JP2007268031A - 粒子線治療システム及びそのビームコース切替方法 - Google Patents

粒子線治療システム及びそのビームコース切替方法 Download PDF

Info

Publication number
JP2007268031A
JP2007268031A JP2006098605A JP2006098605A JP2007268031A JP 2007268031 A JP2007268031 A JP 2007268031A JP 2006098605 A JP2006098605 A JP 2006098605A JP 2006098605 A JP2006098605 A JP 2006098605A JP 2007268031 A JP2007268031 A JP 2007268031A
Authority
JP
Japan
Prior art keywords
electromagnet
power supply
group
particle beam
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006098605A
Other languages
English (en)
Other versions
JP4451411B2 (ja
Inventor
Kunio Moriyama
國夫 森山
Hisahide Nakayama
尚英 中山
Kazuo Hiramoto
和夫 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Control Systems Inc
Hitachi Information and Control Solutions Ltd
Original Assignee
Hitachi Ltd
Hitachi Information and Control Systems Inc
Hitachi Information and Control Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Information and Control Systems Inc, Hitachi Information and Control Solutions Ltd filed Critical Hitachi Ltd
Priority to JP2006098605A priority Critical patent/JP4451411B2/ja
Publication of JP2007268031A publication Critical patent/JP2007268031A/ja
Application granted granted Critical
Publication of JP4451411B2 publication Critical patent/JP4451411B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

【課題】電磁石電源の個数を低減できかついずれかの電源が故障した場合でも治療を継続することができる粒子線治療システム及びそのビームコース切替方法を提供する。
【解決手段】第2ビーム輸送系5A〜5Eの電磁石群に対応した電源群を有する2つの電磁石電源装置42A,42Bと、電磁石電源装置ごとに設けられ、それぞれ、前記電磁石群に対応した切替器群を有し、対応する電磁石電源装置の電源群を選択された治療室に係わる電磁石群に接続するよう切替える2つの負荷切替装置43A,43Bとを設け、電磁石電源装置のうち1つのものの電源群を最先の治療室に係わる電磁石群に接続し、他の電磁石電源装置の電源群を、その次の治療室に係わる電磁石群に接続するよう制御する。電源故障時は、故障した電源を含まない電磁石電源装置をバックアップ用として用いる。
【選択図】図1

