成分への軽成分の混入率が減少し、分離精度が向上する。   In the wind power separating apparatus according to the present invention, among the components to be separated, heavy components such as vinyl chloride resin for wallpaper fall from the peripheral edge of the circular plate, while light components such as paper component for wallpaper fall on the lower part. The air enters the outlet and rides on the air flow rising in the separation tower, rises in the separation cylinder, and is finally sucked and discharged from the upper discharge port. At this time, a light component that has risen from the circular plate is floating in the separation cylinder. When light components floating in the separation tower accumulate on the air transport pipe inserted from the outside of the separation tower and gather together to form a lump, they are heavier from the lower outlet provided at the lower part of the separation tower. In the case of wallpaper discharged together with the components, the mixing rate of the paper components into the recovered vinyl chloride resin is increased. In this regard, light component air floating in the separation tower is inserted by inserting the air transport pipe into the separation tower from the upper part of the separation tower, and further obliquely inserted into the separation tower from the upper part of the separation tower. The accumulation amount on the transport pipe is reduced, the mixing ratio of light components to heavy components is reduced, and the separation accuracy is improved.

また、分離塔の円筒部の高さ(H)と直径(D)との比(H/D)を0.8≦H/D≦2.5の範囲内とすることで、分離塔内での壁紙粉砕物等の流動が適度に大きくなるとともに、軽成分である基材の綿状に解れた繊維片等が分離塔内を上昇する空気流に乗って上部排出口から良好に排出され、各成分を精度よく分離回収することができる。   Further, by setting the ratio (H / D) of the height (H) and the diameter (D) of the cylindrical portion of the separation tower within the range of 0.8 ≦ H / D ≦ 2.5, While the flow of the pulverized wallpaper etc. is moderately large, the fiber pieces of the base material, which is a light component, that have been unwound in a cotton-like manner are well discharged from the upper outlet on the air flow rising in the separation tower, Each component can be separated and recovered with high accuracy.

また、分離筒内に設けた円形板と分離塔内壁面との間に存する通気間隙を、円形板直径(D1)と分離塔内壁面の直径(D2)の比(D1/D2)が0.4≦D1/D2≦0.98の範囲内となる大きさとすることで、重成分の通過(落下)を必要以上に妨げることなく、また通気間隙を通って上昇する気流の速度が必要以上に高くなり、重成分が軽成分とともに上部排出口から排出されるといった問題もなく、各成分を精度よく分離回収することができる。   Further, the ratio of the circular plate diameter (D1) to the diameter (D2) of the inner wall of the separation tower (D1 / D2) of the ventilation gap existing between the circular plate provided in the separation cylinder and the inner wall of the separation tower is 0. By setting the size within the range of 4 ≦ D1 / D2 ≦ 0.98, the speed of the airflow rising through the ventilation gap is more than necessary without obstructing the passage (falling) of heavy components more than necessary. Each component can be separated and recovered with high accuracy without a problem that the heavy component and the light component are discharged from the upper discharge port.

更に、円形板の周縁部を、該円形板における水平面部に対する接線角度が5°〜75°の範囲内となるように、直線的又は湾曲して上方向に立ち上げ形成することで、空気輸送管の先端開口部から噴出し、円形板に衝突して、その中心部から周縁部に流れた混合物の流れ方向が制御されて速やかに流動し、各成分の分離精度が向上する。   Further, the peripheral edge portion of the circular plate is formed to rise upward in a straight or curved manner so that the tangential angle with respect to the horizontal surface portion of the circular plate is within a range of 5 ° to 75 °, thereby providing pneumatic transportation. The flow direction of the mixture that is ejected from the opening at the tip end of the tube and collides with the circular plate and flows from the central portion to the peripheral portion is controlled to flow quickly, and the separation accuracy of each component is improved.

また、風力分離装置を2機以上連設して分離工程を2回以上繰り返して行ったり、粉砕機と風力分離装置とを、交互に2機以上連設して粉砕工程と分離工程とを交互に2回以上繰り返して行うことで、各成分の分離精度がより向上する。   In addition, two or more wind power separators are connected in series and the separation process is repeated twice or more, or two or more wind mills and wind power separators are connected in series to alternate the grinding process and the separation process. In this case, the separation accuracy of each component is further improved.

本発明を、図面を用いて更に詳しく説明する。本発明において、処理対象物である複合廃製品としては、壁紙、タイルカーペットや帆布及び自動車内装材として使用されるトリム、天井材、塩化ビニル樹脂を布製原手の表面に塗布した作業手袋等の複合材料が挙げられる。これらの中で、本発明の風力分離装置並びにそれを用いた分離回収方法及び分離回収装置は、塩化ビニル樹脂製壁紙から紙成分と塩化ビニル成分とを精度良く分離回収することができる。以下、この塩化ビニル樹脂製壁紙を処理する場合について、本発明を詳細に説明する。   The present invention will be described in more detail with reference to the drawings. In the present invention, composite waste products to be treated include wallpaper, tile carpets and canvases, trims used as automotive interior materials, ceiling materials, work gloves in which vinyl chloride resin is applied to the surface of cloth hands, etc. Examples include composite materials. Among these, the wind power separation apparatus of the present invention and the separation and recovery method and separation and recovery apparatus using the same can accurately separate and recover the paper component and the vinyl chloride component from the wallpaper made of vinyl chloride resin. Hereinafter, the present invention will be described in detail for the case of processing this vinyl chloride resin wallpaper.

図1に示すものは、複合材料である塩化ビニル樹脂製壁紙を粉砕して得られる粉砕物1と該粉砕物1中に含まれる塩化ビニル系樹脂片2と繊維片3の模式図である。また、図2は、前記塩化ビニル樹脂製壁紙から、該壁紙を構成する塩化ビニル系樹脂片2と繊維片3を分離、回収するための分離回収装置の一例を模式的に示すものである。   FIG. 1 is a schematic view of a pulverized product 1 obtained by pulverizing a vinyl chloride resin wallpaper as a composite material, and a vinyl chloride resin piece 2 and a fiber piece 3 contained in the pulverized product 1. FIG. 2 schematically shows an example of a separation and recovery device for separating and collecting the vinyl chloride resin pieces 2 and the fiber pieces 3 constituting the wallpaper from the vinyl chloride resin wallpaper.

合成樹脂と繊維質である紙から構成された壁紙は、基材としての紙製の裏打ち紙の表層にコーティング法又はカレンダー法などで合成樹脂を被覆した複合材料である。壁紙に使用されている基材裏打ち紙としては、パルプから抄紙された紙以外に、難燃紙(パルプ主体のシートをスルファミン酸グアニジン、燐酸グアニジンなどの難燃剤で処理したシート)や、水酸化アルミニウム、水酸化マグネシウム等の無機質剤やガラス繊維を混抄した無機質紙も使用されている。一方、合成樹脂被覆層は、ポリ塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−エチレン−酢酸ビニル共重合体等の塩化ビニル系共重合体を含む塩化ビニル系樹脂に代表されるものであるが、エチレン−酢酸ビニル共重合体などのオレフィン系樹脂、アクリル系樹脂等を用いたもの、更には、耐スクラッチ性、耐薬品性、耐汚染性などを向上させるための保護層を設けたものも挙げられる。   A wallpaper composed of synthetic resin and fibrous paper is a composite material in which the surface layer of a paper backing paper as a base material is coated with a synthetic resin by a coating method or a calendar method. In addition to paper made from pulp, flame-retardant paper (sheets made by treating pulp-based sheets with flame retardants such as guanidine sulfamate and guanidine phosphate) Inorganic paper mixed with inorganic agents such as aluminum and magnesium hydroxide and glass fiber is also used. On the other hand, the synthetic resin coating layer is typified by a vinyl chloride resin including a vinyl chloride copolymer such as polyvinyl chloride resin, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene-vinyl acetate copolymer. However, a protective layer for improving scratch resistance, chemical resistance, contamination resistance, etc., using olefin resin such as ethylene-vinyl acetate copolymer, acrylic resin, etc. What was provided is also mentioned.

これらの壁紙を粉砕して紙成分と樹脂成分とを分離、回収して再資源化する装置は、例えば、図2に示すように、予め粗砕した壁紙を粉砕する粉砕機4、粉砕機4で粉砕され、塩化ビニル系樹脂片2と基材裏打ち紙の繊維片3が混在した壁紙粉砕物1を、塩化ビニル系樹脂片2と繊維片3とに分離する風力分離装置7を備えている。壁紙は、粉砕機4により、塩化ビニル系樹脂片2が繊維片3に絡まり混在した粉砕物1となる。次に、粉砕物1は、風力分離装置7により塩化ビニル系樹脂片2と繊維片3に分離される。軽成分である繊維片3は風力分離装置7の分離塔15の上部排出口17から吸引されてブロアー10、サイクロン11を経由して繊維片回収槽12に回収される。一方、重成分である塩化ビニル系樹脂片2は、風力分離装置7の分離筒15の下部排出口18から、その下方に配置した樹脂片受け器8、ブロアー9、サイクロン13を経て樹脂片回収槽14に分離、回収される。なお、壁紙を粉砕した粉砕物1中で混在する塩化ビニル系樹脂片2と基材裏打ち紙の繊維片3を分離する上で、粉砕機1による粉砕工程と風力分離装置7による分離工程とは、連続的に行うことが、生産性、作業性の点から好ましい。   An apparatus for pulverizing these wallpapers to separate paper components and resin components and recover them to recycle them is, for example, a pulverizer 4 and a pulverizer 4 as shown in FIG. Is provided with a wind separator 7 that separates the pulverized wallpaper 1 in which the vinyl chloride resin piece 2 and the fiber piece 3 of the backing paper are mixed into the vinyl chloride resin piece 2 and the fiber piece 3. . The wallpaper becomes a pulverized product 1 in which vinyl chloride resin pieces 2 are entangled and mixed with fiber pieces 3 by a pulverizer 4. Next, the pulverized material 1 is separated into the vinyl chloride resin piece 2 and the fiber piece 3 by the wind separation device 7. The fiber component 3, which is a light component, is sucked from the upper outlet 17 of the separation tower 15 of the wind separation device 7 and is recovered in the fiber fragment recovery tank 12 via the blower 10 and the cyclone 11. On the other hand, the vinyl chloride resin piece 2 which is a heavy component is recovered from the lower discharge port 18 of the separation cylinder 15 of the wind power separating device 7 through the resin piece receptacle 8, the blower 9 and the cyclone 13 disposed below the resin outlet receptacle 18. It is separated and collected in the tank 14. It should be noted that, in separating the vinyl chloride resin piece 2 and the fiber piece 3 of the backing paper that are mixed in the pulverized product 1 obtained by pulverizing the wallpaper, the pulverization process by the pulverizer 1 and the separation process by the wind power separating device 7 It is preferable to carry out continuously from the viewpoint of productivity and workability.

一般に、複合材料の各構成素材を分離、回収して再資源化する場合、複合材料の種類により最適な粉砕機4の種類を選定することが重要である。本発明では、複合材料を粉砕する場合、粉砕物の粒径が1mm以上25mm以下、好ましくは、2mm以上15mm以下となるように粉砕することが好ましい。この範囲の目開きのスクリーンを用いると効率良く粉砕でき、粉砕工程に引き続き行う風力分離工程において良好に各構成素材を分離、回収して再資源化できる。また、該粉砕物の大きさは、粉砕物の大きさを規制するためのパンチングメタルあるいは格子の目開きを有するスクリーン5を粉砕機4に設置して粉砕することにより達成される。この粉砕物の粒径を25mmより小さくすることで、基材繊維と樹脂被覆層とが良好に剥離し、繊維質成分と樹脂成分の分離精度に優れる。粉砕物の粒径が1mm以上25mm以下となるようにパンチングメタルあるいはスクリーンを選択することで、複合材料を効率良く粉砕できる。更に、2mm以上15mm以下に粉砕すると、粉砕処理される過程で、繊維質成分が樹脂成分から十分に剥離されるため、より好ましい。なお、スクリーン5としてパンチングメタルを使用する場合、各開口の形状は、円形が最も一般的であるが、特に限定はなく、楕円形、矩形、その他のどのような形でも良い。   In general, when separating and recovering each constituent material of a composite material for recycling, it is important to select the most appropriate type of pulverizer 4 depending on the type of composite material. In the present invention, when the composite material is pulverized, it is preferable to pulverize so that the particle size of the pulverized material is 1 mm to 25 mm, preferably 2 mm to 15 mm. If a screen having an opening in this range is used, it can be efficiently pulverized, and each constituent material can be well separated and recovered in a wind separation process subsequent to the pulverization process to be recycled. The size of the pulverized product is achieved by installing a punching metal or a screen 5 having a grid opening for regulating the size of the pulverized product in the pulverizer 4 and pulverizing. By making the particle size of this pulverized product smaller than 25 mm, the base fiber and the resin coating layer are peeled off favorably, and the separation accuracy between the fiber component and the resin component is excellent. By selecting the punching metal or the screen so that the particle size of the pulverized product is 1 mm or more and 25 mm or less, the composite material can be pulverized efficiently. Further, it is more preferable to pulverize to 2 mm or more and 15 mm or less because the fibrous component is sufficiently separated from the resin component in the process of pulverization. When punching metal is used as the screen 5, the shape of each opening is most commonly circular, but is not particularly limited, and may be oval, rectangular, or any other shape.

ところで、壁紙においては、基材裏打ち紙と塩化ビニル系樹脂被覆層は良く接着して分離が非常に困難である。このため、基材裏打ち紙と塩化ビニル系樹脂被覆層を精度良く分離、回収するには、粉砕時に適度の衝撃力を与えて紙繊維を解し、塩化ビニル系樹脂被覆層を基材裏打ち紙から剥離し、分離する必要がある。そこで、粉砕機4としては、適度な衝撃力と剪断力を与えて粉砕するのに好適な衝撃式粉砕機を使用することが好ましい。一方、複合材料を構成する繊維質成分が、ナイロン、ポリエステル、ポリプロピレン、アクリル、アクリル系繊維、木綿、ウール等の合成繊維又は天然繊維からなるタイルカーペット、帆布、自動車用内装材等では、粉砕機4として、回転刃と固定刃を有し、剪断機構で粉砕を行う剪断式粉砕機を使用して繊維を予め切断したり、又は前記壁紙と同じように衝撃式粉砕機で粉砕し、風力分離装置7で分離処理した後に、再度、剪断式粉砕機を使用して粉砕、分離を行う等、粉砕工程と分離工程とを複数組み合わせて行っても良い。壁紙には、剪断式粉砕機で粉砕すると、基材裏打ち紙の紙繊維が解れることなく塩化ビニル系樹脂被覆層と密着したまま切断され易く、基材裏打ち紙と塩化ビニル系樹脂被覆層との剥離を十分に行うことが困難なため、衝撃式粉砕機を使用することが好ましい。更に、壁紙を粉砕する時に適度の衝撃力を壁紙に与え、基材裏打ち紙の紙繊維を十分解し、塩化ビニル系樹脂被覆層と剥離するため、衝撃式粉砕機の一種であるスイングハンマクラッシャーを使用することが好ましい。スイングハンマクラッシャーは、通常、スクリーン5が設置され、高速で回転ハンマを回転して粉砕する粉砕機であり、被処理物に与える衝撃頻度が高い点に特徴がある。その回転数は、1000rpm以上2000rpm以下である場合、粉砕効率が高く、望ましい態様である。このスイングハンマクラッシャーを使用して壁紙を粉砕すると、基材裏打ち紙の紙繊維は解され、柔らかい綿状に開繊した状態になり易いため好ましい。すなわち、粉砕機4としてスイングハンマクラッシャーを使用して壁紙を粉砕すると、適度の衝撃力を与えて基材裏打ち紙の紙繊維が柔らかい綿状に開繊するとともに、塩化ビニル系樹脂被覆層と剥離する作用を併せ持つため好ましい。なお開繊された柔らかい綿状の紙繊維は、後述する風力分離装置7内の上昇気流に乗って分離塔15の上部排出口17から排出され、分離、回収される。一方、塩化ビニル系樹脂被覆層の塩化ビニル系樹脂は、風力分離装置7内を降下して分離塔15の下部排出口18から樹脂片受け器8、ブロアー9、サイクロン13を経て樹脂片回収槽14に回収される。   By the way, in wallpaper, the backing paper and the vinyl chloride resin coating layer adhere well and are very difficult to separate. For this reason, in order to separate and recover the backing paper and vinyl chloride resin coating layer with high accuracy, an appropriate impact force is applied during pulverization to break up the paper fibers, and the vinyl chloride resin coating layer is attached to the backing paper. Must be peeled off and separated. Therefore, as the pulverizer 4, it is preferable to use an impact pulverizer suitable for pulverizing with appropriate impact force and shearing force. On the other hand, if the fiber component constituting the composite material is nylon, polyester, polypropylene, acrylic, acrylic fiber, cotton, wool, etc., synthetic carpet or natural fiber tile carpet, canvas, automotive interior materials, etc. 4. Using a shearing type crusher that has a rotating blade and a fixed blade and crushes with a shearing mechanism, the fiber is cut in advance, or is crushed with an impact type crusher in the same manner as the wallpaper, and separated into wind power. After the separation treatment by the apparatus 7, a plurality of pulverization steps and separation steps may be combined, such as pulverization and separation using a shearing pulverizer again. When the wallpaper is pulverized with a shearing type pulverizer, the paper fiber of the backing paper does not break and is easily cut in close contact with the vinyl chloride resin coating layer. Therefore, it is preferable to use an impact pulverizer. Furthermore, a swing hammer crusher is a kind of impact type crusher that gives a moderate impact force to the wallpaper when crushing the wallpaper, fully dissolves the paper fiber of the backing paper, and peels it off from the vinyl chloride resin coating layer. Is preferably used. The swing hammer crusher is a pulverizer that is usually provided with a screen 5 and rotates and pulverizes a rotating hammer at a high speed, and is characterized by a high impact frequency applied to an object to be processed. When the rotational speed is 1000 rpm or more and 2000 rpm or less, the grinding efficiency is high, which is a desirable mode. When the wallpaper is pulverized using this swing hammer crusher, the paper fiber of the backing paper is unraveled, and it is easy to be opened into a soft cotton shape, which is preferable. That is, when the wallpaper is pulverized using a swing hammer crusher as the pulverizer 4, the paper fiber of the backing paper is spread into a soft cotton shape by applying an appropriate impact force, and peeled off from the vinyl chloride resin coating layer. This is preferable because it also has the function of The opened soft cotton-like paper fiber is discharged from the upper outlet 17 of the separation tower 15 on an ascending air current in a wind power separating device 7 described later, and is separated and collected. On the other hand, the vinyl chloride resin of the vinyl chloride resin coating layer descends in the wind separator 7 and passes through the resin outlet receiver 8, the blower 9, and the cyclone 13 from the lower discharge port 18 of the separation tower 15, and the resin piece recovery tank. 14 recovered.

風力分離装置7の分離塔15には、ブロアー6から空気輸送管19を経て壁紙粉砕物1が搬入されるが、この壁紙粉砕物1を分離塔15内に搬入する風量に対して、ブロワー10によって上部排出口17から排出される風量を同等量とするか又は搬入する風量よりも若干排出量を多くすることで、分離塔15の下部排出口18から空気が補給されて分離塔15内に上昇気流を生じるよう調整することが好ましい。   The pulverized wallpaper 1 is carried from the blower 6 through the air transport pipe 19 to the separation tower 15 of the wind separator 7, and the blower 10 corresponds to the amount of air that is carried into the separation tower 15. The air volume discharged from the upper discharge port 17 is made equal to or slightly larger than the air volume carried in, so that air is replenished from the lower discharge port 18 of the separation tower 15 into the separation tower 15. It is preferable to adjust so as to generate an updraft.

また、図3に示すものは、粉砕機と風力分離装置とを交互に2機ずつ連設して、粉砕工程と分離工程を交互に2回繰り返して行う分離回収装置の一例を示すものである。この分離回収装置では、図2の分離回収装置と同様にして、壁紙を粉砕機4で粉砕した壁紙粉砕物1を、風力分離装置7の分離塔15内で基材裏打ち紙の繊維片3と塩化ビニル樹脂被覆層の塩化ビニル系樹脂片2に分離した後、分離塔15の下部排出口18から、その下方に設けた樹脂片受け器8に回収した塩化ビニル系樹脂片2を、2台目の粉砕機4Bに送り、再び粉砕して、2台目の風力分離装置7Bで繊維片3と塩化ビニル系樹脂片2とに分離するという、粉砕工程と分離工程とを繰り返して2回行う態様である。この分離回収装置により分離回収処理を行う場合、1回目と2回目の粉砕時に使用する粉砕機4、4Bのスクリーン5、5Bは、粉砕物の大きさを規制するパンチングメタルあるいは格子の目開きが、1回目の粉砕に使用する粉砕機4のスクリーンより2回目の粉砕に使用する粉砕機4Bのスクリーンのほうが小さくなるようにして粉砕分離を繰り返すことが好ましい。これにより、塩化ビニル系樹脂片2の分離精度を向上できる。このように粉砕工程及び風力分離工程を繰り返して行う場合、複数の粉砕機を直列又は並列とする、あるいは、1回目の粉砕工程、風力分離工程を並列にて行い、2回目の粉砕工程、風力分離工程を直列として、壁紙を繊維片3と塩化ビニル系樹脂片2に高精度、かつ多量に分離処理することも可能である。また、風力分離装置7の下部排出口18から回収する塩化ビニル系樹脂片2を、公知の多段式の円形振動篩、回転式シフター、往復シフターなどを使用して篩を通過させ、塩化ビニル系樹脂片2に同伴した繊維片3を選別して篩下から回収することにより、塩化ビニル系樹脂片2への繊維片3の混入率を更に低減させ、回収される塩化ビニル樹脂の純度を向上させることも出来る。   Moreover, what is shown in FIG. 3 shows an example of the separation-and-recovery device in which two pulverizers and two wind power separation devices are alternately connected, and the pulverization step and the separation step are alternately repeated twice. . In this separation and recovery apparatus, the wallpaper pulverized material 1 obtained by pulverizing the wallpaper with the pulverizer 4 is separated from the fiber pieces 3 of the backing paper in the separation tower 15 of the wind power separation apparatus 7 in the same manner as the separation and recovery apparatus of FIG. After separating the vinyl chloride resin piece 2 of the vinyl chloride resin coating layer, two vinyl chloride resin pieces 2 recovered from the lower discharge port 18 of the separation tower 15 to the resin piece receiver 8 provided below the two are provided. The pulverization step and the separation step are repeated twice, sent to the eye pulverizer 4B, pulverized again, and separated into the fiber piece 3 and the vinyl chloride resin piece 2 by the second wind power separating device 7B. It is an aspect. When the separation and recovery process is performed by this separation and recovery device, the screens 5 and 5B of the pulverizers 4 and 4B used in the first and second pulverizations have punching metal or lattice openings that regulate the size of the pulverized material. It is preferable to repeat the pulverization and separation so that the screen of the pulverizer 4B used for the second pulverization is smaller than the screen of the pulverizer 4 used for the first pulverization. Thereby, the separation accuracy of the vinyl chloride resin piece 2 can be improved. When the pulverization step and the wind separation step are repeated in this way, a plurality of pulverizers are connected in series or in parallel, or the first pulverization step and the wind separation step are performed in parallel, and the second pulverization step, wind force It is also possible to separate the wallpaper into the fiber piece 3 and the vinyl chloride resin piece 2 with high accuracy and a large amount by separating the separation steps in series. Further, the vinyl chloride resin piece 2 recovered from the lower discharge port 18 of the wind separator 7 is passed through a sieve using a known multistage circular vibrating sieve, rotary shifter, reciprocating shifter, etc. By selecting the fiber pieces 3 accompanying the resin pieces 2 and collecting them from under the sieve, the mixing rate of the fiber pieces 3 into the vinyl chloride resin pieces 2 is further reduced, and the purity of the recovered vinyl chloride resin is improved. You can also make it.

次に、本発明の風力分離装置について、更に詳細に説明する。風力分離装置7は、例えば図4に示すように、縦円筒形の分離塔15の頂部に、図2、3に示すブロアー10、10Bに繋がる吸引の上部排出口17を設け、分離塔15の下部はロート状に形成し、その中心部(ロート部16)に下部排出口18を設けた略縦円筒形をしている。また、分離塔15内の下方には、円形板20を、その周囲に分離塔15の内壁面との間に通気間隙24が存在するようにして、円形板支持具23の支持棒22により略水平に支持し、分離塔15の外部から、図2、3に示すように、粉砕機4、4Bからブロアー6、6Bにより円形板20(20B)の上面中心部に壁紙粉砕物1を搬入する空気輸送管19(19B)を、分離塔15の上部、図例のものでは、その塔頂部から挿入している。   Next, the wind power separation device of the present invention will be described in more detail. For example, as shown in FIG. 4, the wind separation device 7 is provided with a suction upper discharge port 17 connected to the blowers 10 and 10 </ b> B shown in FIGS. 2 and 3 at the top of the vertical cylindrical separation tower 15. The lower portion is formed in a funnel shape, and has a substantially vertical cylindrical shape in which a lower discharge port 18 is provided in the center portion (funnel portion 16). Further, below the separation tower 15, the circular plate 20 is substantially omitted by the support rod 22 of the circular plate support 23 so that a ventilation gap 24 exists between the circular plate 20 and the inner wall surface of the separation tower 15. As shown in FIGS. 2 and 3, the wallpaper pulverized material 1 is carried into the center of the upper surface of the circular plate 20 (20 B) from the pulverizers 4 and 4 B by the blowers 6 and 6 B as shown in FIGS. The pneumatic transport pipe 19 (19B) is inserted from the upper part of the separation tower 15, from the top of the tower in the illustrated example.

風力分離装置7では、粉砕機4にて粉砕され、ブロアー6にて空気輸送されて空気輸送管19から円形板20の上面中心部に搬入された壁紙粉砕物1は、円形板20に衝突して円形板20の周縁方向に拡散し、分離塔15の内壁面に衝突した後、通気間隙24を通って上昇する気流に乗って分離塔15内を流動する。ここで、壁紙粉砕物1中の相対的に比重の大きな重成分である塩化ビニル系樹脂片2は、円形板20の周縁に設けた通気間隙24から落下して分離塔15の下部排出口18から排出される。一方、基材裏打ち紙の粉砕物である相対的に比重の小さな軽成分である綿状に解れた繊維片3は、分離塔15内部を上昇する空気流に乗って分離塔15内を上昇し、上部排出口17から排出され、図2、図3に示すブロアー10、10B、サイクロン11、11Bを経由して繊維片回収槽12、12Bに回収される。   In the wind power separating device 7, the pulverized wallpaper 1 crushed by the pulverizer 4 and pneumatically transported by the blower 6 and carried into the center of the upper surface of the circular plate 20 from the air transport pipe 19 collides with the circular plate 20. After diffusing in the peripheral direction of the circular plate 20 and colliding with the inner wall surface of the separation tower 15, the air flows through the ventilation gap 24 and flows in the separation tower 15. Here, the vinyl chloride resin piece 2, which is a heavy component having a relatively large specific gravity, in the pulverized wallpaper 1 falls from the ventilation gap 24 provided at the periphery of the circular plate 20 and falls in the lower outlet 18 of the separation tower 15. Discharged from. On the other hand, the fiber pieces 3 that are pulverized from the base material backing paper and that have been loosened into a flocs, which is a light component having a relatively small specific gravity, ride on the air flow that rises inside the separation tower 15 and rise in the separation tower 15. Then, it is discharged from the upper discharge port 17 and is recovered in the fiber piece recovery tanks 12 and 12B via the blowers 10 and 10B and the cyclones 11 and 11B shown in FIGS.

図例の風力分離装置7においては、空気輸送管19は、分離塔15の塔頂部の上部排出口17の横から、分離塔15内に斜めに挿入し、この斜めに挿入した傾斜管部19aから、分離塔15内の下部に水平に配置した円形板20の中心部に向かって円形板20の水平面部に対して直交するように、直管部19bを垂直方向に下ろしている。この直管部19bの長さは、塩化ビニル系樹脂粉砕片2と繊維片3が混在した粉砕物1を噴出する先端開口部19cから、少なくとも管径(D3)の4倍以上の長さ(L)の直管とする。空気輸送管19の先端部を、先端開口部19cから少なくとも管径(D3)の4倍以上の長さ(L)にわたって直管(直管部19b)とする、即ち、(L/D3)≧4とすることで、空気輸送管19内を移動する気流の大きな乱れや偏流を抑え、先端開口部19cから略均一に噴出して円形板20に衝突せしめることが出来る。これにより、粉砕物1を、円形板20上を略均等にその周縁部に向かって移動させ、分離塔15内で安定した流動をさせることができ、塩化ビニル系樹脂片2と繊維片3の絡まりが解れ、塩化ビニル系樹脂片2と繊維片3が精度良く分離され、回収される。一方、例えば図9に示すように、直管部19bの長さが短く、先端開口部19cからの直管部19bの長さ(L)が、管径(D3)の4倍に満たない場合、先端開口部19cからの噴出時の偏流が激しく、図示するように、粉砕物1が分離塔15内で偏った流動を起こし易く、塩化ビニル系樹脂片2と繊維片3の分離精度が劣ることとなる。より好ましくは(L/D3)≧5であり、更に好ましくは(L/D3)≧10である。   In the illustrated wind separator 7, the air transport pipe 19 is inserted obliquely into the separation tower 15 from the side of the upper outlet 17 at the top of the separation tower 15, and the inclined pipe section 19 a inserted obliquely. Therefore, the straight pipe portion 19b is lowered in the vertical direction so as to be orthogonal to the horizontal plane portion of the circular plate 20 toward the center portion of the circular plate 20 disposed horizontally in the lower part of the separation tower 15. The length of the straight pipe portion 19b is at least four times as long as the pipe diameter (D3) from the tip opening 19c that ejects the pulverized product 1 in which the vinyl chloride resin crushed pieces 2 and the fiber pieces 3 are mixed ( L) straight pipe. The tip of the air transport pipe 19 is a straight pipe (straight pipe portion 19b) over a length (L) that is at least four times the pipe diameter (D3) from the tip opening 19c, that is, (L / D3) ≧ By setting it to 4, large turbulence and drift of the airflow moving in the air transport pipe 19 can be suppressed, and the air can be ejected from the tip opening 19c substantially uniformly and collide with the circular plate 20. As a result, the pulverized product 1 can be moved almost uniformly on the circular plate 20 toward the peripheral edge thereof, and can be made to stably flow in the separation tower 15. The vinyl chloride resin piece 2 and the fiber piece 3 The entanglement is released, and the vinyl chloride resin piece 2 and the fiber piece 3 are separated and collected with high accuracy. On the other hand, for example, as shown in FIG. 9, when the length of the straight pipe portion 19b is short and the length (L) of the straight pipe portion 19b from the tip opening 19c is less than four times the pipe diameter (D3). As shown in the figure, the drifting at the time of jetting from the tip opening 19c is intense, and the pulverized product 1 tends to cause a biased flow in the separation tower 15, and the separation accuracy between the vinyl chloride resin piece 2 and the fiber piece 3 is poor. It will be. More preferably, (L / D3) ≧ 5, and still more preferably (L / D3) ≧ 10.

更に、図4に示す風力分離装置7においては、空気輸送管19は、ブロアー6から先端開口部19cにいたる全長でほぼ同一管径で、分離塔15の上部から斜めに挿入した傾斜管部19aの先端から直管部19bを下ろしている。これにより、分離塔15内に挿入された傾斜管部19aから直管部19bへの曲点における角度が鈍角となり、空気輸送管19内を移動する気流の乱れや偏流を更に抑えるとともに、空気輸送管19を側面から分離塔15内に水平に挿入した場合に較べて、分離塔15内に挿入された空気輸送管19上に繊維片3が堆積し難くなり、堆積した繊維片が絡み合って形成される綿状の塊が、塩化ビニル系樹脂片2とともに下部排出口18から排出されて分離精度の低下を招くといったことも防止できる。傾斜管部19aの傾斜角度は特に限定されるものではないが、垂直に近い鋭角に挿入、配置することが、空気輸送管19内の気流の乱れや偏流を抑制し、また空気輸送管19上への繊維片3および塩化ビニル系樹脂片2の堆積を防ぐうえで好ましい。なお、図例のものでは、前記傾斜管部19aとして直管を用いているが、湾曲した管を用いてもよい。更に、傾斜管部19aは塔頂部から分離塔15内に挿入しているが、筒状部15aの上部あたりから分離塔15内に挿入してもよい。   Furthermore, in the wind power separating apparatus 7 shown in FIG. 4, the pneumatic transport pipe 19 has an inclined pipe part 19 a that is inserted at an angle from the upper part of the separation tower 15 with substantially the same pipe diameter over the entire length from the blower 6 to the tip opening part 19 c. The straight pipe portion 19b is lowered from the tip of the tube. As a result, the angle at the bending point from the inclined pipe part 19a inserted into the separation tower 15 to the straight pipe part 19b becomes an obtuse angle, further suppressing the turbulence and drift of the airflow moving in the air transport pipe 19, and the air transport Compared to the case where the tube 19 is horizontally inserted into the separation column 15 from the side, the fiber pieces 3 are less likely to be deposited on the air transport tube 19 inserted into the separation column 15, and the accumulated fiber pieces are entangled. It is also possible to prevent the flocculent lump being discharged from the lower discharge port 18 together with the vinyl chloride resin piece 2 and causing a decrease in separation accuracy. The inclination angle of the inclined pipe portion 19a is not particularly limited, but insertion and arrangement at an acute angle close to vertical suppresses the turbulence and drift of the air flow in the air transport pipe 19, and also on the air transport pipe 19 It is preferable for preventing the fiber pieces 3 and the vinyl chloride resin pieces 2 from being deposited on the substrate. In the illustrated example, a straight pipe is used as the inclined pipe portion 19a, but a curved pipe may be used. Furthermore, although the inclined pipe part 19a is inserted into the separation tower 15 from the top of the tower, it may be inserted into the separation tower 15 from around the upper part of the cylindrical part 15a.

また、分離塔15は、円筒部15aの横方向の直径(D)と高さ(H)の比(H/D)が0.5≦H/D≦3であることが好ましく、0.8≦H/D≦2.5であることが更に好ましい。円筒部15aの直径(D)と高さ(H)の比(H/D)を0.5以上とすることで、即ち、円筒部15aの高さを高くすることで、分離塔15内での壁紙粉砕物1の流動が大きくなるため、塩化ビニル系樹脂片2と繊維片3の分離性が良くなり、下部排出口18から回収された塩化ビニル系樹脂片2中への繊維片3の混入量が少なくなるとともに、上部排出口17より回収された繊維片3中への塩化ビニル系樹脂片2の混入量も少なくなる。また、円筒部15aの直径(D)と高さ(H)の比(H/D)を3以下とする、即ち円筒部15aが高くなりすぎないようにすることで、基材が綿状に解れた軽成分である繊維片3が分離塔15の上部排出口17から排出し易く、繊維片3が分離塔15内に滞留して分離塔15内の上部内壁や円形板20の側部にマット状あるいは玉状などに集合した繊維片の塊が生じることを抑制でき、下部排出口18から塩化ビニル系樹脂片2と混在して排出される繊維成分量を減少させ、下部排出口18から回収される塩化ビニル系樹脂片2の分離精度の低下を防止できる。   The separation column 15 preferably has a ratio (H / D) of the diameter (D) to the height (H) in the horizontal direction of the cylindrical portion 15a of 0.5 ≦ H / D ≦ 3, 0.8 More preferably, H / D ≦ 2.5. By setting the ratio (H / D) of the diameter (D) and the height (H) of the cylindrical portion 15a to 0.5 or more, that is, by increasing the height of the cylindrical portion 15a, Since the flow of the pulverized wallpaper 1 becomes larger, the separation property between the vinyl chloride resin piece 2 and the fiber piece 3 is improved, and the fiber piece 3 into the vinyl chloride resin piece 2 collected from the lower discharge port 18 is improved. As the mixing amount decreases, the mixing amount of the vinyl chloride resin piece 2 into the fiber piece 3 collected from the upper discharge port 17 also decreases. Further, the ratio (H / D) of the diameter (D) to the height (H) of the cylindrical portion 15a is set to 3 or less, that is, the cylindrical portion 15a is prevented from becoming too high, so that the base material becomes cottony. The unraveled light component 3 is easily discharged from the upper outlet 17 of the separation tower 15, and the fiber piece 3 stays in the separation tower 15 and is located on the upper inner wall in the separation tower 15 or on the side of the circular plate 20. It is possible to suppress the formation of a lump of fiber pieces gathered in a mat shape or a ball shape, and the amount of fiber components discharged from the lower discharge port 18 together with the vinyl chloride resin piece 2 is reduced. A decrease in separation accuracy of the recovered vinyl chloride resin piece 2 can be prevented.

本発明の風力分離装置7は、図4に示すように、空気輸送した壁紙粉砕物1を空気輸送管19の先端開口部19cから、分離塔15の下方に設けた円形板20の中心部上面に噴出し、円形板20に衝突させ、円形板20の中心部から周縁部に向かって拡散させ、分離塔15の内壁面に衝突せしめた後、分離塔15内を流動し、空気輸送管19の先端開口部19cから噴出される強い流速と圧力差、分離塔15の内壁面に衝突させた時の衝撃力と剪断力を壁紙粉砕物1に付与し、塩化ビニル系樹脂片2と繊維片3の絡まりをほぐして塩化ビニル系樹脂片2と繊維片3を精度良く分離、回収できる。   As shown in FIG. 4, the wind power separating apparatus 7 of the present invention is an upper surface of a central portion of a circular plate 20 provided below the separation tower 15 from the tip opening 19 c of the air transport pipe 19 for the pulverized wallpaper 1 that has been air transported. , And collides with the circular plate 20, diffuses from the center of the circular plate 20 toward the peripheral edge, collides with the inner wall surface of the separation tower 15, flows in the separation tower 15, and flows into the air transport pipe 19. A strong flow velocity and pressure difference ejected from the front end opening 19c of the steel sheet, and an impact force and a shearing force when colliding with the inner wall surface of the separation tower 15 are applied to the pulverized wallpaper 1, and the vinyl chloride resin piece 2 and the fiber piece The vinyl chloride resin piece 2 and the fiber piece 3 can be separated and recovered with high accuracy by loosening the entanglement of 3.

本発明では、前記分離塔15内の下方に設けた円形板20は、図4に示すように、円形板20の周縁部と分離塔15の内壁面との間に通気間隙24が存するように、分離塔内壁面の直径(D2)に較べて円形板20の直径(D1)を小さくする。円形板直径(D1)と分離塔内壁面の直径(D2)の比(D1/D2)は、0.40≦D1/D2≦0.98であることが好ましい。円形板20の直径(D1)と分離塔内壁面の直径(D2)との比(D1/D2)を0.98以下とすることで、通気間隙24が狭すぎて塩化ビニル系樹脂片2の通過(落下)が妨げられたり、通気間隙24を通って上昇する気流が相対的に速くなりすぎて空気輸送管19から円形板20の上面中心部に搬入されて分離塔15内を流動する壁紙粉砕物1中の相対的に重成分である塩化ビニル系樹脂片2の通気間隙24からの落下が少なくなって処理量の低下を招くといったことを防止できる。また、円形板直径(D1)と分離塔内壁面の直径(D2)の比(D1/D2)を0.40以上とすることで、通気間隙24が広すぎて通気間隙24を通って上昇する気流が相対的に遅くなりすぎて空気輸送管19から円形板20の上面中心部に搬入されて円形板20に衝突して円形板20の周縁方向に拡散した壁紙粉砕物1の流動が小さく不十分で壁紙粉砕物1中の塩化ビニル系樹脂粉砕片2と繊維片3の分離が悪くなり、両者が混じり合って下部排出口18から排出されて回収される塩化ビニル系樹脂片2中への繊維片3の混入量が多くなって分離精度が悪くなる、といったことを防止できる。   In the present invention, the circular plate 20 provided in the lower part of the separation tower 15 has a ventilation gap 24 between the peripheral edge of the circular plate 20 and the inner wall surface of the separation tower 15 as shown in FIG. The diameter (D1) of the circular plate 20 is made smaller than the diameter (D2) of the inner wall surface of the separation tower. The ratio (D1 / D2) of the circular plate diameter (D1) to the diameter (D2) of the inner wall surface of the separation tower is preferably 0.40 ≦ D1 / D2 ≦ 0.98. By setting the ratio (D1 / D2) of the diameter (D1) of the circular plate 20 to the diameter (D2) of the inner wall of the separation tower to be 0.98 or less, the ventilation gap 24 is too narrow and the vinyl chloride resin piece 2 Wallpaper that is prevented from passing (falling), or the airflow rising through the ventilation gap 24 becomes relatively fast and is carried from the air transport pipe 19 to the center of the upper surface of the circular plate 20 and flows in the separation tower 15. It is possible to prevent the vinyl chloride resin piece 2 which is a relatively heavy component in the pulverized product 1 from dropping from the ventilation gap 24 and causing a reduction in the processing amount. Further, by setting the ratio (D1 / D2) of the circular plate diameter (D1) to the diameter (D2) of the inner wall surface of the separation tower to be 0.40 or more, the ventilation gap 24 is too wide and rises through the ventilation gap 24. The flow of the wallpaper pulverized material 1 that is carried into the center of the upper surface of the circular plate 20 from the air transport pipe 19 and collides with the circular plate 20 and diffuses in the peripheral direction of the circular plate 20 is small and unsatisfactory. Separation of the vinyl chloride resin crushed pieces 2 and the fiber pieces 3 in the wallpaper pulverized material 1 is insufficient, and both are mixed and discharged from the lower discharge port 18 into the vinyl chloride resin piece 2 to be collected. It can be prevented that the mixing amount of the fiber pieces 3 is increased and the separation accuracy is deteriorated.

