JP2007270325A - Steel plate superior in fine blanking workability, and manufacturing method therefor - Google Patents

Steel plate superior in fine blanking workability, and manufacturing method therefor Download PDF

Info

Publication number
JP2007270325A
JP2007270325A JP2006100794A JP2006100794A JP2007270325A JP 2007270325 A JP2007270325 A JP 2007270325A JP 2006100794 A JP2006100794 A JP 2006100794A JP 2006100794 A JP2006100794 A JP 2006100794A JP 2007270325 A JP2007270325 A JP 2007270325A
Authority
JP
Japan
Prior art keywords
less
ferrite
rolling
workability
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006100794A
Other languages
Japanese (ja)
Other versions
JP5076347B2 (en
Inventor
Fusaaki Kariya
房亮 仮屋
Takeshi Yokota
毅 横田
Nobuyuki Nakamura
展之 中村
Kazuhiro Seto
一洋 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006100794A priority Critical patent/JP5076347B2/en
Priority to PCT/JP2007/051843 priority patent/WO2007116599A1/en
Priority to CN2007800040153A priority patent/CN101379207B/en
Priority to EP07713805A priority patent/EP2003220B1/en
Priority to KR1020087016380A priority patent/KR101024232B1/en
Priority to US12/159,017 priority patent/US20090308504A1/en
Publication of JP2007270325A publication Critical patent/JP2007270325A/en
Application granted granted Critical
Publication of JP5076347B2 publication Critical patent/JP5076347B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/12Dry methods smelting of sulfides or formation of mattes by gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel plate which is superior in FB workability and further in formability after the FB working step, and to provide a manufacturing method. <P>SOLUTION: The steel plate has a composition comprising, by mass%, 0.1-0.5% C, 0.5% or less Si, 0.2-1.5% Mn, and P and S controlled into an appropriate range; and has a structure including ferrite of which the average particle diameter is 10 μm to 20 μm, and carbides in ferrite grains of which the average particle diameter is 0.3 to 1.5 μm. Then, the steel plate acquires superior FB workability and formability (side bending extensibility) after the FB working step, and gives the long life to the die. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車部品等の用途に好適な鋼板に係り、とくに精密打抜き加工(以下、ファインブランキング加工、あるいはFB加工ともいう)を施される使途に好適な、ファインブランキング加工性に優れた鋼板に関する。   The present invention relates to a steel plate suitable for use in automobile parts and the like, and is particularly excellent in fine blanking workability suitable for use in which precision punching (hereinafter also referred to as fine blanking or FB processing) is performed. Related to the steel plate.

複雑な機械部品を製造するうえでは、寸法精度の向上、製造工程の短縮等の観点から、ファインブランキング加工が、切削加工に比べて極めて有利な加工方法であることが知られている。
通常の打抜き加工では、工具間のクリアランスは、被打抜き材である金属板の板厚の5〜10%程度であるが、ファインブランキング加工は、通常の打抜き加工とは異なり、工具間のクリアランスをほぼゼロ(実際は、被打抜き材である金属板の板厚の2%以下程度)と極めて小さく設定すると共に、さらに工具切刃付近の材料に圧縮応力を作用させて打抜く加工方法である。そして、ファインブランキング加工は、
(1)工具切刃からの亀裂発生を抑制して、通常の打抜き加工で見られる破断面がほぼゼロとなり、加工面(打抜き端面)がほぼ100%剪断面の、平滑な加工面が得られる、
(2)寸法精度がよい、
(3)複雑な形状を1工程で打抜ける
などの特徴を有している。しかし、ファインブランキング加工においては、材料(金属板)の受ける加工度は極めて厳しいものとなる。また、ファインブランキング加工では、工具間のクリアランスをほぼゼロとして行うため、金型への負荷が過大となり、金型寿命が短くなるという問題がある。このため、ファインブランキング加工を適用される材料には、優れたファインブランキング加工性を具備するとともに、金型寿命の低下を防止することが要求されてきた。
When manufacturing complex machine parts, it is known that fine blanking is a very advantageous processing method compared to cutting from the viewpoint of improving dimensional accuracy and shortening the manufacturing process.
In normal punching, the clearance between tools is about 5 to 10% of the thickness of the metal plate that is the material to be punched. Unlike normal punching, fine blanking is the clearance between tools. Is set to an extremely small value (actually about 2% or less of the thickness of the metal plate that is the material to be punched), and punching is performed by applying a compressive stress to the material near the tool cutting edge. And fine blanking is
(1) Suppression of cracks from the tool cutting edge is suppressed, the fracture surface seen in normal punching is almost zero, and a smooth machined surface with a machined surface (punched end surface) of almost 100% shear surface is obtained. ,
(2) Good dimensional accuracy,
(3) It has a feature such that a complicated shape can be overcome in one step. However, in the fine blanking process, the degree of processing that the material (metal plate) receives is extremely severe. Further, in the fine blanking process, since the clearance between tools is almost zero, there is a problem that the load on the mold becomes excessive and the mold life is shortened. For this reason, materials to which fine blanking processing is applied have been required to have excellent fine blanking workability and to prevent a decrease in mold life.

このような要望に対し、例えば、特許文献1には、C:0.15〜0.90重量%、Si:0.4重量%以下、Mn:0.3〜1.0重量%を含有する組成と、球状化率80%以上、平均粒径0.4〜1.0μmの炭化物がフェライトマトリックスに分散した組織を有し、切欠き引張伸びが20%以上である、精密打抜き加工性に優れた高炭素鋼板が提案されている。特許文献1に記載された技術によれば、精密打抜き性が改善され、さらに金型寿命も改善されるとしている。しかし、特許文献1に記載された高炭素鋼板は、ファインブランキング加工後の成形加工性が劣るという問題があった。   In response to such a request, for example, Patent Document 1 includes a composition containing C: 0.15 to 0.90 wt%, Si: 0.4 wt% or less, Mn: 0.3 to 1.0 wt%, and a spheroidization rate of 80% or more, A high-carbon steel sheet having a structure in which carbide having an average particle diameter of 0.4 to 1.0 μm is dispersed in a ferrite matrix and having a notch tensile elongation of 20% or more and excellent in precision punching workability has been proposed. According to the technique described in Patent Document 1, the precision punchability is improved, and the die life is also improved. However, the high carbon steel sheet described in Patent Document 1 has a problem that the formability after fine blanking is inferior.

また、特許文献2には、C:0.08〜0.19%、Si、Mn、Alを適正量含有し、Cr:0.05〜0.80%、B:0.0005〜0.005%を含有する鋼片に、適正な熱間圧延を施して鋼板とした、精密打抜き用鋼板が提案されている。特許文献2に記載された鋼板は、降伏強度が低く、かつ衝撃値が高くファインブランキング加工性に優れ、低歪域n値が高く複合成形加工性に優れ、さらに短時間急速加熱焼入性にも優れた鋼板であるとされる。しかし、特許文献2には、ファインブランキング加工性についての具体的な評価は示されていない。また、特許文献2に記載された鋼板は、ファインブランキング加工後の成形加工性が劣るという問題があった。   Patent Document 2 includes C: 0.08 to 0.19%, Si, Mn, and Al in appropriate amounts, Cr: 0.05 to 0.80%, and B: 0.0005 to 0.005%. A steel sheet for precision punching that has been rolled into a steel sheet has been proposed. The steel sheet described in Patent Document 2 has low yield strength, high impact value, excellent fine blanking workability, high low strain area n value, excellent composite forming workability, and quick heat hardenability for a short time. It is said that it is an excellent steel plate. However, Patent Document 2 does not show a specific evaluation for fine blanking workability. Moreover, the steel plate described in Patent Document 2 has a problem that the formability after fine blanking is inferior.

また、特許文献3には、C:0.15〜0.45%を含み、Si、Mn、P、S、Al、N含有量を適正範囲に調整した組成を有し、さらに、パーライト+セメンタイト分率が10%以下、かつフェライト粒の平均粒径が10〜20μmである組織を有する、転造加工やファインブランキング加工における成形性に優れた高炭素鋼板が提案されている。特許文献3に記載された高炭素鋼板では、ファインブランキング加工性に優れ、さらにファインブランキング加工における金型寿命も改善されるとしている。しかし、特許文献3に記載された高炭素鋼板は、ファインブランキング加工後の成形加工性が劣るという問題があった。   Patent Document 3 contains C: 0.15 to 0.45%, has a composition in which the contents of Si, Mn, P, S, Al, and N are adjusted to an appropriate range, and further has a pearlite + cementite fraction of 10 %, And a high carbon steel sheet having a structure in which the average grain size of ferrite grains is 10 to 20 μm and excellent in formability in rolling and fine blanking is proposed. The high-carbon steel sheet described in Patent Document 3 is excellent in fine blanking workability and further improves the mold life in fine blanking work. However, the high carbon steel sheet described in Patent Document 3 has a problem that the formability after fine blanking is inferior.

さらに、特許文献1、特許文献2、特許文献3に記載された鋼板は、いずれも、最近の厳しい加工条件のファインブランキング加工においては、満足できる十分なファインブランキング加工性を具備しているとはいえず、また金型寿命も十分に改善されているわけではないうえ、ファインブランキング加工後の成形加工性が劣るという問題が残されていた。   Furthermore, all of the steel sheets described in Patent Document 1, Patent Document 2, and Patent Document 3 have satisfactory fine blanking workability in fine blanking processing under recent severe processing conditions. However, the mold life has not been improved sufficiently, and the moldability after fine blanking has been poor.

当初、ファインブランキング加工は、ギア部品などでも、ファインブランキング加工後に加工を施されない部品に適用されてきた。しかし、最近では、自動車部品(リクライニング部品など)へのファインブランキング加工の適用が拡大される傾向にあり、ファインブランキング加工後に伸びフランジ加工や張出し加工などを必要とする部品への適用が検討されている。このため、自動車部品として、ファインブランキング加工性に優れるうえ、ファインブランキング加工後の、伸びフランジ加工や張出し加工などの成形加工性にも優れた鋼板が熱望されている。   Initially, fine blanking has been applied to parts that are not processed after fine blanking, such as gear parts. Recently, however, the application of fine blanking to automotive parts (reclining parts, etc.) has been expanding. Considering application to parts that require stretch flange processing or overhanging after fine blanking. Has been. For this reason, as an automobile part, a steel sheet that is excellent in fine blanking workability and excellent in forming workability such as stretch flange processing and overhang processing after fine blanking processing is eagerly desired.

伸びフランジ加工性を改善する技術としては、これまで数多くの提案がなされている。例えば、特許文献4には、C:0.20〜0.33%を含み、Si、Mn、P、S、sol.Al、N含有量を適正範囲に調整し、さらにCr:0.15〜0.7%を含有する組成を有し、パーライトを含んでいてよいフェライト・ベイナイト混合組織を有する、伸びフランジ性にすぐれる耐摩耗用熱延鋼板が提案されている。特許文献4に記載された熱延鋼板では、上記した組織とすることにより、穴拡げ率が高くなり、伸びフランジ性が向上するとしている。また、特許文献5には、C:0.2〜0.7%を含有する組成を有し、炭化物平均粒径が0.1μm以上1.2μm未満、炭化物を含まないフェライト粒の体積率が15%以下である組織を有する伸びフランジ性に優れた高炭素鋼板が提案されている。特許文献5に記載された高炭素鋼板では、打抜き時の端面におけるボイドの発生を抑制し、穴拡げ加工におけるクラックの成長を遅くすることができ、伸びフランジ性が向上するとしている。   Many proposals have been made as techniques for improving stretch flangeability. For example, Patent Document 4 includes C: 0.20 to 0.33%, a composition containing Si, Mn, P, S, sol. Al, and N in an appropriate range, and further containing Cr: 0.15 to 0.7%. There has been proposed a hot-rolled steel sheet for wear resistance that has a mixed structure of ferrite and bainite that may contain pearlite and has excellent stretch flangeability. In the hot-rolled steel sheet described in Patent Document 4, the above-described structure increases the hole expansion rate and improves stretch flangeability. Further, Patent Document 5 has a composition containing C: 0.2 to 0.7%, a structure in which the average particle size of carbide is 0.1 μm or more and less than 1.2 μm, and the volume fraction of ferrite grains not containing carbide is 15% or less. There has been proposed a high carbon steel sheet having excellent stretch flangeability. In the high carbon steel sheet described in Patent Document 5, the generation of voids at the end face during punching can be suppressed, the growth of cracks in the hole expanding process can be slowed, and the stretch flangeability is improved.

また、特許文献6には、C:0.2%以上を含む組成を有し、フェライトおよび炭化物を主体とし、炭化物粒径が0.2μm以下、フェライト粒径が0.5〜1μmである組織を有する打抜き性と焼入れ性に優れた高炭素鋼板が提案されている。これにより、バリ高さと金型寿命とで決定される打抜き性と、焼入れ性がともに向上するとしている。
特開2000-265240号公報 特開昭59-76861号公報 特開2001-140037号公報 特開平9-49065号公報 特開2001-214234号公報 特開平9-316595号公報
Patent Document 6 discloses a punching property having a composition containing C: 0.2% or more, having a structure mainly composed of ferrite and carbide, having a carbide particle size of 0.2 μm or less and a ferrite particle size of 0.5 to 1 μm. A high carbon steel plate excellent in hardenability has been proposed. Thereby, both the punchability determined by the burr height and the mold life and the hardenability are improved.
JP 2000-265240 A JP 59-76861 A Japanese Patent Laid-Open No. 2001-140037 Japanese Unexamined Patent Publication No. 9-49065 JP 2001-214234 A Japanese Patent Laid-Open No. 9-316595

しかしながら、特許文献4、特許文献5に記載された技術はいずれも、従来の打抜き加工を施すことを前提にしたものであり、クリアランスがほぼゼロとなるファインブランキング加工の適用を考慮したものではない。したがって、厳しいファインブランキング加工後に、同様の伸びフランジ性を確保することは難しく、たとえ確保できても金型寿命が短くなるという問題がある。   However, both of the techniques described in Patent Document 4 and Patent Document 5 are based on the premise that the conventional punching process is performed, and the application of the fine blanking process in which the clearance is almost zero is not considered. Absent. Therefore, it is difficult to ensure the same stretch flangeability after severe fine blanking, and there is a problem that the mold life is shortened even if it can be ensured.

また、特許文献6に記載された技術では、フェライト粒径を0.5〜1μmの範囲にする必要があり、このようなフェライト粒径を有する鋼板を安定して工業的に製造することは困難であり、製品歩留の低下に繋がるという問題があった。
本発明は、上記した従来技術の問題に鑑みて成されたものであり、ファインブランキング加工性に優れ、さらにファインブランキング加工後の成形加工性にも優れた鋼板およびその製造方法を提供することを目的とする。
Moreover, in the technique described in Patent Document 6, it is necessary to make the ferrite grain size in the range of 0.5 to 1 μm, and it is difficult to industrially manufacture a steel plate having such a ferrite grain size. There has been a problem that it leads to a decrease in product yield.
The present invention has been made in view of the above-mentioned problems of the prior art, and provides a steel plate excellent in fine blanking workability and further excellent in forming workability after fine blanking and a method for producing the same. For the purpose.

本発明者らは、上記した目的を達成するために、ファインブランキング加工性(以下、FB加工性と略す)に及ぼす金属組織の影響、とくにフェライト、炭化物の形態および分布状態の影響について鋭意研究した。
その結果、FB加工性、FB加工後の成形加工性および金型寿命は、フェライト粒内に存在する炭化物の粒径およびフェライト粒径と密接な関係にあることを見出した。そして、所定範囲の組成を有する鋼素材に、熱間圧延の仕上圧延条件およびその後の冷却を適正条件として、ほぼ100%のパーライト組織を有する熱延鋼板とし、さらに適正条件の熱延板焼鈍を施して、金属組織を、平均フェライト粒径が10μm超20μm未満、フェライト粒内の炭化物の平均粒径を0.3〜1.5μmとした、フェライト+セメンタイト(粒状炭化物)組織とすることにより、FB加工性、金型寿命およびFB加工後の成形加工性(サイドベンド伸び)が顕著に向上することを新たに見出した。
In order to achieve the above-mentioned object, the present inventors have intensively studied the influence of the metal structure on the fine blanking workability (hereinafter abbreviated as FB workability), particularly the influence of the morphology and distribution state of ferrite and carbide. did.
As a result, it was found that the FB workability, the molding workability after FB processing, and the mold life were closely related to the carbide grain size and ferrite grain size present in the ferrite grains. The steel material having a composition in a predetermined range is subjected to hot rolling finish rolling conditions and subsequent cooling as appropriate conditions to obtain a hot rolled steel sheet having a nearly 100% pearlite structure, and further subjected to appropriate conditions of hot rolled sheet annealing. FB workability by making the metal structure a ferrite + cementite (granular carbide) structure with an average ferrite grain size of more than 10 μm and less than 20 μm and an average grain size of carbide in the ferrite grain of 0.3 to 1.5 μm It was newly found that the mold life and the moldability (side bend elongation) after FB processing are remarkably improved.

FB加工では、クリアランスゼロ、圧縮応力状態で材料が加工される。そのため、材料は大きな変形を受け、該変形中に亀裂が発生することがある。亀裂が発生すると打抜き面に破断面が現れる。亀裂発生防止には、炭化物の球状化が重要と言われている。しかし、炭化物が粗大にフェライト粒内に存在する場合には、大変形時に炭化物間でボイドが発生しやすくなり、ボイド成長による亀裂発生が避けられないと考え、フェライト粒内の炭化物径とFB加工性について調査した。また、金型寿命に関しても、フェライト粒内に微細な炭化物が存在すると、工具切刃の摩耗が促進され、金型寿命が低下することになると本発明者らは推察した。さらに、FB加工後に成形加工が施される場合には、FB加工時に発生した亀裂同士が連結して成形加工性の低下をもたらすことになると本発明者らは考えた。   In FB processing, materials are processed with zero clearance and compressive stress. As a result, the material is subject to significant deformation and cracks may occur during the deformation. When a crack occurs, a fracture surface appears on the punched surface. It is said that spheroidization of carbide is important for preventing cracks. However, when carbides are coarsely present in the ferrite grains, voids are likely to be generated between the carbides during large deformation, and crack formation due to void growth is unavoidable. The sex was investigated. Further, regarding the mold life, the present inventors have inferred that the presence of fine carbides in the ferrite grains promotes the wear of the tool cutting edge and decreases the mold life. Furthermore, the present inventors considered that when the forming process is performed after the FB processing, cracks generated during the FB processing are connected to each other to cause a decrease in forming processability.

まず、本発明の基礎となった実験結果について説明する。
質量%で、0.34%C−0.2%Si−0.8%Mnを含有する高炭素鋼スラブ(S35C相当)に、1150℃に加熱後、5パスの粗圧延、7パスの仕上圧延からなる熱間圧延を施し、板厚4.2mmの熱延鋼板とした。なお、熱間圧延の仕上圧延における総圧下率を10〜40%に変化し、圧延終了温度を860℃、巻取温度を600℃とし、仕上圧延後に冷却速度を空冷(5℃/s)〜250℃/sまで変化させて冷却した。なお、空冷以外の冷却(強制冷却)を行った場合の冷却停止温度は650℃とした。ついでこれら熱延鋼板に酸洗を施した後、熱延板焼鈍としてバッチ焼鈍(720℃×40h)を行った。
First, the experimental results on which the present invention is based will be described.
Hot rolling consisting of high-carbon steel slab (corresponding to S35C) containing 0.34% C-0.2% Si-0.8% Mn in mass%, heated to 1150 ° C, and then rough rolling for 5 passes and finish rolling for 7 passes Thus, a hot rolled steel sheet having a thickness of 4.2 mm was obtained. The total rolling reduction in finish rolling of hot rolling is changed to 10 to 40%, the rolling end temperature is 860 ° C., the winding temperature is 600 ° C., and the cooling rate is air cooled (5 ° C./s) after finish rolling. The temperature was changed to 250 ° C./s and cooled. In addition, the cooling stop temperature when performing cooling other than air cooling (forced cooling) was 650 ° C. Then, after pickling these hot-rolled steel sheets, batch annealing (720 ° C. × 40 h) was performed as hot-rolled sheet annealing.

これら熱延板焼鈍を施された鋼板について、まず金属組織を観察した。
金属組織の観察では、得られた鋼板から試験片を採取し、該試験片の圧延方向に平行な断面を研磨し、ナイタール腐食したのち、板厚1/4位置について、走査型電子顕微鏡(SEM)で金属組織を観察し撮像して、フェライト粒径およびフェライト粒内炭化物粒径を測定した。
First, the metal structure of the steel sheet subjected to the hot-rolled sheet annealing was observed.
In the observation of the metal structure, a test piece was taken from the obtained steel plate, the cross section parallel to the rolling direction of the test piece was polished and subjected to nital corrosion. ), The metal structure was observed and imaged, and the ferrite grain size and the ferrite grain size were measured.

フェライト粒径およびフェライト粒内の炭化物粒径は、撮像した組織について、Media Cybernetics社製の画像解析ソフト“Image Pro Plus ver.4.0”を使用して画像解析処理にて定量化した。フェライト粒径は、各フェライト粒についてその面積を測定し、得られた面積から円相当径を求め、おのおのの粒径とした。得られた各フェライト粒径を算術平均し、その値を、その鋼板のフェライト平均粒径とした。   The ferrite grain size and the carbide grain size in the ferrite grain were quantified by image analysis processing using the image analysis software “Image Pro Plus ver. 4.0” manufactured by Media Cybernetics, for the imaged structure. The ferrite grain size was determined by measuring the area of each ferrite grain and determining the equivalent circle diameter from the obtained area. The obtained ferrite grain sizes were arithmetically averaged, and the value was defined as the ferrite average grain size of the steel sheet.

また、撮像した組織において、画像解析によりフェライト粒界上に存在する炭化物とフェライト粒内に存在する炭化物を識別し、フェライト粒内に存在する各炭化物について、炭化物の外周上の2点と炭化物の相当楕円(炭化物と同面積で、かつ一次及び二次モーメントが等しい楕円)の重心を通る径を2°刻みに測定して円相当径を求め、おのおのの炭化物粒径とした。得られた各炭化物粒径を算術平均し、その値を、その鋼板の炭化物平均粒径とした。なお、測定した炭化物の粒数は各3000個とした。   Further, in the imaged structure, the carbides present on the ferrite grain boundaries are distinguished from the carbides present in the ferrite grains by image analysis. For each carbide present in the ferrite grains, two points on the outer periphery of the carbide and the carbide The diameter passing through the center of gravity of an equivalent ellipse (an ellipse having the same area as the carbide and having the same first and second moments) was measured in increments of 2 ° to obtain the equivalent circle diameter, and each carbide particle size was determined. The obtained carbide particle diameters were arithmetically averaged, and the value was defined as the carbide average particle diameter of the steel sheet. The measured number of carbide grains was 3000.

また、得られた鋼板から試験片(大きさ:100×80mm)を採取し、FBテストを実施した。FBテストは、110t油圧プレス機を用いて、試験片から、大きさ:60mm×40mm(コーナー部半径R:10mm)のサンプルを、工具間のクリアランス:0.060mm(板厚の1.5%)、加工力:8.5ton、潤滑:有りの条件で打抜いた。打抜かれたサンプルの端面(打抜き面)について、表面粗さ(十点平均粗さRz)を測定して、FB加工性を評価した。なお、試験片は、クリアランスに対する板厚偏差の影響を除くため、予め両面を等量ずつ研削し、板厚を4.0±0.010mmとした。   In addition, a test piece (size: 100 × 80 mm) was collected from the obtained steel plate, and an FB test was performed. The FB test uses a 110-ton hydraulic press to machine a sample of size: 60 mm x 40 mm (corner radius R: 10 mm) from the test piece, clearance between tools: 0.060 mm (1.5% of the plate thickness), Punched under the conditions of force: 8.5 tons and lubrication. The surface roughness (ten-point average roughness Rz) of the punched sample end face (punched surface) was measured to evaluate the FB workability. In addition, in order to remove the influence of the plate thickness deviation on the clearance, the test piece was ground in equal amounts on both sides in advance to make the plate thickness 4.0 ± 0.010 mm.

表面粗さの測定は、R部を除く4つの端面とし、各端面(板厚面)で、図3に示すように、パンチ側表面0.5mmから板厚方向に3.9mmまでの範囲でかつ表面に平行に(X方向)10mmの領域を、触針式表面粗度計で板厚方向(t方向)に100μmピッチで35回走査し、JIS B 0601-1994に準拠して、各走査線における表面粗さRzを測定した。さらに、測定面の表面粗さRzは、各々の走査線のRzを合計して、その平均値とした。上記と同様の方法で4つの端面を測定して、次式
Rz ave=(Rz 1+ Rz 2+ Rz 3+ Rz 4)/4
(ここで、Rz 1,Rz 2,Rz 3,Rz 4:各面のRz)
で定義される平均表面粗さ:R z ave(μm)を算出した。
The surface roughness is measured on four end faces excluding the R part, and each end face (plate thickness surface) is in the range from 0.5 mm punch side surface to 3.9 mm in the plate thickness direction as shown in FIG. (X direction) 10mm area is scanned 35 times at 100μm pitch in the plate thickness direction (t direction) with a stylus type surface roughness meter, and in accordance with JIS B 0601-1994 The surface roughness Rz was measured. Furthermore, the surface roughness Rz of the measurement surface was obtained by adding the Rz of each scanning line to the average value. Measure the four end faces in the same way as above,
Rz ave = (Rz 1+ Rz 2+ Rz 3+ Rz 4) / 4
(Here, Rz 1, Rz 2, Rz 3, Rz 4: Rz of each surface)
Average surface roughness defined by: R z ave (μm) was calculated.

一般には、打抜き端面における破断面の出現が10%以下の場合を「FB加工性に優れる」とするが、本発明では、平均表面粗さ:Rz aveが、10μm以下と小さくなるほどFB加工性に優れるとした。
また、使用した工具(金型)の寿命を評価した。FB加工における打抜き回数が30000回に達した時点でのサンプル端面(打抜き面)の表面粗さ(十点平均粗さRz)を上記と同様に測定し、金型寿命を評価した。
In general, when the appearance of a fracture surface on the punched end face is 10% or less, it is considered “excellent in FB workability”. However, in the present invention, the smaller the average surface roughness: Rz ave is 10 μm or less, the better the FB workability is. It was excellent.
Moreover, the lifetime of the used tool (mold) was evaluated. The surface roughness (10-point average roughness Rz) of the sample end face (punched surface) when the number of punches in FB processing reached 30000 times was measured in the same manner as described above, and the die life was evaluated.

また、得られた鋼板から、FB加工により試験片(大きさ:40mm×170mm(圧延方向))を打抜き、サイドベンド試験を実施し、FB加工後の加工性(サイドベンド伸び性)を評価した。FB加工は、工具間のクリアランス:0.060mm(板厚の1.5%)、加工力:8.5ton、潤滑:有りの条件で行った。
サイドベンド試験は、長井ら(長井美憲、永井康友:PK技報、N0.6(1995)、p14)の方法に準拠して、試験片の側面(板面)を拘束した状態で、サイドベンド試験を実施し、板厚貫通割れ時の伸びを測定した。伸びを評価する側の試験片端面は、170mm長さ側のFB加工面とした。なお、試験片には、破断時の伸びを評価するための標点を標点間距離50mmでけがき線を記入した。試験数は、各鋼板2枚とし、得られた伸び値の平均値をサイドベンド伸び値とした。
In addition, a test piece (size: 40 mm x 170 mm (rolling direction)) was punched out from the obtained steel sheet by FB processing, a side bend test was performed, and workability after FB processing (side bend elongation) was evaluated. . FB processing was performed under the conditions of clearance between tools: 0.060 mm (1.5% of the plate thickness), processing force: 8.5 tons, and lubrication: with.
The side bend test was conducted in a state where the side surface (plate surface) of the test piece was constrained in accordance with the method of Nagai et al. (Minai Nagai, Yasutomo Nagai: PK Technical Report, N0.6 (1995), p14). The test was carried out and the elongation at the time of sheet thickness through cracking was measured. The end face of the test piece on the side to be evaluated for elongation was the FB processed surface on the 170 mm length side. The test piece was marked with a mark for evaluating the elongation at break with a distance between the marks of 50 mm. The number of tests was two steel plates, and the average value of the obtained elongation values was defined as the side bend elongation value.

熱間圧延の仕上圧延での総圧下率および仕上圧延後の平均冷却速度に応じてフェライト平均粒径およびフェライト粒内の炭化物平均粒径が変化した。得られた結果を図1、図2に示す。
図1は、フェライト平均粒径とサイドベンド伸びとの関係を示す。図1から、フェライト平均粒径が10μm超となると、サイドベンド伸びが45%を超え、非常に良好な値を示し、良好なFB加工後の加工性を示すことがわかる。なお、フェライト平均粒径が20μm以上では、FB加工後のバリが大きくなり、FB加工性が低下した。また、図2はフェライト平均粒径が10μm超20μm未満の場合における、フェライト粒内炭化物平均粒径とFB加工打抜き面の平均表面粗さRz aveの関係を示す。図2から、フェライト粒内炭化物平均粒径が1.5μm以下の場合には、Rz aveが10μm以下と良好なFB加工性を示すことがわかる。なお、フェライト粒内炭化物平均粒径が0.3μm未満の場合、30000回打抜き後の打抜き面の平均表面粗さが10μmを超え、金型寿命が低下した。
The ferrite average grain size and the average carbide grain size in the ferrite grains varied depending on the total rolling reduction in the hot rolling finish rolling and the average cooling rate after the finish rolling. The obtained results are shown in FIGS.
FIG. 1 shows the relationship between the ferrite average grain size and the side bend elongation. As can be seen from FIG. 1, when the average ferrite grain size exceeds 10 μm, the side bend elongation exceeds 45%, indicating a very good value, and showing good workability after FB processing. When the average ferrite grain size was 20 μm or more, burrs after FB processing became large, and FB processability deteriorated. FIG. 2 shows the relationship between the average carbide grain size in the ferrite grains and the average surface roughness Rz ave of the FB processed punched surface when the average ferrite grain diameter is more than 10 μm and less than 20 μm. From FIG. 2, it can be seen that when the average grain size in the ferrite grains is 1.5 μm or less, Rz ave is 10 μm or less, indicating good FB workability. When the average grain size of ferrite grains in the ferrite grains was less than 0.3 μm, the average surface roughness of the punched surface after punching 30000 times exceeded 10 μm, and the mold life decreased.

本発明は、上記した知見に基づき、さらに研究を重ねて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.1〜0.5%、Si:0.5%以下、Mn:0.2〜1.5%、P:0.03%以下、S:0.02%以下を含み、残部Feおよび不可避的不純物からなる組成と、フェライトおよび炭化物を主体とする組織を有し、前記フェライトの平均粒径が10μm超20μm未満、前記炭化物のうち、フェライト粒内に存在する炭化物の平均粒径が0.3〜1.5μmであることを特徴とするファインブランキング加工性に優れた鋼板。
The present invention has been completed based on the above findings and further research. That is, the gist of the present invention is as follows.
(1) A composition comprising, by mass%, C: 0.1 to 0.5%, Si: 0.5% or less, Mn: 0.2 to 1.5%, P: 0.03% or less, S: 0.02% or less, the balance being Fe and inevitable impurities And having a structure mainly composed of ferrite and carbide, the average particle diameter of the ferrite is more than 10 μm and less than 20 μm, and among the carbides, the average particle diameter of the carbide present in the ferrite grains is 0.3 to 1.5 μm. A steel plate with excellent fine blanking workability.

(2)(1)において、前記組成に加えてさらに、質量%で、Al:0.1%以下を含有する組成とすることを特徴とする鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Cr:3.5%以下、Mo:0.7%以下、Ni:3.5%以下、Ti:0.01〜0.1%およびB:0.0005〜0.005%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする鋼板。
(2) In (1), in addition to the said composition, it is set as the composition containing Al: 0.1% or less by the mass% further, The steel plate characterized by the above-mentioned.
(3) In (1) or (2), in addition to the above composition, in addition to mass, Cr: 3.5% or less, Mo: 0.7% or less, Ni: 3.5% or less, Ti: 0.01 to 0.1% and B: A steel sheet comprising a composition containing one or more selected from 0.0005 to 0.005%.

(4)鋼素材を加熱し圧延を施し熱延板とする熱間圧延と、該熱延板に焼鈍を施す熱延板焼鈍と、を順次施す鋼板の製造方法において、前記鋼素材を、質量%で、C:0.1〜0.5%、Si:0.5%以下、Mn:0.2〜1.5%、P:0.03%以下、S:0.02%以下を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱間圧延を、仕上圧延における800〜950℃の温度域の総圧下率を25%以上、仕上圧延の終了温度を800〜950℃とし、該仕上圧延の終了後に、50℃/s以上120℃/s未満の平均冷却速度で冷却し、500〜700℃の範囲の温度で該冷却を停止し、450〜600℃で巻取る処理とし、前記熱延板焼鈍を、焼鈍温度:600〜720℃とする処理とすることを特徴とするファインブランキング加工性に優れた鋼板の製造方法。   (4) In a method for manufacturing a steel sheet, in which hot rolling is performed by heating and rolling a steel material to form a hot-rolled sheet, and hot-rolled sheet annealing for annealing the hot-rolled sheet, the steel material is %, C: 0.1 to 0.5%, Si: 0.5% or less, Mn: 0.2 to 1.5%, P: 0.03% or less, S: 0.02% or less, and a steel material having a composition composed of the balance Fe and inevitable impurities The total rolling reduction in the temperature range of 800 to 950 ° C. in finish rolling is 25% or more, the finish temperature of finish rolling is 800 to 950 ° C., and after the finish rolling is finished, the hot rolling is performed at 50 ° C./s. Cooling at an average cooling rate of 120 ° C./s or less, stopping the cooling at a temperature in the range of 500 to 700 ° C., and winding at 450 to 600 ° C., and annealing the hot-rolled sheet at an annealing temperature of 600 The manufacturing method of the steel plate excellent in the fine blanking workability characterized by setting it as the process set to -720 degreeC.

(5)(4)において、前記組成に加えてさらに、質量%で、Al:0.1%以下を含有する組成とすることを特徴とする鋼板の製造方法。
(6)(4)または(5)において、前記組成に加えてさらに、質量%で、Cr:3.5%以下、Mo:0.7%以下、Ni:3.5%以下、Ti:0.01〜0.1%およびB:0.0005〜0.005%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする鋼板の製造方法。
(5) In (4), in addition to the said composition, it is set as the composition which contains further Al: 0.1% or less by the mass%, The manufacturing method of the steel plate characterized by the above-mentioned.
(6) In (4) or (5), in addition to the above-mentioned composition, in addition to mass, Cr: 3.5% or less, Mo: 0.7% or less, Ni: 3.5% or less, Ti: 0.01 to 0.1% and B: The manufacturing method of the steel plate characterized by setting it as the composition containing 1 type, or 2 or more types chosen from 0.0005-0.005%.

本発明によれば、FB加工性に優れ、しかもFB加工後の加工性(サイドベンド伸び性)にも優れた鋼板を容易にしかも安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、FB加工性に優れた鋼板となり、FB加工後の端面処理を行う必要がなくなり、製造工期の短縮が可能で生産性が向上するとともに、製造コストの削減が可能となるという効果もある。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate which was excellent in FB workability, and was excellent also in the workability (side bend elongation) after FB processing can be manufactured easily and cheaply, and there exists a remarkable industrial effect. In addition, according to the present invention, the steel sheet has excellent FB workability, it is not necessary to perform end face processing after FB processing, the manufacturing period can be shortened, the productivity can be improved, and the manufacturing cost can be reduced. There is also an effect of becoming.

まず、本発明鋼板の組成限定理由について説明する。なお、組成における質量%はとくに断わらないかぎり、単に%と記す。
C:0.1〜0.5%
Cは、熱延焼鈍後および焼入れ後の硬さに影響する元素であり、本発明では0.1%以上の含有を必要とする。Cが0.1%未満では、自動車用部品として要求される硬さを得ることができなくなる。一方、0.5%を超える多量の含有は、鋼板が硬質化するため、工業的に十分な金型寿命が確保できなくなる。このため、Cは0.1〜0.5%の範囲に限定した。
First, the reasons for limiting the composition of the steel sheet of the present invention will be described. The mass% in the composition is simply expressed as% unless otherwise specified.
C: 0.1-0.5%
C is an element that affects the hardness after hot rolling annealing and after quenching, and in the present invention, it is necessary to contain 0.1% or more. If C is less than 0.1%, the hardness required for automobile parts cannot be obtained. On the other hand, if the content exceeds 0.5%, the steel sheet becomes hard, so that an industrially sufficient mold life cannot be secured. For this reason, C was limited to the range of 0.1 to 0.5%.

Si:0.5%以下
Siは、脱酸剤として作用するとともに、固溶強化により強度(硬さ)を増加させる元素であるが、0.5%を超えて多量に含有するとフェライトが硬質化し、FB加工性を低下させる。また0.5%を超えてSiを含有すると、熱延段階で赤スケールと呼ばれる表面欠陥を生じる。このため、Siは0.5%以下に限定した。なお、好ましくは0.35%以下である。
Si: 0.5% or less
Si is an element that acts as a deoxidizer and increases the strength (hardness) by solid solution strengthening, but if it is contained in a large amount exceeding 0.5%, the ferrite becomes hard and the FB workability is lowered. If Si is contained in excess of 0.5%, a surface defect called red scale occurs at the hot rolling stage. For this reason, Si was limited to 0.5% or less. In addition, Preferably it is 0.35% or less.

Mn:0.2〜1.5%
Mnは、固溶強化により鋼の強度を増加するとともに、焼入れ性向上に有効に作用する元素である。このような効果を得るためには、0.2%以上含有することが望ましいが、1.5%を超えて過剰に含有すると、固溶強化が強くなりすぎてフェライトが硬質化し、FB加工性が低下する。このため、Mnは0.2〜1.5%の範囲に限定した。なお、好ましくは、0.2〜1.0%、より好ましくは0.6〜0.9%である。
Mn: 0.2-1.5%
Mn is an element that effectively increases the strength of the steel by solid solution strengthening and effectively improves the hardenability. In order to obtain such an effect, it is desirable to contain 0.2% or more. However, if it exceeds 1.5%, the solid solution strengthening becomes too strong, the ferrite becomes hard, and the FB workability decreases. For this reason, Mn was limited to the range of 0.2 to 1.5%. In addition, Preferably, it is 0.2 to 1.0%, More preferably, it is 0.6 to 0.9%.

P:0.03%以下
Pは、粒界等に偏析し加工性を低下させるため、本発明では極力低減することが望ましいが、0.03%までは許容できる。このようなことから、Pは0.03%以下に限定した。なお、好ましくは0.02%以下である。
S:0.02%以下
Sは、鋼中ではMnSなどの硫化物を形成して介在物として存在し、FB加工性を低下させる元素であり、極力低減することが望ましいが、0.02%までは許容できる。このようなことから、Sは0.02%以下に限定した。なお、好ましくは0.01%以下である。
P: 0.03% or less P is segregated at grain boundaries and reduces workability. Therefore, in the present invention, it is desirable to reduce it as much as possible, but 0.03% is acceptable. For these reasons, P is limited to 0.03% or less. In addition, Preferably it is 0.02% or less.
S: 0.02% or less S is an element that forms sulfides such as MnS in steels as inclusions and lowers FB workability. It is desirable to reduce it as much as possible, but it is acceptable up to 0.02%. . For these reasons, S is limited to 0.02% or less. In addition, Preferably it is 0.01% or less.

上記した成分が基本組成であるが、本発明では上記した基本組成に加えて、Al、および/または、Cr、Mo、Ni、TiおよびBのうちから選ばれた1種または2種以上を含有できる。
Al:0.1%以下
Alは、脱酸剤として作用するとともに、Nと結合してAlNを形成し、オーステナイト粒の粗大化防止に寄与する元素である。Bとともに含有する場合には、Nを固定し、焼入れ性向上に有効なB量の低減を防止する効果も有する。このような効果は0.02%以上の含有で顕著となるが、0.1%を超える含有は、鋼の清浄度を低下させる。このため、含有する場合には、Alは0.1%以下に限定することが好ましい。なお、不可避的不純物としてのAlは0.01%以下である。
In the present invention, in addition to the above basic composition, one or more selected from Al, and / or Cr, Mo, Ni, Ti and B is contained in the present invention. it can.
Al: 0.1% or less
Al is an element that acts as a deoxidizer and combines with N to form AlN, thereby contributing to prevention of austenite grain coarsening. When it is contained together with B, it also has an effect of fixing N and preventing a reduction in the amount of B effective for improving hardenability. Such an effect becomes remarkable when the content is 0.02% or more, but the content exceeding 0.1% lowers the cleanliness of the steel. For this reason, when it contains, it is preferable to limit Al to 0.1% or less. In addition, Al as an inevitable impurity is 0.01% or less.

Cr、Mo、Ni、Ti、Bはいずれも、焼入れ性の向上、あるいはさらに焼戻軟化抵抗の向上に寄与する元素であり、必要に応じて選択して含有できる。
Cr:3.5%以下
Crは、焼入れ性の向上に有効な元素であり、このような効果を得るためは0.1%以上含有することが好ましいが、3.5%を超える含有は、FB加工性が低下するとともに、焼戻軟化抵抗の過度の増大を招く。このため、Crは含有する場合には3.5%以下に限定することが好ましい。なお、より好ましくは0.2〜1.5%である。
Cr, Mo, Ni, Ti, and B are all elements that contribute to improving hardenability or further improving temper softening resistance, and can be selected and contained as necessary.
Cr: 3.5% or less
Cr is an element effective for improving hardenability. To obtain such an effect, it is preferable to contain 0.1% or more. However, if it exceeds 3.5%, FB workability deteriorates and temper softening occurs. This causes an excessive increase in resistance. For this reason, when Cr is contained, it is preferably limited to 3.5% or less. More preferably, it is 0.2 to 1.5%.

Mo:0.7%以下
Moは、焼入れ性の向上に有効に作用する元素であり、このような効果を得るためには0.05%以上含有することが好ましいが、0.7%を超える含有は鋼の硬質化を招き、FB加工性が低下する。このため、Moは含有する場合には0.7%以下に限定することが好ましい。なお、より好ましくは0.1〜0.3%である。
Mo: 0.7% or less
Mo is an element that effectively works to improve hardenability. In order to obtain such an effect, it is preferable to contain 0.05% or more. However, if it exceeds 0.7%, the steel is hardened and FB processing is performed. Sexuality decreases. For this reason, when it contains Mo, it is preferable to limit to 0.7% or less. More preferably, it is 0.1 to 0.3%.

Ni:3.5%以下、
Niは、焼入れ性を向上させる元素であり、このような効果を得るためには0.1%以上含有することが好ましいが、3.5%を超える含有は鋼の硬質化を招き、FB加工性が低下する。このため、Niは含有する場合には3.5%以下に限定することが好ましい。なお、より好ましくは0.1〜2.0%である。
Ni: 3.5% or less,
Ni is an element that improves hardenability. In order to obtain such an effect, Ni is preferably contained in an amount of 0.1% or more. However, if it exceeds 3.5%, the steel becomes hard and the FB workability decreases. . For this reason, when it contains Ni, it is preferable to limit to 3.5% or less. In addition, More preferably, it is 0.1 to 2.0%.

Ti:0.01〜0.1%
Tiは、Nと結合しTiNを形成しやすく、焼入れ時のγ粒の粗大化防止に有効に作用する元素である。また、Bとともに含有する場合にはBNを形成するNを低減するため、焼入れ性向上に必要なBの添加量を少なくすることができるという効果も有する。このような効果を得るためには0.01%以上の含有を必要とする。一方、0.1%を超える含有は、TiCなどの析出によりフェライトが析出強化されて硬質化し、金型寿命の低下を招く。このため、含有する場合には、Tiは0.01〜0.1%の範囲に限定することが好ましい。なお、より好ましくは0.015〜0.08%である。
Ti: 0.01-0.1%
Ti is an element that easily binds to N to form TiN and effectively acts to prevent coarsening of γ grains during quenching. Further, when it is contained together with B, N forming BN is reduced, so that the addition amount of B necessary for improving the hardenability can be reduced. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, if the content exceeds 0.1%, ferrite is precipitated and strengthened by precipitation of TiC or the like, resulting in a hardened mold life. For this reason, when it contains, it is preferable to limit Ti to the range of 0.01 to 0.1%. In addition, More preferably, it is 0.015 to 0.08%.

B:0.0005〜0.005%
Bは、オーステナイト粒界に偏析し、微量で焼入れ性を改善させる元素であり、特にTiと複合添加した場合に効果的である。焼入れ性改善のためには、0.0005%以上の含有を必要とする。一方、0.005%を超えて含有しても、その効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、含有する場合には、Bは0.0005〜0.005%の範囲に限定することが好ましい。なお、より好ましくは0.0008〜0.004%である。
B: 0.0005-0.005%
B is an element that segregates at the austenite grain boundaries and improves the hardenability in a small amount, and is particularly effective when combined with Ti. In order to improve hardenability, a content of 0.0005% or more is required. On the other hand, even if the content exceeds 0.005%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, when it contains, it is preferable to limit B to 0.0005 to 0.005% of range. In addition, More preferably, it is 0.0008 to 0.004%.

上記した成分以外の残部はFeおよび不可避的不純物である。なお、不可避的不純物としては、例えば、N:0.01%以下、O:0.01%以下、Cu:0.1%以下が許容できる。
次に、本発明鋼板の組織限定理由について説明する。
本発明鋼板は、フェライトおよび炭化物を主体とする組織を有する。フェライトおよび炭化物を主体とする組織とは、フェライトと炭化物とで体積率で95%以上となる組織をいうものとする。すなわち、本発明鋼板は、ほぼフェライトおよび炭化物からなる組成を有するが、フェライト、炭化物以外の相を体積率で5%程度まで許容することができる。
The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include N: 0.01% or less, O: 0.01% or less, and Cu: 0.1% or less, for example.
Next, the reason for limiting the structure of the steel sheet of the present invention will be described.
The steel sheet of the present invention has a structure mainly composed of ferrite and carbide. The structure mainly composed of ferrite and carbide is a structure in which the volume ratio of ferrite and carbide is 95% or more. In other words, the steel sheet of the present invention has a composition consisting essentially of ferrite and carbide, but can tolerate phases other than ferrite and carbide up to about 5% by volume.

本発明の鋼板では、フェライトの粒径は、平均粒径で10μm超20μm未満とする。フェライトの平均粒径が10μm以下では、図1に示すように、FB加工後のサイドベンド伸びが低下する。この理由は明らかでないが、本発明者らが推察するに、フェライト平均粒径が10μm以下と小さくなると、フェライト粒界では拡散速度が速く、フェライト粒界に存在する炭化物の平均粒径が大きくなりやすいため、FB加工時の大変形によりフェライト粒界上の炭化物間でボイドが発生、成長し亀裂が発生しやすく、該亀裂が、FB加工後の成形加工時に進展、合体し、FB加工後のサイドベンド伸びが低下したものと考えられる。一方、フェライト平均粒径が20μm以上では、軟質化して金型寿命は向上するものの、加工後のバリ高さが著しく増大する。このため、フェライトの平均粒径は10μm超20μm未満に限定した。なお、好ましくは12〜18μmである。   In the steel sheet of the present invention, the average particle size of ferrite is more than 10 μm and less than 20 μm. When the average grain size of ferrite is 10 μm or less, as shown in FIG. 1, the side bend elongation after FB processing decreases. The reason for this is not clear, but the present inventors have inferred that when the average ferrite grain size is reduced to 10 μm or less, the diffusion rate is fast at the ferrite grain boundary, and the average grain size of carbides present at the ferrite grain boundary increases. Therefore, voids are likely to occur between the carbides on the ferrite grain boundaries due to large deformation during FB processing, and cracks are likely to occur.The cracks propagate and coalesce during molding after FB processing. It is thought that the side bend elongation decreased. On the other hand, if the ferrite average particle size is 20 μm or more, the burr height after processing is remarkably increased, although the softening is achieved and the mold life is improved. For this reason, the average grain size of ferrite is limited to more than 10 μm and less than 20 μm. In addition, Preferably it is 12-18 micrometers.

また、本発明鋼板では、炭化物のうち、フェライト粒内の炭化物の平均粒径は0.3〜1.5μmの範囲とする。フェライト粒内に存在する炭化物の平均粒径が0.3μm未満では、鋼板が硬質化し、金型寿命が低下する。一方、1.5μmを超えて粗大化すると、図2に示すようにFB加工時の大変形により炭化物間にボイドが発生、成長して亀裂となり、破断面が発生し加工面(打抜き面)の粗さが増大し、FB加工性が低下する。このため、フェライト粒内の炭化物の平均粒径は0.3〜1.5μmの範囲に限定した。   Moreover, in this invention steel plate, the average particle diameter of the carbide | carbonized_material in a ferrite grain is made into the range of 0.3-1.5 micrometers among carbide | carbonized_materials. If the average particle size of the carbides present in the ferrite grains is less than 0.3 μm, the steel plate becomes hard and the mold life is shortened. On the other hand, when the grain size is increased beyond 1.5 μm, voids are generated between the carbides due to large deformation during FB processing, as shown in Fig. 2, grows into cracks, generates a fracture surface, and roughs the machined surface (punched surface). Increases FB workability. For this reason, the average particle size of the carbides in the ferrite grains is limited to a range of 0.3 to 1.5 μm.

つぎに、本発明鋼板の好ましい製造方法について説明する。
上記した組成を有する溶鋼を、転炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法で鋼素材(スラブ)とすることが好ましい。
ついで、得られた鋼素材には、鋼素材を加熱し圧延して熱延板とする熱間圧延を施す。
熱間圧延は、仕上圧延における800〜950℃の温度域の総圧下率を25%以上、仕上圧延の終了温度を800〜950℃とし、該仕上圧延の終了後に、50℃/s以上120℃/s未満の平均冷却速度で冷却し、500〜700℃の範囲の温度で該冷却を停止し、450〜600℃で巻取る処理とする。
Below, the preferable manufacturing method of this invention steel plate is demonstrated.
It is preferable to melt the molten steel having the above-described composition by a conventional melting method such as a converter and to obtain a steel material (slab) by a conventional casting method such as a continuous casting method.
Subsequently, the obtained steel material is hot-rolled by heating and rolling the steel material to form a hot-rolled sheet.
In hot rolling, the total rolling reduction in the temperature range of 800 to 950 ° C. in finish rolling is 25% or more, the finish temperature of finish rolling is 800 to 950 ° C., and after the finish rolling is finished, 50 ° C./s or more and 120 ° C. Cooling is performed at an average cooling rate of less than / s, the cooling is stopped at a temperature in the range of 500 to 700 ° C., and winding is performed at 450 to 600 ° C.

本発明における熱間圧延では、仕上圧延の終了温度と、その後の冷却条件を調整することにより、ほぼ100%のパーライト組織を有する熱延鋼板が得られる。またさらに、本発明における熱間圧延では、仕上圧延における800〜950℃の温度域の総圧下率を25%以上とすることにより、適正な熱延板焼鈍後に、フェライトの平均粒径が10μm超20μm未満である組織が得られる。   In the hot rolling in the present invention, a hot rolled steel sheet having a pearlite structure of almost 100% can be obtained by adjusting the finishing temperature of finish rolling and the subsequent cooling conditions. Furthermore, in the hot rolling in the present invention, the average grain size of ferrite exceeds 10 μm after proper hot-rolled sheet annealing by setting the total rolling reduction in the temperature range of 800 to 950 ° C. in finish rolling to 25% or more. A tissue that is less than 20 μm is obtained.

仕上圧延における800〜950℃の温度域の総圧下率:25%以上
熱間圧延の仕上圧延において、圧下率を大きくすることにより、オーステナイト粒径が小さくなり、それに伴って変態後のパーライト粒径が微細となり、熱延板焼鈍において、微細なパーライトが有する高い粒界エネルギーを駆動力として、フェライト粒の成長が促進される。
Total rolling reduction in the temperature range of 800 to 950 ° C in finish rolling: 25% or more In finishing rolling in hot rolling, the austenite grain size is reduced by increasing the rolling reduction, and accordingly the pearlite grain size after transformation In the hot-rolled sheet annealing, the growth of ferrite grains is promoted by using the high grain boundary energy of fine pearlite as a driving force.

ここで、特に950℃を超える高温では、再結晶によりオーステナイト粒径が大きくなりやすくなるため、950℃以下の温度域での圧下の影響が大きい。
パーライトは、熱延板焼鈍により、ポリゴナルフェライトと球状セメンタイトに変化する。この熱延板焼鈍により生成するフェライトの平均粒径を10μm超20μm未満とするには、仕上圧延における800〜950℃の温度域の総圧下率を、通常行われる圧延より大きな圧下率である、25%以上とする。800〜950℃の温度域の総圧下率が25%未満では、圧下率が不足し、フェライト粒径を所望の範囲とすることが困難となる。なお、総圧下率の上限は圧延負荷の観点から35%以下とすることが好ましい。なお、より好ましくは25〜33%である。
Here, especially at a high temperature exceeding 950 ° C., the austenite grain size tends to increase due to recrystallization, and therefore the influence of the reduction in the temperature range of 950 ° C. or less is large.
Pearlite changes into polygonal ferrite and spherical cementite by hot-rolled sheet annealing. In order to make the average grain size of the ferrite produced by this hot-rolled sheet annealing more than 10 μm and less than 20 μm, the total rolling reduction in the temperature range of 800 to 950 ° C. in the finish rolling is a rolling reduction larger than that in the usual rolling. 25% or more. When the total rolling reduction in the temperature range of 800 to 950 ° C. is less than 25%, the rolling reduction is insufficient, and it becomes difficult to make the ferrite grain size within a desired range. The upper limit of the total rolling reduction is preferably 35% or less from the viewpoint of rolling load. In addition, More preferably, it is 25 to 33%.

仕上圧延の終了温度:800〜950℃
仕上圧延の終了温度が950℃を超えて高くなると、発生するスケールが厚くなり酸洗性が低下するうえ、鋼板表層で脱炭層を生じる場合があり、フェライト粒径が粗大になりやすい。一方、仕上圧延の終了温度が800℃未満では、圧延負荷の増大が著しくなり、圧延機への過大な負荷が問題となる。このため、仕上圧延の終了温度は800〜950℃の範囲内の温度とすることが好ましい。
Finishing rolling finish temperature: 800 ~ 950 ℃
If the finishing temperature of finish rolling exceeds 950 ° C., the generated scale becomes thick and the pickling property decreases, and a decarburized layer may be formed on the steel sheet surface layer, and the ferrite grain size tends to be coarse. On the other hand, when the finishing temperature of finish rolling is less than 800 ° C., the increase in rolling load becomes significant, and an excessive load on the rolling mill becomes a problem. For this reason, it is preferable to make the finish temperature of finish rolling into the temperature within the range of 800-950 degreeC.

仕上圧延終了後の平均冷却速度:50℃/s以上120℃/s未満
仕上圧延終了後、50℃/s以上の平均冷却速度で冷却する。なお、該平均冷却速度は仕上圧延の終了温度から該冷却(強制冷却)の停止温度までの平均冷却速度である。平均冷却速度が50℃/s未満では、冷却中に炭化物を含まないフェライトを生じ、冷却後の組織がフェライト+パーライトの不均一な組織となり、ほぼ100%のパーライトからなる均一な組織を確保できなくなる。熱延板組織がフェライト+パーライトの不均一な組織では、炭化物の分布も不均一となり、その後の熱延板焼鈍をいかに工夫しても、粒内に存在する炭化物が粗大となりやすいため、仕上圧延終了後の平均冷却速度を50℃/s以上に限定することが好ましい。なお、仕上圧延終了後の平均冷却速度は120℃/s未満とすることが、ベイナイトの生成を防止する観点から好ましい。平均冷却速度が120℃/s以上となると、鋼板表層部と板厚中央部で組織が異なりやすく、熱延板焼鈍後に表層部と板厚中央部とで変形能が異なるため、金型寿命、FB加工性、FB加工後の成形加工性が低下しやすくなる。このため、仕上圧延終了後の平均冷却速度は50℃/s以上120℃/s未満とすることが好ましい。
Average cooling rate after finishing rolling: 50 ° C / s or more and less than 120 ° C / s After finishing rolling, cooling is performed at an average cooling rate of 50 ° C / s or more. The average cooling rate is an average cooling rate from the finish rolling finish temperature to the cooling (forced cooling) stop temperature. When the average cooling rate is less than 50 ° C / s, ferrite that does not contain carbides is generated during cooling, and the structure after cooling becomes a non-uniform structure of ferrite + pearlite, ensuring a uniform structure consisting of almost 100% pearlite. Disappear. If the hot rolled sheet structure is non-uniform ferrite + pearlite, the distribution of carbides will be non-uniform, and no matter how the subsequent hot rolled sheet annealing is done, the carbides present in the grains tend to be coarse, so finish rolling. It is preferable to limit the average cooling rate after completion to 50 ° C./s or more. The average cooling rate after finishing rolling is preferably less than 120 ° C./s from the viewpoint of preventing the formation of bainite. When the average cooling rate is 120 ° C / s or more, the structure tends to be different between the steel sheet surface layer part and the sheet thickness center part, and after hot-rolled sheet annealing, the deformability is different between the surface layer part and the sheet thickness center part. FB processability and molding processability after FB processing are likely to deteriorate. For this reason, the average cooling rate after finishing rolling is preferably set to 50 ° C./s or more and less than 120 ° C./s.

冷却停止温度:500〜700℃
上記冷却(強制冷却)を停止する温度は500〜700℃とすることが好ましい。冷却停止温度が500℃未満では、硬質なベイナイトやマルテンサイトを生じて熱延板焼鈍が長時間となるという問題や、巻取時に割れを生じるなど操業上の問題を生じる。一方、冷却停止温度が700℃を超えて高温となると、フェライト変態ノーズが700℃近傍であるため、冷却停止後の放冷中にフェライトを生じ、ほぼ100%のパーライトからなる均一な組織を確保できなくなる。このようなことから、冷却の停止温度は、500〜700℃の範囲内の温度に限定することが好ましい。なお、より好ましくは500〜650℃、さらに好ましくは500〜600℃である。
Cooling stop temperature: 500-700 ° C
The temperature at which the cooling (forced cooling) is stopped is preferably 500 to 700 ° C. When the cooling stop temperature is less than 500 ° C., problems such as hard bainite and martensite are generated and hot-rolled sheet annealing takes a long time, and operational problems such as cracking during winding occur. On the other hand, when the cooling stop temperature exceeds 700 ° C, the ferrite transformation nose is around 700 ° C, so ferrite is generated during cooling after the cooling stop, ensuring a uniform structure consisting of almost 100% pearlite. become unable. For this reason, the cooling stop temperature is preferably limited to a temperature within the range of 500 to 700 ° C. In addition, More preferably, it is 500-650 degreeC, More preferably, it is 500-600 degreeC.

冷却を停止したのち、熱延板は直ちにコイル状に巻取られる。
巻取り温度:450〜600℃
巻取り温度が450℃未満では、巻取り時に鋼板に割れが発生し、操業上問題となる。一方、巻取り温度が600℃を超えると、巻取り中にフェライトが生成するという問題がある。なお、好ましくは500〜600℃である。
このようにして得た熱延板(熱延鋼板)は、ついで、酸洗またはショットブラストなどにより表面の酸化スケールを除去された後、焼鈍温度:600〜720℃とする熱延板焼鈍を施される。ほぼ100%のパーライト組織を有する熱延板に適正な熱延板焼鈍を施すことにより、炭化物の球状化が促進され、フェライト粒径を所望の範囲に調整されるとともに、フェライト粒内の炭化物粒径を所定の範囲に調整することができるようになる。
After the cooling is stopped, the hot rolled plate is immediately wound into a coil.
Winding temperature: 450-600 ° C
When the coiling temperature is less than 450 ° C., cracks occur in the steel sheet during coiling, which causes operational problems. On the other hand, when the winding temperature exceeds 600 ° C., there is a problem that ferrite is generated during winding. In addition, Preferably it is 500-600 degreeC.
The hot-rolled steel sheet (hot-rolled steel sheet) thus obtained is then subjected to hot-rolled sheet annealing at an annealing temperature of 600 to 720 ° C. after the surface oxide scale is removed by pickling or shot blasting. Is done. By subjecting a hot-rolled sheet having a pearlite structure of almost 100% to appropriate hot-rolled sheet annealing, the spheroidization of the carbide is promoted and the ferrite grain size is adjusted to a desired range, and the carbide grains in the ferrite grain The diameter can be adjusted to a predetermined range.

熱延板焼鈍の焼鈍温度:600〜720℃
焼鈍温度が600℃未満では、フェライト粒内の炭化物の平均粒径が0.3μm未満となる。一方、720℃を超えて高温となると、フェライト粒内の炭化物の平均粒径が1.5μmを超え、FB加工性が低下する。なお、熱延板焼鈍の保持時間はとくに限定する必要はないが、炭化物粒径を所望の範囲内に調整するためには、8h以上とすることが好ましい。また、80hを超えるとフェライト粒が過度に粗大化し、フェライト粒内炭化物平均粒径が1.5μmを超える恐れがあるため、80h以下とすることが好ましい。
Annealing temperature of hot-rolled sheet annealing: 600 ~ 720 ℃
When the annealing temperature is less than 600 ° C., the average particle size of the carbide in the ferrite grains is less than 0.3 μm. On the other hand, when the temperature is higher than 720 ° C., the average particle size of the carbide in the ferrite grains exceeds 1.5 μm, and the FB workability is lowered. The holding time for hot-rolled sheet annealing is not particularly limited, but is preferably 8 hours or longer in order to adjust the carbide particle size within a desired range. Further, if it exceeds 80 h, the ferrite grains become excessively coarse, and the average grain size of the ferrite grains in the ferrite grains may exceed 1.5 μm.

表1に示す組成を有する鋼素材(スラブ)を出発素材とした。これら鋼素材を、表2に示す加熱温度に加熱したのち、表2に示す熱間圧延条件により板厚4.2mmの熱延板とした。熱間圧延条件として、仕上圧延における800℃〜950℃の温度域における総圧下率、仕上圧延の圧延終了温度、仕上圧延終了後の冷却における平均冷却速度、冷却停止温度および巻取り温度を変化させた。   A steel material (slab) having the composition shown in Table 1 was used as a starting material. These steel materials were heated to the heating temperatures shown in Table 2, and then hot rolled sheets having a thickness of 4.2 mm were formed under the hot rolling conditions shown in Table 2. As hot rolling conditions, the total rolling reduction in the temperature range of 800 ° C. to 950 ° C. in finish rolling, the rolling end temperature of finish rolling, the average cooling rate in cooling after finishing rolling, the cooling stop temperature, and the winding temperature are changed. It was.

これら熱延板に、ついで、バッチ焼鈍、および酸洗処理を施した。得られた鋼板について、組織観察、FB加工性、FB加工後の加工性(サイドベンド伸び性)について、評価した。試験方法は次のとおりである。
(1)組織観察
得られた鋼板から組織観察用試験片を採取した。そして、試験片の圧延方向に平行な断面を研磨し、ナイタール腐食したのち、板厚1/4位置について、走査型電子顕微鏡(SEM)(倍率、フェライト:1000倍、炭化物:3000倍)で金属組織を観察(視野数:30個所)し、Media Cybernetics社製の画像解析ソフト“Image Pro Plus ver.4.0”を使用して画像解析処理にて、フェライトおよび炭化物の体積率、フェライト粒径、フェライト粒内炭化物粒径を測定した。
These hot-rolled sheets were then subjected to batch annealing and pickling treatment. The obtained steel sheet was evaluated for structure observation, FB workability, and workability after FB processing (side bend elongation). The test method is as follows.
(1) Structure observation A specimen for structure observation was collected from the obtained steel sheet. Then, after polishing the cross section parallel to the rolling direction of the test piece and corroding the nital, metal with a scanning electron microscope (SEM) (magnification, ferrite: 1000 times, carbide: 3000 times) at the 1/4 thickness position Observe the structure (number of fields of view: 30 places) and use image analysis software “Image Pro Plus ver.4.0” manufactured by Media Cybernetics to analyze the volume fraction of ferrite and carbide, ferrite grain size, ferrite Intragranular carbide particle size was measured.

フェライトおよび炭化物の体積率は、SEM(倍率:3000倍)で金属組織を観察(視野数:30個所)し、炭化物を除いたフェライトの面積と炭化物の面積を合算した面積を、全視野面積で除して面積率を求め、これをフェライトおよび炭化物の体積率として判断した。
フェライト粒径は、各フェライト粒についてその面積を測定し、得られた面積から円相当径を求め、おのおのの粒径とした。得られた各フェライト粒径を算術平均し、その値を、その鋼板のフェライト平均粒径とした。なお、測定した面積率は各500個とした。
The volume ratio of ferrite and carbide was determined by observing the metal structure with SEM (magnification: 3000 times) (number of fields: 30), and adding the area of ferrite and carbide area excluding carbide to the total field of view. The area ratio was calculated by dividing the volume ratio of ferrite and carbide.
The ferrite grain size was determined by measuring the area of each ferrite grain and determining the equivalent circle diameter from the obtained area. The obtained ferrite grain sizes were arithmetically averaged, and the value was defined as the ferrite average grain size of the steel sheet. The measured area ratio was 500 pieces each.

フェライト粒内炭化物の粒径は、金属組織観察(倍率:3000倍)の各視野(視野数:30個所)で、画像解析により、フェライト粒内に存在する炭化物を識別し、フェライト粒内に存在する各炭化物について、炭化物の外周上の2点と炭化物の相当楕円(炭化物と同面積、かつ一次及び二次モーメントが等しい楕円)の重心を通る径を2°刻みに測定し円相当径を求め、これを各々の炭化物粒径とし、得られた炭化物粒径を平均した値をフェライト粒内炭化物の平均粒径とした。なお、測定した炭化物の粒数は各3000個とした。   The grain size of the carbide in the ferrite grain is identified in each field of view (number of fields: 30) in the metal structure observation (magnification: 3000 times), and the carbide present in the ferrite grain is identified by image analysis and present in the ferrite grain. For each carbide to be measured, measure the diameter passing through the center of gravity of the two points on the outer circumference of the carbide and the equivalent ellipse of the carbide (the ellipse with the same area and the same primary and secondary moment as the carbide) in 2 ° increments to obtain the equivalent circle diameter These were used as the respective carbide particle diameters, and the average value of the obtained carbide particle diameters was taken as the average particle diameter of the ferrite grains. The measured number of carbide grains was 3000.

(2)FB加工性
得られた鋼板から試験片(大きさ:100×80mm)を採取し、FBテストを実施した。FBテストは、110t油圧プレス機を用いて、試験片から、大きさ:60mm×40mm(コーナー部半径R:10mm)のサンプルを、工具間のクリアランス:0.060mm(板厚の1.5%)、加工力:8.5ton、潤滑:有りの条件で打抜いた。打抜かれたサンプルの端面(打抜き面)について、表面粗さ(十点平均粗さRz)を測定して、FB加工性を評価した。なお、試験片は、クリアランスに対する板厚偏差の影響を除くため、予め両面を等量ずつ研削し、板厚を4.0±0.010mmとした。
(2) FB workability A test piece (size: 100 × 80 mm) was collected from the obtained steel sheet and subjected to FB test. The FB test uses a 110-ton hydraulic press to machine a sample of size: 60 mm x 40 mm (corner radius R: 10 mm) from the test piece, clearance between tools: 0.060 mm (1.5% of the plate thickness), Punched under the conditions of force: 8.5 tons and lubrication. The surface roughness (ten-point average roughness Rz) of the punched sample end face (punched surface) was measured to evaluate the FB workability. In addition, in order to remove the influence of the plate thickness deviation on the clearance, the test piece was ground in equal amounts on both sides in advance to make the plate thickness 4.0 ± 0.010 mm.

表面粗さの測定は、R部を除く4つの端面とし、各端面(板厚面)で、図3に示すように、パンチ側表面0.5mmから板厚方向に3.9mmまでの範囲でかつ表面に平行に(X方向)10mmの領域を、触針式表面粗度計で板厚方向(t方向)に100μmピッチで35回走査し、JIS B 0601-1994に準拠して、各走査線における表面粗さRzを測定した。さらに、測定面の表面粗さRzは、各々の走査線のRzを合計して、その平均値とした。上記と同様の方法で4つの端面を測定して、次式
Rz ave=(Rz 1+ Rz 2+ Rz 3+ Rz 4)/4
(ここで、Rz 1,Rz 2,Rz 3,Rz 4:各面のRz)
で定義される平均表面粗さ:R z ave(μm)を算出し、FB加工性を評価した。
The surface roughness is measured at four end faces excluding the R part, and each end face (thickness face) is in the range from 0.5mm punch side surface to 3.9mm in the thickness direction as shown in Fig. 3. (X direction) 10mm area was scanned 35 times at 100μm pitch in the plate thickness direction (t direction) with a stylus type surface roughness meter, and in each scanning line according to JIS B 0601-1994 The surface roughness Rz was measured. Furthermore, the surface roughness Rz of the measurement surface was obtained by adding the Rz of each scanning line to the average value. Measure the four end faces in the same way as above,
Rz ave = (Rz 1+ Rz 2+ Rz 3+ Rz 4) / 4
(Here, Rz 1, Rz 2, Rz 3, Rz 4: Rz of each surface)
The average surface roughness defined by the formula: R z ave (μm) was calculated, and the FB workability was evaluated.

なお、前記したように本発明では、Rz aveが10μm以下と小さくなるほどFB加工性に優れるとした。
また、FB加工として問題となるような大きなバリ(高バリ)の発生の有無を観察した。
また、使用した工具(金型)の寿命を評価した。FB加工における打抜き回数が30000回に達した時点でのサンプル端面(打抜き面)の表面粗さ(十点平均粗さRz)を測定し、金型寿命を評価した。なお、表面粗さの測定方法は上記した方法と同じとした。サンプル端面の平均表面粗さRz aveが10μm以下を○、10μm超え〜16μm以下を△、16μm超えを×として評価した。
As described above, in the present invention, the smaller the Rz ave is 10 μm or less, the better the FB workability.
In addition, we observed the occurrence of large burrs (high burrs) that would cause problems in FB processing.
Moreover, the lifetime of the used tool (mold) was evaluated. The surface roughness (10-point average roughness Rz) of the sample end face (punched surface) when the number of punches in FB processing reached 30000 times was measured, and the mold life was evaluated. The method for measuring the surface roughness was the same as that described above. The average surface roughness Rz ave of the sample end face was evaluated as ◯ when 10 μm or less, Δ when exceeding 10 μm to 16 μm or less, and × when exceeding 16 μm.

(3)FB加工後の加工性(サイドベンド伸び性)
得られた鋼板から、FB加工により試験片(大きさ:40mm×170mm(圧延方向))を打抜き、サイドベンド試験を実施し、FB加工後の加工性(サイドベンド伸び性)を評価した。なお、試験片は、クリアランスに対する板厚偏差の影響を除くため、予め両面を等量ずつ研削し、板厚を4.0±0.10mmとした。FB加工は、工具間のクリアランス:0.060mm(板厚の1.5%)、加工力:8.5ton、潤滑:有りの条件で行った。
(3) Workability after FB processing (side bend elongation)
A test piece (size: 40 mm × 170 mm (rolling direction)) was punched from the obtained steel sheet by FB processing, a side bend test was performed, and workability after FB processing (side bend elongation) was evaluated. In addition, in order to remove the influence of the thickness deviation with respect to the clearance, the test piece was ground in advance by equal amounts on both sides to obtain a thickness of 4.0 ± 0.10 mm. FB processing was performed under the conditions of clearance between tools: 0.060 mm (1.5% of the plate thickness), processing force: 8.5 tons, and lubrication: with.

サイドベンド試験は、長井ら(長井美憲、永井康友:PK技報、N0.6(1995)、p14)の方法に準拠して、試験片の側面(板面)を拘束した状態で、サイドベンド試験を実施し、板厚貫通割れ時の伸びを測定した。伸びを評価する側の試験片端面は、170mm長さ側のFB加工面とした。なお、試験片には、破断時の伸びを評価するための標点を標点間距離50mmでけがき線を記入した。試験数は、各鋼板2枚とし、得られた伸び値の平均値をサイドベンド伸び値とした。サイドベンド伸び値が、45%以上の場合を○、45%未満の場合を×として、FB加工後の加工性(サイドベンド伸び性)を評価した。   The side bend test was conducted in a state where the side surface (plate surface) of the test piece was constrained in accordance with the method of Nagai et al. (Minai Nagai, Yasutomo Nagai: PK Technical Report, N0.6 (1995), p14). The test was carried out and the elongation at the time of sheet thickness through cracking was measured. The end face of the test piece on the side to be evaluated for elongation was the FB processed surface on the 170 mm length side. The test piece was marked with a mark for evaluating the elongation at break with a distance between the marks of 50 mm. The number of tests was two for each steel plate, and the average value of the obtained elongation values was taken as the side bend elongation value. When the side bend elongation value was 45% or more, ○ was evaluated, and when the side bend elongation value was less than 45%, x was evaluated for workability after FB processing (side bend elongation).

得られた結果を表3に示す。   The obtained results are shown in Table 3.

Figure 2007270325
Figure 2007270325

Figure 2007270325
Figure 2007270325

Figure 2007270325
Figure 2007270325

Figure 2007270325
Figure 2007270325

Figure 2007270325
Figure 2007270325

本発明例はいずれも、打抜き面の平均表面粗さRz aveが10μm以下であり、FB加工性に優れ、また、打抜き回数:30000回時の打ち抜き面表面も滑らか(評価:○)であり、金型寿命の低下も認められない。また、本発明例は、FB加工後のサイドベンド伸び性(加工性)にも優れている。なお、本発明例では、いずれもフェライトおよび炭化物の体積率の合計は95%以上となっており、フェライトおよび炭化物を主体とする組織となっていることを確認した。一方、本発明の範囲を外れる比較例は、打抜き面の平均表面粗さRz ave が10μmを超えて粗くなりFB加工性が低下するか、FB加工時に大きなバリが発生するか、あるいは、金型寿命が低下するか、あるいはFB加工後のサイドベンド伸び性(加工性)が低下しているか、あるいはFB加工性、金型寿命、FB加工後のサイドベンド伸び性(加工性)、全てが低下している。   In all of the examples of the present invention, the average surface roughness Rz ave of the punched surface is 10 μm or less, excellent in FB workability, and the surface of the punched surface at the time of punching: 30000 times is smooth (evaluation: ◯) There is no reduction in mold life. Moreover, the example of this invention is excellent also in the side bend elongation (workability) after FB processing. In the examples of the present invention, the total volume ratio of ferrite and carbide was 95% or more, and it was confirmed that the structure was mainly composed of ferrite and carbide. On the other hand, the comparative example out of the scope of the present invention is that the average surface roughness Rz ave of the punched surface becomes rougher than 10 μm and the FB workability deteriorates, or a large burr occurs during FB processing, or the mold The service life is reduced, or the side bend elongation (workability) after FB processing is reduced, or the FB workability, mold life, and side bend elongation (workability) after FB processing are all reduced. is doing.

フェライト平均粒径とFB加工後のサイドベンド伸びの関係を示すグラフである。3 is a graph showing the relationship between the average ferrite grain size and the side bend elongation after FB processing. FB加工性(打抜き面の平均表面粗さ:Rz ave)とフェライト粒内炭化物平均粒径との関係を示すグラフである。It is a graph which shows the relationship between FB workability (average surface roughness of a punching surface: Rz ave) and the average grain size of carbide in ferrite grains. FB加工後の打抜き面の表面粗さ測定領域を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the surface roughness measurement area | region of the punching surface after FB process.

Claims (6)

質量%で、
C:0.1〜0.5%、 Si:0.5%以下、
Mn:0.2〜1.5%、 P:0.03%以下、
S:0.02%以下
を含み、残部Feおよび不可避的不純物からなる組成と、フェライトおよび炭化物を主体とする組織を有し、前記フェライトの平均粒径が10μm超20μm未満、前記炭化物のうち、フェライト粒内に存在する炭化物の平均粒径が0.3〜1.5μmであることを特徴とするファインブランキング加工性に優れた鋼板。
% By mass
C: 0.1 to 0.5%, Si: 0.5% or less,
Mn: 0.2 to 1.5%, P: 0.03% or less,
S: containing 0.02% or less, balance Fe and inevitable impurities, and a structure mainly composed of ferrite and carbide, and the ferrite has an average particle size of more than 10 μm and less than 20 μm. A steel plate excellent in fine blanking workability, characterized in that the average particle size of carbides present therein is 0.3 to 1.5 μm.
前記組成に加えてさらに、質量%で、Al:0.1%以下を含有する組成とすることを特徴とする請求項1に記載の鋼板。   In addition to the said composition, it is set as the composition containing Al: 0.1% or less by the mass% further, The steel plate of Claim 1 characterized by the above-mentioned. 前記組成に加えてさらに、質量%で、Cr:3.5%以下、Mo:0.7%以下、Ni:3.5%以下、Ti:0.01〜0.1%およびB:0.0005〜0.005%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項1または2に記載の鋼板。   In addition to the above-mentioned composition, one kind selected from Cr: 3.5% or less, Mo: 0.7% or less, Ni: 3.5% or less, Ti: 0.01 to 0.1% and B: 0.0005 to 0.005% by mass% Or it is set as the composition containing 2 or more types, The steel plate of Claim 1 or 2 characterized by the above-mentioned. 鋼素材を加熱し圧延を施し熱延板とする熱間圧延と、該熱延板に焼鈍を施す熱延板焼鈍と、を順次施す鋼板の製造方法において、
前記鋼素材を、質量%で、
C:0.1〜0.5%、 Si:0.5%以下、
Mn:0.2〜1.5%、 P:0.03%以下、
S:0.02%以下
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
前記熱間圧延を、仕上圧延における800〜950℃の温度域の総圧下率を25%以上、仕上圧延の終了温度を800〜950℃とし、該仕上圧延の終了後に、50℃/s以上120℃/s未満の平均冷却速度で冷却し、500〜700℃の範囲の温度で該冷却を停止し、450〜600℃で巻取る処理とし、前記熱延板焼鈍を、焼鈍温度:600〜720℃とする処理とすることを特徴とするファインブランキング加工性に優れた鋼板の製造方法。
In the method of manufacturing a steel sheet, in which hot rolling is performed by heating and rolling a steel material to form a hot rolled sheet, and hot rolled sheet annealing for annealing the hot rolled sheet,
The steel material in mass%,
C: 0.1 to 0.5%, Si: 0.5% or less,
Mn: 0.2 to 1.5%, P: 0.03% or less,
S: A steel material having a composition including 0.02% or less and the balance Fe and inevitable impurities,
In the hot rolling, the total rolling reduction in the temperature range of 800 to 950 ° C. in finish rolling is 25% or more, the finish temperature of finish rolling is 800 to 950 ° C., and after the finish rolling is finished, 50 ° C./s or more and 120 Cooling is performed at an average cooling rate of less than ℃ / s, and the cooling is stopped at a temperature in the range of 500 to 700 ℃, and winding is performed at 450 to 600 ℃, and the hot-rolled sheet annealing is performed at an annealing temperature of 600 to 720. A method for producing a steel sheet excellent in fine blanking workability, characterized in that the treatment is performed at ℃.
前記組成に加えてさらに、質量%で、Al:0.1%以下を含有する組成とすることを特徴とする請求項4に記載の鋼板の製造方法。   The method for producing a steel sheet according to claim 4, wherein in addition to the composition, the composition further contains, by mass%, Al: 0.1% or less. 前記組成に加えてさらに、質量%で、Cr:3.5%以下、Mo:0.7%以下、Ni:3.5%以下、Ti:0.01〜0.1%およびB:0.0005〜0.005%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項4または5に記載の鋼板の製造方法。   In addition to the above-mentioned composition, one kind selected from Cr: 3.5% or less, Mo: 0.7% or less, Ni: 3.5% or less, Ti: 0.01 to 0.1% and B: 0.0005 to 0.005% by mass% Or it is set as the composition containing 2 or more types, The manufacturing method of the steel plate of Claim 4 or 5 characterized by the above-mentioned.
JP2006100794A 2006-03-31 2006-03-31 Steel plate excellent in fine blanking workability and manufacturing method thereof Expired - Fee Related JP5076347B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006100794A JP5076347B2 (en) 2006-03-31 2006-03-31 Steel plate excellent in fine blanking workability and manufacturing method thereof
PCT/JP2007/051843 WO2007116599A1 (en) 2006-03-31 2007-01-29 Steel plate having excellent fine blanking processability and method for manufacture thereof
CN2007800040153A CN101379207B (en) 2006-03-31 2007-01-29 Steel plate having excellent fine blanking processability and method for manufacture thereof
EP07713805A EP2003220B1 (en) 2006-03-31 2007-01-29 Steel plate having excellent fine blanking processability and method for manufacture thereof
KR1020087016380A KR101024232B1 (en) 2006-03-31 2007-01-29 Steel plate having excellent fine blanking processability and method for manufacture thereof
US12/159,017 US20090308504A1 (en) 2006-03-31 2007-01-29 Steel sheet excellent in fine blanking performance and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006100794A JP5076347B2 (en) 2006-03-31 2006-03-31 Steel plate excellent in fine blanking workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007270325A true JP2007270325A (en) 2007-10-18
JP5076347B2 JP5076347B2 (en) 2012-11-21

Family

ID=38580902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006100794A Expired - Fee Related JP5076347B2 (en) 2006-03-31 2006-03-31 Steel plate excellent in fine blanking workability and manufacturing method thereof

Country Status (6)

Country Link
US (1) US20090308504A1 (en)
EP (1) EP2003220B1 (en)
JP (1) JP5076347B2 (en)
KR (1) KR101024232B1 (en)
CN (1) CN101379207B (en)
WO (1) WO2007116599A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126772A (en) * 2008-11-28 2010-06-10 Jfe Steel Corp Steel design method
CN102312168A (en) * 2011-07-01 2012-01-11 山西太钢不锈钢股份有限公司 Prehardening plastic die steel plate and manufacture method thereof
JP2013112890A (en) * 2011-11-30 2013-06-10 Nisshin Steel Co Ltd Press working annealed steel sheet, manufacturing method therefor, and machine component excellent in wear resistance
JP2013164168A (en) * 2013-05-24 2013-08-22 Sumitomo Heavy Ind Ltd Eccentric swing type reduction gear and method for manufacturing eccentric body shaft of the same
JP2014034717A (en) * 2012-08-09 2014-02-24 Nippon Steel & Sumitomo Metal High carbon steel sheet
KR20170088414A (en) * 2015-04-10 2017-08-01 신닛테츠스미킨 카부시키카이샤 Steel sheet with excellent cold workability during forming, and process for producing same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952236B2 (en) * 2006-12-25 2012-06-13 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
JP5440203B2 (en) * 2010-01-22 2014-03-12 Jfeスチール株式会社 Manufacturing method of high carbon hot rolled steel sheet
JP5549640B2 (en) * 2011-05-18 2014-07-16 Jfeスチール株式会社 High carbon steel sheet and method for producing the same
KR101284294B1 (en) * 2011-06-01 2013-07-08 현대자동차주식회사 Producing method for non quenched and tempered steel product
KR20140110994A (en) * 2012-01-05 2014-09-17 제이에프이 스틸 가부시키가이샤 High carbon hot-rolled steel sheet and method for producing same
JP2013155390A (en) * 2012-01-26 2013-08-15 Jfe Steel Corp High strength hot rolled steel sheet having excellent fatigue property and method for producing the same
JP5965344B2 (en) * 2012-03-30 2016-08-03 株式会社神戸製鋼所 Hot-dip galvanized steel sheet for press forming excellent in cold workability, mold hardenability and surface properties, and method for producing the same
JP5812048B2 (en) * 2013-07-09 2015-11-11 Jfeスチール株式会社 High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
EP3190202B1 (en) * 2013-07-09 2022-03-30 JFE Steel Corporation High-carbon hot-rolled steel sheet and method for producing the same
JP6160783B2 (en) 2015-05-26 2017-07-12 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
BR112017025756A2 (en) * 2015-06-17 2018-08-14 Nippon Steel & Sumitomo Metal Corporation A steel plate and a manufacturing method
JP6402842B1 (en) * 2017-02-21 2018-10-10 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
WO2019163828A1 (en) * 2018-02-23 2019-08-29 Jfeスチール株式会社 High-carbon cold-rolled steel sheet and production method therefor
JP2019157267A (en) * 2018-03-08 2019-09-19 日鉄日新製鋼株式会社 Carbon alloy steel sheet and method for manufacturing carbon alloy steel sheet
WO2020175665A1 (en) * 2019-02-28 2020-09-03 Jfeスチール株式会社 Steel sheet, member, and methods for producing same
CN114058941A (en) * 2020-07-31 2022-02-18 宝山钢铁股份有限公司 Cold-rolled steel plate, manufacturing method thereof and blanking piece for automobile
CN115747661B (en) * 2022-11-29 2023-11-24 莱芜钢铁集团银山型钢有限公司 Tempering softening steel plate resistant to 550-600 ℃ and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256268A (en) * 1998-03-12 1999-09-21 Nisshin Steel Co Ltd Steel sheet excellent in local ductility and heat threatability
JP2000265240A (en) * 1999-03-16 2000-09-26 Nisshin Steel Co Ltd Carbon steel sheet excellent in fine blankability
JP2001140037A (en) * 1999-08-31 2001-05-22 Nippon Steel Corp High carbon steel sheet excellent in formability

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926692A (en) * 1974-09-30 1975-12-16 United States Steel Corp Drawability of deoxidized steels by the addition of phosphorus and silicon
JPS5550427A (en) * 1978-10-03 1980-04-12 Kawasaki Steel Corp Manufacture of hot rolled medium or high carbon steel strip suitable for use in precision punching
JPS58734B2 (en) * 1978-11-14 1983-01-07 日新製鋼株式会社 Manufacturing method of low alloy steel plate (strip) for precision punching
JPS5976861A (en) 1982-10-27 1984-05-02 Nisshin Steel Co Ltd Steel plate for precision blanking
JPH05339676A (en) * 1992-06-11 1993-12-21 Nippon Steel Corp Steel for machine structure excellent in cold workability and its manufacture
JP3801667B2 (en) * 1995-04-27 2006-07-26 日新製鋼株式会社 Manufacturing method of high strength steel plate for precision punching
JPH0949065A (en) 1995-08-07 1997-02-18 Kobe Steel Ltd Wear resistant hot rolled steel sheet excellent in stretch-flanging property and its production
JP3269384B2 (en) 1996-05-23 2002-03-25 日本鋼管株式会社 High carbon steel with excellent punchability and hardenability
JP3596376B2 (en) * 1999-10-05 2004-12-02 住友金属工業株式会社 Method for producing hot-rolled steel sheet excellent in formability and hardenability
JP3755368B2 (en) 2000-01-31 2006-03-15 Jfeスチール株式会社 High carbon steel plate with excellent stretch flangeability
JP5574714B2 (en) * 2010-01-06 2014-08-20 株式会社東芝 Manufacturing method of heat transfer promotion tube, mold for heat transfer promotion tube, heat transfer promotion tube, heat exchanger, fusion reactor, and neutral particle injection heating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256268A (en) * 1998-03-12 1999-09-21 Nisshin Steel Co Ltd Steel sheet excellent in local ductility and heat threatability
JP2000265240A (en) * 1999-03-16 2000-09-26 Nisshin Steel Co Ltd Carbon steel sheet excellent in fine blankability
JP2001140037A (en) * 1999-08-31 2001-05-22 Nippon Steel Corp High carbon steel sheet excellent in formability

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010126772A (en) * 2008-11-28 2010-06-10 Jfe Steel Corp Steel design method
CN102312168A (en) * 2011-07-01 2012-01-11 山西太钢不锈钢股份有限公司 Prehardening plastic die steel plate and manufacture method thereof
JP2013112890A (en) * 2011-11-30 2013-06-10 Nisshin Steel Co Ltd Press working annealed steel sheet, manufacturing method therefor, and machine component excellent in wear resistance
JP2014034717A (en) * 2012-08-09 2014-02-24 Nippon Steel & Sumitomo Metal High carbon steel sheet
JP2013164168A (en) * 2013-05-24 2013-08-22 Sumitomo Heavy Ind Ltd Eccentric swing type reduction gear and method for manufacturing eccentric body shaft of the same
KR20170088414A (en) * 2015-04-10 2017-08-01 신닛테츠스미킨 카부시키카이샤 Steel sheet with excellent cold workability during forming, and process for producing same
KR101951134B1 (en) 2015-04-10 2019-02-21 신닛테츠스미킨 카부시키카이샤 Steel sheet with excellent cold workability during forming, and process for producing same

Also Published As

Publication number Publication date
EP2003220B1 (en) 2013-01-16
CN101379207A (en) 2009-03-04
KR101024232B1 (en) 2011-03-29
EP2003220A1 (en) 2008-12-17
JP5076347B2 (en) 2012-11-21
US20090308504A1 (en) 2009-12-17
CN101379207B (en) 2010-10-06
KR20080081955A (en) 2008-09-10
EP2003220A4 (en) 2010-02-24
WO2007116599A1 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5076347B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP6112261B2 (en) Cold rolled steel sheet and method for producing the same
JP2007270329A (en) Manufacturing method of steel plate having excellent fine blanking workability
JP5655986B2 (en) Steel wire rod or bar
KR101600146B1 (en) Steel wire material for high-strength spring which has excellent wire-drawing properties and process for production thereof, and high-strength spring
KR101023633B1 (en) Steel sheet with excellent suitability for fine blanking and process for producing the same
JP5056876B2 (en) Hot-rolled steel sheet with excellent cold workability and hardenability and method for producing the same
JP2007270331A (en) Steel sheet superior in fine blanking workability, and manufacturing method therefor
KR101435311B1 (en) Automotive underbody part having excellent low cycle fatigue properties, and process for production thereof
JP4992274B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
JP4992275B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5194454B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP5070824B2 (en) Cold-rolled steel sheet excellent in flatness and end face properties after punching and method for producing the same
JP4992277B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP4992276B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP4905031B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
JP2007119883A (en) Method for manufacturing high-carbon cold-rolled steel sheet superior in workability, and high-carbon cold-rolled steel sheet
JP5125081B2 (en) Cold-rolled steel sheet with excellent flatness after punching and method for producing the same
JP5050386B2 (en) Steel plate excellent in fine blanking workability and manufacturing method thereof
KR20200108067A (en) High carbon cold rolled steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees