JP2007270406A - Inorganic fibrous thermal insulation material composition and inorganic fibrous thermal insulation material - Google Patents

Inorganic fibrous thermal insulation material composition and inorganic fibrous thermal insulation material Download PDF

Info

Publication number
JP2007270406A
JP2007270406A JP2006099622A JP2006099622A JP2007270406A JP 2007270406 A JP2007270406 A JP 2007270406A JP 2006099622 A JP2006099622 A JP 2006099622A JP 2006099622 A JP2006099622 A JP 2006099622A JP 2007270406 A JP2007270406 A JP 2007270406A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
inorganic
inorganic fibrous
material composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006099622A
Other languages
Japanese (ja)
Other versions
JP4925707B2 (en
Inventor
Toshiyuki Anji
敏行 安治
Kaoru Unno
薫 海野
Kaoru Kanetani
薫 金谷
Noboru Semizu
昇 瀬水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2006099622A priority Critical patent/JP4925707B2/en
Publication of JP2007270406A publication Critical patent/JP2007270406A/en
Application granted granted Critical
Publication of JP4925707B2 publication Critical patent/JP4925707B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic fibrous thermal insulation material high in corrosion resistance, mechanical strength and durability, and to provide an inorganic thermal insulation material composition capable of producing the inorganic fibrous thermal insulation material. <P>SOLUTION: The inorganic thermal insulation material composition used for forming a thermal insulation material intended for use in contact with molten aluminum or aluminum alloy melt, comprises inorganic fiber, silicon nitride powder, a silanol group-containing inorganic binder, and water. The inorganic fibrous thermal insulation material is obtained by drying or baking the composition. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶融アルミニウム又はアルミニウム合金の溶湯(以下、溶融アルミニウム又はアルミニウム合金の溶湯を、単にアルミ溶湯と記載する。)との接触用途を目的とする断熱材を形成させるために用いられる無機繊維質断熱材組成物及び該無機繊維質断熱材組成物を乾燥又は焼成して得られる無機繊維質断熱材に関し、更に詳細には、アルミ溶湯保持槽、取鍋又は案内桶等の内張り断熱材を形成させるために用いられる無機繊維質断熱材組成物及び該無機繊維質断熱材組成物を乾燥又は焼成して得られる無機繊維質断熱材である。   The present invention relates to an inorganic fiber used for forming a heat insulating material intended for contact with molten aluminum or molten aluminum alloy (hereinafter, molten aluminum or molten aluminum alloy is simply referred to as molten aluminum). Insulating thermal insulation composition and inorganic fibrous thermal insulation obtained by drying or firing the inorganic fibrous thermal insulation composition, and more specifically, lining thermal insulation such as molten aluminum holding tank, ladle or guide rod An inorganic fibrous heat insulating material composition used for forming and an inorganic fibrous heat insulating material obtained by drying or firing the inorganic fibrous heat insulating material composition.

一般に、アルミニウム又はアルミニウム合金の溶融鋳造分野で使用されるアルミ溶湯保持槽、取鍋、案内桶等は、通常、鉄板でその外殻が形成され、その内側に、アルミ溶湯の強い化学的活性による鉄板の浸食及びこれに伴う溶湯汚染や溶着の発生等を防止するために、キャスタブル耐火物若しくはプラスチック耐火物等の不定形耐火物、又は高アルミナ質レンガ等の耐火物が内張りされる。   In general, molten aluminum holding tanks, ladles, guide rods, etc. used in the field of aluminum or aluminum alloy melt casting are usually formed by an iron plate and the inner shell is formed by the strong chemical activity of the molten aluminum. In order to prevent erosion of the iron plate and the occurrence of molten metal contamination and welding associated therewith, refractory materials such as castable refractories or plastic refractories, or refractories such as high alumina bricks are lined.

従来、内張り用の断熱材として多用されていたキャスタブル耐火物、プラスチック耐火物又は高アルミナ質レンガ等の耐火物は、一般に、良好な耐熱性を有するものの、熱伝導率が高いという欠点がある。例えば、高アルミナ質レンガの熱伝導率は、1.3〜1.7W/(m・K)であり、キャスタブル耐火物では、0.7〜1.4W/(m・K)と高い。このため、アルミ溶湯が、これらの耐火物と接触すると溶湯温度が大きく低下する。   Conventionally, refractories such as castable refractories, plastic refractories and high-alumina bricks, which have been widely used as heat insulating materials for linings, generally have good heat resistance but have a drawback of high thermal conductivity. For example, the thermal conductivity of the high alumina brick is 1.3 to 1.7 W / (m · K), and the castable refractory is as high as 0.7 to 1.4 W / (m · K). For this reason, when the molten aluminum comes into contact with these refractories, the molten metal temperature greatly decreases.

そのため、近年、無機繊維を主体とする断熱材(以下、無機繊維質断熱材とも記載する。)が注目されており、該無機繊維質断熱材によって、省エネルギー化を図る傾向にある。   For this reason, in recent years, heat insulating materials mainly composed of inorganic fibers (hereinafter also referred to as inorganic fibrous heat insulating materials) have attracted attention, and the inorganic fibrous heat insulating materials tend to save energy.

該無機繊維質断熱材の無機繊維としては、現在、アルミノシリケート質繊維が多用されている。これは、アルミノシリケート質繊維は、嵩密度が低く、軽量であり、断熱効果が大きく、耐スポーリング性が良好であり、且つ耐火性が高いという優れた性能を有する上、更に、安価なので経済的にも有利なためである。   Currently, aluminosilicate fibers are frequently used as the inorganic fibers of the inorganic fibrous heat insulating material. This is because aluminosilicate fiber has excellent performance such as low bulk density, light weight, large heat insulation effect, good spalling resistance, and high fire resistance. This is also advantageous.