更に、本発明の風力分離装置を用いた分離回収方法を実施する場合、分離塔15内に供給する空気量と吸引排出量を調整して、分離塔15内に設置した円形板20の周縁部での風速を1m/secから20m/secの範囲内とすることが望ましい。この範囲であれば、空気輸送管19の先端開口部19cからの噴出時及び円形板20に衝突時の壁紙粉砕物1に与える衝撃力と剪断力、更には分離塔15内における壁紙粉砕物1の流動が確保され、塩化ビニル系樹脂片2と繊維片3の絡まりが解されて良好な分離精度が得られる。円形板20の周縁部での風速を1m/sec以上とすることで、分離塔15内における壁紙粉砕物1の流動が十分大きいため分離精度が良く、また、20m/sec以下とすることで、空気輸送管19の先端開口部19cからの噴出時に壁紙粉砕物1に与える衝撃力と剪断力が強すぎて強度の比較的低い材料の場合、塩化ビニル系樹脂片2は粉砕、破壊されて必要以上に細かくなり、微粉が混入した繊維片3が回収される、といったことを防止できる。   Further, when the separation and recovery method using the wind power separation apparatus of the present invention is carried out, the peripheral portion of the circular plate 20 installed in the separation tower 15 by adjusting the amount of air supplied to the separation tower 15 and the suction discharge amount It is desirable to set the wind speed at 1 m / sec to 20 m / sec. Within this range, the impact force and shearing force applied to the pulverized wallpaper material 1 at the time of ejection from the tip opening 19c of the air transport pipe 19 and the collision with the circular plate 20, and further, the pulverized wallpaper material 1 in the separation tower 15 Is ensured, the entanglement between the vinyl chloride resin piece 2 and the fiber piece 3 is released, and good separation accuracy is obtained. By making the wind speed at the peripheral edge of the circular plate 20 1 m / sec or more, the flow of the wallpaper pulverized material 1 in the separation tower 15 is sufficiently large, so that the separation accuracy is good, and by making it 20 m / sec or less, In the case of a material having a relatively low strength due to the impact force and shear force applied to the wallpaper pulverized product 1 at the time of ejection from the tip opening 19c of the air transport pipe 19, the vinyl chloride resin piece 2 is required to be crushed and destroyed. It is possible to prevent the fiber pieces 3 that have become finer and mixed with fine powder from being collected.

更に、例えば図5、図6、図7に示すように、円形板20の周縁部を直線的に又は湾曲して立ち上げ部21を形成することで、壁紙粉砕物1を空気輸送管19の先端開口部19cから噴出して、円形板20に衝突させ、その中心部から周縁部に流れた壁紙粉砕物1の流れ方向を制御して速やかに流動させることにより、分離性を向上させることができる。該円形板20の周縁部の立ち上げ角度は、円形板20の水平面部20aと立ち上がり部21の接線との最大角度(図6、7に示す角度θ)が5°以上75°以下となるようにすることが、壁紙粉砕物1の偏った流れを防止する点から好ましい。   Further, for example, as shown in FIGS. 5, 6, and 7, the peripheral portion of the circular plate 20 is linearly or curved to form a rising portion 21, whereby the wallpaper pulverized material 1 is removed from the air transport pipe 19. Separation can be improved by controlling the flow direction of the pulverized wallpaper 1 flowing from the central part to the peripheral part to flow quickly by jetting from the tip opening 19c and colliding with the circular plate 20. it can. The rising angle of the peripheral edge of the circular plate 20 is such that the maximum angle (angle θ shown in FIGS. 6 and 7) between the horizontal surface portion 20a of the circular plate 20 and the tangent of the rising portion 21 is 5 ° or more and 75 ° or less. Is preferable from the viewpoint of preventing an uneven flow of the wallpaper ground material 1.

更に、図8に示すように、分離塔15内中心の上部に、上部排出口17を囲むようにして排出ガイド筒25を垂設することで、重成分である塩化ビニル系樹脂と分離して分離塔15内を流動し、分離塔15内上部付近を空気流に乗って浮遊している軽成分である繊維片3を効率よく上部排出口17に導き、速やかに回収できるので好ましい。   Further, as shown in FIG. 8, a discharge guide cylinder 25 is suspended at the upper center of the separation column 15 so as to surround the upper discharge port 17, thereby separating the heavy component vinyl chloride resin and separating column. The fiber pieces 3 that are light components flowing in the column 15 and floating in the vicinity of the upper part of the separation column 15 by airflow are efficiently guided to the upper outlet 17 and can be quickly recovered.

なお、衝撃粉砕機を用いて粉砕した廃壁紙粉砕物1を、米、豆、茶、雑穀類等食物の分別に用いられる代表的分別装置である横型風力分別機(例えば図10に示す横型風力分別機26)を使用して塩化ビニル系樹脂と繊維とに分離、回収しようとした場合、横型風力分別機26の材料供給口27に近い排出口30から比較的大きいサイズの粉砕物が、材料供給口27から遠方の排出口32からは比較的小さいサイズの粉砕物が回収される。このため、横型風力分別機では、粉砕物の大きさ別に大まかな分離は出来るものの前記遠近両排出口30、32から回収したものは、塩化ビニル系樹脂成分と紙繊維成分が混在し、分離精度が劣るものであった。したがって、この方法では、廃壁紙の基材紙成分と塩化ビニル系樹脂成分の分離精度が悪いため、再生材料として回収し再資源化、特に紙成分の再資源化は困難であった。   In addition, the horizontal wind power sorter (for example, the horizontal wind power shown in FIG. 10), which is a typical sorting device used to separate the waste wallpaper pulverized material 1 crushed using an impact pulverizer from food such as rice, beans, tea, and cereals. When the separator 26) is used to separate and collect the vinyl chloride resin and the fiber, a relatively large size of pulverized material is discharged from the outlet 30 near the material supply port 27 of the horizontal wind separator 26. A relatively small pulverized material is collected from the discharge port 32 far from the supply port 27. For this reason, in the horizontal wind power sorter, although roughly separated according to the size of the pulverized material, those recovered from the far and near outlets 30 and 32 contain a mixture of vinyl chloride resin components and paper fiber components, and separation accuracy Was inferior. Therefore, in this method, since the separation accuracy of the base paper component and the vinyl chloride resin component of the waste wallpaper is poor, it has been difficult to collect and recycle as a recycled material, particularly to recycle the paper component.

(実験例1)
図2に示すような、風力分離装置7に供給するブロアー6と、風力分離装置7の分離塔15の上部排出口17からブロアー10を使用して吸引する一方、分離塔15の下部排出口18から空気を補給して、分離塔15の塔内に上昇気流を発生させるようにした。風力分離装置7としては、図4に示すような、分離塔15の上部から斜めに挿入した空気輸送管19の先を円形板20(平板面)の上部中央に直管として下ろした直管部19bを有する構造のものを使用した。空気輸送管19の管径(D3)と直管部19bの長さ(L)との比(L/D3)が、表1に示す値となる風力分離装置を用い、壁紙を投入せず、空運転の状態で分離塔15内に水平に設置した円形板20の周縁部の風速を測定した(実験例1−1〜実験例1−4)。また、風力分離装置7として、図9に示すような、分離塔15の下部側面から水平に挿入した空気輸送管19の先端を円形板20の上部中央に向けて下ろした構造で、空気輸送管19の管径(D3)と直管部19bの長さ(L)との比(L/D3)が、表1に示す値となる風力分離装置を用い、壁紙を投入せず、空運転の状態で分離塔15内の円形板周縁部の風速を測定した(実験例1−5〜実験例1−6)。なお、いずれの場合も、円形板20(平板面)は直径(D1)が700mm、円形板設置部分の分離塔内直径(D2)が840mm(D1/D2≒0.83)とした。
(Experimental example 1)
As shown in FIG. 2, the blower 6 supplied to the wind separator 7 and the blower 10 is used for suction from the upper outlet 17 of the separation tower 15 of the wind separator 7, while the lower outlet 18 of the separation tower 15. Air was replenished to generate an updraft in the separation tower 15. As shown in FIG. 4, the wind separation device 7 is a straight pipe portion in which the tip of an air transport pipe 19 inserted obliquely from the top of the separation tower 15 is lowered as a straight pipe at the upper center of the circular plate 20 (flat plate surface). The structure having 19b was used. Using a wind power separation device in which the ratio (L / D3) of the pipe diameter (D3) of the pneumatic transport pipe 19 and the length (L) of the straight pipe portion 19b is the value shown in Table 1, without introducing wallpaper, The wind speed of the peripheral part of the circular plate 20 installed horizontally in the separation tower 15 in the idling state was measured (Experimental Example 1-1 to Experimental Example 1-4). Further, as the wind power separating device 7, as shown in FIG. 9, the air transport pipe 19 has a structure in which the tip of the air transport pipe 19 inserted horizontally from the lower side surface of the separation tower 15 is lowered toward the upper center of the circular plate 20. The ratio (L / D3) between the pipe diameter (D3) of 19 and the length (L) of the straight pipe portion 19b is the value shown in Table 1, without using wallpaper, In the state, the wind speed of the peripheral part of the circular plate in the separation tower 15 was measured (Experimental Example 1-5 to Experimental Example 1-6). In any case, the circular plate 20 (flat plate surface) had a diameter (D1) of 700 mm, and the circular column installation portion inner diameter (D2) was 840 mm (D1 / D2≈0.83).

風速の測定は、(株)テストー製のtesto445を使用し、円形板20の周縁部における、空気輸送管19の挿入方向手前側(図11に示すNo.1の位置)と後側(図11に示すNo.2の位置)との2箇所に、円形板20から約3mm浮かせて風速測定センサーを取り付けて各位置における風速を測定し、10秒毎に測定した10点の平均値を求めた。結果を表1に示す。   The measurement of the wind speed uses testo 445 manufactured by Testo Co., Ltd., and the front side (the position of No. 1 shown in FIG. 11) and the rear side (FIG. 11) of the air transport pipe 19 in the peripheral portion of the circular plate 20. The position of No. 2 shown in Fig. 2) was lifted about 3 mm from the circular plate 20 and a wind speed measuring sensor was attached to measure the wind speed at each position, and the average value of 10 points measured every 10 seconds was obtained. . The results are shown in Table 1.

Figure 2007275852
Figure 2007275852

表1の結果から明らかなように、空気輸送管19の管径(D3)と直管部19bの長さ(L)との比(L/D3)が5.0の実験例1−4では、空気輸送管19の挿入方向手前側(図11に示すNo.1の位置)と後側(図11に示すNo.2の位置)とにおける風速に殆ど差はない。これに対し、(L/D3)が2.0の実験例1−5は風速の差が大きく、更に(L/D3)が0.3の実験例1−6では前記風速差は更に大きくなっている。この結果から、(L/D3)が大きくなるにつれて、風速差は小さくなり、風力分離装置7における、空気輸送管19の先端の直管部19bの長さを長くすることで、直管部19bを通過する間に気流の大きな乱れや偏流が抑えられて、空気輸送管の周方向において速度が均一化され、前記混合物を含む空気流が、前記空気輸送管の先端開口から、円形板上の周方向で均一な速度で吐出されることが分かる。即ち、直管部19bを十分に長くすることで、空気輸送管19内を移動する気流の大きな乱れや偏流が抑えられ、壁紙粉砕物1を先端開口部19cから略均一に噴出して円形板20に衝突せしめることが出来、壁紙粉砕物1を、円形板20上をその周縁部に向かって略均等に移動させ、分離塔15内で安定した流動をさせることで、塩化ビニル系樹脂片2と繊維片3の絡まりが解れ、塩化ビニル系樹脂片2と繊維片3を精度良く分離、回収することができる。   As is apparent from the results in Table 1, in Experimental Example 1-4 where the ratio (L / D3) of the pipe diameter (D3) of the pneumatic transport pipe 19 to the length (L) of the straight pipe portion 19b is 5.0. There is almost no difference in wind speed between the front side of the air transport pipe 19 in the insertion direction (No. 1 position shown in FIG. 11) and the rear side (No. 2 position shown in FIG. 11). On the other hand, in Example 1-5 in which (L / D3) is 2.0, the difference in wind speed is large, and in Example 1-6 in which (L / D3) is 0.3, the difference in wind speed is further increased. ing. From this result, as (L / D3) increases, the wind speed difference decreases, and the straight pipe portion 19b is increased by increasing the length of the straight pipe portion 19b at the tip of the air transport pipe 19 in the wind power separating device 7. Large turbulence and drift of the air flow are suppressed during the passage of air, the velocity is made uniform in the circumferential direction of the air transport pipe, and the air flow including the mixture is passed from the front opening of the air transport pipe to the circular plate. It can be seen that the ink is discharged at a uniform speed in the circumferential direction. That is, by making the straight pipe portion 19b sufficiently long, large turbulence and drift of the airflow moving in the air transport pipe 19 can be suppressed, and the pulverized wallpaper 1 is ejected from the tip opening portion 19c substantially uniformly. 20, and the wallpaper pulverized material 1 is moved almost uniformly on the circular plate 20 toward the peripheral edge thereof, and is allowed to flow stably in the separation tower 15, whereby the vinyl chloride resin piece 2 The fiber pieces 3 are untangled and the vinyl chloride resin pieces 2 and the fiber pieces 3 can be separated and recovered with high accuracy.

(実験例2)
図2に示すような、風力分離装置7に供給するブロアー6と、風力分離装置7の分離塔15の上部排出口17からブロアー10を使用して吸引する一方、分離塔15の下部排出口18から空気を補給して、分離塔15の塔内に上昇気流を発生させるようにした。実験例2−1〜実験例2−3では、風力分離装置7として、図4に示す、分離塔15の上部から斜めに挿入した空気輸送管19の先を円形板20(平板面)の上部中央に直管として下ろした直管部19bを有する構造のものとした。分離塔15の円筒部の高さ(H)と直径(D)との比(H/D)、及び空気輸送管19の管径(D3)と直管部19bの長さ(L)との比(L/D3)が、表2に示す値となる風力分離装置を用いた。また、実験例2−4では、風力分離装置7として、図9に示すような、分離塔15の下部側面から水平に挿入した空気輸送管19の先端を円形板20の上部中央に向けて下ろした構造で、分離塔15の円筒部の高さ(H)と直径(D)との比(H/D)、及び空気輸送管19の管径(D3)と直管部19bの長さ(L)との比(L/D3)が、表2に示す値となる風力分離装置を用いた。なお、いずれの場合も、円形板20(平板面)は直径(D1)が700mm、円形板設置部分の分離塔内直径(D2)が840mm(D1/D2≒0.83)とした。
(Experimental example 2)
As shown in FIG. 2, the blower 6 supplied to the wind separator 7 and the blower 10 is used for suction from the upper outlet 17 of the separation tower 15 of the wind separator 7, while the lower outlet 18 of the separation tower 15. The air was replenished to generate an updraft in the separation tower 15. In Experimental Example 2-1 to Experimental Example 2-3, the tip of the air transport pipe 19 inserted obliquely from the upper part of the separation tower 15 shown in FIG. It was set as the structure which has the straight pipe part 19b lowered | hung as a straight pipe in the center. The ratio (H / D) of the height (H) and the diameter (D) of the cylindrical portion of the separation tower 15 and the diameter (D3) of the air transport pipe 19 and the length (L) of the straight pipe portion 19b A wind power separation apparatus having a ratio (L / D3) as shown in Table 2 was used. Further, in Experimental Example 2-4, as the wind power separating device 7, as shown in FIG. 9, the tip of the air transport pipe 19 inserted horizontally from the lower side surface of the separation tower 15 is lowered toward the upper center of the circular plate 20. The ratio (H / D) of the height (H) and the diameter (D) of the cylindrical portion of the separation tower 15 and the diameter (D3) of the air transport pipe 19 and the length of the straight pipe portion 19b ( The wind power separation apparatus in which the ratio (L / D3) to L) is the value shown in Table 2 was used. In any case, the circular plate 20 (flat plate surface) had a diameter (D1) of 700 mm, and the circular column installation portion inner diameter (D2) was 840 mm (D1 / D2≈0.83).

長期在庫品の廃壁紙(発泡タイプで、壁紙を構成する紙の比率が約22.5重量%)30kgを、予め、約50〜100mm程度の大きさに粗砕した。該粗砕物を約1時間かけて粉砕機4に投入し壁紙粉砕物1とするとともに、前記実験例2−1〜実験例2−4の風力分離装置7の分離塔15内に搬入して該粉砕物1を流動させつつ、塩化ビニル系樹脂片2を円形板20の周縁部の通気間隙24から落下させ、分離塔15の下部排出口18から排出し、塩化ビニル系樹脂片受け器8、ブロアー9、サイクロン13を経由して塩化ビニル系樹脂片回収槽14に回収する一方、繊維片3を分離塔15の上部排出口17から吸引して排出し、ブロワー10、サイクロン11を経由して繊維片回収槽12に回収した。塩化ビニル系樹脂片と繊維片との回収量を測定するとともに、回収した樹脂成分中の繊維質成分及び繊維質成分中の樹脂成分の混在量を以下のようにして測定した。結果を表3に示した。   30 kg of long-term stock waste wallpaper (foam type, the ratio of the paper constituting the wallpaper is about 22.5% by weight) was preliminarily crushed to a size of about 50 to 100 mm. The coarsely crushed material is put into the pulverizer 4 over about 1 hour to make the wallpaper pulverized material 1, and is carried into the separation tower 15 of the wind power separating apparatus 7 of Experimental Example 2-1 to Experimental Example 2-4. While flowing the pulverized material 1, the vinyl chloride resin piece 2 is dropped from the air gap 24 at the peripheral edge of the circular plate 20 and discharged from the lower outlet 18 of the separation tower 15, and the vinyl chloride resin piece receiver 8, While collecting in the vinyl chloride resin piece collection tank 14 via the blower 9 and the cyclone 13, the fiber piece 3 is sucked and discharged from the upper outlet 17 of the separation tower 15, and passes through the blower 10 and the cyclone 11. It collected in the fiber piece collection tank 12. While recovering the amount of the vinyl chloride resin pieces and the fiber pieces, the fiber component in the recovered resin component and the mixed amount of the resin component in the fiber component were measured as follows. The results are shown in Table 3.

(回収した樹脂成分中の繊維質成分量の測定)
回収した塩化ビニル系樹脂から約2gを精秤し、200mlのテトラヒドロフラン(THF)に溶解後、一晩放置した。溶解液を200メッシュのステンレス網にてろ過し、網上の繊維状物に0.5N塩酸水溶液を注ぎ炭酸カルシウムなどの無機物を洗い流したあと、水洗し、80℃で乾燥後秤量して回収塩化ビニル系樹脂中の紙繊維混在量を算出した。
(Measurement of amount of fiber component in recovered resin component)
About 2 g of the recovered vinyl chloride resin was precisely weighed, dissolved in 200 ml of tetrahydrofuran (THF), and allowed to stand overnight. The solution is filtered through a 200-mesh stainless steel mesh, a 0.5N hydrochloric acid aqueous solution is poured onto the fibrous material on the mesh, the inorganic materials such as calcium carbonate are washed away, washed with water, dried at 80 ° C., weighed and recovered. The amount of paper fibers mixed in the vinyl resin was calculated.

(回収した繊維質成分中の樹脂成分の測定)
回収した繊維片中に含まれる塩化ビニル系樹脂の測定は、回収塩化ビニル系樹脂片中の繊維含有量の測定方法と同様に、THFに回収繊維片を浸漬して塩化ビニル系樹脂を溶解した後、紙繊維を除去し、THF溶液にメタノールを滴下して塩化ビニル系樹脂を再沈、洗浄、乾燥後、計量して塩化ビニル系樹脂成分量を算出した。
(Measurement of resin component in recovered fiber component)
The measurement of the vinyl chloride resin contained in the recovered fiber piece was the same as the method for measuring the fiber content in the recovered vinyl chloride resin piece, and the vinyl chloride resin was dissolved by immersing the recovered fiber piece in THF. Thereafter, the paper fibers were removed, methanol was dropped into the THF solution to reprecipitate the vinyl chloride resin, washed, dried, and weighed to calculate the vinyl chloride resin component amount.

Figure 2007275852
Figure 2007275852

Figure 2007275852
Figure 2007275852

表3に示す結果から、分離塔15の円筒部15aの高さ(H)と直径(D)との比(H/D)が大きくなるほど、回収品中の異成分の混在量が減少し、分離精度が向上することが分かる。一方、実験例2−4のように、分離塔15の円筒部の高さ(H)と直径(D)との比(H/D)が小さく、しかも空気輸送管19の直管部19bが短く、管径(D3)と直管部19bの長さLとの比(L/D3)が小さい場合には、回収品中の異成分の混在量、特に回収樹脂成分中に混在する繊維質成分の割合が大きく、分離精度が劣ることが分かる。   From the results shown in Table 3, as the ratio (H / D) between the height (H) and the diameter (D) of the cylindrical portion 15a of the separation tower 15 increases, the mixed amount of different components in the recovered product decreases. It can be seen that the separation accuracy is improved. On the other hand, as in Experimental Example 2-4, the ratio (H / D) between the height (H) and the diameter (D) of the cylindrical portion of the separation tower 15 is small, and the straight pipe portion 19b of the air transport pipe 19 is If the ratio (L / D3) between the pipe diameter (D3) and the length L of the straight pipe portion 19b is small, the mixed amount of different components in the recovered product, especially the fiber mixed in the recovered resin component It can be seen that the component ratio is large and the separation accuracy is poor.

(実施例1)
粉砕機4として、目開きが3mmのパンチングメタル製スクリーン5を装着した衝撃式粉砕機の一種であるスイングハンマクラッシャ((株)尾上機械製、WALD−15型粉砕機;モーター出力11KW)を使用し、粉砕物1を、図2に示すように、ブロアー6(出力は1.5KW)で風力分離装置7に供給し、上部排出口17からブロアー10(出力は2.2KW)を使用して吸引する一方、分離塔15の下部排出口18から空気を補給して、分離塔15の塔内に上昇気流を発生させるようにした。使用した風力分離装置7の構造は、図4に示すような、分離塔15の上部から斜めに挿入した空気輸送管19の先端を円形板20(平板面)の上部中央に直管として下ろし、空気輸送管19は、管径(D3)が100mmで直管部19bの長さ(L)が1450mm(L/D3=14.5)とし、分離塔15は横方向の直径(D)が900mm、高さ(H)が1500mm(H/D≒1.67)、円形板20(平板面)は直径(D1)が700mm、円形板設置部分の分離塔内直径(D2)が840mm(D1/D2≒0.83)である。円形板20(平板面)の周縁部付近の空気流の風速を測定した結果、5.3m/secであった。なお、風速の測定は、(株)テストー製のtesto445を使用し、空気輸送管19の挿入方向手前側(図11に示すNo.1の位置)を含む、円形板20の周縁部を周方向に4等分した4箇所に、円形板20から約3mm浮かせて風速測定センサーを取り付け、壁紙を投入せず、空運転の状態で、各位置において10秒毎に測定した10点の平均値をそれぞれ算出して前記4箇所の風速を求め、その4箇所の値を平均して風速値とした。
Example 1
As the pulverizer 4, a swing hammer crusher (Wald-15 type pulverizer manufactured by Onoe Machinery Co., Ltd .; motor output 11 kW), which is a kind of impact type pulverizer equipped with a punching metal screen 5 having an opening of 3 mm, is used. Then, as shown in FIG. 2, the pulverized material 1 is supplied to the wind power separating device 7 with a blower 6 (output is 1.5 KW), and the blower 10 (output is 2.2 KW) from the upper discharge port 17. On the other hand, air was replenished from the lower outlet 18 of the separation tower 15 to generate an updraft in the separation tower 15. As shown in FIG. 4, the structure of the used wind separation device 7 is such that the tip of the air transport pipe 19 inserted obliquely from the upper part of the separation tower 15 is lowered as a straight pipe at the upper center of the circular plate 20 (flat plate surface), The pneumatic transport pipe 19 has a pipe diameter (D3) of 100 mm, the length (L) of the straight pipe portion 19b is 1450 mm (L / D3 = 14.5), and the separation tower 15 has a horizontal diameter (D) of 900 mm. The height (H) is 1500 mm (H / D≈1.67), the circular plate 20 (flat plate surface) has a diameter (D1) of 700 mm, and the circular plate installation portion inner diameter (D2) is 840 mm (D1 / D2≈0.83). It was 5.3 m / sec as a result of measuring the wind speed of the airflow near the peripheral part of the circular plate 20 (flat plate surface). In addition, the measurement of a wind speed uses the testo 445 made from Testo, and the peripheral part of the circular board 20 including the insertion direction front side (position of No. 1 shown in FIG. 11) of the pneumatic transport pipe 19 is a circumferential direction. The wind speed measurement sensor is attached to 4 places divided into 4 parts by about 3mm from the circular plate 20, and the average value of 10 points measured every 10 seconds at each position in the idling state without introducing wallpaper. The wind speed at each of the four locations was calculated and the values at the four locations were averaged to obtain the wind speed value.

次に、長期在庫品の廃壁紙(発泡タイプで、壁紙を構成する紙の比率が約22.5重量%)30kgを、予め、約50〜100mm程度の大きさに粗砕した。該粗砕物を約1時間かけて粉砕機4に投入し壁紙粉砕物1とするとともに、風力分離装置7の分離塔15内に搬入して該粉砕物1を流動させつつ、塩化ビニル系樹脂片2を円形板の周縁部の通気間隙24から落下させ、下部排出口18から排出し、塩化ビニル系樹脂片受け器8、ブロアー9、サイクロン13を経て、塩化ビニル系樹脂片回収槽14に回収する一方、繊維片3を分離塔15の上部排口17から排出し、ブロアー10、サイクロン11を経て繊維片回収槽12に回収した。繊維片3を繊維片回収槽12に4.8kg回収し、塩化ビニル系樹脂片2を塩化ビニル系樹脂片回収槽14に23.9kg回収した。回収塩化ビニル系樹脂片2は、塩化ビニル系樹脂と炭酸カルシウムなど配合剤が含まれた状態であった。   Next, 30 kg of long-term stock waste wallpaper (foamed type, the ratio of the paper constituting the wallpaper is about 22.5% by weight) was preliminarily crushed to a size of about 50 to 100 mm. The coarsely crushed material is charged into the pulverizer 4 over about 1 hour to make the wallpaper pulverized material 1, and is loaded into the separation tower 15 of the wind power separating apparatus 7 to flow the pulverized material 1 while the vinyl chloride resin piece. 2 is dropped from the ventilation gap 24 at the peripheral edge of the circular plate, discharged from the lower discharge port 18, and collected in the vinyl chloride resin piece collection tank 14 through the vinyl chloride resin piece receiver 8, blower 9, and cyclone 13. On the other hand, the fiber pieces 3 were discharged from the upper outlet 17 of the separation tower 15, and collected in the fiber piece collection tank 12 through the blower 10 and the cyclone 11. 4.8 kg of fiber pieces 3 were collected in the fiber piece collection tank 12, and 23.9 kg of vinyl chloride resin pieces 2 were collected in the vinyl chloride resin piece collection tank 14. The recovered vinyl chloride resin piece 2 was in a state in which a compounding agent such as a vinyl chloride resin and calcium carbonate was included.

回収した塩化ビニル系樹脂片2と回収した繊維片3を、実験例2と同様にして、それぞれTHFに溶解後、分別回収して塩化ビニル系樹脂片2に含まれた繊維量と繊維片3に含まれた塩化ビニル系樹脂量を算出したところ、回収塩化ビニル系樹脂片2中に含まれた繊維量は8.3重量%、回収繊維片3に含まれた塩化ビニル系樹脂量は2.1重量%であった。   The recovered vinyl chloride resin piece 2 and the recovered fiber piece 3 were dissolved in THF, respectively, in the same manner as in Experimental Example 2, and then separately collected and contained in the vinyl chloride resin piece 2 and the fiber piece 3. The amount of vinyl chloride resin contained in the recovered vinyl chloride resin piece 2 was 8.3% by weight, and the amount of vinyl chloride resin contained in the recovered fiber piece 2 was 2. 1% by weight.

更に、回収した塩化ビニル系樹脂片に、滑剤としてPEワックス(ハイワックス220MP 三井化学製)0.5重量部を加え、165℃に加熱されたテストロール機(6インチ径)で3分混練して約1.2mm厚のシートを作成し、該シートを175℃に加熱した油圧プレス機にて約1.0mm厚のフラット表面のシートを成形して、ロール加工性とプレスシートの外観の仕上がりを評価した。   Furthermore, 0.5 parts by weight of PE wax (High Wax 220MP, manufactured by Mitsui Chemicals) as a lubricant is added to the collected vinyl chloride resin pieces and kneaded for 3 minutes with a test roll machine (6 inch diameter) heated to 165 ° C. A sheet with a thickness of approximately 1.2 mm is prepared, and a sheet with a flat surface of approximately 1.0 mm is formed by a hydraulic press that heats the sheet to 175 ° C. Evaluated.

(実施例2)
風力分離装置7の分離塔15として、周縁部を45°上部に立ち上げた図6に示す円形板20を装着した図5に示す分離塔15を使用した以外は、実施例1と同様にして円形板20の周縁部付近の空気流の風速を測定し、また実施例1と同様にして廃壁紙を粉砕し、塩化ビニル系樹脂片と繊維片とを分離回収した。空気輸送管19から円形板20中心部上に噴出した廃壁紙粉砕物1が、円形板周縁部の立ち上がり部21に沿って移動し、分離塔15内で安定した流動が観察できた。繊維片回収槽12に回収した繊維片が4.95kg、樹脂片回収槽14に回収した塩化ビニル系樹脂片が24.0kg、繊維片回収槽12に回収した紙繊維片に含まれた塩化ビニル樹脂含量は2.1重量%、回収塩化ビニル系樹脂片に含まれた繊維成分は7.9重量%であった。円形板20が平面板の実施例1に較べて塩化ビニル系樹脂片2に同伴して排出される繊維片3が減少し、繊維片回収槽12の繊維片回収量が若干増加し、円形板20の周縁部を45°上部に立ち上げた効果が確認できた。更に、回収した塩化ビニル系樹脂片について、実施例1と同様にして、ロール加工性とプレスシートの外観の仕上がりを評価した。
(Example 2)
As the separation tower 15 of the wind power separating apparatus 7, the separation tower 15 shown in FIG. 5 equipped with the circular plate 20 shown in FIG. The wind velocity of the air flow near the peripheral edge of the circular plate 20 was measured, and the waste wallpaper was pulverized in the same manner as in Example 1 to separate and collect the vinyl chloride resin pieces and the fiber pieces. The waste wallpaper pulverized product 1 ejected from the air transport pipe 19 onto the central portion of the circular plate 20 moved along the rising portion 21 at the peripheral portion of the circular plate, and a stable flow could be observed in the separation tower 15. 4.95 kg of fiber pieces collected in the fiber piece collection tank 12, 24.0 kg of vinyl chloride resin pieces collected in the resin piece collection tank 14, and vinyl chloride contained in the paper fiber pieces collected in the fiber piece collection tank 12 The resin content was 2.1% by weight, and the fiber component contained in the recovered vinyl chloride resin piece was 7.9% by weight. Compared with Example 1 in which the circular plate 20 is a flat plate, the number of fiber pieces 3 discharged along with the vinyl chloride resin piece 2 is reduced, and the amount of recovered fiber pieces in the fiber piece collecting tank 12 is slightly increased. The effect of raising the peripheral edge of 20 to the upper part of 45 ° was confirmed. Further, the recovered vinyl chloride resin pieces were evaluated in the same manner as in Example 1 for roll workability and the finished appearance of the press sheet.

(実施例3)
風力分離装置7の分離塔15内上部の上部排出口17を囲む排出ガイド筒25を設けた風力分離装置(図8)を用いた以外は、実施例1と同様に実施した。排出ガイド筒25は、その下端を分離塔15の円筒部15aの上側から該円筒部15aの1/5の長さまでのばした。繊維片回収槽12に回収した繊維片が5.30Kg、樹脂片回収槽14に回収した塩化ビニル系樹脂片が23.7kg、繊維片回収槽12に回収した紙繊維片の塩化ビニル樹脂含量は2.1重量%、回収塩化ビニル系樹脂片に含まれた繊維成分は7.0重量%であった。実施例1に較べて、回収槽12に回収した繊維片中に含まれる塩化ビニル系樹脂量の増加はなく繊維片回収量が増加し、塩化ビニル系樹脂片2に同伴して排出される繊維片の減少し、排出ガイト筒25の効果が確認できた。更に、回収した塩化ビニル系樹脂片について、実施例1と同様にして、ロール加工性とプレスシートの外観の仕上がりを評価した。
(Example 3)
This was carried out in the same manner as in Example 1 except that a wind separator (FIG. 8) provided with a discharge guide cylinder 25 surrounding the upper outlet 17 in the upper part of the separation tower 15 of the wind separator 7 was used. The lower end of the discharge guide tube 25 extends from the upper side of the cylindrical portion 15a of the separation tower 15 to a length of 1/5 of the cylindrical portion 15a. The fiber pieces collected in the fiber piece collection tank 12 are 5.30 kg, the vinyl chloride resin pieces collected in the resin piece collection tank 14 are 23.7 kg, and the vinyl chloride resin content of the paper fiber pieces collected in the fiber piece collection tank 12 is The fiber component contained in 2.1% by weight of the recovered vinyl chloride resin piece was 7.0% by weight. Compared with Example 1, there is no increase in the amount of vinyl chloride resin contained in the fiber pieces collected in the collection tank 12, and the amount of recovered fiber pieces increases, and the fibers discharged along with the vinyl chloride resin pieces 2 are discharged. The number of pieces decreased, and the effect of the discharge guide cylinder 25 was confirmed. Further, the recovered vinyl chloride resin pieces were evaluated in the same manner as in Example 1 for roll workability and the finished appearance of the press sheet.

(実施例4)
図3に示すように、2台の粉砕機4、4B(スイングハンマクラッシャ、(株)尾上機械製WALD−15型粉砕機;モーター出力11KW)と、粉砕物1を粉砕機4、4Bから空気輸送管19、19Bを経由して風力分離装置に供給するブロアー6、6B(出力1.5KW)と、分離塔15、15Bの上部排出口17、17Bから吸引排出するブロアー10、10B(出力は2.2KW)を接続した2台の風力分離装置7、7Bを、交互に直列に接続するように並べ、それぞれ風力分離装置7、7Bの分離塔15、15Bは下部排出口18、18Bから空気を補給して分離塔15、15Bの塔内に上昇気流を発生させるようにした。風力分離装置7、7Bの構造は、図4に示す、分離塔15(15B)の上部から供給配管19、19Bを斜めに挿入し、その先端を円形板20(20B、平板面)の上部中央に直管として下ろし、空気輸送管19(19B)は、管径(D3)が100mmで直管部19bの長さ(L)が1450mm(L/D3=14.5)、分離塔15(15B)は横方向の直径(D)が900mm、高さ(H)が1500mm(H/D≒1.67)、円形板20(20B、平板面)は直径が700mm、円形板設置部分の分離塔内直径が840mm(D1/D2≒0.83)であり、各風力分離装置7、7Bの円形板20及び20B(平板面)の周縁部付近の空気流の風速を実施例1と同様にして測定した結果、それぞれ5.3m/secと5.1m/secであった。
Example 4
As shown in FIG. 3, two pulverizers 4 and 4B (swing hammer crusher, Wale-15 type pulverizer manufactured by Onoe Machinery Co., Ltd .; motor output 11 kW) and pulverized product 1 are pulverized from the pulverizers 4 and 4B. Blowers 6 and 6B (output 1.5 kW) supplied to the wind power separator via the transport pipes 19 and 19B, and blowers 10 and 10B (output is suctioned) from the upper outlets 17 and 17B of the separation towers 15 and 15B. 2.2 KW) are connected to each other so that the two wind separators 7 and 7B are alternately connected in series, and the separation towers 15 and 15B of the wind separators 7 and 7B are respectively supplied from the lower discharge ports 18 and 18B to the air. Ascending airflow was generated in the separation towers 15 and 15B. The structure of the wind separators 7 and 7B is as shown in FIG. The air transport pipe 19 (19B) has a pipe diameter (D3) of 100 mm, the length (L) of the straight pipe portion 19b is 1450 mm (L / D3 = 14.5), and the separation tower 15 (15B). ) Has a horizontal diameter (D) of 900 mm, a height (H) of 1500 mm (H / D≈1.67), and the circular plate 20 (20B, flat plate surface) has a diameter of 700 mm. The inner diameter is 840 mm (D1 / D2≈0.83), and the wind speed of the airflow in the vicinity of the peripheral portions of the circular plates 20 and 20B (flat plate surface) of each of the wind separators 7 and 7B is the same as in the first embodiment. As a result of the measurement, 5.3 m / sec and 5.1 m / s, respectively. It was c.

実施例1と同様にして、長期在庫品の壁紙(発泡タイプで、壁紙を構成する紙の比率が約22.5重量%)30kgを、予め、約50〜100mm程度の大きさに粗砕した。該粗砕物を約1時間かけて目開きが8mmのスクリーン5を装着した粉砕機4に投入して粉砕(1次粉砕)し、風力分離装置7に送り塩化ビニル系樹脂片2と繊維片3を分離(1次分離)し、繊維片3は風力分離装置7(1次分離)の分離塔15の上部排出口17から排出して繊維片回収槽12に回収した。一方、風力分離装置7の分離塔15の下部排出口18から排出した塩化ビニル系樹脂片2は塩化ビニル系樹脂片受け器8に受け、引き続き目開きが3mmのスクリーン5Bを装着した粉砕機4Bに再度投入して繰り返し粉砕(2次粉砕)し、更に風力分離装置7B(2次分離)に送り再び風力分離した。風力分離装置7B(2次分離)で分離された塩化ビニル系樹脂片2は塩化ビニル系樹脂片受け器8Bを経て塩化ビニル系樹脂片回収槽14Bに回収し、一方、風力分離装置7B(2次分離)の分離塔15Bの上部排出口17Bから排出した繊維片3は繊維片回収槽12Bに回収した。繊維片3は風力分離装置7(1次分離)から繊維片回収槽12に2.5kg回収し、風力分離装置7B(2次分離)から繊維片回収槽12Bに3.4kg回収し、風力分離装置7B(2次分離)で分離された塩化ビニル系樹脂片2は塩化ビニル系樹脂片回収槽14Bに22.5kg回収した。回収した塩化ビニル系樹脂片について、実施例1と同様にして、ロール加工性とプレスシートの外観の仕上がりを評価した。   In the same manner as in Example 1, 30 kg of long-term in-stock wallpaper (foaming type, the ratio of the paper constituting the wallpaper is about 22.5% by weight) was preliminarily crushed to a size of about 50 to 100 mm. . The coarsely crushed material is put into a pulverizer 4 equipped with a screen 5 having an opening of 8 mm for about 1 hour, pulverized (primary pulverization), sent to a wind power separator 7, and vinyl chloride resin pieces 2 and fiber pieces 3. Were separated (primary separation), and the fiber pieces 3 were discharged from the upper outlet 17 of the separation tower 15 of the wind power separating apparatus 7 (primary separation) and collected in the fiber piece collection tank 12. On the other hand, the vinyl chloride resin piece 2 discharged from the lower outlet 18 of the separation tower 15 of the wind power separating apparatus 7 is received by the vinyl chloride resin piece receiver 8, and subsequently the crusher 4B equipped with a screen 5B having a mesh opening of 3 mm. And then repeatedly pulverized (secondary pulverization), and further sent to the wind force separating device 7B (secondary separation) to separate the wind force again. The vinyl chloride resin piece 2 separated by the wind separation device 7B (secondary separation) is collected in the vinyl chloride resin piece collection tank 14B through the vinyl chloride resin piece receiver 8B, while the wind separation device 7B (2 The fiber pieces 3 discharged from the upper outlet 17B of the separation tower 15B of the next separation were collected in the fiber piece collection tank 12B. The fiber pieces 3 are collected 2.5 kg from the wind power separating device 7 (primary separation) into the fiber piece collecting tank 12, and 3.4 kg are collected from the wind power separating device 7B (secondary separation) into the fiber piece collecting tank 12B. 22.5 kg of the vinyl chloride resin piece 2 separated by the apparatus 7B (secondary separation) was collected in the vinyl chloride resin piece collection tank 14B. About the collect | recovered vinyl chloride-type resin piece, it carried out similarly to Example 1, and evaluated the finish of roll workability and the external appearance of a press sheet.

(実施例5)
予め50mmから20mm程度の大きさに剪断粉砕機でカットした、布製の原手の表面に塩化ビニル樹脂を塗布した使用済みの作業手袋30kgを、実施例4と同様の装置(図3)を用い、粉砕、分離処理を行った。繊維片回収槽12に回収した繊維片が3.75kg、繊維片回収槽12Bに回収した繊維片が1.30kg、塩化ビニル系樹脂片回収槽14Bに回収した塩化ビニル系樹脂片が23.2kgであった。実施例1と同様にして回収塩化ビニル系樹脂片に含まれた繊維成分と回収繊維片中のPVC樹脂含量を測定したところ、回収塩化ビニル系樹脂片に含まれた繊維成分は8.3重量%、回収槽12に回収した繊維片中の塩化ビニル系樹脂含量は4.2重量%、回収槽12Bに回収した繊維片中の塩化ビニル系樹脂含量は5.0重量%であった。廃壁紙と同様に、塩化ビニル樹脂表面塗布の作業手袋の場合も、塩化ビニル系樹脂片と繊維片に高精度に分離できた。
(Example 5)
Using 30 kg of used work gloves that had been cut into a size of about 50 mm to 20 mm with a shearing pulverizer and coated with a vinyl chloride resin on the surface of a cloth hand, using the same apparatus as in Example 4 (FIG. 3). Then, pulverization and separation were performed. The fiber piece collected in the fiber piece collection tank 12 is 3.75 kg, the fiber piece collected in the fiber piece collection tank 12B is 1.30 kg, and the vinyl chloride resin piece collected in the vinyl chloride resin piece collection tank 14B is 23.2 kg. Met. When the fiber component contained in the recovered vinyl chloride resin piece and the PVC resin content in the recovered fiber piece were measured in the same manner as in Example 1, the fiber component contained in the recovered vinyl chloride resin piece was 8.3 wt. %, The vinyl chloride resin content in the fiber pieces collected in the collection tank 12 was 4.2% by weight, and the vinyl chloride resin content in the fiber pieces collected in the collection tank 12B was 5.0% by weight. As with the waste wallpaper, the work gloves coated on the surface of vinyl chloride resin could be separated into vinyl chloride resin pieces and fiber pieces with high precision.

(比較例1)
図2に示す分離回収装置において、風力分離装置7の分離塔15に粉砕物1を供給する空気輸送管19を、分離塔15の側面下方から水平に挿入し分離塔内中央で下向きに曲げ、先端開口部19cからの直管部19bの長さLが管径D3の約2倍である分離塔15(図9)を用いた以外は、実施例1と同様に実施した。円形板20の周縁部付近の風速を実施例1と同様にして測定し、測定した4点の風速値の最小値と最大値を表4に示した。表4に示すとおり、円形板20の周方向における位置の違いにより、風速に大きなバラツキが認められた。また、風力分離中の分離塔15内を観察したところ、分離塔15内に挿入した空気輸送管19の水平部分等に塩化ビニル系樹脂片2と繊維片3が混在した堆積物が多く見られ、また、分離塔15内は粉砕物1が偏って流動している状態が観察された。樹脂片回収槽14に回収した塩化ビニル系樹脂片が25.8kg、繊維片回収槽12に回収した繊維片が3.0kg、塩化ビニル系樹脂回収層14に回収した塩化ビニル系樹脂片に含まれた繊維成分は14.8重量%、繊維片回収槽12に回収した紙繊維片に含まれていた塩化ビニル系樹脂含量は2.3重量%であった。分離塔15の上部排出口17から排出して繊維片回収槽12に回収した軽成分である繊維片は、塩化ビニル系樹脂含量が比較的少ないものの、実施例1〜3に較べて回収量が少なかった。一方、塩化ビニル系樹脂片回収槽14の回収量が実施例1〜3に較べて多く、回収塩化ビニル樹脂片中には多くの紙繊維片が混在し、実施例1〜3に較べて分離精度の劣る結果であった。
(Comparative Example 1)
In the separation and recovery apparatus shown in FIG. 2, an air transport pipe 19 that supplies the pulverized material 1 to the separation tower 15 of the wind power separation apparatus 7 is inserted horizontally from below the side surface of the separation tower 15 and bent downward in the center of the separation tower. The same operation as in Example 1 was performed except that the separation column 15 (FIG. 9) in which the length L of the straight tube portion 19b from the tip opening portion 19c was about twice the tube diameter D3 was used. The wind speed in the vicinity of the peripheral edge of the circular plate 20 was measured in the same manner as in Example 1, and the measured minimum and maximum wind speed values at four points are shown in Table 4. As shown in Table 4, a large variation in the wind speed was recognized due to the difference in the position of the circular plate 20 in the circumferential direction. Further, when the inside of the separation tower 15 during the wind separation is observed, many deposits in which the vinyl chloride resin pieces 2 and the fiber pieces 3 are mixed are seen in the horizontal portion of the air transport pipe 19 inserted into the separation tower 15. Further, it was observed that the pulverized product 1 was flowing unevenly in the separation tower 15. 25.8 kg of vinyl chloride resin pieces collected in the resin piece collection tank 14, 3.0 kg of fiber pieces collected in the fiber piece collection tank 12, included in the vinyl chloride resin pieces collected in the vinyl chloride resin collection layer 14 The fiber component thus obtained was 14.8% by weight, and the vinyl chloride resin content contained in the paper fiber pieces collected in the fiber piece collection tank 12 was 2.3% by weight. Although the fiber fragment which is a light component discharged from the upper outlet 17 of the separation tower 15 and recovered in the fiber fragment recovery tank 12 has a relatively small vinyl chloride resin content, the recovered amount is higher than in Examples 1 to 3. There were few. On the other hand, the recovered amount of the vinyl chloride resin piece recovery tank 14 is larger than in Examples 1 to 3, and many pieces of paper fiber are mixed in the recovered vinyl chloride resin piece and separated in comparison with Examples 1 to 3. The result was inaccurate.

(比較例2)
図2に示す分離回収装置を用い、実施例1と同様にして測定した分離塔15の円形板周縁部付近の風速を0.6m/secと低速にした以外は、実施例1と同様に実施した。空気輸送管19から噴き出た廃壁紙粉砕物1は、分離塔15内の流動域(流動状態)が小さく、円形板20の周縁部に堆積が見られ、塩化ビニル樹脂片と紙繊維片が絡まった状態で分離塔15の下部排出口18から多く排出されるのが観察された。回収率は、約84.2%と悪かった。繊維片回収槽12に回収した繊維片が0.62kg、樹脂片回収槽14に回収した塩化ビニル系樹脂片が24.6kg、繊維片回収槽12に回収した紙繊維片の塩化ビニル樹脂含量は1.5重量%、回収塩化ビニル系樹脂片に含まれた繊維成分は19.6重量%であった。
(Comparative Example 2)
Using the separation and recovery apparatus shown in FIG. 2, the same procedure as in Example 1 was performed except that the wind speed in the vicinity of the peripheral edge of the circular plate of the separation tower 15 measured as in Example 1 was reduced to 0.6 m / sec. did. The waste wallpaper pulverized product 1 ejected from the air transport pipe 19 has a small flow region (flow state) in the separation tower 15, and is deposited on the peripheral edge of the circular plate 20. It was observed that a large amount of gas was discharged from the lower outlet 18 of the separation tower 15 in a tangled state. The recovery rate was poor at about 84.2%. 0.62 kg of fiber pieces collected in the fiber piece collection tank 12, 24.6 kg of vinyl chloride resin pieces collected in the resin piece collection tank 14, and the vinyl chloride resin content of the paper fiber pieces collected in the fiber piece collection tank 12 are The fiber component contained in the recovered vinyl chloride resin piece was 1.5% by weight and 19.6% by weight.

(比較例3)
図10に示すように、廃壁紙を、目開きが3mmのストレーナーを装着した衝撃粉砕機4((株)尾上製作所製)を用いて粉砕した粉砕物を、ブロアー6によりサイクロン13へ送り、その下方に配置した供給口27から振動フィーダー28を経由して横型風力選別機26(日本専機(株)製 AN−500型)へ送り、分離した。横型風力選別機26の2個所ある排出口30、32のうち、供給口27に近い排出口30から回収槽31に10.8kg(38.4%)、供給口27から遠方の排出口32から回収槽33に17.3kg(61.6%)回収した。
(Comparative Example 3)
As shown in FIG. 10, the pulverized product obtained by pulverizing the waste wallpaper using the impact pulverizer 4 (manufactured by Onoe Seisakusho Co., Ltd.) equipped with a strainer having a mesh opening of 3 mm is sent to the cyclone 13 by the blower 6. The product was sent from the supply port 27 arranged below to the horizontal wind sorter 26 (AN-500 type manufactured by Nippon Kikai Co., Ltd.) via the vibration feeder 28 and separated. Of the two outlets 30, 32 of the horizontal wind sorter 26, 10.8 kg (38.4%) from the outlet 30 close to the supply port 27 to the collection tank 31, from the outlet 32 far from the supply port 27 17.3 kg (61.6%) was recovered in the recovery tank 33.

回収槽31、33の回収物について、実施例1と同様にして紙繊維含量を測定した結果、供給口27に近い排出口30から回収槽31に回収した回収物中の繊維成分が15.3重量%、供給口27から遠方の排出口32から回収槽33に回収した回収物中の紙繊維分は約27.1%と、いずれも紙繊維片と塩化ビニル系樹脂が多く混在した分離精度の悪いものであった。   As a result of measuring the paper fiber content in the collection tanks 31 and 33 in the same manner as in Example 1, the fiber component in the collection collected in the collection tank 31 from the discharge port 30 near the supply port 27 was 15.3. The paper fiber content in the recovered material collected in the recovery tank 33 from the discharge port 32 far from the supply port 27 is about 27.1%, and the separation accuracy in which both the paper fiber pieces and the vinyl chloride resin are mixed together. It was bad.

以上の実施例1〜5及び比較例1〜3の結果をまとめて表4、表5に示す。   The results of Examples 1 to 5 and Comparative Examples 1 to 3 are summarized in Tables 4 and 5.

Figure 2007275852
Figure 2007275852

Figure 2007275852
Figure 2007275852

本発明は、リサイクルが困難な樹脂と繊維質からなる複合材料をリサイクルするための方法であり、壁紙、作業手袋等の、樹脂と繊維質からなる複合材料から樹脂成分と繊維質成分を効率良く、高精度で分離、回収して、樹脂成分と繊維質成分それぞれを再生原料として再資源化できる。   The present invention is a method for recycling a composite material composed of a resin and a fiber that is difficult to recycle, and efficiently removes a resin component and a fiber component from a composite material composed of a resin and a fiber, such as wallpaper and work gloves. The resin component and the fiber component can be recycled as recycled raw materials by separating and collecting with high accuracy.

廃壁紙を粉砕した粉砕物、該粉砕物から分離される不定形塩化ビニル樹脂片及び紙繊維片を示す模式図。The schematic diagram which shows the pulverized material which grind | pulverized the waste wallpaper, the amorphous vinyl chloride resin piece isolate | separated from this pulverized material, and the paper fiber piece. 本発明の分離回収装置の一例を示す模式図。The schematic diagram which shows an example of the isolation | separation collection | recovery apparatus of this invention. 本発明の分離回収装置の他例を示す模式図。The schematic diagram which shows the other example of the isolation | separation collection | recovery apparatus of this invention. 本発明の風力分離装置の一例を示す断面図。Sectional drawing which shows an example of the wind force separation apparatus of this invention. 本発明の風力分離装置の他例を示す断面図。Sectional drawing which shows the other example of the wind force separation apparatus of this invention. 周縁部を直線に立ち上げた円形板を示す側断面図。The sectional side view which shows the circular board which raised the peripheral part to the straight line. 周縁部を湾曲して立ち上げた円形板を示す側断面図。The sectional side view which shows the circular board which curved and started the peripheral part. 分離塔内上部に排出ガイド筒を設けた本発明の風力分離装置の他例を示す断面図。Sectional drawing which shows the other example of the wind force separation apparatus of this invention which provided the discharge guide cylinder in the upper part in a separation tower. 比較例に使用した、空気輸送管を分離塔側面から水平に挿入した分離装置を示す断面図。Sectional drawing which shows the separation apparatus which inserted the pneumatic transport pipe | tube horizontally from the separation tower side surface used for the comparative example. 比較例に使用した、横型風力分別機を示す模式図。The schematic diagram which shows the horizontal type wind power sorter used for the comparative example. 風速の測定位置を示し、(a)は円形板の平面図、(b)は側面図。The measurement position of a wind speed is shown, (a) is a top view of a circular board, (b) is a side view.

符号の説明Explanation of symbols

1:粉砕物(塩化ビニル系樹脂片と繊維質片との混在物)
2:塩化ビニル系樹脂片
3:繊維片
4,4B:粉砕機
5,5B:ストレーナー(パンチングメタル)
6,6B:ブロアー
7,7B:風力分離装置
8,8B:塩化ビニル系樹脂片受け器
9,9B:ブロアー
10,10B:ブロアー
11,11B:サイクロン
12,12B:繊維片回収槽
13,13B:サイクロン
14,14B:塩化ビニル系樹脂片回収槽
15,15B:分離塔
16,16B:ロート部
17,17B:上部排出口
18,18B:下部排出口
19,19B:空気輸送管
20,10B:円形板
21:周縁立ち上り部
22:円形板支持棒
23:円形板支持具
24:通気間隙
25:排出ガイド筒
26:横型風力選別機
27:供給口
28:振動フィーダー
29:シロッコファン
30:排出口
31:回収槽
32:排出口
33:回収槽
D:分離塔の円筒部の直径
H:分離塔の円筒部の高さ
D1:円形板直径
D2:分離塔内壁面の直径
D3:空気輸送管の管径
L:空気輸送管の直管部の長さ
θ:円形板の水平面部と立ち上がり部の接線との最大角度
1: Ground product (mixture of vinyl chloride resin pieces and fibrous pieces)
2: Vinyl chloride resin piece 3: Fiber piece 4, 4B: Crusher 5, 5B: Strainer (punching metal)
6, 6B: Blower 7, 7B: Wind separator 8, 8B: Vinyl chloride resin piece receiver 9, 9B: Blower 10, 10B: Blower 11, 11B: Cyclone 12, 12B: Fiber piece collection tank 13, 13B: Cyclone 14, 14B: Vinyl chloride resin piece recovery tank 15, 15B: Separation tower 16, 16B: Funnel part 17, 17B: Upper outlet 18, 18B: Lower outlet 19, 19B: Pneumatic transport pipe 20, 10B: Circular Plate 21: Peripheral rising portion 22: Circular plate support rod 23: Circular plate support 24: Ventilation gap 25: Discharge guide tube 26: Horizontal wind sorter 27: Supply port 28: Vibration feeder 29: Sirocco fan 30: Discharge port 31 : Recovery tank 32: Discharge port 33: Recovery tank D: Diameter of cylindrical part of separation tower H: Height of cylindrical part of separation tower D1: Circular plate diameter D2: Diameter of inner wall surface of separation tower D3: Air Pipe diameter of flue L: length of the straight pipe portion of the air transport pipe theta: the maximum angle between the tangent line of the rising portion horizontal surface of the circular plate

Claims (17)

上部に吸引の上部排出口を設け、下部に空気補給口を兼ねる下部排出口を設けた縦円筒形の分離塔内に、円形板を、その周囲に分離塔内壁面との間に通気間隙が存するように水平に支持し、分離塔外から分離塔内に挿入した空気輸送管の先端開口部を前記円形板上面の中心部に配置し、該空気輸送管を通して、比重の異なる成分からなる混合物を前記円形板上面の中心部に搬入し、該混合物中の比重の大きな成分を円形板の周縁部から落下させる一方、混合物中の比重の小さな成分は、下部排出口から入って分離塔内を上昇する空気流に乗せて上部排出口から吸引して排出させるようにした風力分離装置であって、前記空気輸送管が、その先端開口部から該空気輸送管の管径(D3)の4倍以上の長さ(L)にわたって、前記円形板に対してほぼ直交する直管部を有することを特徴とする風力分離装置。   An upper exhaust port for suction is provided in the upper part, a circular plate is provided in a vertical cylindrical separation tower provided with a lower exhaust port that also serves as an air supply port in the lower part, and a ventilation gap is formed between the circular plate and the inner wall surface of the separation tower. A mixture of components having different specific gravities is arranged in the center of the upper surface of the circular plate, with the tip opening of an air transport pipe inserted horizontally into the separation tower from outside the separation tower. Into the center of the upper surface of the circular plate, and a component having a large specific gravity in the mixture is dropped from the peripheral edge of the circular plate, while a component having a small specific gravity in the mixture enters from the lower discharge port and enters the separation tower. A wind power separation device that is placed on an ascending air flow to be sucked and discharged from an upper discharge port, wherein the air transport pipe is four times the diameter (D3) of the air transport pipe from the tip opening. Over the above length (L) with respect to the circular plate Winnowing apparatus characterized by having a straight pipe section for pot orthogonal. 前記空気輸送管が、前記分離塔の上部から分離塔内に挿入されている請求項1に記載の風力分離装置。   The wind power separation device according to claim 1, wherein the air transport pipe is inserted into the separation tower from an upper part of the separation tower. 前記空気輸送管が、前記分離塔の上部から分離塔内に斜め挿入されている請求項2に記載の風力分離装置。   The wind power separation device according to claim 2, wherein the air transport pipe is obliquely inserted into the separation tower from above the separation tower. 前記分離塔の円筒部の高さ(H)と直径(D)との比(H/D)が0.8≦H/D≦2.5の範囲内である請求項1〜3のいずれかに記載の風力分離装置。   The ratio (H / D) between the height (H) and the diameter (D) of the cylindrical portion of the separation tower is in the range of 0.8 ≦ H / D ≦ 2.5. The wind power separation device described in 1. 前記円形板と分離塔内壁面との間に存する通気間隙が、円形板直径(D1)と分離塔内壁面の直径(D2)の比(D1/D2)が0.4≦D1/D2≦0.98の範囲内となる大きさである請求項1〜4のいずれかに記載の風力分離装置。   The ventilation gap existing between the circular plate and the inner wall surface of the separation tower is such that the ratio (D1 / D2) of the diameter (D1) of the circular plate and the inner wall surface of the separation tower (D1 / D2) is 0.4 ≦ D1 / D2 ≦ 0. The wind power separation device according to any one of claims 1 to 4, which has a size within a range of .98. 前記円形板の周縁部が直線的又は湾曲して上方向に立ち上げ形成されており、円形板における水平面部に対する前記立ち上げ部の接線角度が、5°〜75°の範囲内である請求項1〜5のいずれかに記載の風力分離装置。   The peripheral edge of the circular plate is linearly or curvedly raised upward, and the tangential angle of the raised portion with respect to the horizontal surface portion of the circular plate is in the range of 5 ° to 75 °. The wind-power separator in any one of 1-5. 前記分離筒の上部に、前記上部排出口を囲む排出ガイド筒を垂設してなる請求項1〜6のいずれかに記載の風力分離装置。   The wind power separation device according to any one of claims 1 to 6, wherein a discharge guide tube surrounding the upper discharge port is vertically provided at an upper portion of the separation tube. 繊維質層と樹脂被覆層とを含む廃製品から繊維質成分と樹脂成分とを分離回収する方法であって、
A)廃製品を粉砕する大きさを規制するパンチングメタルあるいは格子の目開きが1mm以上25mm以下であるスクリーンを設置した粉砕機により前記廃製品を粉砕する粉砕工程と、
B)請求項1〜7のいずれかに記載の風力分離装置を用い、前記粉砕工程にて粉砕された、繊維質成分と樹脂成分との混合物からなる粉砕物を、前記空気輸送管により分離塔内の円形板上面の中心部に搬入し、破砕物中の樹脂成分を円形板の周縁部から落下させて下部排出口から排出する一方、破砕物中の繊維質成分は、下部排出口から入って分離塔内を上昇する空気流に乗せて上部排出口から吸引して排出することで、繊維質成分と樹脂成分とを分離する分離工程と、
を備えることを特徴とする廃製品からの繊維質成分と樹脂成分との分離回収方法。
A method for separating and recovering a fibrous component and a resin component from a waste product including a fibrous layer and a resin coating layer,
A) A pulverizing step of pulverizing the waste product by a pulverizer provided with a punching metal that regulates the size of pulverizing the waste product or a screen having a mesh opening of 1 mm or more and 25 mm or less;
B) Using the wind power separating apparatus according to any one of claims 1 to 7, a pulverized product made of a mixture of a fiber component and a resin component, pulverized in the pulverization step, is separated by the air transport pipe. The resin component in the crushed material is dropped from the peripheral edge of the circular plate and discharged from the lower discharge port, while the fibrous component in the crushed material enters from the lower discharge port. A separation step of separating the fiber component and the resin component by being sucked and discharged from the upper discharge port on the air flow rising in the separation tower;
A method for separating and recovering a fibrous component and a resin component from waste products, comprising:
前記風力分離装置の分離塔内に供給する空気量と上部排出口からの吸引排出量を調整することにより、該分離塔内に設置した円形板の周縁部での風速を1m/sec〜20m/secの範囲内に調整して繊維質成分と樹脂成分とを分離する請求項8に記載の分離回収方法。   By adjusting the amount of air supplied into the separation tower of the wind separator and the amount of suction and discharge from the upper discharge port, the wind speed at the peripheral edge of the circular plate installed in the separation tower is adjusted to 1 m / sec to 20 m / The separation and recovery method according to claim 8, wherein the fibrous component and the resin component are separated by adjusting within a range of sec. 前記分離工程を2回以上繰り返して行う請求項8又は9に記載の分離回収方法。   The separation and recovery method according to claim 8 or 9, wherein the separation step is repeated twice or more. 前記粉砕工程と分離工程とを、交互に2回以上繰り返して行う請求項8又は9に記載の分離回収方法。   The separation and recovery method according to claim 8 or 9, wherein the pulverization step and the separation step are alternately repeated twice or more. 前記繊維質層と樹脂被覆層とを含む廃製品が、塩化ビニル樹脂製壁紙である請求項9〜11のいずれかに記載の分離回収方法。   The separation and recovery method according to any one of claims 9 to 11, wherein the waste product including the fibrous layer and the resin coating layer is a vinyl chloride resin wallpaper. 繊維質層と樹脂被覆層とを含む廃製品から繊維質成分と樹脂成分とを分離回収する装置であって、
A)廃製品を粉砕する大きさを規制するパンチングメタルあるいは格子の目開きが1mm以上25mm以下であるスクリーンを設置した粉砕機と、
B)請求項1〜7のいずれかに記載の風力分離装置と、
を備えることを特徴とする廃製品からの繊維質成分と樹脂成分との分離回収装置。
An apparatus for separating and collecting a fibrous component and a resin component from a waste product including a fibrous layer and a resin coating layer,
A) a crusher provided with a punching metal that regulates the size of crushing waste products or a screen having a grid opening of 1 mm to 25 mm;
B) The wind power separating apparatus according to any one of claims 1 to 7;
An apparatus for separating and collecting a fiber component and a resin component from waste products, comprising:
前記粉砕機が、剪断式粉砕機又は衝撃粉砕機である請求項13記載の分離回収装置。   The separation and recovery device according to claim 13, wherein the pulverizer is a shearing pulverizer or an impact pulverizer. 前記衝撃粉砕機が、スイングハンマークラッシャー型粉砕機である請求項14記載の分離回収装置。   The separation and recovery device according to claim 14, wherein the impact pulverizer is a swing hammer crusher type pulverizer. 前記風力分離装置を2機以上連設してなる請求項13〜15のいずれかに記載の分離回収装置。   The separation and recovery device according to any one of claims 13 to 15, wherein two or more wind power separation devices are connected in series. 前記粉砕機と風力分離装置とを、交互に2機以上連設してなる請求項13〜15のいずれかに記載の分離回収装置。
The separation and recovery device according to any one of claims 13 to 15, wherein two or more pulverizers and wind power separation devices are alternately connected in series.
JP2006109388A 2006-04-12 2006-04-12 Wind-force separator, and method and apparatus for separating and recovering fibrous component and resin component from waste product using it Pending JP2007275852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006109388A JP2007275852A (en) 2006-04-12 2006-04-12 Wind-force separator, and method and apparatus for separating and recovering fibrous component and resin component from waste product using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006109388A JP2007275852A (en) 2006-04-12 2006-04-12 Wind-force separator, and method and apparatus for separating and recovering fibrous component and resin component from waste product using it

Publications (1)

Publication Number Publication Date
JP2007275852A true JP2007275852A (en) 2007-10-25

Family

ID=38677906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006109388A Pending JP2007275852A (en) 2006-04-12 2006-04-12 Wind-force separator, and method and apparatus for separating and recovering fibrous component and resin component from waste product using it

Country Status (1)

Country Link
JP (1) JP2007275852A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013233469A (en) * 2013-08-30 2013-11-21 Kowa Kikai Sekkei Kogyo Kk Separator
WO2019224261A1 (en) * 2018-05-23 2019-11-28 Windmöller & Hölscher Kg System and method for suctioning and size-reducing at least one strip
KR102171052B1 (en) * 2020-03-04 2020-10-28 김기정 Waste synthetic resin sorting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171283U (en) * 1982-05-13 1983-11-15 岡村製油株式会社 Equipment for removing impurities in cottonseed
JPS60166391U (en) * 1984-04-15 1985-11-05 株式会社 スイデン Weight-separated dust collector
JPS61153184A (en) * 1984-12-27 1986-07-11 栗田工業株式会社 Cereal air selector
JPH07289998A (en) * 1994-04-25 1995-11-07 Fuji Seisakusho:Kk Method for separating foreign matter mixed with finely-pulverized abrasive material, method for separating foreign matter and dust mixed with finely-pulverized abrasive material, and separating apparatus for them
JPH09192605A (en) * 1996-01-23 1997-07-29 Taiyo Chuki Co Ltd Vibrating screen provided with pneumatic classification mechanism
JP2000037663A (en) * 1998-07-23 2000-02-08 Sadao Kamiyama Dust separator
JP2003127140A (en) * 2001-10-19 2003-05-08 Kanegafuchi Chem Ind Co Ltd Method for separating resin material of tile carpet
JP2005211901A (en) * 2005-04-22 2005-08-11 Sanko Air Plant Ltd Powder classifier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171283U (en) * 1982-05-13 1983-11-15 岡村製油株式会社 Equipment for removing impurities in cottonseed
JPS60166391U (en) * 1984-04-15 1985-11-05 株式会社 スイデン Weight-separated dust collector
JPS61153184A (en) * 1984-12-27 1986-07-11 栗田工業株式会社 Cereal air selector
JPH07289998A (en) * 1994-04-25 1995-11-07 Fuji Seisakusho:Kk Method for separating foreign matter mixed with finely-pulverized abrasive material, method for separating foreign matter and dust mixed with finely-pulverized abrasive material, and separating apparatus for them
JPH09192605A (en) * 1996-01-23 1997-07-29 Taiyo Chuki Co Ltd Vibrating screen provided with pneumatic classification mechanism
JP2000037663A (en) * 1998-07-23 2000-02-08 Sadao Kamiyama Dust separator
JP2003127140A (en) * 2001-10-19 2003-05-08 Kanegafuchi Chem Ind Co Ltd Method for separating resin material of tile carpet
JP2005211901A (en) * 2005-04-22 2005-08-11 Sanko Air Plant Ltd Powder classifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013233469A (en) * 2013-08-30 2013-11-21 Kowa Kikai Sekkei Kogyo Kk Separator
WO2019224261A1 (en) * 2018-05-23 2019-11-28 Windmöller & Hölscher Kg System and method for suctioning and size-reducing at least one strip
KR102171052B1 (en) * 2020-03-04 2020-10-28 김기정 Waste synthetic resin sorting device

Similar Documents

Publication Publication Date Title
JP4035980B2 (en) Resin material separation method for tile carpet
CA2237310C (en) Process for separation and recovery of waste carpet components
US9440239B1 (en) Method for progressive separation and extraction of raw materials from residential roofing products
RU2528358C1 (en) Method of manufacturing fibre-containing element and element manufactured thereof
JP2009061357A (en) Apparatus and method for manufacturing sand, and sand
JP2007117837A (en) Recycle system for separating and recovering fiber components and vinyl chloride-based resin components from gloves, separating and recovering method, and regenerated vinyl chloride-based resin
JP2013193011A (en) Method of separating and recovering powder of higher specific gravity from composite material containing different materials of different specific gravities in integrated form
KR20130138626A (en) The foreign material sorting apparatus which is contained in construction waste
JP2006272241A (en) Separation/recovery method of paper component and polyvinylchloride component from polyvinylchloride resin-based wallpaper, and regeneratd polyvinylchloride resin
CN1212638A (en) Process and facility for treating and sorting recyclable waste materials
CN207138082U (en) Dry method building waste process for producing line
CN108884600B (en) Method and device for treating a filtering material and product obtained
JP2007275852A (en) Wind-force separator, and method and apparatus for separating and recovering fibrous component and resin component from waste product using it
JP3682553B2 (en) Separation method of laminate
JP4089284B2 (en) Resin material separation method for automotive interior materials
KR101785001B1 (en) Dry and Wet type Manufacturing Method of Recycling Fine Aggregate
CN111571862B (en) Dry cleaning equipment and method for waste plastics in household garbage
JP2005262093A (en) Process for producing regenerated fiber and recycled resin separated and recovered from waste product
KR101884797B1 (en) Apparatus for Removing Alien Substances of dry-type separator
JP2011111342A (en) Grinding apparatus and method for producing recycled aggregate
JP5681317B1 (en) Manufacturing method of regenerated powder and regenerated fiber
JP2008213423A (en) System for recycling composite resin waste material
JP4341221B2 (en) Tile carpet and manufacturing method thereof
WO2022266766A1 (en) Process for treating fines stream derived from waste processing facilities
KR20050056762A (en) A device recycling a sand with a waste matter of a construction and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208