Description

本発明は、粒子線治療システムに係り、特に、陽子及び炭素イオン等の荷電粒子ビームを患部に照射して治療する粒子線治療システム及びそのビームコース切替方法に関する。
がんなどの患者の患部に陽子等の荷電粒子ビームを照射する治療方法が知られている。この治療に用いる治療システムのうち大規模なものは、従来、荷電粒子ビーム発生装置、ビーム輸送系、及び複数の治療室に設置された複数の照射装置を備えている。荷電粒子ビーム発生装置で加速された荷電粒子ビームは、ビーム輸送系を経て各治療室の照射装置に達し、照射装置のノズルから患者の患部に照射される。このとき、ビーム輸送系は、1つの共通のビーム輸送系と、この共通のビーム輸送系から分岐して各治療室の照射装置へと至る複数の分岐ビーム輸送系とから構成される。各分岐ビーム輸送系の分岐位置には、共通のビーム輸送系からの荷電粒子ビームを偏向し当該分岐ビーム輸送系へ導入するための切替電磁石がそれぞれ設けられ、各分岐ビーム輸送系には、切替電磁石により導入された荷電粒子ビームを照射装置に導くための偏向電磁石、四極電磁石等の電磁石群(コース電磁石群)が設けられている(例えば、特許文献1及び2参照)。コース電磁石群に対応する電源群は、通常、1セットであり、負荷切替装置(負荷切替器群)を切替えることで1セットの電源群を選択された分岐ビーム輸送系のコース電磁石群に接続して、コース電磁石群を励磁し、初期化と電流設定処理を行う。
特表平11−501232号公報 特開2004−267481号公報
上記従来の粒子線治療システムにおいて、各治療室における照射治療時には、共通のビーム輸送系からの荷電粒子ビームを当該治療室のみに選択的に導入する。その際、今まで別の治療室で照射治療を行っていた場合は、その治療室での照射完了後、全ての切替電磁石を切替制御するとともに、選択した治療室に係わるコース電磁石群に電源群を接続するための切替えを行い、その後コース電磁石群の初期化と電流設定処理を行うことで、選択した治療室へのビーム輸送経路を形成する。
このようにある治療室での治療照射が完了後、別の治療室での照射治療を行う場合は、コース選択処理に際して、切替電磁石を切替制御するだけではなく、コース電磁石群に電源群を接続するための負荷切替装置の切替処理が必要であり、その切替時間の分、運転開始から照射終了までのトータルの治療時間が長くなり、治療効率を低下させている。
この切替時間をなくす方法として、全ての分岐ビーム輸送系のコース電磁石群に対して電磁石電源を1対1で設けることが考えられる。しかし、この構成では、(分岐ビーム輸送系の数)×(コース電磁石群の数)で得られる個数の電源が必要となるため、治療室の数が増えれば増えるほど電磁石電源数が増加する。
また、コース電磁石群に対応する電源群は1セットであるため、万が一、その電源群に含まれるいずれかの電源が故障した場合、いずれの治療室においても治療を行うことができなくなる。
本発明の第1の目的は、電磁石電源の個数を低減することができる粒子線治療システム及びそのビームコース切替方法を提供することである。
本発明の第2の目的は、万が一、電磁石群電源群のいずれかの電源が故障をした場合でも、少なくとも一部の治療室で治療を継続することができる粒子線治療システム及びそのビームコース切替方法を提供することである。
上記第1及び第2の目的を達成する本発明の特徴は、荷電粒子ビームを出射する荷電粒子ビーム発生装置と、複数の治療室にそれぞれ設置された複数の照射装置と、前記荷電粒子ビーム発生装置に連絡され、それぞれの前記照射装置に前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを輸送するビーム輸送系とを備え、前記ビーム輸送系は、前記荷電粒子ビーム発生装置に接続された第1ビーム輸送系と、この第1ビーム輸送系から分岐し、それぞれの前記照射装置に接続された複数の第2ビーム輸送系を有し、前記複数の第2ビーム輸送系は、それぞれ、複数の電磁石を含む電磁石群を備えている粒子線治療システムにおいて、それぞれ、前記電磁石群に対応した電源群を有する少なくとも2つの電磁石電源装置と、前記電磁石電源装置ごとに設けられ、それぞれ、前記電磁石群に対応した切替器群を有し、対応する前記電磁石電源装置の電源群を前記複数の治療室のうちの選択された1つの治療室に係わる前記第2ビーム輸送系の前記電磁石群に接続するよう切り替える少なくとも2つの負荷切替装置と、前記少なくとも2つの電磁石電源装置のうちの1つの前記電磁石電源装置の電源群を、前記複数の治療室のうち荷電粒子ビームの照射を行う第1治療室に係わる1つの前記第2ビーム輸送系の前記電磁石群に接続し、他の1つの電磁石電源装置の電源群を、前記第1治療室の次に荷電粒子ビームの照射を行う第2治療室に係わる他の前記第2ビーム輸送系の前記電磁石群に接続するよう前記少なくとも2つの負荷切替装置を制御する切替制御手段と、
前記少なくとも2つの電磁石電源装置のそれぞれの電源群におけるいずれかの電源が故障したとき、前記切替制御手段による前記負荷切替装置の制御を無効とし、かつ少なくともその故障した電源部分に関し、前記故障した電源を含まない他の電磁石電源装置の電源群を対応する電磁石に接続するよう前記少なくとも2つの負荷切替装置を制御するバックアップ制御手段とを備えることにある。
また、本発明の他の特徴は、上記粒子線治療システムにおいて、前記少なくとも2つの電磁石電源装置のいずれかの電源群における第1電源が故障したとき、前記切替制御手段による前記負荷切替装置の制御を無効とし、前記第1電源を含む電磁石電源装置の前記第1電源以外の電源を、そのときに荷電粒子ビームの照射を行う治療室に係わる前記第2ビーム輸送系の前記電磁石群の対応する電磁石に接続し、前記第1電源を含まない他の電磁石電源装置の電源群の前記第1電源に対応する第2電源を、そのときに荷電粒子ビームの照射を行う治療室に係わる前記第2ビーム輸送系の前記電磁石群の対応する電磁石に接続するよう前記少なくとも2つの負荷切替装置を制御するバックアップ制御手段を備えることにある。
このように本発明は、少なくとも2つの電磁石電源装置と少なくとも2つの負荷切替装置を設けたので、それらの電源群を、別々の照射室に係わる第2ビーム輸送系の電磁石群に接続するよう切替制御するため、少なくとも2つの電磁石電源装置を交互に用いて複数の治療室に係る各第2ビーム輸送系の電磁石群を励磁することができる。電磁石電源装置は最少限2つあれば足りるため、電磁石電源の個数を低減することができる。
また、各第2ビーム輸送系に荷電粒子ビームを導かない状態で、少なくとも2つの電磁石電源装置を交互に用いて各第2ビーム輸送系の電磁石群を励磁することができるため、荷電粒子ビームを導く前にコース選択処理を行っておくことが可能となり、コース切替時間が短縮され、治療室を1人の患者が占有する時間を短縮することができる。このため、1つの照射装置当りの治療人数を増大することができる。
また、万が一、1つの電磁石電源装置のいずれかの電源が故障をした場合でも、少なくともその故障した電源部分に関し、他の電磁石電源装置の電源群を対応する電磁石に接続するよう切替制御するため、他の電磁石電源装置の電源群をバックアップ用として用いることが可能となり、各治療室での治療を継続して行うことができる。
更に本発明の他の特徴は、前記切替制御手段が、前記他の1つの電磁石電源装置の電源群を前記第2治療室に係わる前記第2ビーム輸送系の電磁石群に接続するよう前記少なくとも2つの負荷切替装置を制御するとき、その接続が当該電磁石群の全ての電磁石に対して完了したかを判定する切替状態判定手段と、前記切替状態判定手段の判定が肯定されたときに、前記他の1つの電磁石電源装置に電流指令を出力し、前記電磁石群の初期化と励磁電流設定を行う初期化及び電流設定手段とを更に備えることにある。
これにより意図する治療室の照射装置への荷電粒子ビームの導入を確実にし、安全性を維持することができる。
本発明によれば、各第2ビーム輸送系の電磁石群を電磁石電源装置を交互に使用して励磁することができるため、電磁石電源の個数を低減できる。
また、コース切替時間を短縮し、治療時間を短縮て治療効率を向上させることができる。
また、万が一、1つの電磁石電源装置のいずれかの電源が故障をしたとき、少なくともその故障した電源部分に関し、他の1つの電磁石電源装置の電源群をバックアップ用として用いることが可能となるため、各治療室での治療を継続して行うことができる。
さらに、万が一、1つの電磁石電源装置の電源群のある1台の個別の電源が故障した場合でも、当該電源は不使用とするとともに、他の電磁石電源装置の対応する個別の電源を運転することにより、故障の影響を大きく受けることなく運転を続けることができる。故障の影響の度合は、システムが有する電磁石電源装置の数による。電磁石電源装置が2つの場合、故障発生時はコース切替時間として従来技術のレベルで運転することができる。電磁石電源装置の数が3以上の場合、個別電源の故障の影響を受けることなく運転することが可能である。
ここで、個別電源の故障が複数発生した場合を考える。ある電磁石を担当する個別電源の数が3台あり、その3台のうち1台が故障した場合は、残り2台で1台の電磁石を担当できるため、本発明の切替制御手段によるコース切替時間短縮効果が得られる。異なる電磁石を担当する個別電源が同時に故障した場合も同様である。一方、ある電磁石を担当する個別電源の数が3台あり、その3台のうち2台が故障した場合は、本発明の切替制御手段によるコース切替時間短縮効果は得られないが、従来方式で故障がない場合と同等の運転が可能となる。
以下、本発明の一実施形態である粒子線治療システムを図面を参照しつつ説明する。
本実施形態の粒子線治療システムである陽子線治療システムは、図1に示すように、荷電粒子ビーム発生装置1と、6つの治療室2A,2B,2C,2D,2E及び3と、荷電粒子ビーム発生装置1の下流側に接続された第1ビーム輸送系4及びこの第1ビーム輸送系4から分岐するようにそれぞれ設けられた第2ビーム輸送系5A,5B,5C,5D,5Eを有するビーム輸送系と、切替電磁石(経路切替装置)6A,6B,6C,6D,6Eと、各治療室別のシャッタ7A,7B,7C,7D,7Eと、全治療室共通のシャッタ8とを有している。第1ビーム輸送系4は、第2ビーム輸送系5A,5B,5C,5D,5Eのそれぞれにイオンビームを導く共通のビーム輸送系である。
荷電粒子ビーム発生装置1は、イオン源(図示せず)、線形加速器を用いた前段加速器(前段荷電粒子ビーム発生装置)11及びシンクロトロン12を有する。イオン源で発生したイオン(例えば、陽イオン(または炭素イオン))は前段加速器11で加速される。前段加速器11から出射されたイオンビーム(例えば、陽イオンビーム)は四極電磁石9及び偏向電磁石10を介しシンクロトロン12に入射される。荷電粒子ビーム(粒子線)であるそのイオンビームは、シンクロトロン12で、高周波加速空胴(図示せず)から印加される高周波電力によってエネルギーを与えられて加速される。シンクロトロン12内を周回するイオンビームのエネルギーが設定されたエネルギー(例えば100〜200MeV)までに高められた後、出射用の高周波印加装置(図示せず)から高周波がイオンビームに印加される。安定限界内で周回しているイオンビームは、この高周波の印加によって安定限界外に移行し、出射用デフレクタ(図示せず)を通ってシンクロトロン12から出射される。イオンビームの出射の際には、シンクロトロン12に設けられた四極電磁石13及び偏向電磁石14等の電磁石に導かれる電流が電流設定値に保持され、安定限界もほぼ一定に保持されている。なお、シンクロトロン12からのイオンビームの出射停止が、高周波印加装置への高周波電力の印加を停止することによって行われる。
シンクロトロン12から出射されたイオンビームは、第1ビーム輸送系4より下流側へ輸送される。第1ビーム輸送系4は、ビーム経路61、及びビーム経路61にビーム進行方向上流側より配置された四極電磁石18、シャッタ8、偏向電磁石17、四極電磁石18、切替電磁石6A、四極電磁石19B、切替電磁石6B、四極電磁石19C、切替電磁石6C、四極電磁石19D、切替電磁石6D、四極電磁石19E、切替電磁石6Eを備えている。第1ビーム輸送系4に導入されたイオンビームは、これらの電磁石及び切替電磁石6A,6B,6C,6D,6Eの励磁、非励磁の切替えによる偏向作用の有無によって、第2ビーム輸送系5A,5B,5C,5D,5Eのいずれかに選択的に導入される。各切替電磁石は、偏向電磁石の一種である。
第2ビーム輸送系5Aは、第1輸送系4のビーム経路61に接続されて治療室2A内に配置された照射装置15Aに連絡されるビーム経路62A、及びビーム経路62Aにビーム進行方向上流側より配置された偏向電磁石21A、四極電磁石22A、シャッタ7A、偏向電磁石23A、四極電磁石24A、偏向電磁石25A、偏向電磁石26Aを備える。切替電磁石6Aはビーム経路62Aに配置されているとも言える。
第2ビーム輸送系5B、第2ビーム輸送系5C、第2ビーム輸送系5D、および第2ビーム輸送系5Eも第2ビーム輸送系5Aと同様に構成されている。これら第2ビーム輸送系2B〜2Eにおいて、第2ビーム輸送系2Aの構成要素と同等のものには同じ参照数字の添え字Aに代え、添え字B,C,D,Eを付して示している。
第2ビーム輸送系5Aへ導入されたイオンビームは、該当する電磁石の励磁によりビーム経路62Aを通って照射装置15Aへと輸送される。第2ビーム輸送系5B,5C,5D,5Eについても同様に、イオンビームは各ビーム経路62B,62C,62D,62Eを通って照射装置15B,15C,15D,15Eにそれぞれ輸送される。
照射装置15A〜15Eは、治療室2A〜2Eにそれぞれ設置された回転ガントリー(図示せず)に取り付けられている。照射装置15A〜15Eは二重散乱体方式の照射装置である。これらにウォブラー方式の照射装置を用いてもよい。治療室2A〜Eは例えばがん患者用の第1〜第5治療室であり、治療室3は、固定式の照射装置16を備えた眼科治療用の第6の治療室である。
第2ビーム輸送系5A〜5Eに設けられた電磁石群はそれぞれの治療室2A〜2E固有の電磁石であり、荷電粒子ビーム発生装置1のシンクロトロン12及び第1ビーム輸送系4に設けられた電磁石群は治療室2A〜2Eに共通の電磁石群である。本願明細書において、第2ビーム輸送系5A〜5Eに設けられた各電磁石群をコース電磁石群と呼び、荷電粒子ビーム発生装置1のシンクロトロン12及び第1ビーム輸送系4に設けられた電磁石群を共通部電磁石群と呼ぶ。以下にコース電磁石群と共通部電磁石群を具体的に列挙する。
<コース電磁石群>
1.治療室2A:第2ビーム輸送系5Aの電磁石群(偏向電磁石21A、四極電磁石22A、偏向電磁石23A、四極電磁石24A、偏向電磁石25A、偏向電磁石26A)。
2.治療室2B:第2ビーム輸送系5Bの電磁石群(偏向電磁石21B、四極電磁石22B、偏向電磁石23B、四極電磁石24B、偏向電磁石25B、偏向電磁石26B)。
3.治療室2C:第2ビーム輸送系5Cの電磁石群(偏向電磁石21C、四極電磁石22C、偏向電磁石23C、四極電磁石24C、偏向電磁石25C、偏向電磁石26C)。
4.治療室2D:第2ビーム輸送系5Dの電磁石群(偏向電磁石21D、四極電磁石22D、偏向電磁石23D、四極電磁石24D、偏向電磁石25D、偏向電磁石26D)。
5.治療室2E:第2ビーム輸送系5Eの電磁石群(偏向電磁石21E、四極電磁石22E、偏向電磁石23E、四極電磁石24E、偏向電磁石25E、偏向電磁石26E)。
<共通部電磁石群>
1.シンクロトロン12の電磁石群(四極電磁石13及び偏向電磁石14)。
2.第1ビーム輸送系4の電磁石群(四極電磁石18、偏向電磁石17、四極電磁石18、切替電磁石6A、四極電磁石19B、切替電磁石6B、四極電磁石19C、切替電磁石6C、四極電磁石19D、切替電磁石6D、四極電磁石19E、切替電磁石6E)。
なお、コース電磁石群は一部を省略し示している。例えば、第2ビーム輸送系5A〜5Eのそれぞれにおいて、四極電磁石は2個のみ示したが、実際にはそれ以上(4〜5個)ある。また、第2ビーム輸送系5A〜5Eのそれぞれにおいてステアリング電磁石は省略している。
次に、本実施形態の陽子線治療システムの制御系を説明する。
本実施形態の陽子線治療システムは、制御装置40を備え、制御装置40は、制御部41と、2つの電磁石電源装置42A,42Bと、2つの負荷切替装置43A,43Bとを有している。
電磁石電源装置42A及び42Bは、第2ビーム輸送系5A〜5Eの各々の電磁石群、つまり各コース電磁石群に含まれる各電磁石をそれぞれ励磁するためのものである。電磁石電源装置42Aは、各コース電磁石群に含まれる各電磁石とそれぞれ一対一に対応している図2に示す電源(個別電源)30A1〜30An(例えば、第2ビーム輸送系5Aの各電磁石21A,22A,23A,24A,25A,26A,……のそれぞれに対応する各電源)を有している。電磁石電源装置42Aに含まれるそれらの電源全体を、以下、電磁石電源群Aという。電磁石電源装置42Bは、電磁石電源装置42Aと同様に、各コース電磁石群に含まれる各電磁石とそれぞれ一対一に対応している図2に示す電源(個別電源)30B1〜30Bnを有している。電磁石電源装置42Bに含まれるそれらの電源全体を、以下、電磁石電源群Bという。
負荷切替装置43A,43Bは、それぞれ、コース選択指令(後述)に基づく切替指令に応じて電磁石電源群A,Bの一方を第2ビーム輸送系5A〜5Eのうちの選択された1つのコース電磁石群に接続するよう切替えるためのものである。負荷切替装置43Aは、電磁石電源装置42Aに含まれる電源30A1〜30Anとそれぞれ一対一に対応して設けられて該当する1つの電源に接続された図2に示す切替器31A1〜31An(例えば、第2ビーム輸送系5Aの各電磁石21A,22A,23A,24A,25A,26A,……のそれぞれに対応する各切替器)を有している。負荷切替装置43Aに含まれるそれらの切替器を負荷切替器群Aという。負荷切替装置43Bは、負荷切替装置43Aと同様に、電磁石電源装置42Bに含まれる電源30B1〜30Bnとそれぞれ一対一に対応して設けられて該当する1つの電源に接続された図2に示す切替器31B1〜31Bnを有している。負荷切替装置43Bに含まれるそれらの切替器を負荷切替器群Bという。
電磁石電源装置42A,42Bのそれぞれの電源、及び負荷切替装置43A,43Bのそれぞれの切替器は、1つのコース電磁石群に含まれる電磁石の個数と同じ個数だけ存在する。切替器31A1〜31Anのそれぞれは、切替え操作によって、該当する1つの電源を、第2ビーム輸送系5A〜5Eにおいて配置順番が同じである5つの電磁石のうちの1つに接続する。切替器31B1〜31Bnのそれぞれも、同様に、切替え操作によって、該当する1つの電源を、それらの電磁石のうちの1つに接続する。例えば、切替器31A1は、切替え操作によって、電源30A1を、第2ビーム輸送系5A〜5Eの偏向電磁石21A,21B,21C,21D,21Eのうちの1つの偏向電磁石に接続する。また、切替器31B1は、切替え操作によって、電源30B1を、第2ビーム輸送系5A〜5Eの偏向電磁石21A,21B,21C,21D,21Eのうちの1つの偏向電磁石に接続する。
制御部41は、各治療室2A〜E,3(または各治療室に対応した制御室)からの治療室準備完了信号51を受けて照射ビームを輸送する治療室を選択し、電磁石電源群A又はBを選択した治療室に係わるコース電磁石群に接続するよう負荷切替器群A又はBを切替える。例えば、その時点でイオンビームが導かれている治療室(以下、治療中の治療室という)が治療室2Cであって電磁石電源群Bが使用され、治療中の治療室の次に治療が行われる(イオンビームが導かれる)治療室(以下、選択された次の治療室という)が治療室2Aである場合、制御部41は、待機状態にある電磁石電源群Aに含まれる各電源を治療室2Aに係わるコース電磁石群に含まれて対応する電磁石に接続するよう負荷切替器群Aの各切替器を切替える。この切替操作は、シンクロトロン12から出射されたイオンビームが、切替電磁石6Cによって、治療中の治療室2C内の照射装置15Cに連絡される第2ビーム輸送系5Cに導かれる状態にあるときと並行して行われる。また、制御部41は、負荷切替器群Aによる切替え操作が完了したことを確認した後、電磁石電源群Aの各電源を制御してコース電磁石群に含まれる各電磁石の初期化及びそれらの電磁石に対する励磁電流設定処理を行う。
制御部41は、図2に示すように、制御回路33、先着判定(FCFS;First Come First Service)回路35、運転パラメータを記憶する記憶装置32、待機行列回路(電磁石電源割当手段)34、コース選択状態判定回路(切替状態判定手段)36を有している。図中、実線は実運転側(後述)の処理の流れを示し、破線は待機運転側(後述)の処理の流れを示す。図2では、説明の便宜上、電磁石電源装置42A,42B及び負荷切替装置43A,43B共、それぞれ、電源群及び切替器群の2つを代表して示している。また、治療室3の制御部分は省略している。
先着判定回路35は各治療室2A〜E,3からの治療室準備完了信号51を入力し、この治療室準備完了信号51の到着順序(治療室の準備が完了した順番)を判定し、先着順に治療室番号を出力する。
待機行列回路34は電磁石電源割当手段であり、先着判定回路35からの到着順序と治療室情報に基づいて、次に選択された治療室に対応したコース電磁石群に対し、電磁石電源群A,Bの一方への割り振りの管理を行う。
制御回路33は、待機行列回路34からの電源群割り振り情報、コース選択状態判定回路36の判定情報、及び記憶装置32からの運転パラメータ情報に基づいて、待機運転処理及び実運転処理を行う。
制御回路33は、待機運転処理において、待機行列回路34からの電源群割り振り情報に基づいて選択された次の治療室に対するコース選択指令及び励磁電流指令を作成する。制御回路33は、このコース選択指令に応じた切替指令を負荷切替装置43A,43Bのうち待機状態である一方の負荷切替装置に出力してその負荷切替装置の各切替器の切替えを行う。また、制御回路33は、コース選択状態判定回路36の判定情報に基づいて待機状態にある負荷切替装置の各切替器の切替えが完了したことを確認した後、記憶装置32から対応する治療室に係わる運転パラメータ(電流設定値)を読み出して励磁電流指令を作成する。作成された励磁電流指令は、電磁石電源装置42A,42Bのうち待機状態にある一方の電磁石電源装置の各電源に出力される。これにより、待機状態の負荷切替器群の各切替器によって、待機状態の電磁石電源群の各電源に接続された、選択された次の治療室に対するコース電磁石群の各電磁石が励磁される。この操作によって、それら電磁石の初期化と励磁電流設定処理は、前述したように、治療中の治療室2Cの照射装置15Cにイオンビームを導いている状態と並行して行われる。
制御回路33は、治療中の治療室での照射完了後に、待機状態にあるコース電磁石群(選定された次の治療室に対応して、上記の初期化及び励磁電流設定処理が完了しているコース電磁石群)がある場合に、「照射許可有り」の判定情報を生成し、実運転処理を行う。「照射許可有り」の判定情報を入力した、他の制御装置である加速器制御装置39(図1)は、実運転処理において、共通部電磁石群(第1ビーム輸送系4の電磁石群、シンクロトロン12の電磁石群)の各電磁石の初期化及び励磁電流設定処理を行う。ただし、第1ビーム輸送系4の電磁石群の電磁石の初期化及び励磁電流の設定は、選択された次の治療室内の照射装置に連絡される第2ビーム輸送系(例えば、選択された次の治療室が治療室2Aであれば第2ビーム輸送系5A)にイオンビームを導く切替電磁石(例えば、切替電磁石6A)、及び第1ビーム輸送系4においてその切替電磁石よりも上流に位置する各電磁石に対して行われる。第1ビーム輸送系4において、その切替電磁石よりも下流側に位置する各電磁石に対する初期化及び励磁電流の設定は、行われない。制御回路33は、「照射許可有り」の判定を行ったとき、選択された次の治療室に対する実運転処理に入ったことを示す第1フラグ情報を記憶する。
コース選択状態判定回路36は、負荷切替装置43A,43Bの各切替器からの切替状態信号により負荷切替器群A,Bの切替えが完了したかどうかを判定し、その判定結果を制御回路33に出力する。
記憶装置32は、制御回路33において励磁電流指令を作成するための運転パラメータを記憶している。この運転パラメータは、患者毎の治療計画データ(患者IDナンバー、照射線量、照射エネルギー、ガントリー角度、照射野径、照射位置等)から得られる照射条件に基づいて予め作成されたものであり、これには、第2ビーム輸送系5A〜5Eの電磁石群に対する電流設定値、共通部電磁石群に対する電流設定値等が含まれる。
コース選択状態判定回路36及び負荷切替装置43Aの構造を、図3を用いて説明する。負荷切替装置43Bは、図3に示されていないが、負荷切替装置43Aと同じ構成を有する。
負荷切替装置43Aは、第2ビーム輸送系5A〜5Eの各々のコース電磁石群の各電磁石と一対一に対応して設けられたコンタクタ44A1〜44Anを含むコンタクタ群44Aと、第2ビーム輸送系5A〜5Eの各々のコース電磁石群の各電磁石と一対一に対応して設けられた補助継電器45A1〜45Anを含む補助継電器群45Aとを有する。また、例えば、切替器31A1はコンタクタ44A1及び補助継電器45A1を含む。切替器31A2はコンタクタ44A2及び補助継電器45A2を含む。
コンタクタ44A1〜44Anは、それぞれ、コース選択指令に基づく切替指令に応じて、電磁石電源群Aを第2ビーム輸送系5A〜5Eの各コース電磁石群のうちの選択された1つのコース電磁石群に接続するよう切替える複数の接点を有する。補助継電器45A1〜45Anは、それぞれ、第2ビーム輸送系5A〜5Eに対応して設けられた複数の切替状態検出ライン46A〜46E中に配置される。補助継電器45A1〜45Anは、それぞれ、コンタクタ44A1〜44Anのうち対応するコンタクタの切替状態に応じて閉成する複数の接点を有している。
コース選択状態判定回路36は、それぞれ、第2ビーム輸送系5A〜5Eに対応して設けられた複数のコース選択完了判定部37A〜37E及び導通判定部38A〜38Eを有している。
導通判定部38A〜38Eは、それぞれ、切替状態検出ライン46A〜46Eが導通状態にあるかどうかを判定する。導通状態にあれば、導通判定部38A〜38Eは、コンタクタ44A1〜44Anの全てが電磁石電源群Aの各電源を第2ビーム輸送系5A〜5Eのうち選択された1つの第2ビーム輸送系の各電磁石に接続するよう切替えられたと判定する。この判定結果に基づくコース情報が、導通判定部38A〜38Eのそれぞれから対応するコース選択完了判定部37A〜37Eに出力される。例えば、前述のように、治療室2Aが選択された次の治療室であり、治療室2A内の照射装置15Aにつながる第2ビーム輸送系5Aの電磁石群に対して待機運転処理が実行されるものとする(図2、図3の状態)。補助継電器45A1〜45Anは、全て、第2ビーム輸送系5Aに対応する接点が閉成され、切替状態検出ライン46Aが導通状態にある。このため、導通判定部38Aは、コンタクタ44A1〜44Anの全てが電磁石電源群Aの各電源を第2ビーム輸送系5Aのコース電磁石群の各電磁石に接続するよう切替えられたと判定する。この判定結果に基づくコース情報(例えばON信号)がコース選択完了判定部37Aに入力される。
コース選択完了判定部37A〜37Eは、それぞれ、制御回路33から負荷切替装置43Aに与えられたコース選択指令に基づくコース情報と導通判定部38A〜38Eの判定結果に基づくコース情報とを比較する。コース選択完了判定部37A〜37Eは、それぞれ、両者が一致すると、負荷切替装置43Aが電磁石電源群Aを第2ビーム輸送系5A〜5Eの各電磁石群のうち選択された1つの電磁石群に接続するよう切替えられ、その切替(コース切替)がコース選択指令通りに行われたと判定する。この判定結果は制御回路33に入力される。前述の図2、図3の待機運転処理においてコース選択指令に基づくコース選択情報は、例えばコース選択完了判定部37Aに対してON信号を与える情報である。また、導通判定部38Aからのコース情報もON信号である。このため、コース選択完了判定部37Aは、負荷切替装置43Aの各コンタクタが電磁石電源群Aの各電源を第2ビーム輸送系5Aの対応する各電磁石群のそれぞれに接続するよう切替えられ、かつその切替(コース切替)がコース選択指令通り第2ビーム輸送系5Aに対して行われたと判定する。この判定結果が制御回路33に入力される。
また、電磁石電源装置42A,42Bは、それぞれ、電磁石電源群A,Bに含まれる各電源の運転状態を監視し、その状態情報を状態信号として出力する機能を有している。各電源の状態情報は、各電源が故障しているかどうかの故障情報を得るためのものであり、例えば電源温度、電源電圧、冷却水流量、冷却ファン回転数、ヒューズの状態等である。電源温度の異常上昇(過熱)、電源電圧の異常上昇(過電圧)、冷却水流量の異常低下、ファン回転数の異常低下、ヒューズの切断等のいずれかが発生した場合は、電源に故障が発生したと考えることができる。
制御回路33は、制御部41の図示しない信号入力手段を介して電磁石電源装置42A,42Bの各電源の状態信号を取り込み、その状態情報に基づいて電磁石電源装置42A,42Bのいずれかの電源が故障しているかどうかを確認し、故障が無い場合は、待機行列回路34(電磁石電源割当手段)からの電源割り振り情報を有効とし、故障が有る場合は、その電源割り振り情報を無効とし、かつ少なくとも故障した電源を含まない他の電磁石電源装置の電源群を用いて電源群の再割り当てを行い、この再割り当ての結果に基づいて負荷切替装置43A又は43Bを制御する。
制御回路33及び加速器制御装置39の処理内容の詳細を、図4を用いて説明する。
制御回路33は、まず、空き状態にある(コース電磁石群に接続されていない)電磁石電源装置を認識する(ステップ70)。この認識は、後述するステップ79、89における照射完了時に制御回路33に記憶される照射完了を示す第2フラグ情報を用いて行われる。そして、認識された待機状態の電磁石電源装置(電磁石電源装置42Aまたは42B)を用いて、選択された次の治療室内の照射装置に連絡される第2ビーム輸送系のコース電磁石群に対する待機運転処理が実施される。電磁石電源装置42Aを用いた待機運転処理とその後の実運転処理を、A側処理という。また、電磁石電源装置42Bを用いた待機運転処理とその後の実運転処理を、B側処理という。
治療室2Cが治療中であり、治療室2Aが選択された次の治療室であり、電磁石電源装置42A及び負荷切替装置43Aが待機状態にある場合は、治療室2Cが治療中であるため、切替電磁石6A〜6Eのうち切替電磁石6Cのみが励磁され、この切替電磁石6Cによってイオンビームが第2ビーム輸送系5Cに導かれる。待機行列回路34には、治療室2Aの更に次に治療を行う治療室として治療室2Eが選択されているとする。この場合、治療室2Aに対応するコース電磁石群についてはA側処理が実施され、治療室2Cでの治療が完了後、治療室2Eに対応するコース電磁石群についてはB側処理が、実施される。
もし、電磁石電源装置42A、42Bがいずれも空き状態である場合(例えば、一日において最初に治療を行う場合)は、最初に準備が完了したと待機行列回路34によって選択された治療室に対応するコース電磁石群は、初期化及び励磁電流設定処理が電磁石電源装置42Aにより行われる(A側処理)。また、引き続き準備が完了したと待機行列回路34によって選択された治療室に対応するコース電磁石群は、初期化及び励磁電流設定処理が電磁石電源装置42Bにより行われる(B側処理)。
また、制御回路33は、電磁石電源装置42A,42Bの各電源の状態信号を取り込み、その状態情報に基づいて電磁石電源装置42A,42Bの各電源のいずれかが故障しているかどうかを確認し、電源の故障が無い場合は、待機行列回路34(電磁石電源割当手段)からの電源割り振り情報を有効とし、A側処理又はB側処理に移行する(ステップ110)。一方、電磁石電源装置42A,42Bの各電源のいずれかが故障している場合は、待機行列回路34からの電源割り振り情報を無効とし、電源の再割り付けを行う(ステップ111)。この電源の再割り付けの方法には次の2通りがある。
(1)電源が故障していない電磁石電源装置のみを用いる。例えば、電磁石電源装置42Aの電源の1つが故障した場合は、電磁石電源装置42Aは用いず、電磁石電源装置42Bのみを用いる。
(2)いずれかの電源が故障した電磁石電源装置の故障していない電源と、他の電磁石電源装置の当該故障電源に対応する電源とを用いる。例えば、電磁石電源装置42Aの電源の1つが故障した場合は、電磁石電源装置42Aのそれ以外の電源と、電磁石電源装置42Bの故障電源に対応する電源とを用いる。
以上のステップ110及び111の処理機能はバックアップ制御手段を構成する。
次に、A側処理又はB側処理に移行する。
<A側処理>
このA側処理は、運転パラメータ取得処理(ステップ71)、コース選択処理(ステップ72)、切替状態判定処理(ステップ73)、初期化及び励磁電流設定処理(ステップ74)、電源故障確認処理(ステップ112)、照射許可判定処理(ステップ75)、共通部電磁石初期化及び励磁電流設定処理(ステップ76)、オペレータ照射操作判定処理(ステップ77)、照射処理(ステップ78)、照射完了判定処理(ステップ79)、待機コース判定処理(ステップ80)の各処理を行う。ステップ71〜75,77,79及び80の処理は制御回路33で行われる。ステップ76,78の処理は加速器制御装置39で行われる。治療室2Cが治療中であり、選択された次の治療室が治療室2Aであり、更にその次に選択された治療室が治療室2Eである場合を例に取り、ステップ71〜80の具体的な処理内容を以下に説明する。
1.運転パラメータ取得処理(ステップ71)
制御回路33は、待機行列回路34から選択された次の治療室、すなわち治療室2Aの情報を入力する。制御回路33は、その入力情報に基づいて、治療室2Aで治療を受ける患者の治療計画データに基づいて作成された運転パラメータを、記憶装置32から取得する。
2.コース選択処理(ステップ72)
制御回路33は、治療室2A用のコース選択指令を作成し、負荷切替装置43Aにそのコース選択指令に基づく切替指令を出力する。負荷切替装置43Aは、電磁石電源装置42Aの各電源を治療室2Aに係わるコース電磁石群の各電磁石に接続するように、負荷切替器群Aのコンタクタ44A1〜44Anのそれぞれを切替える。このステップ72の処理機能は切替制御手段を構成する。
3.切替状態判定処理(ステップ73)
制御回路33は、コース選択状態判定回路36の判定結果の情報に基づいて、コンタクタ44A1〜44Anのそれぞれの切替えが正常に完了したかどうかを確認する。コース選択状態判定回路36とステップ73の処理機能は切替状態判定手段を構成する。
4A.初期化及び励磁電流設定処理(ステップ74)
各コンタクタの正常な切替完了を確認した後、制御回路33は、運転パラメータのうち、治療室2Aに係わるコース電磁石群(待機状態のコース電磁石群)の各電磁石に対する運転パラメータ(例えば、励磁電流設定値)に基づいて、それらの電磁石に対する各励磁電流指令を作成する。電磁石電源装置42Aの各電源は、制御回路33によって各励磁電流指令に基づいて制御され、当該コース電磁石群の各電磁石を励磁する。これにより、それらの電磁石の初期化及び励磁電流設定処理が行われる。このステップ74の処理機能は初期化及び電流設定手段を構成する。
4B.電源故障確認処理(ステップ112)
制御回路33は、A側処理に入った後も、電磁石電源装置42A,42Bの各電源の状態信号を取り込み、その状態情報に基づいて電磁石電源装置42A,42Bの各電源のいずれかが故障しているかどうかを確認し、電源の故障が無い場合のみ次の処理に移行し、電源のいずれかが故障している場合は、A側処理を終了し、ステップ111の電源再割り付け処理に移行する。この場合の電源の再割り付け方法も上記(1)及び(2)の2通りがある。
A側処理に入った後に電源が故障する場合として、例えば、一旦、コース選択処理(ステップ72)が正常に行われた後、コース電磁石の初期化運転実行中に電磁石電源装置42Aのいずれかの電源が故障する場合が考えられる。また、図4では、便宜上、電源故障確認処理を初期化及び励磁電流設定処理の次に示したが、この電源故障確認処理は、A側処理に入った後、照射が実行される(ステップ78)まで間、常時、行われており、電磁石電源装置42Aのいずれかの電源が故障したことが確認されると、即座に、A側処理を終了し、ステップ111の電源再割り付け処理に移行する。
このステップ112の処理機能もバックアップ制御手段を構成する。
5.照射許可判定処理(ステップ75)
制御回路33は、照射許可有り(治療室2A内の照射装置15Aへのイオンビームの導入が許可されている)かの判定を行う。この判定は、治療室2Cでのイオンビームの照射完了後で、B側処理のステップ90において、「待機コース有り」と判定されたときに生成される「照射許可」の情報に基づいて行われる。ステップ75では、その「照射許可」の情報に基づいて「照射許可有り」の判定が行われる。この判定の結果、制御回路33は、加速器制御装置39に「照射許可有り」の判定情報を出力する。なお、「待機コース有り」とは、待機状態のコース電磁石群の各電磁石に対し、初期化及び励磁電流設定処理が完了していることを意味する。制御回路33は、「照射許可有り」の判定をしたとき、前述の第1フラグ情報を記憶する。
6.共通部電磁石群の初期化及び励磁電流設定処理(ステップ76)
加速器制御装置39は、「照射許可有り」の判定情報を入力すると、共通部電磁石群(第1ビーム輸送系4の電磁石群のうち切替電磁石6A及びこれよりも上流側の各電磁石、シンクロトロン12の電磁石群)の各電磁石の初期化及び電流設定処理を行う。これらの電磁石の初期化及び電流設定処理は、加速器制御装置39が、記憶装置32から取得した共通部電磁石群の運転パラメータ(例えば、励磁電流設定値)に基づいて作成した励磁電流指令によって、図示しない電源群を制御し、共通部電磁石群を励磁することにより行われる。切替電磁石6Aは、励磁されることによって、イオンビームを第1ビーム輸送系4から第2ビーム輸送系5Aに導くことが可能となる。
7.オペレータ照射操作判定処理(ステップ77)
制御回路33は、治療室2Aに対する照射開始信号に基づいて照射操作の判定を行う。この判定は、例えば、以下のように行われる。すなわち、共通部電磁石の初期化及び設定処理完了後に、機械側の照射準備完了を示す信号が治療室2Aに対応したコンソールのディスプレイ(図示せず)に表示される。その表示を見た医者がそのコンソールに設けられた照射指示スイッチ(図示せず)を操作することによって照射開始信号が出力される。制御回路33は、その照射開始信号を入力したとき、治療室2Aに対する照射開始の操作があったと判定する。
8.照射処理(ステップ78)
治療室2Aに対する照射開始操作があったと判定したとき、制御回路33は加速器制御装置39に出射開始信号を出力する。加速器制御装置39は、出射開始信号に基づいて、シンクロトロン12の出射用高周波印加装置(図示せず)から高周波信号を周回するイオンビームに印加し、イオンビームをシンクロトロン12から出射させる。出射されたイオンビームは、切替電磁石6A及び第2ビーム輸送系5Aを経て、照射装置15Aから患者の患部に照射される。
以上のステップ75〜78の処理機能は照射制御手段を構成する。
9.照射完了判定処理(ステップ79)
制御回路33は、加速器制御装置39から出射停止信号を入力したとき、治療室2Aでのイオンビームの照射が完了したと判定する。このとき、制御回路33は第2フラグ情報を記憶する。
10.待機コース判定処理(ステップ80)
制御回路33は、治療室2Aでの照射完了時に、初期化及び励磁電流設定処理が完了している待機状態のコース電磁石群があるかを判定する。治療室2Eに対応する第2ビーム輸送系5Eの電磁石群の各電磁石の初期化等が完了しているため、制御回路33は「待機コース有り」と判定する。この判定により、B側処理のステップ85を実行する加速器制御装置39に「照射許可」の情報を出力する。待機状態のコース電磁石群がなければ、本処理を終了する。
<B側処理>
B側処理も、運転パラメータ取得処理(ステップ81)、コース選択処理(ステップ82)、切替状態判定処理(ステップ83)、初期化及び励磁電流設定処理(ステップ84)、電源故障確認処理(ステップ113)、照射許可判定処理(ステップ85)、共通部電磁石初期化及び励磁電流設定処理(ステップ86)、オペレータ照射操作判定処理(ステップ87)、照射処理(ステップ88)、照射完了判定処理(ステップ89)、待機コース判定処理(ステップ90)の各処理を行う。B側処理の各ステップの処理内容はA側処理の各ステップのそれと同じなので、説明は省略する。
制御回路33は、A側処理において第1フラグ情報を生成した場合、治療室2Aに対するA側処理での実運転処理と並行して、選択された次の治療室2Eに対するB側処理での待機運転処理を実行する。以上のA側処理及びB側処理において、ステップ75,85で「照射許可有り」と判定されるまでは、選択された次の治療室に対応したコース電磁石群に対する処理(ステップ71〜74,81〜84の処理)は待機運転処理であり、ステップ75,85で照射許可有りと判定された後の処理(ステップ77〜80,87〜90の処理)は実運転処理である。
次に、本実施形態の動作を、図5を用いて説明する。図5は、上段から順次、治療室準備完了信号による治療室の設定状態、待機行列回路34の出力状態(実運転側)、待機行列回路34の出力状態(待機運転側)、共通部電磁石群の動作状態、電磁石電源群Aの動作状態、電磁石電源群Bの動作状態をしている。図中、網目部分は初期化及び励磁電流設定処理を示し、斜線部分は負荷を切替えるコース選択処理を示す。
一日おいて最初に治療を行う状態で、先着判定回路35が、時点T1で治療室2Cから、時点T2で治療室2Aから、時点T3で治療室2Eからそれぞれ準備完了信号51を入力したとする。この場合、先着判定回路35は、それらの準備完了信号51の到着順序により、治療室2C,2A,2Eの順に治療を行う順番を決定し、その順番で治療室番号(治療室情報)を待機行列回路34に出力する。時点T1では、電磁石電源群A,Bがいずれも使用されていない。治療室2Cの治療室番号は待機行列回路34の実運転側領域に記憶される。このため、前述したように、最初に準備が完了した治療室2Cに対応するコース電磁石群は、初期化及び励磁電流設定処理が電磁石電源群Aによって初期化及び励磁電流設定処理が行われる。すなわち、そのコース電磁石群の各電磁石に対して、A側処理のコース選択処理(ステップ72)及びコース電磁石群の初期化及び電流設定処理(ステップ74)等の処理が実行され、その後、切替電磁石6Cの切替処理を含む共通部電磁石群の初期化及び励磁電流設定処理(ステップ76)、イオンビーム照射(ステップ78)等の実運転処理が実行される。
治療室2Cの照射処理中の時点T2において、治療室2Aの治療室番号が待機行列回路34の待機側領域に記憶される。治療室2Aに対応する第2ビーム輸送系2Aの電磁石群に電磁石群に対して、電磁石電源群Bを用いたB側処理での待機運転処理、すなわち、コース選択処理(ステップ82)及びその電磁石群の初期化及び電流設定処理(ステップ84)等が実施される。時点T4において治療室2Cの照射処理(ステップ78)が終了すると、治療室2Aの治療室番号が待機行列回路34の実運転側領域に移行する。そして、治療室2Aにイオンビームを導くために使用される、空き状態となった共通部電磁石群に対して、切替電磁石6Aの切替処理を含む初期化及び励磁電流設定処理(ステップ86)が行われる。これが完了すると治療室2Aでの照射処理(ステップ88)に移行する。
一方、治療室2Cの照射処理中及び治療室2Aの待機運転処理中の時点T3において、治療室2Eからの準備完了信号の入力により治療室2Eの治療室番号が待機行列回路34に入力される。このとき、電磁石電源群A,Bは共に使用中であるため、治療室2Eに対応する第2ビーム輸送系5Eの電磁石群に対して待機運転処理が実行されない。時点T4で治療室2Cの照射処理(ステップ78)が終了すると、治療室2Eの治療室番号が待機行列回路34の待機側領域に記憶される。空き状態となった電磁石電源群Aを用いて、治療室2Eに対応する第2ビーム輸送系2Eの電磁石群に対して、待機運転処理であるコース選択処理(ステップ72)及びその電磁石群の初期化及び励磁電流設定処理(ステップ74)が実施される。
時点T5で治療室2Aの照射処理(ステップ88)が終了すると、治療室2Eの治療室番号が待機行列回路34の実運転側領域に移行する。治療室2Eにイオンビームを導くために使用される、空き状態となった共通部電磁石群に対して、切替電磁石6Eの切替処理を含む初期化及び励磁電流設定処理(ステップ86)が行われる。これが完了すると治療室2Eでの照射処理(ステップ88)に移行する。以後、先着判定回路35で決定された治療室順に、電磁石電源群B,Aを交互に用いたB側処理及びA側処理が繰り返される。
従来の粒子線治療システムによる動作を、図6を用いて説明する。図6は、上段から順次、治療室準備完了信号による治療室の設定状態、先着判定回路35の出力状態(実運転)、共通部電磁石群の動作状態、電磁石電源群Aの動作状態を示している。従来システムでは電磁石電源群は1セットあるだけであり、図6ではそれを電磁石電源群Aで示している。図中、網目部分は初期化及び励磁電流設定処理を示し、斜線部分は負荷を切替えるコース選択処理を示す。
図5と同様に、一日おいて最初に治療を行う状態で、先着判定回路35が、治療室2C,2A,2Eの順に治療を行う順番を決定したとする。時点T1での電磁石電源群Aが使用されていない状態で、治療室2Cが待機行列回路34に設定されると、治療室2Cに対応するコース電磁石群に対し、電磁石電源Aによる初期化及び励磁電流設定処理が行われる。また、切替電磁石6Cの切替処理を含む共通部電磁石群の初期化及び励磁電流設定処理がほぼ同時に行われる。それらの処理が終了すると治療室2Cの照射処理に移行する。
治療室2Cの照射処理中に、時点T2において、治療室2Aが設定された場合、電磁石電源群A及び共通部電磁石群は共に使用中であるため、治療室2Aに対応するコース電磁石群に対する初期化等の処理が実行されない。治療室2Cの照射処理中の時点T3において、治療室2Eが待機行列回路34に設定された場合も同様である。時点T4において、治療室2Aにおける照射処理が終了すると、電磁石電源群A及び共通部電磁石群が空き状態となるため、負荷切替器群を切替えて治療室2Aに係わるコース電磁石群に電磁石電源群Aを接続するコース選択処理を行う。また、治療室2Aでの照射のための電磁石電源群Aによるコース電磁石群の初期化及び励磁電流設定処理と、切替電磁石6Aの切替処理を含む共通部電磁石群の初期化及び励磁電流設定処理を行う。これらの処理が完了すると治療室2Aの照射処理に移行する。時点T5において、治療室2Aの照射処理が終了すると、同様に、治療室2Eに係わるコース電磁石群に対するコース選択処理、及びそのコース電磁石群に対し電磁石電源群Aによる初期化及び励磁電流設定処理を行う。更に、共通部電磁石群の初期化及び励磁電流設定処理(切替電磁石6Eの切替処理を含む)を行う。これらの処理が完了すると治療室2Eの照射処理に移行する。
以上のように、従来システムにおいては、最初の治療室2Cに続く治療室2A又は2Eにおけるイオンビームの照射治療に際しては、その治療室2A又は2Eに係わるコース電磁石群を電磁石電源群Aに接続するコース選択処理と、共通部電磁石群の初期化処理と励磁電流設定処理(切替電磁石の切替処理を含む)とを、ほぼ同時に行う必要があり、コース電磁石群に対するコース選択処理時間(負荷切替器群の切替時間)の分、コース切替時間が長くなり、これに対応して治療時間が長くなり、治療効率を低下させている。
これに対し、本実施形態は、電磁石電源群Aの使用により該当するコース電磁石群を励磁してイオンビームを治療室2Cに輸送する実運転中(実運転と並行して)に、選択された次の治療室2Aに係わるコース電磁石群を待機状態にある電磁石電源群Bに接続するコース選択処理と、電磁石電源群Bによる後者のコース電磁石群の初期化及び励磁電流設定処理を待機運転として予め行うことができる。このため、治療室2Cの照射完了時に直ちに治療室2Aにイオンビームを輸送する実運転が可能となる。治療室2Aを1人の患者が占有する時間(治療時間という)が短くなり、1つの照射装置当りの治療人数の増大が図れる。以上のように本実施形態によれば、コース切替時間を短縮し、治療時間を短縮して治療効率を向上させることができる。
また、本実施形態は、2つの電磁石電源装置(2セットの電磁石電源群A,B)を用いているため、5つのコース電磁石群に対し電磁石電源群A,Bを共有することができる。5つのコース電磁石群に対する電源の個数を著しく低減できる。特開2004−267481号公報の粒子線治療システムでは、各コース電磁石群にそれぞれ含まれる各4極電磁石及び各ステアリング電磁石等にそれぞれ1個の電源を設置していたが、本実施形態では、交互に使用する電磁石電源群A,Bの各電源を設置すればよくなった。このため、本実施形態では、特に、それらの4極電磁石及びステアリング電磁石に用いる各電源が著しく少なくなった。これにより粒子線治療システムを簡素化することができる。
また、本実施の形態によれば、コース選択状態判定回路36によりコース選択処理が完了していることを確認してから該当するコース電磁石群に含まれる各電磁石の初期化と励磁電流設定処理を行ってその後の照射を行う。このため、選択された治療室でのイオンビームの照射を確実に行うことができ、安全性を維持することができる。
次に、本実施形態の電源故障時の動作について説明する。
図7に電磁石電源装置42Aの個別電源の1台が故障した場合の運転例を示す。電磁石電源装置42Aはn台の個別電源30A1、・・・、30Ak、・・・、30Anから構成される。同様に、電磁石電源装置42Bはn台の個別電源30B1、・・・、30Bk、・・・、30Bnから構成される。ここで、電磁石電源装置42Aが空き状態にあり、電磁石電源装置42Aの個別電源30Akが故障したと仮定する。この場合、この運転例では、電磁石電源装置42Aの個別電源30Akの代わりに電磁石電源装置42Bの対応する個別電源30Bkを使用し、電磁石電源装置42Aの個別電源30Ak以外の電源はそのまま使用する(上記再割り付け方法(2)による)。
上記の動作は、図2及び図4では次のように行われる。まず、制御回路33は、前述したように、図示しない制御部41の信号入力手段により、各個別電源の運転状態に係わる状態情報(状態信号)を取り込んでおり、図4の電源故障確認処理(ステップ110)において、その状態情報に基づいて個別電源に故障が発生しているかどうかを確認する。この例では、電磁石電源装置42Aの個別電源30Akが故障しているため、故障有りと判定され、その故障情報に基づいて電源の再割り付け処理(ステップ111)において、電磁石電源装置42Aの個別電源30Akの代わりに電磁石電源装置42Bの対応する個別電源30Bkを割り当て、電磁石電源装置42Aの個別電源30Ak以外の電源の割り当てはそのままとする。このように電源の再割り付けが行われると、電磁石電源装置42Aは空き状態にあるので、電磁石電源装置42Aの個別電源30Ak以外の電源に対しては、直ちにA側処理に移行し、図4の運転パラメータ取得処理(ステップ71)、コース選択処理(ステップ72)、切替状態判定処理(ステップ73)、初期化及び励磁電流設定処理(ステップ74)が実行される。一方、電磁石電源装置42Bの個別電源30Bkに対しては、電磁石電源装置42Bが使用中であるため、電磁石電源装置42Bの使用が完了するまで、つまり、電磁石電源装置42Bを用いて初期化及び電流設定処理がなされたコース電磁石に係わる治療室の照射が完了するまで、B側処理へ移行せず、待機する。
また、一旦、ステップ72のコース選択処理が行われた後に、ステップ74の初期化運転を実行中に個別電源30Akが故障した場合など、A側処理に入った後に個別電源30Akが故障した場合は、A側処理を終了し、ステップ111の電源再割り付け処理に戻って上記と同様の電源の再割り付けをする。また、この場合も、電磁石電源装置42Aの個別電源30Ak以外の電源に対しては、直ちにA側処理に移行し、電磁石電源装置42Bの個別電源30Bkに対しては、電磁石電源装置42Bが使用中であるため、電磁石電源装置42Bの使用が完了するまで、B側処理へ移行せず、待機する。なお、A側処理においては、電源故障前のステップ71の運転パラメータ取得・設定処理で取得した運転パラメータはそのまま生かし、ステップ72のコース選択処理以降を行うようにしてもよい。
このように制御することにより、各電磁石電源装置の個別電源の故障が発生しても、最小限の影響で運転を続けることが可能となる。
以上のように本実施形態によれば、コース切替時間を短縮し、治療時間を短縮して治療効率を向上させることができる。
また、コース電磁石群の全てに電源を1対1で設ける場合に比べて、電磁石電源の個数を低減することができ、粒子線治療システムを簡素化することができる。
また、意図する治療室の照射装置への家電粒子ビームの導入を確実にし、安全性を維持することができる。
また、万が一、電磁石電源装置42A,42Bのいずれかの電源が故障した場合は、電源が故障していない電磁石電源装置をバックアップ用として用いるため、本実施形態における治療時間の短縮は図れなくなるが、特開2004−267481号公報の粒子線治療システムと同様に各治療室で治療を継続することができる。第1フラグ情報及び第2フラグ情報の生成により、待機状態にある電磁石電源装置を確実に把握でき、待機運転処理時に使用する電磁石電源装置を簡単に見分けることができる。
なお、以上の実施形態では、5つの治療室2A〜2Eに対し2つの電磁石電源装置42A,42Bを設けたが、治療室の数より少なければ、電磁石電源装置の数を3つ以上としてもよい。この場合は、全ての電磁石電源装置の電源群をコース電磁石群に順番に接続するようコース選択処理を行ってもよいし、電磁石電源装置の一部をバックアップ用電源専用に用いてもよい。また、2つの電磁石電源装置42A,42Bを用いる場合は、治療室の数は3つ以上であればよい。要は、治療室の数より電磁石電源装置の数が少なければ、本実施形態で生じる効果を得ることができる。また、設備構成によっては、1つの大きな治療室に複数のビームコースを有することがある。この場合も、治療室内部のそれぞれのビームコースに合わせた区域を治療室として定義すれば、本実施形態の効果を得ることができる。
本発明の第2の実施形態である粒子線治療システムを、図8及び図9を用いて説明する。本実施形態は、複数の治療室の一部がスキャニング方式の照射装置を備える場合のものである。図8中、図1に示したものと同等のものには同じ符号を付し、図9中、図2に示したものと同等のものには同じ符号を付している。
図8において、治療室2C,2D,2Eに配置される照射装置15AC,15AD,15AEはスキャニング方式の照射装置であり、治療室2A,2B,3に配置された照射装置15A,15B,16は例えば二重散乱体方式の照射装置(ウォブラー方式の照射装置でもよい)である。スキャニング方式の照射装置15AC,15AD,15AEは、それぞれ、細いイオンビームを患部領域内でスキャニングさせるための一対の走査電磁石(走査電磁石群)を備えている。これらの走査電磁石は、治療室2C〜2E固有の電磁石であり、各コース電磁石群にそれぞれ含まれている。イオンビームのスキャニング照射の一例が、特許第3518270号公報に記載されている。
制御装置40Aは、制御部41Aと、第2ビーム輸送系5A〜5Eの各電磁石群に対する電磁石電源装置42A,42B(電磁石電源群A及びB)及び負荷切替装置43A,43Bと、照射装置15AC,15AD,15AEにそれぞれ設けられた走査電磁石群に対する走査電磁石電源装置47A,47B(走査電磁石電源群A及びB)及び走査用負荷切替装置48A,48Bとを有している。走査電磁石電源装置47Aに含まれる各電源を走査電磁石電源群Aと言い、走査電磁石電源装置47Bに含まれる各電源を走査電磁石電源群Bと言う。電磁石電源装置47A及び47Bは、照射装置15AC,15AD,15AEの各走査電磁石群を励磁するためのものであり、それぞれ、照射装置15AC,15AD,15AEの走査電磁石群に対応した電源群を備えている。
走査用負荷切替装置48A,48Bは、それぞれ、コース選択指令(後述)に基づく切替指令に従って走査電磁石電源群A,Bを照射装置15AC,15AD,15AEのうちで選択された1つの走査電磁石群に接続するよう切替えるためのものである。走査用負荷切替装置48A,48Bは、それぞれ、照射装置15AC,15AD,15AEの各々の走査電磁石群に対応した切替器群(補助継電器及びコンタクタを有する一致の切替器を含む)を備えている。以下、走査用負荷切替装置48Aの切替器群を走査用負荷切替器群Aといい、走査用負荷切替装置48Bの切替器群を走査用負荷切替器群Bという。
制御部41Aは、図9に示すように、制御回路33A、先着判定(FCFS;First Come First Service)回路35、記憶装置32A、待機行列回路34、コース選択状態判定回路36Aを有している。図中、図2と同様、実線は実運転処理の流れを示し、破線は待機運転処理の流れを示す。図9では、説明の便宜上、負荷切替装置43A,43B及び走査用負荷切替装置48A、48B共、切替器群の1つを代表して示している。
制御部41Aの先着判定回路35は、実施形態1と同様に、各治療室2A〜E,3からの各治療室準備完了信号51の先着順に治療を行なう治療室を選択し、先着順にそれぞれの治療室番号を待機行列回路34に出力する。その治療室が照射装置15AC,15AD,15AEを含む治療室2C,2D,2Eのいずれかである場合、制御回路33Aは、走査用電磁石電源群A又はBを選択した治療室に係わる照射装置の走査電磁石群に接続するよう走査用負荷切替器群A又はBを切替える。例えば、例えば最先に選択した治療室が治療室2Cであり、引き続く治療室(選択された次の治療室)が治療室2Eである場合、走査電磁石電源群Aを治療室2Cに係わる照射装置15ACの走査電磁石群に接続するよう走査用負荷切替器群Aを切替え、走査電磁石電源群Bを治療室2Eに係わる照射装置15AEの走査電磁石群に接続するよう走査用負荷切替器群Bを切替える。また、制御回路33Aは、前述のA側処理を行い、走査用負荷切替器群Aによる切替えが完了したことを確認した後、走査電磁石電源群Aを制御して照射装置15ACに含まれた走査電磁石群のそれぞれの走査電磁石の初期化及び励磁電流設定処理(ステップ74)を行う。治療室2Cでの治療が行なわれているとき、制御回路33Aは、前述のB側処理での待機運転処理を行い、走査用負荷切替器群Bによる切替えが完了したことを確認した後、走査電磁石電源群Bを制御して照射装置15AEに含まれた走査電磁石群のそれぞれの走査電磁石の初期化及び励磁電流設定処理(ステップ84)を行う。治療室2Cに係わるコース電磁石群(走査電磁石群を除く)の各電磁石に対する初期化及び励磁電流設定処理(ステップ74)は、第1実施形態と同様に、電磁石電源装置42A及び負荷切替装置43Aを用いて行なわれる。治療室2Eに係わるコース電磁石群(走査電磁石群を除く)の各電磁石に対する待機運転処理による初期化及び励磁電流設定処理(ステップ84)も、第1実施形態と同様に、電磁石電源装置42B及び負荷切替装置43Bを用いて行なわれる。制御回路33Aは、治療室2Cでのイオンビームの照射が終了した後、B側処理にて、治療室2E内の照射装置15AEにイオンビームを導くために、切替電磁石6Eの切替処理も含む共通部電磁石群の該当する各電磁石の初期化及び励磁電流設定処理(ステップ86)等の実運転処理を実施する。
また、走査電磁石電源装置47A,47Bは、電磁石電源装置42A,42Bと同様、それぞれ、走査電磁石電源群A,Bに含まれる各電源の運転状態を監視し、その状態情報を状態信号として出力する機能を有し、制御回路33Aは、制御部41Aの図示しない信号入力手段を介して走査電磁石電源装置47A,47Bの各電源の状態信号を取り込み、その状態情報に基づいて走査電磁石電源装置47A,47Bの各電源のいずれかが故障しているかどうかを確認し、電源の故障が無い場合は、待機行列回路34(電磁石電源割当手段)からの電源割り振り情報を有効とし、A側処理又はB側処理に移行する(ステップ110)。一方、走査電磁石電源装置47A,47Bの各電源のいずれかが故障している場合は、待機行列回路34からの電源割り振り情報を無効とし、電源の再割り付けを行って、A側処理又はB側処理に移行する(ステップ111)。この場合の電源の再割り付けの方法には、前述した(1)及び(2)の2通りがある。A側処理及びB側処理では、再割り当ての結果に基づいて走査用負荷切替装置48A又は48Bを制御する。
また、制御回路33Aは、A側処理又はB側処理に入った後も、走査電磁石電源装置47A,47Bの各電源の状態信号を取り込み、その状態情報に基づいて走査電磁石電源装置47A,47Bの各電源のいずれかが故障しているかどうかを確認し(ステップS112又は113)、電源の故障が無い場合のみ次の処理に移行し、電源のいずれかが故障している場合は、A側処理を終了し、電源再割り付け処理(ステップ111)に移行する。この場合の電源の再割り付け方法も前述した(1)及び(2)の2通りがある。
コース選択状態判定回路36Aは、負荷切替装置43A,43Bからの切替状態信号によりそれらの負荷切替器群A,Bの切替えが完了したかどうかを判定するとともに、治療室2C〜2Eが選択されている場合は、走査用負荷切替装置48A,48Bからの切替状態信号によりそれらの走査用負荷切替器群A,Bの切替えが完了したかどうかを判定し、その判定結果を制御回路33Aに出力する。記憶装置32Aは、励磁電流指令を作成するための運転パラメータを記憶している。その作成された励磁電流指令には走査電磁石群に対する励磁電流指令も含まれる。
なお、制御回路33Aは、電磁石電源装置42A,42Bに対しては、実施形態1と同様、それらのいずれかの電源が故障している場合は、電源の再割り付けを行い、電源の故障がない電磁石電源装置をバックアップ用として用いる機能を有している。
本実施形態において、制御回路33Aは、治療室2C〜2Eのうちの1つが選択されている場合は、走査電磁石群に対しても待機運転処理と実運転処理を行う。待機運転処理では、待機行列回路34からの電源群割り振り情報に基づいてコース選択指令及び電流指令を作成し、このコース選択指令に応じた切替指令を走査用負荷切替装置48A(又は48B)に出力して走査用負荷切替器群A(又はB)の切替えを行う。また、コース選択状態判定回路36Aの判定情報に基づいて走査用負荷切替器群A(又はB)の切替えが完了したことを確認した後、記憶装置32Aから対応する治療室に係わる運転パラメータ(励磁電流設定値)を読み出して励磁電流指令を作成し、この励磁電流指令を走査電磁石電源装置47A(又は47B)に出力する。これにより走査用負荷切替器群A(又はB)により走査電磁石電源群A(又はB)に接続された走査電磁石群が励磁され、それら電磁石群の初期化と励磁電流設定処理が行われる。
A側処理(又はB側処理)における実運転処理では、共通部電磁石群(第1ビーム輸送系4の電磁石群、シンクロトロン12の電磁石群)の初期化及び電流設定処理を行い、治療室からの照射開始信号を待って照射処理を行う。この照射処理では、一対の各走査電磁石の励磁電流設定処理を行い、患部領域においてイオンビームをスキャンさせる。実運転処理におけるイオンビームの患者への照射は、コース電磁石群(走査電磁石群を含む)の初期化及び励磁電流設定処理が完了した後、照射許可有りの判定結果を待って開始する。
また、制御回路33Aは、上記のように、A側処理又はB側処理に入る前と入った後の両方で、走査電磁石電源装置47A,47Bの各電源のいずれかが故障しているかどうかを確認し、故障がある場合は電源の再割り付けを行い、電源の故障がない走査電磁石電源装置をバックアップ用として用いる。
以上のように構成した本実施形態においても、第1の実施形態と同様、待機運転として事前に走査電磁石群を電源群に接続するコース選択処理を行うことができるため、その分、治療時間を短縮して治療効率を向上することができる。
また、同様の治療時間の短縮効果を得るために、走査電磁石群の数に対応して3セットの走査電磁石電源群を準備した場合に比べて、2セットの走査電磁石電源群で済むため、走査電磁石電源の個数を低減でき、粒子線治療システムの構成をより簡素にすることができる。
更に、コース選択状態判定回路36Aによりコース選択処理が完了していることを確認してからコース電磁石群及び走査電磁石群の各電磁石の初期化及び励磁電流設定処理を行う。その後、該当する治療室におけるイオンビームのスキャニング照射が実施される。このため、意図する治療室でのイオンビームの照射を確実に行うことができ、安全性を維持することができる。
また、万が一、電磁石電源装置42A,42Bのいずれかの電源が故障した場合に故障した電源を含まない電磁石電源装置をバックアップ用として用いることができるだけでなく、走査電磁石電源装置47A,47Bのいずれかの電源が故障した場合も、故障した電源を含まない走査電磁石電源装置をバックアップ用として用いることができるため、スキャニング方式の照射装置15AC,15AD,15AEを含む治療室2C,2D,2E含めて、いずれの治療室でも治療を継続することができる。
なお、本実施形態でも、5つの治療室2A〜2Eに対し電磁石電源装置42A,42B及び走査電磁石電源装置47A,47Bを設けたが、治療室の数より少なければ、これらの電磁石電源装置の数を3つ以上としてもよい。この場合は、全ての電磁石電源装置の電源群をコース電磁石群に順番に接続するようコース選択処理を行ってもよいし、電磁石電源装置の一部をバックアップ用電源専用に用いてもよい。また、電磁石電源装置42A,42B及び走査電磁石電源装置48A,48Bを用いる場合は、治療室の数は3つ以上であればよく、要は、治療室の数よりそれらの電磁石電源装置の数が少なければ、本実施形態の効果を得ることができる。また、設備構成によっては、1つの大きな治療室に複数のビームコースを有することがある。この場合も、治療室内部のそれぞれのビームコースに合わせた区域を治療室として定義すれば、本実施形態の効果を得ることができる。
また、本発明では、前述したようにバックアップ制御手段を設けたため、各電磁石電源装置の個別電源の故障が発生しても、最小限の影響で運転を続けることが可能となる。なお、影響の度合としては、次のようになる。電磁石電源装置が2系統の場合は、本発明の切替制御手段によるコース切替時間短縮効果は期待できず、従来方式の運転と同様となる。電磁石電源装置が3系統の場合は、同じ故障条件でも本発明の切替制御手段によるコース切替時間短縮効果を得ることができる。
本発明の第1の実施形態による粒子線治療システムの全体概略構成を示す概念図である。 第1の実施形態における制御部の処理機能の詳細を示す機能ブロック図である。 負荷切替装置の切替状態信号の生成機能と、コース選択状態判定回路の判定処理機能の詳細を示す図である。 制御回路の処理機能を示すフローチャートである。 本実施形態システムの動作を説明するタイムチャートである。 従来システムの動作を説明するタイムチャートである。 電磁石電源装置の個別電源の1台が故障した場合の運転形態を示すブロック図である。 本発明の第2の実施形態による粒子線治療システムの全体概略構成を示す概念図である。 第2の実施形態における制御部の処理機能の詳細を示す機能ブロック図である。
符号の説明
1 荷電粒子ビーム発生装置
2A〜E,3 治療室
4 第1ビーム輸送系
5A〜5E 第2ビーム輸送系
6A〜6E 切替電磁石
7A〜7F,8 シャッタ
9,13,18,19B〜19G,22A〜22E,24A〜24E 四極電磁石
10,14,17,21A〜21E,23A〜23E,25A〜25E,26A〜26E 偏向電磁石
11 前段加速器
12 シンクロトロン
15A〜15E,15AC,15AD,15AE,16 照射装置
33 制御回路
35 先着判定回路
32,32A 記憶装置
34 待機行列回路(電磁石電源割当手段)
36 コース選択状態判定回路(切替状態判定手段)
37A〜37E コース選択完了判定部
38A〜38E 導通判定部
40 制御装置
41 制御部
42A,42B 電磁石電源装置
43A,43B,48A,48B 負荷切替装置
44A コンタクタ群
44A1〜44An コンタクタ
45A 補助継電器群
45A1〜45An 補助継電器
47A,47B 走査電磁石電源装置
61,62A,62B,62C,62D,62E ビーム経路
70 空き状態確認処理
71,81 運転パラメータ取得処理
72,82 コース選択処理(切替制御手段)
73,83 切替状態判定処理(切替状態判定手段)
74,84 初期化及び励磁電流設定処理(初期化及び電流設定手段)
75,85 照射許可判定処理(照射制御手段)
76,86 共通部電磁石群の初期化及び励磁電流設定処理(照射制御手段)
77,87 オペレータ照射操作判定処理(照射制御手段)
78,88 照射処理(照射制御手段)
79,89 照射完了判定処理
80,90 待機コース判定処理
110 電源故障確認処理(バックアップ制御手段)
111 電源再割り付け処理(バックアップ制御手段)
112,113 電源故障確認処理(バックアップ制御手段)

Claims (20)

  1. 荷電粒子ビームを出射する荷電粒子ビーム発生装置と、複数の治療室にそれぞれ設置された複数の照射装置と、前記荷電粒子ビーム発生装置に連絡され、それぞれの前記照射装置に前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを輸送するビーム輸送系とを備え、前記ビーム輸送系は、前記荷電粒子ビーム発生装置に接続された第1ビーム輸送系と、この第1ビーム輸送系から分岐し、それぞれの前記照射装置に接続された複数の第2ビーム輸送系を有し、前記複数の第2ビーム輸送系は、それぞれ、複数の電磁石を含む電磁石群を備えている粒子線治療システムにおいて、
    それぞれ、前記電磁石群に対応した電源群を有する少なくとも2つの電磁石電源装置と、
    前記電磁石電源装置ごとに設けられ、それぞれ、前記電磁石群に対応した切替器群を有し、対応する前記電磁石電源装置の電源群を前記複数の治療室のうちの選択された1つの治療室に係わる前記第2ビーム輸送系の前記電磁石群に接続するよう切り替える少なくとも2つの負荷切替装置と、
    前記少なくとも2つの電磁石電源装置のうちの1つの前記電磁石電源装置の電源群を、前記複数の治療室のうち荷電粒子ビームの照射を行う第1治療室に係わる1つの前記第2ビーム輸送系の前記電磁石群に接続し、他の1つの電磁石電源装置の電源群を、前記第1治療室の次に荷電粒子ビームの照射を行う第2治療室に係わる他の前記第2ビーム輸送系の前記電磁石群に接続するよう前記少なくとも2つの負荷切替装置を制御する切替制御手段と、
    前記少なくとも2つの電磁石電源装置のそれぞれの電源群におけるいずれかの電源が故障したとき、前記切替制御手段による前記負荷切替装置の制御を無効とし、かつ少なくともその故障した電源部分に関し、前記故障した電源を含まない他の電磁石電源装置の電源群を対応する電磁石に接続するよう前記少なくとも2つの負荷切替装置を制御するバックアップ制御手段とを備えることを特徴とする粒子線治療システム。
  2. 荷電粒子ビームを出射する荷電粒子ビーム発生装置と、複数の治療室にそれぞれ設置された複数の照射装置と、前記荷電粒子ビーム発生装置に連絡され、それぞれの前記照射装置に前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを輸送するビーム輸送系とを備え、前記ビーム輸送系は、前記荷電粒子ビーム発生装置に接続された第1ビーム輸送系と、この第1ビーム輸送系から分岐し、それぞれの前記照射装置に接続された複数の第2ビーム輸送系を有し、前記複数の第2ビーム輸送系は、それぞれ、複数の電磁石を含む電磁石群を備えている粒子線治療システムにおいて、
    それぞれ、前記電磁石群に対応した電源群を有する少なくとも2つの電磁石電源装置と、
    前記電磁石電源装置ごとに設けられ、それぞれ、前記電磁石群に対応した切替器群を有し、対応する前記電磁石電源装置の電源群を前記複数の治療室のうちの選択された1つの治療室に係わる前記第2ビーム輸送系の前記電磁石群に接続するよう切り替える少なくとも2つの負荷切替装置と、
    前記少なくとも2つの電磁石電源装置のうちの1つの前記電磁石電源装置の電源群を、前記複数の治療室のうち荷電粒子ビームの照射を行う第1治療室に係わる1つの前記第2ビーム輸送系の前記電磁石群に接続し、他の1つの電磁石電源装置の電源群を、前記第1治療室の次に荷電粒子ビームの照射を行う第2治療室に係わる他の前記第2ビーム輸送系の前記電磁石群に接続するよう前記少なくとも2つの負荷切替装置を制御する切替制御手段と、
    前記少なくとも2つの電磁石電源装置のいずれかの電源群における第1電源が故障したとき、前記切替制御手段による前記負荷切替装置の制御を無効とし、前記第1電源を含む電磁石電源装置の前記第1電源以外の電源を、そのときに荷電粒子ビームの照射を行う治療室に係わる前記第2ビーム輸送系の前記電磁石群の対応する電磁石に接続し、前記第1電源を含まない他の電磁石電源装置の電源群の前記第1電源に対応する第2電源を、そのときに荷電粒子ビームの照射を行う治療室に係わる前記第2ビーム輸送系の前記電磁石群の対応する電磁石に接続するよう前記少なくとも2つの負荷切替装置を制御するバックアップ制御手段とを備えることを特徴とする粒子線治療システム。
  3. 前記切替制御手段は、前記他の1つの電磁石電源装置の前記電源群を前記他の第2ビーム輸送系の前記電磁石群に接続する1つの前記負荷切替装置に含まれる前記切替器群の切替操作を、前記荷電粒子ビーム発生装置から出射された荷電粒子ビームが前記1つの第2ビーム輸送系に導かれる状態になっており、かつ、その荷電粒子ビームが前記他の第2ビーム輸送系に導かれない状態になっているときに行う請求項1又は2記載の粒子線治療システム。
  4. 前記複数の治療室のうち発生した照射準備完了信号に対応する前記治療室に係わる前記第2ビーム輸送系の前記電磁石群に対して、前記少なくとも2つの電磁石電源装置のうちのどの電磁石電源装置を割り当てるかを決定する電磁石電源割当手段を更に備え、前記切替制御手段は、前記電磁石電源割当手段からの指令に基づいて前記少なくとも2つの負荷切替装置を制御することを特徴とする請求項1又は2記載の粒子線治療システム。
  5. 前記切替制御手段が、前記他の1つの電磁石電源装置の電源群を前記第2治療室に係わる前記第2ビーム輸送系の電磁石群に接続するよう前記少なくとも2つの負荷切替装置を制御するとき、その接続が当該電磁石群の全ての電磁石に対して完了したかを判定する切替状態判定手段と、
    前記切替状態判定手段の判定が肯定されたときに、前記他の1つの電磁石電源装置に電流指令を出力し、前記電磁石群の初期化と励磁電流設定を行う初期化及び電流設定手段とを更に備えたことを特徴とする請求項1又は2記載の粒子線治療システム。
  6. 前記切替状態判定手段は、更に、当該電磁石群が予め選択された治療室に係わる電磁石群であるかを判定することを特徴とする請求項5記載の粒子線治療システム。
  7. 前記切換制御手段が前記他の1つの電磁石電源装置の電源群を前記他の第2ビーム輸送系の前記電磁石群に接続したとき、前記荷電粒子ビーム発生手段から出射した荷電粒子ビームが前記1つの第2ビーム輸送系に導かれているときは、前記1つの第2ビーム輸送系への荷電粒子ビームの導入が停止された後に、前記他の第2ビーム輸送系に導く荷電粒子ビームを前記荷電粒子ビーム発生手段から出射させる照射制御手段を更に備えたことを特徴とする請求項請求項1又は2記載の粒子線治療システム。
  8. 前記照射制御手段は、前記切替制御手段が前記他の1つの電磁石電源装置の電源群を前記他の第2ビーム輸送系の前記電磁石群に接続したときに、前記1つの第2ビーム輸送系への荷電粒子ビームの導入が停止されるまで、前記他の第2ビーム輸送系の前記電磁石群を待機運転させることを特徴とする請求項7記載の粒子線治療システム。
  9. 前記第2ビーム輸送系は3つ以上あり、前記電磁石電源装置は2つであることを特徴とする請求項1又は2記載の粒子線治療システム。
  10. 荷電粒子ビームを出射する荷電粒子ビーム発生装置と、複数の治療室にそれぞれ設置された複数の照射装置と、前記荷電粒子ビーム発生装置に連絡され、それぞれの前記照射装置に前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを輸送するビーム輸送系とを備え、前記複数の照射装置は、走査電磁石群を有する複数のスキャニング照射装置を含む粒子線治療システムにおいて、
    それぞれ、前記走査電磁石群に対応した電源群を有する少なくとも2つの電磁石電源装置と、
    前記電磁石電源装置ごとに設けられた少なくとも2つの負荷切替装置であって、それぞれ、前記走査電磁石群に対応した切替器群を有し、対応する電磁石電源装置の電源群を前記複数のスキャニング照射装置のうちの選択された1つのスキャニング照射装置の走査電磁石群に接続するよう切り替える負荷切替装置と、
    前記複数のスキャニング照射装置のうち荷電粒子ビームが導入されるスキャニング照射装置が第1スキャニング照射装置であるとき、前記少なくとも2つの電磁石電源装置のうち1つの電磁石電源装置の電源群を、前記第1スキャニング照射装置の走査電磁石群に接続し、前記第1スキャニング照射装置の次に荷電粒子ビームを導入するスキャニング照射装置が第2スキャニング照射装置であるとき、前記少なくとも2つの電磁石電源装置のうちの他の1つの電磁石電源装置の電源群を、前記第2スキャニング照射装置の走査電磁石群に接続するよう前記少なくとも2つの負荷切替装置を制御する切替制御手段と、
    前記少なくとも2つの電磁石電源装置のそれぞれの電源群におけるいずれかの電源が故障したとき、前記切替制御手段による前記負荷切替装置の制御を無効とし、かつ少なくともその故障した電源部分に関し、前記故障した電源を含まない他の電磁石電源装置の電源群を対応する走査電磁石に接続するよう前記少なくとも2つの負荷切替装置を制御するバックアップ制御手段とを備えることを特徴とする粒子線治療システム。
  11. 荷電粒子ビームを出射する荷電粒子ビーム発生装置と、複数の治療室にそれぞれ設置された複数の照射装置と、前記荷電粒子ビーム発生装置に連絡され、それぞれの前記照射装置に前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを輸送するビーム輸送系とを備え、前記複数の照射装置は、走査電磁石群を有する複数のスキャニング照射装置を含む粒子線治療システムにおいて、
    それぞれ、前記走査電磁石群に対応した電源群を有する少なくとも2つの電磁石電源装置と、
    前記電磁石電源装置ごとに設けられた少なくとも2つの負荷切替装置であって、それぞれ、前記走査電磁石群に対応した切替器群を有し、対応する電磁石電源装置の電源群を前記複数のスキャニング照射装置のうちの選択された1つのスキャニング照射装置の走査電磁石群に接続するよう切り替える負荷切替装置と、
    前記複数のスキャニング照射装置のうち荷電粒子ビームが導入されるスキャニング照射装置が第1スキャニング照射装置であるとき、前記少なくとも2つの電磁石電源装置のうち1つの電磁石電源装置の電源群を、前記第1スキャニング照射装置の走査電磁石群に接続し、前記第1スキャニング照射装置の次に荷電粒子ビームを導入するスキャニング照射装置が第2スキャニング照射装置であるとき、前記少なくとも2つの電磁石電源装置のうちの他の1つの電磁石電源装置の電源群を、前記第2スキャニング照射装置の走査電磁石群に接続するよう前記少なくとも2つの負荷切替装置を制御する切替制御手段と、
    前記少なくとも2つの電磁石電源装置のいずれかの電源群における第1電源が故障したとき、前記切替制御手段による前記負荷切替装置の制御を無効とし、前記第1電源を含む電磁石電源装置の前記第1電源以外の電源を、そのときに荷電粒子ビームが導入されるスキャニング照射装置の走査電磁石群の対応する走査電磁石に接続し、前記第1電源を含まない他の電磁石電源装置の電源群の前記第1電源に対応する第2電源を、そのときに荷電粒子ビームが導入されるスキャニング照射装置の走査電磁石群の対応する走査電磁石に接続するよう前記少なくとも2つの第2負荷切替装置を制御するバックアップ制御手段とを備えることを特徴とする粒子線治療システム。
  12. 荷電粒子ビームを出射する荷電粒子ビーム発生装置と、複数の治療室にそれぞれ設置された複数の照射装置と、前記荷電粒子ビーム発生装置に連絡され、それぞれの前記照射装置に前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを輸送するビーム輸送系とを備え、前記ビーム輸送系は、前記荷電粒子ビーム発生装置に接続された第1ビーム輸送系と、この第1ビーム輸送系から分岐し、それぞれの前記照射装置に接続された複数の第2ビーム輸送系を有し、前記複数の第2ビーム輸送系は、それぞれ、複数の電磁石を含む電磁石群を備えている粒子線治療システムのビームコース切替方法において、
    それぞれ、前記電磁石群に対応した電源群を有する少なくとも2つの電磁石電源装置のうち1つの電磁石電源装置の電源群を、前記複数の治療室のうち、荷電粒子ビームの照射を行なう第1治療室に係わる1つの前記第2ビーム輸送系の電磁石群に接続し、他の1つの電磁石電源装置の電源群を、前記第1治療室の次に荷電粒子ビームの照射を行う第2治療室に係わる他の前記第2ビーム輸送系の電磁石群に接続する第1手順と;
    前記少なくとも2つの電磁石電源装置のそれぞれの電源群におけるいずれかの電源が故障したとき、前記第1手順による電源群の接続処理を無効とし、かつ少なくともその故障した電源部分に関し、前記故障した電源を含まない他の電磁石電源装置の電源群を対応する電磁石に接続する第2手順とを備えることを特徴とするビームコース切替方法。
  13. 荷電粒子ビームを出射する荷電粒子ビーム発生装置と、複数の治療室にそれぞれ設置された複数の照射装置と、前記荷電粒子ビーム発生装置に連絡され、それぞれの前記照射装置に前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを輸送するビーム輸送系とを備え、前記ビーム輸送系は、前記荷電粒子ビーム発生装置に接続された第1ビーム輸送系と、この第1ビーム輸送系から分岐し、それぞれの前記照射装置に接続された複数の第2ビーム輸送系を有し、前記複数の第2ビーム輸送系は、それぞれ、複数の電磁石を含む電磁石群を備えている粒子線治療システムのビームコース切替方法において、
    それぞれ、前記電磁石群に対応した電源群を有する少なくとも2つの電磁石電源装置のうち1つの電磁石電源装置の電源群を、前記複数の治療室のうち、荷電粒子ビームの照射を行なう第1治療室に係わる1つの前記第2ビーム輸送系の電磁石群に接続し、他の1つの電磁石電源装置の電源群を、前記第1治療室の次に荷電粒子ビームの照射を行う第2治療室に係わる他の前記第2ビーム輸送系の電磁石群に接続する第1手順と;
    前記少なくとも2つの電磁石電源装置のいずれかの電源群における第1電源が故障したとき、前記第1手順による電源群の接続処理を無効とし、前記第1電源を含む電磁石電源装置の前記第1電源以外の電源を、そのときに荷電粒子ビームの照射を行う治療室に係わる前記第2ビーム輸送系の前記電磁石群の対応する電磁石に接続し、前記第1電源を含まない他の電磁石電源装置の電源群の前記第1電源に対応する第2電源を、そのときに荷電粒子ビームの照射を行う治療室に係わる前記第2ビーム輸送系の前記電磁石群の対応する電磁石に接続する第2手順とを備えることを特徴とするビームコース切替方法。
  14. 前記第1手順により前記他の1つの電磁石電源装置の電源群を前記第2治療室に係わる前記第2ビーム輸送系の電磁石群に接続したとき、その接続が当該電磁石群に含まれる全ての電磁石に対して完了したかを判定する第3手順と、前記第3手順による判定が肯定されたときに、前記他の1つの電磁石電源装置の電源群に電流指令を出力し、前記電磁石群の初期化と励磁電流設定を行う第4手順とを更に備えたことを特徴とする請求項12又は13記載のビームコース切替方法。
  15. 前記第3手順は、前記第1手順により前記他の1つの電磁石電源装置の電源群を前記第2治療室に係わる前記第2ビーム輸送系の電磁石群に接続したとき、更に、当該電磁石群が選択された治療室に係わる電磁石群であるかを判定することを特徴とする請求項14記載のビームコース切替方法。
  16. 前記第1手順により前記他の1つの電磁石電源装置の電源群を前記第2ビーム輸送系の電磁石群に接続したとき、前記荷電粒子ビーム発生手段から出射した荷電粒子ビームが前記1つの第2ビーム輸送系に導かれているときは、前記1つの第2ビーム輸送系への荷電粒子ビームの導入が停止された後に、前記他の第2ビーム輸送系に導く荷電粒子ビームを前記荷電粒子ビーム発生手段から出射させる第5手順を更に備えたことを特徴とする請求項12又は13記載のビームコース切替方法。
  17. 前記第5手順は、前記第1手順により前記他の1つの電磁石電源装置の電源群を前記他の第2ビーム輸送系の前記電磁石群に接続したときに、前記1つの第2ビーム輸送系への荷電粒子ビームの導入が停止されるまで、前記他の第2ビーム輸送系の前記電磁石群を待機運転させることを特徴とする請求項16記載のビームコース切替方法。
  18. 荷電粒子ビームを出射する荷電粒子ビーム発生装置と、複数の治療室にそれぞれ設置された複数の照射装置と、前記荷電粒子ビーム発生装置に連絡され、それぞれの前記照射装置に前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームを輸送するビーム輸送系とを備え、前記ビーム輸送系は、前記荷電粒子ビーム発生装置に接続された第1ビーム輸送系と、この第1ビーム輸送系から分岐し、それぞれの前記照射装置に接続された複数の第2ビーム輸送系とを有し、前記複数の第2ビーム輸送系は、それぞれ、複数の電磁石を含む電磁石群を備えている粒子線治療システムにおいて、
    それぞれ、前記電磁石群に対応した電源群を有する少なくとも2つの電磁石電源装置と、
    前記電磁石電源装置ごとに設けられ、それぞれ、前記電磁石群に対応した切替器群を有し、対応する前記電磁石電源装置の電源群を前記複数の治療室のうちの選択された1つの治療室に係わる前記第2ビーム輸送系の前記電磁石群に接続するよう切り替える少なくとも2つの負荷切替装置と、
    前記少なくとも2つの電磁石電源装置のいずれかの電源群における第1電源が故障したとき、前記第1電源を含む電磁石電源装置の前記第1電源以外の電源を、そのときに荷電粒子ビームの照射を行う治療室に係わる前記第2ビーム輸送系の前記電磁石群の対応する電磁石に接続し、前記第1電源を含まない他の電磁石電源装置の電源群の前記第1電源に対応する第2電源を、そのときに荷電粒子ビームの照射を行う治療室に係わる前記第2ビーム輸送系の前記電磁石群の対応する電磁石に接続するよう前記少なくとも2つの負荷切替装置を制御するバックアップ制御手段とを備えることを特徴とする粒子線治療システム。
  19. 前記複数の治療室のうち発生した照射準備完了信号に対応する前記治療室に係わる前記第2ビーム輸送系の前記電磁石群に対して、前記少なくとも2つの電磁石電源装置のうちのどの電磁石電源装置を割り当てるかを決定する電磁石電源割当手段を更に備え、
    前記切替制御手段は、前記電磁石電源割当手段からの指令に基づいて前記少なくとも2つの負荷切替装置を制御し、
    前記バックアップ制御手段は、前記少なくとも2つの電磁石電源装置のそれぞれの電源群に含まれる各電源の状態情報に基づいて、前記少なくとも2つの電磁石電源装置のそれぞれの電源群におけるいずれかの電源が故障しているかどうかを確認し、故障が発生していない場合は、前記電磁石電源割当手段による前記指令を有効とし、故障が発生した場合は、前記電磁石電源割当手段による前記指令を無効とし、かつ前記故障した電源を含まない他の電磁石電源装置の電源群を用いて電源群の再割り当てを行い、この再割り当ての結果に基づいて前記少なくとも2つの負荷切替装置を制御することを特徴とする請求項1又は2記載の粒子線治療システム。
  20. 前記切換制御手段が、前記他の1つの電磁石電源装置の電源群を前記第2治療室に係わる前記第2ビーム輸送系の電磁石群に接続するよう前記少なくとも2つの負荷切替装置を制御した後、前記他の1つの電磁石電源装置に電流指令を出力し、前記電磁石群の初期化と励磁電流設定を行う初期化及び電流設定手段と、
    前記初期化及び電流設定手段が、前記他の1つの電磁石電源装置に電流指令を出力し、前記電磁石群の初期化と励磁電流設定を行った後、前記荷電粒子ビーム発生手段から出射した荷電粒子ビームが前記1つの第2ビーム輸送系に導かれているときは、前記1つの第2ビーム輸送系への荷電粒子ビームの導入が停止された後に、前記他の第2ビーム輸送系に導く荷電粒子ビームを前記荷電粒子ビーム発生手段から出射させる照射制御手段とを更に備え、
    前記バックアップ制御手段は、更に、前記切換制御手段が前記少なくとも2つの負荷切替装置を制御した後、前記出射制御手段が前記荷電粒子ビーム発生手段から荷電粒子ビームを出射させるまでの間、前記少なくとも2つの電磁石電源装置のそれぞれの電源群に含まれる各電源の状態情報に基づいて、前記少なくとも2つの電磁石電源装置のそれぞれの電源群におけるいずれかの電源が故障しているかどうかを確認し、故障が発生した場合は前記切替制御手段、初期化及び電流設定手段の制御を無効とし、かつ前記故障した電源を含まない他の電磁石電源装置の電源群を用いて電源群の再割り当てを行い、この再割り当ての結果に基づいて前記少なくとも2つの負荷切替装置を制御することを特徴とする請求項19記載の粒子線治療システム。
JP2006098605A 2006-03-31 2006-03-31 粒子線治療システム及びそのビームコース切替方法 Active JP4451411B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098605A JP4451411B2 (ja) 2006-03-31 2006-03-31 粒子線治療システム及びそのビームコース切替方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098605A JP4451411B2 (ja) 2006-03-31 2006-03-31 粒子線治療システム及びそのビームコース切替方法

Publications (2)

Publication Number Publication Date
JP2007268031A true JP2007268031A (ja) 2007-10-18
JP4451411B2 JP4451411B2 (ja) 2010-04-14

Family

ID=38671439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098605A Active JP4451411B2 (ja) 2006-03-31 2006-03-31 粒子線治療システム及びそのビームコース切替方法

Country Status (1)

Country Link
JP (1) JP4451411B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063725A (ja) * 2008-09-12 2010-03-25 Hitachi Ltd 粒子線照射装置とその運転方法
WO2011148513A1 (ja) * 2010-05-28 2011-12-01 株式会社日立製作所 荷電粒子照射システム
CN103687648A (zh) * 2011-07-21 2014-03-26 三菱电机株式会社 粒子射线治疗装置
TWI471152B (zh) * 2012-07-13 2015-02-01 Mitsubishi Electric Corp X射線定位裝置、x射線定位方法,以及矚目畫像攝影方法
WO2015151275A1 (ja) * 2014-04-04 2015-10-08 三菱電機株式会社 粒子線治療装置
JP2019187687A (ja) * 2018-04-23 2019-10-31 株式会社東芝 粒子線治療システム、粒子線治療システムの構築方法および粒子線治療装置
JP2021019985A (ja) * 2019-07-30 2021-02-18 東芝エネルギーシステムズ株式会社 粒子線治療システム
US11389671B2 (en) * 2018-03-02 2022-07-19 Hitachi, Ltd. Particle beam treatment system and method for renewing facilities of particle beam treatment system
JP2022111250A (ja) * 2018-04-23 2022-07-29 株式会社東芝 粒子線治療システム、粒子線治療システムの構築方法および粒子線治療装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063725A (ja) * 2008-09-12 2010-03-25 Hitachi Ltd 粒子線照射装置とその運転方法
WO2011148513A1 (ja) * 2010-05-28 2011-12-01 株式会社日立製作所 荷電粒子照射システム
JP5396538B2 (ja) * 2010-05-28 2014-01-22 株式会社日立製作所 荷電粒子照射システム
CN103687648A (zh) * 2011-07-21 2014-03-26 三菱电机株式会社 粒子射线治疗装置
US8841638B2 (en) 2011-07-21 2014-09-23 Mitsubishi Electric Corporation Particle beam therapy system
TWI462761B (zh) * 2011-07-21 2014-12-01 Mitsubishi Electric Corp 粒子束治療裝置
CN104470583B (zh) * 2012-07-13 2016-12-07 三菱电机株式会社 X射线定位装置、x射线定位方法及关注图像拍摄方法
TWI471152B (zh) * 2012-07-13 2015-02-01 Mitsubishi Electric Corp X射線定位裝置、x射線定位方法,以及矚目畫像攝影方法
JPWO2015151275A1 (ja) * 2014-04-04 2017-04-13 三菱電機株式会社 粒子線治療装置
CN106163615A (zh) * 2014-04-04 2016-11-23 三菱电机株式会社 粒子射线治疗装置
WO2015151275A1 (ja) * 2014-04-04 2015-10-08 三菱電機株式会社 粒子線治療装置
US9681530B2 (en) 2014-04-04 2017-06-13 Mitsubishi Electric Corporation Particle beam therapy device
CN106163615B (zh) * 2014-04-04 2019-01-08 株式会社日立制作所 粒子射线治疗装置
US11389671B2 (en) * 2018-03-02 2022-07-19 Hitachi, Ltd. Particle beam treatment system and method for renewing facilities of particle beam treatment system
JP2019187687A (ja) * 2018-04-23 2019-10-31 株式会社東芝 粒子線治療システム、粒子線治療システムの構築方法および粒子線治療装置
JP2022111250A (ja) * 2018-04-23 2022-07-29 株式会社東芝 粒子線治療システム、粒子線治療システムの構築方法および粒子線治療装置
JP7118720B2 (ja) 2018-04-23 2022-08-16 株式会社東芝 粒子線治療システム
JP7309973B2 (ja) 2018-04-23 2023-07-18 株式会社東芝 粒子線治療システム、粒子線治療システムの構築方法および粒子線治療装置
JP2021019985A (ja) * 2019-07-30 2021-02-18 東芝エネルギーシステムズ株式会社 粒子線治療システム
JP7317618B2 (ja) 2019-07-30 2023-07-31 東芝エネルギーシステムズ株式会社 粒子線治療システム

Also Published As

Publication number Publication date
JP4451411B2 (ja) 2010-04-14

Similar Documents

Publication Publication Date Title
JP4451411B2 (ja) 粒子線治療システム及びそのビームコース切替方法
US7012267B2 (en) Particle beam therapy system
US7141810B2 (en) Particle beam irradiation system
US7465944B2 (en) Charged particle therapy apparatus and charged particle therapy system
JP4489529B2 (ja) 粒子線治療システム及び粒子線治療システムの制御システム
JP2007083035A (ja) 粒子線治療施設および粒子線治療施設における照射過程のための粒子線経路の形成方法
US20070053484A1 (en) Particle therapy system
JP2011072537A (ja) 粒子線照射システムおよびその制御方法
JP2007083036A (ja) 粒子線治療施設、粒子線治療施設の粒子線経路の設定方法および装置、粒子線治療施設の信号接続手段
JP2007083037A (ja) 粒子線治療施設、粒子線治療施設の粒子線の要求方法および装置、粒子線治療施設の信号接続手段
JP4864787B2 (ja) 粒子線照射システムおよびその制御方法
EP3884999A1 (en) Particle beam therapy device and method of controlling same
JP4648817B2 (ja) 粒子線治療システム及びそのビームコース切替方法
JP2023534709A (ja) 放射線療法システム及びその安全インターロック制御方法
CN109216137B (zh) 分布式x射线源及其控制方法
CN111617391B (zh) 粒子束治疗系统、粒子束照射切换方法以及存储介质
JP2006006960A (ja) 粒子線治療システム
JP5396538B2 (ja) 荷電粒子照射システム
JP7276984B2 (ja) 電磁石の制御装置、その制御方法及びその制御プログラム並びに粒子線照射装置
JP2006006961A (ja) 粒子線治療システム
JP3859680B2 (ja) 粒子線治療システム及び粒子線出射方法
WO2015145705A1 (ja) 荷電粒子ビーム照射システムおよび治療計画装置
JP3337436B2 (ja) 加速器施設の操作制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Ref document number: 4451411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4