ところが、アルミノシリケート質繊維は、アルミ溶湯と接触すると、次式:
3SiO + 4Al → 3Si + 2Al
に示すように、シリカ成分(SiO)が還元され、生成したシリカ(Si)がアルミ溶湯に混入する。このことにより、無機繊維質耐火物は浸食され、また、アルミ溶湯はシリカにより汚染される。つまり、アルミノシリケート質無機繊維等のシリカ成分を含有する無機繊維を用いる無機繊維質断熱材の場合、アルミ溶湯により該無機繊維質断熱材が浸食され易い、すなわち、耐食性が低いという問題があった。
However, when the aluminosilicate fiber comes into contact with molten aluminum, the following formula:
3SiO 2 + 4Al → 3Si + 2Al 2 O 3
As shown in FIG. 2 , the silica component (SiO 2 ) is reduced, and the generated silica (Si) is mixed into the molten aluminum. As a result, the inorganic fibrous refractory is eroded and the molten aluminum is contaminated with silica. That is, in the case of an inorganic fiber heat insulating material using inorganic fibers containing silica components such as aluminosilicate inorganic fibers, there is a problem that the inorganic fiber heat insulating material is easily eroded by molten aluminum, that is, the corrosion resistance is low. .

そこで、無機繊維質断熱材の耐食性を改善することが行われてきた。例えば、特許文献1の特公平1−23426号公報には、溶融アルミニウム又はその合金溶湯との接触用途を目的とする組成物であって、アルミノシリケート質繊維1重量部と、白雲母、金雲母、黒雲母及び絹雲母の群より選択する1種又は2種以上の雲母を0.3〜5重量部、シリカ、アルミナ、ジルコニア等の各コロイド状結合剤、珪酸ソーダ、リン酸アルミ等の液状結合剤、又はボルトランドセメント、アルミナセメント等の粉末状結合剤の1種又は2種以上からなる無機結合剤、及び水からなることを特徴とする溶融アルミ用複合繊維組成物が開示されている。該特許文献1に開示されている溶融アルミ用複合繊維組成物では、雲母を含有させることにより、耐食性の向上が図られている。   Therefore, it has been carried out to improve the corrosion resistance of the inorganic fibrous heat insulating material. For example, Japanese Patent Publication No. 1-24262 of Patent Document 1 discloses a composition intended for contact with molten aluminum or molten alloy thereof, 1 part by weight of aluminosilicate fiber, muscovite, phlogopite. In addition, 0.3 to 5 parts by weight of one or more mica selected from the group of biotite and sericite, liquids such as colloidal binders such as silica, alumina, zirconia, sodium silicate, aluminum phosphate, etc. A composite fiber composition for molten aluminum, characterized by comprising a binder or an inorganic binder composed of one or more powdery binders such as boltland cement and alumina cement, and water is disclosed. . In the composite fiber composition for molten aluminum disclosed in Patent Document 1, corrosion resistance is improved by including mica.

特公平1−23426号公報(請求項1)Japanese Patent Publication No. 1-2426 (Claim 1)

ところが、特許文献1記載の溶融アルミ用複合繊維組成物は、層状に分離し易い雲母を含有するため、該溶融アルミ用複合繊維組成物を用いて得られる無機繊維質断熱材は、強度が低く、特に、繰り返し使用すると壊れ易い、すなわち、耐久性が低いという問題があった。   However, since the composite fiber composition for molten aluminum described in Patent Document 1 contains mica that is easily separated into layers, the inorganic fibrous heat insulating material obtained using the composite fiber composition for molten aluminum has low strength. In particular, there is a problem that it is easily broken when used repeatedly, that is, it has low durability.

従って、本発明の課題は、耐食性が高く且つ強度及び耐久性が高い無機繊維質断熱材及び該無機繊維質断熱材を製造することができる無機繊維質断熱材組成物を提供することにある。   Accordingly, an object of the present invention is to provide an inorganic fibrous heat insulating material having high corrosion resistance and high strength and durability, and an inorganic fibrous heat insulating material composition capable of producing the inorganic fibrous heat insulating material.

本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、(1)窒化珪素を水溶媒中に存在させると、窒化珪素の表面が加水分解されて、窒化珪素の表面にシラノール基が生成し、該窒化珪素の表面に生成したシラノール基は、無機繊維質断熱材組成物の乾燥又は焼成時に、シラノール基を有する無機バインダーのシラノール基と脱水縮合により結合し、強固な3次元架橋構造を形成すること、そのため、(2)アルミ溶湯に対する無機繊維質断熱材の耐久性及び耐食性が著しく向上することを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-described problems in the prior art, the present inventors have (1) When silicon nitride is present in an aqueous solvent, the surface of silicon nitride is hydrolyzed, and silicon nitride Silanol groups are formed on the surface, and the silanol groups formed on the surface of the silicon nitride are bonded to the silanol groups of the inorganic binder having silanol groups by dehydration condensation when drying or firing the inorganic fibrous thermal insulation composition, It was found that the three-dimensional crosslinked structure was formed, and (2) the durability and corrosion resistance of the inorganic fibrous heat insulating material with respect to the molten aluminum were remarkably improved, and the present invention was completed.

すなわち、本発明(1)は、溶融アルミニウム又はアルミニウム合金の溶湯との接触用途を目的とする断熱材を形成させるために用いられる無機繊維質断熱材組成物であって、無機繊維、窒化珪素粉末、シラノール基を有する無機バインダー及び水を含有する無機繊維質断熱材組成物を提供するものである。   That is, the present invention (1) is an inorganic fibrous heat insulating material composition used for forming a heat insulating material intended for contact with molten aluminum or molten aluminum alloy, comprising inorganic fiber, silicon nitride powder An inorganic fibrous heat insulating material composition containing an inorganic binder having a silanol group and water is provided.

また、本発明(2)は、前記本発明(1)記載の無機繊維質断熱材組成物を乾燥又は焼成して得られる無機繊維質断熱材を提供するものである。   Moreover, this invention (2) provides the inorganic fibrous heat insulating material obtained by drying or baking the inorganic fibrous heat insulating material composition of the said this invention (1).

本発明によれば、耐食性が高く且つ強度及び耐久性の高い無機繊維質断熱材及び該無機繊維質断熱材を製造することができる無機繊維質断熱材組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the inorganic fiber heat insulating material which can manufacture the inorganic fiber heat insulating material with high corrosion resistance and high intensity | strength and durability, and this inorganic fiber heat insulating material can be provided.

本発明の無機繊維質断熱材組成物は、溶融アルミニウム又はアルミニウム合金の溶湯との接触用途を目的とする断熱材を形成させるために用いられる無機繊維質断熱材組成物であって、無機繊維、窒化珪素粉末、シラノール基を有する無機バインダー及び水を含有する。   The inorganic fibrous heat insulating material composition of the present invention is an inorganic fibrous heat insulating material composition used for forming a heat insulating material intended for contact with molten aluminum or molten aluminum alloy, It contains silicon nitride powder, an inorganic binder having silanol groups, and water.

そして、本発明の無機繊維質断熱材組成物は、溶融アルミニウム又はアルミニウム合金の溶湯との接触用途を目的とする断熱材を形成させるために用いられる無機繊維質断熱材組成物であって、無機繊維100質量部、窒化珪素粉末10〜400質量部、シラノール基を有する無機バインダー1〜200質量部、及び水100〜1000質量部を含有する。   And the inorganic fibrous heat insulating material composition of the present invention is an inorganic fibrous heat insulating material composition used for forming a heat insulating material intended for contact with molten aluminum or molten aluminum alloy, It contains 100 parts by mass of fibers, 10 to 400 parts by mass of silicon nitride powder, 1 to 200 parts by mass of an inorganic binder having a silanol group, and 100 to 1000 parts by mass of water.

本発明の無機繊維質断熱材組成物に係る無機繊維としては、無機繊維質断熱材の製造に用いられる無機繊維であれば、特に制限されず、例えば、ガラス繊維、グラスウール、セラミックウール、ロックウール、アルミナ質繊維、ジルコニア質繊維、アルミノシリケート質繊維、生体溶解性無機繊維等が挙げられる。これらのうち、アルミノシリケート質繊維が、嵩密度が低く、軽量であり、断熱効果が大きく、耐スポーリング性が良好であり、且つ耐火性が高い点及び安価である点で特に好ましい。また、該無機繊維は、1種又は2種以上の組合わせのいずれでもよい。   The inorganic fiber according to the inorganic fibrous heat insulating material composition of the present invention is not particularly limited as long as it is an inorganic fiber used for the production of an inorganic fibrous heat insulating material. For example, glass fiber, glass wool, ceramic wool, rock wool , Alumina fibers, zirconia fibers, aluminosilicate fibers, biosoluble inorganic fibers, and the like. Of these, aluminosilicate fibers are particularly preferred because of their low bulk density, light weight, large heat insulation effect, good spalling resistance, high fire resistance, and low cost. Further, the inorganic fiber may be one kind or a combination of two or more kinds.

該生体溶解性無機繊維とは、40℃における生理食塩水溶解率が1%以上である無機繊維を指す。   The biologically soluble inorganic fiber refers to an inorganic fiber having a physiological saline dissolution rate at 40 ° C. of 1% or more.

該無機繊維の平均繊維径は、特に制限されないが、通常、1〜10μmであり、また、該無機繊維の平均繊維長は、通常、1〜50mmである。   The average fiber diameter of the inorganic fibers is not particularly limited, but is usually 1 to 10 μm, and the average fiber length of the inorganic fibers is usually 1 to 50 mm.

本発明の無機繊維質断熱材組成物に係る窒化珪素粉末は、水溶媒中でシラノール基(−Si−OH)を生成する。該窒化珪素粉末としては、特に制限されず、α型、β型のいずれでもよい。   The silicon nitride powder according to the inorganic fibrous heat insulating material composition of the present invention generates a silanol group (—Si—OH) in an aqueous solvent. The silicon nitride powder is not particularly limited and may be α type or β type.

該窒化珪素粉末の平均粒径は、特に制限されないが、均一混合性、成形性、保存安定性が高くなる点で、0.1〜100μmであることが好ましい。   The average particle size of the silicon nitride powder is not particularly limited, but is preferably 0.1 to 100 μm from the standpoint that uniform mixing property, moldability, and storage stability are enhanced.

本発明の無機繊維質断熱材組成物中の該窒化珪素粉末の含有量は、該無機繊維100質量部に対して、10〜400質量部、好ましくは50〜200質量部である。該窒化珪素粉末の含有量が上記範囲にあることにより、断熱材の耐食性、強度及び耐久性が高くなる。該窒化珪素粉末の含有量が、10質量部未満だと、断熱材の耐食性、強度及び耐久性が低くなり易く、また、400質量部を超えると、密度及び熱伝導率が高くなり過ぎるので、断熱性が低下する。   Content of this silicon nitride powder in the inorganic fiber heat insulating material composition of this invention is 10-400 mass parts with respect to 100 mass parts of this inorganic fiber, Preferably it is 50-200 mass parts. When the content of the silicon nitride powder is in the above range, the corrosion resistance, strength and durability of the heat insulating material are increased. If the content of the silicon nitride powder is less than 10 parts by mass, the corrosion resistance, strength and durability of the heat insulating material tend to be low, and if it exceeds 400 parts by mass, the density and thermal conductivity will be too high. Thermal insulation is reduced.

本発明の無機繊維質断熱材組成物に係るシラノール基を有する無機バインダーは、分子中にシラノール基を有する無機バインダーである。なお、該シラノール基を有する無機バインダーには、水溶媒に混合される前は、シラノール基を有さないが、水溶媒中でシラノール基を生成する無機バインダーを含む。該シラノール基を有する無機バインダーとしては、例えば、コロイダルシリカ、アルキルシリケート、珪酸ソーダ、リチウムシリケート等が挙げられる。これらのうち、コロイダルシリカが、取り扱いが容易で、アルミ溶湯に対する耐食性及強度が高い断熱材が得られる点で、特に好ましい。   The inorganic binder having a silanol group according to the inorganic fibrous heat insulating material composition of the present invention is an inorganic binder having a silanol group in the molecule. The inorganic binder having a silanol group includes an inorganic binder that does not have a silanol group before being mixed with an aqueous solvent, but generates a silanol group in the aqueous solvent. Examples of the inorganic binder having a silanol group include colloidal silica, alkyl silicate, sodium silicate, lithium silicate and the like. Of these, colloidal silica is particularly preferable in that it can be handled easily and a heat insulating material having high corrosion resistance and strength against molten aluminum can be obtained.

該シラノール基を有する無機バインダーは、本発明の無機繊維質断熱材組成物が乾燥又は焼成される際に、次の2つの機能:
(i)無機繊維同士又は該無機繊維と該耐熱性粉末とを結合させるバインダーとしての機能、及び
(ii)該窒化珪素粉末の表面に生成したシラノール基との脱水縮合反応により、強固な3次元架橋構造を形成する機能、
を発揮する。
The inorganic binder having a silanol group has the following two functions when the inorganic fibrous heat insulating material composition of the present invention is dried or fired:
(I) A function as a binder for bonding inorganic fibers to each other or the inorganic fibers and the heat-resistant powder, and (ii) a strong three-dimensional structure by a dehydration condensation reaction with a silanol group formed on the surface of the silicon nitride powder. Function of forming a crosslinked structure,
Demonstrate.

本発明の無機繊維質断熱材組成物中の該シラノール基を有する無機バインダーの含有量は、該無機繊維100質量部に対して、1〜200質量部、好ましくは3〜50質量部である。該シラノール基を有する無機バインダーの含有量が、上記範囲にあることにより、断熱材の耐食性、強度及び耐久性が高くなる。該シラノール基を有する無機バインダーの含有量が、1質量部未満だと、断熱材の耐食性、強度及び耐久性が低くなり、また、200質量部を超えると、断熱材の耐食性及び耐スポーリング性が低くなる。なお、該シラノール基を有する無機バインダーが、コロイダルシリカ等のように、固形分が水溶媒に分散された懸濁液である場合、該固形分の含有量が、該シラノール基を有する無機バインダーの含有量である。   Content of the inorganic binder which has this silanol group in the inorganic fibrous heat insulating material composition of this invention is 1-200 mass parts with respect to 100 mass parts of this inorganic fiber, Preferably it is 3-50 mass parts. When the content of the inorganic binder having a silanol group is in the above range, the corrosion resistance, strength, and durability of the heat insulating material are increased. When the content of the inorganic binder having a silanol group is less than 1 part by mass, the corrosion resistance, strength and durability of the heat insulating material are lowered, and when it exceeds 200 parts by mass, the corrosion resistance and spalling resistance of the heat insulating material are reduced. Becomes lower. When the inorganic binder having a silanol group is a suspension in which a solid content is dispersed in an aqueous solvent, such as colloidal silica, the content of the solid content is that of the inorganic binder having a silanol group. Content.

また、該窒化珪素粉末の含有量に対する該シラノール基を有する無機バインダーの含有量の比(シラノール基を有する無機バインダー/窒化珪素粉末)は、好ましくは0.01〜1、特に好ましくは0.05〜0.5、更に好ましくは0.05〜0.3である。該含有量の比が上記範囲にあることにより、断熱材の耐食性、強度及び耐久性が高くなるという本発明の効果が、更に高まる。   The ratio of the content of the inorganic binder having a silanol group to the content of the silicon nitride powder (inorganic binder having a silanol group / silicon nitride powder) is preferably 0.01 to 1, particularly preferably 0.05. It is -0.5, More preferably, it is 0.05-0.3. When the ratio of the contents is within the above range, the effect of the present invention that the corrosion resistance, strength and durability of the heat insulating material are further enhanced.

本発明の無機繊維質断熱材組成物は、水を含有する。そして、水は、固形分の分散媒であると共に、該窒化珪素粉末の表面で加水分解反応を起こさせ、該窒化珪素粉末の表面にシラノール基を生成させるための反応剤でもある。   The inorganic fibrous heat insulating material composition of the present invention contains water. Water is a dispersion medium for the solid content, and is also a reaction agent for causing a hydrolysis reaction on the surface of the silicon nitride powder and generating silanol groups on the surface of the silicon nitride powder.

本発明の無機繊維質断熱材組成物中の水の含有量は、該無機繊維100質量部に対して、100〜1000質量部、好ましくは200〜400質量部である。該水の含有量が上記範囲にあることにより、該無機繊維の開繊性及び均一混合性が高くなる。   Content of the water in the inorganic fibrous heat insulating material composition of this invention is 100-1000 mass parts with respect to 100 mass parts of this inorganic fiber, Preferably it is 200-400 mass parts. When the content of the water is in the above range, the opening property and uniform mixing property of the inorganic fiber are increased.

本発明の無機繊維質断熱材組成物は、更に、有機増粘剤を含有することができる。本発明の無機繊維質断熱材組成物が、更に、該有機増粘剤を含有することが、無機繊維質断熱材組成物を製造する際の均一混合性を高め、該無機繊維質断熱材組成物に適度な粘度が付与される結果、該無機繊維質断熱材組成物を施工し易くなる点で好ましい。該有機増粘剤としては、例えば、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、デンプン、ポリアクリル、ポリアミド、ポリエチレンオキサイド等が挙げられる。   The inorganic fibrous heat insulating material composition of the present invention can further contain an organic thickener. When the inorganic fibrous heat insulating material composition of the present invention further contains the organic thickener, the uniform mixing property in producing the inorganic fibrous heat insulating material composition is improved, and the inorganic fibrous heat insulating material composition As a result of imparting an appropriate viscosity to the product, it is preferable in that the inorganic fibrous heat insulating material composition can be easily constructed. Examples of the organic thickener include carboxymethylcellulose, hydroxymethylcellulose, hydroxypropylmethylcellulose, starch, polyacryl, polyamide, polyethylene oxide and the like.

本発明の無機繊維質断熱材組成物中の該有機増粘剤の含有量は、該無機繊維100質量部に対して、0.1〜20質量部、好ましくは0.5〜15質量部、特に好ましくは1〜10質量部である。該有機増粘剤の含有量が、上記範囲にあることにより、施工するのに適当な無機繊維質断熱材組成物の延びが発現し、きれいな施工面を得ることができる。   The content of the organic thickener in the inorganic fibrous heat insulating material composition of the present invention is 0.1 to 20 parts by mass, preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the inorganic fibers. Especially preferably, it is 1-10 mass parts. When the content of the organic thickener is in the above range, the extension of the inorganic fibrous heat insulating material composition suitable for construction is developed, and a clean construction surface can be obtained.

本発明の無機繊維質断熱材組成物は、更に、耐熱性粉末を含有することができる。本発明の無機繊維質断熱材組成物が、更に、該耐熱性粉末を含有することが、断熱材の密度、強度、耐熱性、熱伝導率の調整をし易くなる点で好ましい。該耐熱性粉末としては、例えば、シリカ、アルミナ、ムライト、酸化チタン、炭化ケイ素等のセラミックス粉末;カオリン、雲母、タルク等の粘土鉱物が挙げられる。該耐熱性粉末は、1種又は2種以上の組合わせのいずれでもよい。   The inorganic fibrous heat insulating material composition of the present invention can further contain a heat resistant powder. It is preferable that the inorganic fibrous heat insulating material composition of the present invention further contains the heat resistant powder from the viewpoint of easy adjustment of the density, strength, heat resistance, and thermal conductivity of the heat insulating material. Examples of the heat-resistant powder include ceramic powders such as silica, alumina, mullite, titanium oxide, and silicon carbide; and clay minerals such as kaolin, mica, and talc. The heat resistant powder may be one kind or a combination of two or more kinds.

該耐熱性粉末の平均粒子径は、0.1〜500μm、好ましくは0.1〜200μm、特に好ましくは0.1〜100μmである。   The average particle diameter of the heat-resistant powder is 0.1 to 500 μm, preferably 0.1 to 200 μm, particularly preferably 0.1 to 100 μm.

本発明の無機繊維質断熱材組成物中の該耐熱性粉末の含有量は、該無機繊維100質量部に対して、1〜400質量部、好ましくは50〜350質量部、特に好ましくは100〜300質量部である。該耐熱性粉末の含有量が、上記範囲にあることにより、該耐熱性粉末による耐熱性の向上効果が得られ易く、且つ断熱材の耐スポーリング性が良好となる。   The content of the heat-resistant powder in the inorganic fibrous heat insulating material composition of the present invention is 1 to 400 parts by weight, preferably 50 to 350 parts by weight, particularly preferably 100 to 100 parts by weight with respect to 100 parts by weight of the inorganic fibers. 300 parts by mass. When the content of the heat-resistant powder is in the above range, the effect of improving the heat resistance by the heat-resistant powder is easily obtained, and the spalling resistance of the heat insulating material is improved.

また、本発明の無機繊維質断熱材組成物は、必要に応じて、他に、分散剤、防腐剤等の添加剤を含有することができる。   Moreover, the inorganic fibrous heat insulating material composition of this invention can contain additives, such as a dispersing agent and antiseptic | preservative, as needed.

本発明の無機繊維質断熱材組成物は、例えば、該無機繊維、該窒化珪素粉末、該シラノール基を有する無機バインダー及び水を混合し、ニーダ等を用いてペースト状に混練することにより得られる。   The inorganic fibrous heat insulating material composition of the present invention is obtained, for example, by mixing the inorganic fiber, the silicon nitride powder, the inorganic binder having a silanol group and water, and kneading into a paste using a kneader or the like. .

そして、本発明の無機繊維質断熱材組成物は、アルミ溶湯との接触用途を目的とするアルミ溶湯保持槽、取鍋又は案内桶等の内張り断熱材を形成させるための原材料として用いられる。つまり、本発明の無機繊維質断熱材組成物を、アルミ溶湯保持槽、取鍋又は案内桶等の壁面に直接ライニングし、次いで、乾燥又は焼成することにより、該内張り断熱材を形成させる。また、本発明の無機繊維質断熱材組成物を、成形型に充填し、次いで、乾燥又は焼成することにより、該内張り断熱材を製造する。   And the inorganic fibrous heat insulating material composition of this invention is used as a raw material for forming lining heat insulating materials, such as a molten aluminum holding tank, a ladle, or a guide rod, for the purpose of contact with molten aluminum. That is, the lining heat insulating material is formed by lining the inorganic fibrous heat insulating material composition of the present invention directly on a wall surface of a molten aluminum holding tank, a ladle, a guide rod or the like, and then drying or baking. Further, the lining heat insulating material is produced by filling the inorganic fibrous heat insulating material composition of the present invention in a mold and then drying or baking.

つまり、本発明の無機繊維質断熱材は、本発明の無機繊維質断熱材組成物を乾燥又は焼成して得られる。該焼成の温度は、該焼成時の酸化劣化が少ない点で、1200℃以下であることが好ましく、1000℃以下であることが特に好ましい。   That is, the inorganic fibrous heat insulating material of the present invention is obtained by drying or baking the inorganic fibrous heat insulating material composition of the present invention. The firing temperature is preferably 1200 ° C. or less, and particularly preferably 1000 ° C. or less, in that there is little oxidation deterioration during the firing.

本発明の無機繊維質断熱材組成物の製造過程において、該窒化珪素粉末が、固形分の分散媒である水と反応することにより、該窒化珪素粉末の表面に、シラノール基が生成する。該窒化珪素粉末の表面に生成したシラノール基は、本発明の無機繊維質断熱材組成物の乾燥又は焼成時に、該シラノール基を有する無機バインダーのシラノール基と脱水縮合により結合して、強固な3次元架橋構造を形成する。   In the production process of the inorganic fibrous heat insulating material composition of the present invention, the silicon nitride powder reacts with water, which is a solid dispersion medium, to generate silanol groups on the surface of the silicon nitride powder. The silanol groups formed on the surface of the silicon nitride powder are bonded to the silanol groups of the inorganic binder having the silanol groups by dehydration condensation during drying or firing of the inorganic fibrous heat insulating material composition of the present invention, and thus the strong 3 A dimensional cross-linked structure is formed.

このことにより、本発明の無機繊維質断熱材組成物中に、アルミ溶湯に濡れ難い窒化珪素が強固に保持されるので、本発明の無機繊維質断熱材組成物を乾燥又は焼成して得られる無機繊維質断熱材は、耐食性が高く、強度が高く、且つ繰り返し使用による耐久性が高い。   As a result, silicon nitride that is difficult to wet with molten aluminum is firmly held in the inorganic fibrous heat insulating material composition of the present invention, and thus obtained by drying or firing the inorganic fibrous heat insulating material composition of the present invention. The inorganic fibrous heat insulating material has high corrosion resistance, high strength, and high durability due to repeated use.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

(実施例1〜3、比較例1〜2、参考例1〜2)
(断熱材組成物の製造)
表1に示す配合で、各成分を混合し、ニーダにて混練し、均一なペースト状の断熱材組成物Aを得た。
(Examples 1-3, Comparative Examples 1-2, Reference Examples 1-2)
(Manufacture of thermal insulation composition)
The components shown in Table 1 were mixed and kneaded with a kneader to obtain a uniform paste-like heat insulating material composition A.

Figure 2007270406
1)コロイダルシリカの配合量は、固形分の質量部である。
Figure 2007270406
1) The compounding quantity of colloidal silica is a mass part of solid content.

(実施例1〜3及び比較例1〜2、参考例1〜2で用いた配合物)
・無機繊維:アルミノシリケート質繊維(バルク状)、シリカアルミナ比(SiO/Al)=51/49、平均繊維径2μm
・α型窒化珪素a:平均粒径1.1μm、粒度10μm以下が99質量%以上
・β型窒化珪素b:平均粒径30μm、粒度105μm以下が85質量%以上
・β型窒化珪素c:平均粒径2μm、粒度45μm以下が99質量%以上
・アルミナ粉末a:平均粒径5μm
・アルミナ粉末b:平均粒径1μm
・カオリンクレー粉末:300メッシュ通過物が98質量%以上
・コロイダルシリカ:商品名スノーテックス、日産化学社製、固形分30質量%、平均粒径15nm
・有機増粘剤a:商品名ハイメトローズ、信越化学工業社製
・有機増粘剤b:ポリアクリル系、商品名アロン、東亜合成社製
・白雲母:325メッシュ通過物
(Formulations used in Examples 1-3 and Comparative Examples 1-2, Reference Examples 1-2)
Inorganic fiber: aluminosilicate fiber (bulk), silica alumina ratio (SiO 2 / Al 2 O 3 ) = 51/49, average fiber diameter 2 μm
Α-type silicon nitride a: average particle size 1.1 μm, particle size 10 μm or less is 99% by mass or more β-type silicon nitride b: average particle size 30 μm, particle size 105 μm or less is 85% by mass or more β-type silicon nitride c: average Particle size of 2 μm, particle size of 45 μm or less is 99% by mass or more. • Alumina powder a: average particle size of 5 μm
Alumina powder b: average particle size 1 μm
-Kaolin clay powder: 98 mesh% or more of 300 mesh passing material-Colloidal silica: Trade name Snowtex, manufactured by Nissan Chemical Co., Ltd., solid content 30 mass%, average particle size 15 nm
・ Organic thickener a: Trade name High Metroise, manufactured by Shin-Etsu Chemical Co., Ltd. ・ Organic thickener b: Polyacrylic, trade name Aron, manufactured by Toagosei Co., Ltd.

(断熱材の製造)
上記のようにして得られた断熱材組成物Aを、160mm×40mm×40mmの成形型に充填し、次いで、110℃で24時間乾燥して、断熱材Bを得た。
(Manufacture of insulation materials)
The heat insulating material composition A obtained as described above was filled in a 160 mm × 40 mm × 40 mm mold and then dried at 110 ° C. for 24 hours to obtain a heat insulating material B.

(断熱材の物性及び性能評価)
(1)断熱材の焼成
断熱材Bを、700℃又は1100℃で焼成し、焼成物を得た。700℃での焼成物を焼成物C、1100℃での焼成物を焼成物Dとする。
(Physical properties and performance evaluation of thermal insulation)
(1) Firing of heat insulating material The heat insulating material B was fired at 700 ° C. or 1100 ° C. to obtain a fired product. The fired product at 700 ° C. is referred to as fired product C, and the fired product at 1100 ° C. is referred to as fired product D.

(2)曲げ強度の測定
試料(該断熱材B、該焼成物C又は該焼成物D)の曲げ強度を、3点曲げ強度試験機を用いて、ヘッドスピード2mm/分の速度で荷重を加え、破断荷重を測定し、次式:
曲げ強度(MPa)={3×最大荷重(N)×下部支持間距離(mm)}/{2×試料の幅(mm)×(試料の厚さ(mm))
により算出した。その結果を、表2及び3に示す。
(2) Measurement of bending strength The bending strength of the sample (the heat insulating material B, the fired product C or the fired product D) was applied with a load at a head speed of 2 mm / min using a 3-point bending strength tester. Measure the breaking load and the following formula:
Bending strength (MPa) = {3 × maximum load (N) × lower support distance (mm)} / {2 × sample width (mm) × (sample thickness (mm)) 2 }
Calculated by The results are shown in Tables 2 and 3.

(3)加熱線変化率の測定
試料(該断熱材B)を、電気炉中700℃で3時間加熱し、加熱後の試料の長さを測定する。加熱線変化率は、加熱前の試料の長さをYmm、加熱後の長さをYmmとし、次式:
加熱線変化率(%)={(Y−Y)/Y}×100
により求めた。その結果を、表2及び3に示す。
(3) Measurement of heating line change rate A sample (this heat insulating material B) is heated at 700 degreeC in an electric furnace for 3 hours, and the length of the sample after a heating is measured. The rate of change of the heating line is Y 1 mm for the length of the sample before heating, Y 2 mm for the length after heating, and the following formula:
Heating line change rate (%) = {(Y 1 −Y 2 ) / Y 1 } × 100
Determined by The results are shown in Tables 2 and 3.

(4)熱膨張係数
JIS R 2207に準拠して、該断熱材Bの熱膨張係数を測定した。その結果を、表2及び3に示す。
(4) Thermal expansion coefficient The thermal expansion coefficient of the heat insulating material B was measured according to JIS R 2207. The results are shown in Tables 2 and 3.

(5)熱伝導率
300℃又は700℃における該断熱材Bの熱伝導率を、JIS R 2618に準拠して測定した。その結果を、表2及び3に示す。
(5) Thermal conductivity The thermal conductivity of the heat insulating material B at 300 ° C or 700 ° C was measured according to JIS R2618. The results are shown in Tables 2 and 3.

(6)耐食性試験
<初期性能の評価>
断熱材組成物Aをルツボの形状に成形し、乾燥後、アルミ合金(ADC12)を入れて、800℃の電気炉内で、12時間溶融保持した。冷却後、ルツボを反転し、凝固したアルミ合金が外れ落ちるか否かを観察した。なお、ルツボを反転してもはずれ落ちない場合は、ハンマーでたたいて強制的にルツボからアルミ合金を剥がした。次いで、はずれ落ちたアルミ合金又は強制的に剥がしたアルミ合金の表面、及びアルミ合金と接触していた部分のルツボの表面を観察した。その結果を、表2及び3に示す。
(6) Corrosion resistance test <Evaluation of initial performance>
The heat insulating material composition A was formed into a crucible shape, dried, and then an aluminum alloy (ADC12) was added and melted and held in an electric furnace at 800 ° C. for 12 hours. After cooling, the crucible was inverted and it was observed whether the solidified aluminum alloy fell off. If the crucible was not reversed and did not fall off, the aluminum alloy was forcibly removed from the crucible with a hammer. Next, the surface of the aluminum alloy that had fallen off or the aluminum alloy that was forcibly removed, and the surface of the crucible that had been in contact with the aluminum alloy were observed. The results are shown in Tables 2 and 3.

<耐久試験>
初期性能の評価試験後のルツボを用いて、(i)該ルツボに、再びアルミ合金(ADC12)を入れて、800℃の電気炉内で、12時間溶融保持し、(ii)冷却後、竹へらを用いてアルミ合金を取り出すという操作((i)及び(ii))を5回繰り返し、耐久試験を行った。その結果を、表4に示す。
<Durability test>
Using the crucible after the initial performance evaluation test, (i) aluminum alloy (ADC12) was put again into the crucible, and melted and held in an electric furnace at 800 ° C. for 12 hours. (Ii) After cooling, The operation of taking out the aluminum alloy with a spatula ((i) and (ii)) was repeated 5 times, and the durability test was performed. The results are shown in Table 4.

Figure 2007270406
Figure 2007270406

Figure 2007270406
Figure 2007270406

Figure 2007270406
Figure 2007270406

本発明によれば、断熱性に優れ、耐食性が高く且つ強度及び耐久性が高い無機繊維質断熱材を製造することができる。   According to the present invention, it is possible to produce an inorganic fibrous heat insulating material that has excellent heat insulating properties, high corrosion resistance, and high strength and durability.

Claims (4)

溶融アルミニウム又はアルミニウム合金の溶湯との接触用途を目的とする断熱材を形成させるために用いられる無機繊維質断熱材組成物であって、無機繊維、窒化珪素粉末、シラノール基を有する無機バインダー及び水を含有することを特徴とする無機繊維質断熱材組成物。   An inorganic fibrous heat insulating material composition used for forming a heat insulating material intended for contact with molten aluminum or molten aluminum alloy, comprising inorganic fibers, silicon nitride powder, an inorganic binder having silanol groups, and water An inorganic fibrous heat insulating material composition comprising: 更に、有機増粘剤を含有することを特徴とする請求項1記載の無機繊維質断熱材組成物。   Furthermore, an organic thickener is contained, The inorganic fibrous heat insulating material composition of Claim 1 characterized by the above-mentioned. 更に、耐熱性粉末を含有することを特徴とする請求項1又は2いずれか1項記載の無機繊維質断熱材組成物。   Furthermore, heat resistant powder is contained, The inorganic fibrous heat insulating material composition of any one of Claim 1 or 2 characterized by the above-mentioned. 請求項1〜3いずれか1項記載の無機繊維質断熱材組成物を乾燥又は焼成して得られることを特徴とする無機繊維質断熱材。   An inorganic fibrous heat insulating material obtained by drying or firing the inorganic fibrous heat insulating material composition according to any one of claims 1 to 3.
JP2006099622A 2006-03-31 2006-03-31 Inorganic fiber heat insulating material composition and inorganic fiber heat insulating material Expired - Fee Related JP4925707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099622A JP4925707B2 (en) 2006-03-31 2006-03-31 Inorganic fiber heat insulating material composition and inorganic fiber heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099622A JP4925707B2 (en) 2006-03-31 2006-03-31 Inorganic fiber heat insulating material composition and inorganic fiber heat insulating material

Publications (2)

Publication Number Publication Date
JP2007270406A true JP2007270406A (en) 2007-10-18
JP4925707B2 JP4925707B2 (en) 2012-05-09

Family

ID=38673494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099622A Expired - Fee Related JP4925707B2 (en) 2006-03-31 2006-03-31 Inorganic fiber heat insulating material composition and inorganic fiber heat insulating material

Country Status (1)

Country Link
JP (1) JP4925707B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2643375C1 (en) * 2016-12-29 2018-02-01 Закрытое акционерное общество "Производственно-коммерческая фирма "НК" Thermal insulating refractory product
JP7492776B2 (en) 2019-05-07 2024-05-30 道夫 加島 High heat resistant materials and composite high heat resistant materials, methods for producing the same, and compositions for high heat resistant materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121945A (en) * 1979-03-06 1980-09-19 Subaankaa Mukaaji Broardly applicable refractory insulating material
JPH0123426B2 (en) * 1983-11-16 1989-05-02 Nichias Corp
JP2001158659A (en) * 1999-09-22 2001-06-12 Nichias Corp Lining material for molten aluminum bath
JP2006272448A (en) * 2005-03-30 2006-10-12 Nichias Corp Intermediate stoke and producing method therefor, and low pressure casting apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121945A (en) * 1979-03-06 1980-09-19 Subaankaa Mukaaji Broardly applicable refractory insulating material
JPH0123426B2 (en) * 1983-11-16 1989-05-02 Nichias Corp
JP2001158659A (en) * 1999-09-22 2001-06-12 Nichias Corp Lining material for molten aluminum bath
JP2006272448A (en) * 2005-03-30 2006-10-12 Nichias Corp Intermediate stoke and producing method therefor, and low pressure casting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2643375C1 (en) * 2016-12-29 2018-02-01 Закрытое акционерное общество "Производственно-коммерческая фирма "НК" Thermal insulating refractory product
JP7492776B2 (en) 2019-05-07 2024-05-30 道夫 加島 High heat resistant materials and composite high heat resistant materials, methods for producing the same, and compositions for high heat resistant materials

Also Published As

Publication number Publication date
JP4925707B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP5656629B2 (en) AZS fire resistant composition
JP5561999B2 (en) Refractory molded body for metal casting, method for producing refractory molded body for metal casting, amorphous refractory composition for metal casting, and molten metal holding member for metal casting
JP4714640B2 (en) Manufacturing method of heat insulating gradient material
JP2008081360A (en) Monolithic refractory molding material and monolithic refractory molded product
JP4234330B2 (en) Amorphous refractory composition
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
JP5361795B2 (en) Lined casting material
JP5509016B2 (en) Lightweight insulation castable
JP4925707B2 (en) Inorganic fiber heat insulating material composition and inorganic fiber heat insulating material
JP2010235342A (en) Monolithic refractory for blast furnace iron spout
CZ20003060A3 (en) Basic, free flowing casting material and shaped parts produced from such material
JP2008143757A (en) Monolithic refractory
JP5465396B2 (en) Low thermal conductivity powder composition for heat insulation castable
JP2874831B2 (en) Refractory for pouring
JP4783660B2 (en) Coating material
JP2008247720A (en) Monolithic refractory forming material and monolithic refractory formed body
JP2002274959A (en) Refractory material for aluminum and aluminum alloy
JP7034981B2 (en) Insulation material, its manufacturing method, and composition
JPH08259340A (en) Magnesia-carbon-based castable refractory
JP4410459B2 (en) Castable refractories for ladle
JP2607963B2 (en) Pouring refractories
JPH10101441A (en) Composition for castable refractory and formation of furnace wall using the same composition
JPH07330450A (en) Flow-in refractory material
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JP2005089247A (en) Slip-cast monolithic refractory containing graphite which forms carbon bond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees