JP2007264502A - 光導波路およびその製造方法 - Google Patents

光導波路およびその製造方法 Download PDF

Info

Publication number
JP2007264502A
JP2007264502A JP2006092482A JP2006092482A JP2007264502A JP 2007264502 A JP2007264502 A JP 2007264502A JP 2006092482 A JP2006092482 A JP 2006092482A JP 2006092482 A JP2006092482 A JP 2006092482A JP 2007264502 A JP2007264502 A JP 2007264502A
Authority
JP
Japan
Prior art keywords
optical waveguide
acid
foam
tert
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006092482A
Other languages
English (en)
Inventor
Fumio Jinno
文夫 神野
Tomoyuki Takada
知行 高田
Junya Kojima
淳也 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2006092482A priority Critical patent/JP2007264502A/ja
Publication of JP2007264502A publication Critical patent/JP2007264502A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】
曲げ損失に優れる光導波路、およびその製造方法を提供する。
【解決手段】
光導波路のクラッド部を形成する低屈折率材料の一部に、活性エネルギー線により酸および塩基を発生する物質と酸または塩基と反応して低分点揮発物を分解脱離する化合物を含有する独立気泡を有する発泡体を用い、その平均気泡径が5〜200nmであり発泡部位の空隙率が1〜95%である。発泡体部を電子線照射や紫外線によって照射後、加熱して微細な気泡を発生させ、光導波路を形成する。
【選択図】図1

Description

本発明は、光を一定領域内に閉じ込めて伝送する光の線路であり、光分岐結合器(光カプラ)、光合波分波器など様々な光部品に適用できる光導波路に関する。
特には、高分子物質で形成され、曲げ損失に優れる光導波路、およびその製造方法を提供するものである。
近年になって通信の高速化、大容量化、長距離化等の性能向上が進み、一般家庭への光通信を用いたネットワークが普及してきている。この光通信における重要な光部品としては、例えば、光分岐結合器(光カプラ)、光合波分波器、光アイソレーター、光ファイバーアンプ等が挙げられるが、最近では、光システムの普及に伴い、安価に供給できる光部品が望まれており、特に高分子光導波路が有望視されている。
光導波路の従来技術としては、特許文献1には、火炎堆積法によりクラッド層とコア層を積層した後にフォトリソグラフィーとエッチングを用いてガラス材料により光導波路を形成する手段が提示されている。特許文献1に開示されている技術では、高温や真空中でのプロセスを含み、リソグラフィーでのパターン化などの工程が煩雑であり、製造コストが高くなるなどの課題がある。
特許文献2には、パルスレーザーの照射により高分子材料の屈折率を変化させて、効率よく任意形状の光導波路を形成する技術が提示されている。特許文献2に開示されている技術では、安定した加工性を達成しようとすると、加工スピードが小さくなって生産性が低下し、生産性の向上を達成しようとすると、加工の安定性が劣るという問題点が生じる。
また、特許文献3には、高分子フィルムに溝を掘削し、形成された溝にコアとなる樹脂を充填することで、任意の形状に光導波路を形成する手段が提示されている。特許文献3に開示されている技術では、高分子シートに溝を掘削したり、その溝に樹脂を充填するなど工程が複雑で製造に長時間を要するため製造コストが高く、歩留まりが悪いという課題があり、光システム普及の障害となっている。
光導波路は、様々な用途に応用が検討されている中で、素子の小型化についても要求が強いが、複雑な導波路パターンを小型化する上で曲げ損失が小型化する際のボトルネックとなっており、曲げ損失を低減する手段としてコア部とクラッド部の屈折率差を大きく取ることが有効であることが従来より理論的に示されている(非特許文献1)。
しかし、無機材料では材料により屈折率差を付けることが可能であるが、上記の理由から製造手段が煩雑でコストがかかることが問題とされており、高分子材料では材料の屈折率差を付けることが難しい。
特開平6−160657号公報 特開2005−326599号公報 特開2006−39974号公報 「導波工学」左貝潤一著、共立出版株式会社、p214−219
上記従来の技術では、材料同士の屈折率差が大きく取れないことに起因して、屈折率差に強く依存する曲げ損失を低減することが出来ず、デバイスの小型化が困難であった。また高分子シートに溝を掘ったり、リソグラフィーによりパターンを作るなど製造方法が煩雑で、より効率的かつ低コストで製造することが不十分といった課題があった。
上記課題について鋭意検討した結果、光導波路のクラッド部を形成する低屈折率材料の一部が平均気泡径が5〜200nmであり発泡部位の空隙率が1〜95%であるような発泡体部から成り、その発泡体部は活性エネルギー線により酸および塩基を発生する物質と酸または塩基と反応して低分点揮発物を分解脱離する化合物を含有する発泡性組成物に電子線照射や紫外線を照射後、加熱して微細な気泡を発生させることで形成されることにより製造する ことで、本発明を完成させるに至った。すなわち、本発明にかかる光導波路 は、上記の課題を解決するために、下記を提供する。
本発明の第1は、コア部と該コア部より屈折率の低い材料からなり、該コア部を囲むように配置されたクラッド部を備えた光導波路であって、該クラッド部の一部が平均気泡径が5〜200nmの微細独立気泡を内包する主に高分子材料からなる発泡体からなり、該発泡体部の体積空隙率が1〜95%であることを特徴とする光導波路である。
本発明の第2は、上記第1の発明において、前記発泡体部は、下記a成分及びb成分を含有する発泡性組成物に活性エネルギー線を照射して得られた発泡体であることを特徴とする光導波路である。
a.活性エネルギー線の作用によって酸を発生する酸発生剤または塩基を発生する塩基発生剤。
b.酸または塩基と反応して一種類以上の低沸点揮発性物質を分解脱離する分解発泡性官能基を有する化合物。
本発明の第3は、少なくとも1つは前記発泡体部を含むような2つ以上のシートを積層、貼合させることを特徴とする発明第1または第2の光導波路である。
本発明の第4は、コア部と該コア部より屈折率の低い材料からなり、該コア部を囲むように配置されたクラッド部を備えた光導波路であって、該クラッド部の一部が平均気泡径が5〜200nmの微細独立気泡を内包する主に高分子材料からなる発泡体からなり、該発泡体部の体積空隙率が1〜95%である光導波路の製造方法であって、発泡体部を形成すべき部位に活性エネルギー線を照射する工程と、発泡体成形工程とを含むことを特徴とする光導波路の製造方法である。
本発明の第5は、発泡体成形工程が、低沸点揮発物質が分解脱離する温度領域で圧力制御して発泡させる工程を含むことを特徴とする発明第4の光導波路の製造方法である。
本発明の第6は、発泡体成形工程が、低沸点揮発物質が分解脱離する温度領域で圧力制御して発泡させる工程の後に圧力制御しながら冷却する工程を含むことを特徴とする発明第4または第5の光導波路の製造方法である。
本発明の第7は、上記第4〜第6のいずれかの発明において、該発泡体を形成すべき部位は、「活性エネルギー線の作用によって酸を発生する酸発生剤または塩基を発生する塩基発生剤を含有し、さらに、酸または塩基と反応して一種類以上の低沸点揮発性物質を分解脱離する分解発泡性官能基を有する化合物を含有する発泡組成物」から構成されていることを特徴とする光導波路の製造方法である。
また、本発明には、上記構成の光導波路を用いてなる光部品も含まれる。
上記のように、本発明では、光導波路のクラッド部を形成する低屈折率材料の一部に、活性エネルギー線により酸および塩基を発生する物質と酸または塩基と反応して低分点揮発物を分解脱離する化合物を含有する独立気泡を有する発泡体を用い、その平均気泡径が5〜200nmであり発泡部位の空隙率が1〜95%である。発泡体部を電子線照射や紫外線によって照射後、加熱して微細な気泡を発生させることによって曲げ損失に優れる光導波路を製造することができる。
この方法によれば、複雑な導波路のパターンを形成することが可能になり、光部品の小型化が可能となる。また、電子線や紫外線により導波路のパターンを露光して加熱するという簡単な方法で製造できるため、コスト的にも従来の製造方法と比較して有利である。
本発明の実施について説明すると以下の通りであるが、本発明はこれに限定されるものではない。
本発明にかかる光導波路とは、例えば光通信等のように、光を用いたシステムに用いられる光導波路を製造する際に用いられる素材、または光部品の構成要素となり得る基本的な部品としての光導波路を指す。得られる光導波路は、コア部の屈折率が周辺の部位よりも屈折率が高くなっており、様々な機能を発揮する光部品(例えば、光合波分波器や光アイソレーターなど)の一部に使用される。それゆえ、本発明にかかる光導波路には、それ単独で光部品として用いることが可能なものも含まれる。かかる光導波路を単体で使用することができるが、光部品の一部に使用されることもあり、特に限定されるものではない。
上記光導波路とは、光を一定領域内に閉じ込めて伝送する線路そのもの、または、屈折率の低い透光性の基板上に屈折率の高い部位を線状に加工することで上記光の線路を基板上に形成し、光を伝搬させる光の配線板を指す。
以下に、まず、本発明の光導波路に用いられる発泡体の原料となる発泡性組成物について説明する。発泡組成物は活性エネルギー線を照射して加熱処理を施すことで発泡性が発現する組成物である。その発泡性組成物としては、少なくとも次の2つの構成要素を共存させた組成物であることが望ましい。その一つは、活性エネルギー線の作用によって酸を発生する酸発生剤、または塩基を発生する塩基発生剤であり、他のもう一つは、前記発生した酸または塩基と反応して一種類以上の低沸点揮発性化合物を分解脱離する分解発泡性化合物である。
<酸発生剤及び塩基発生剤>
本発明に使用する発泡性組成物に用いられる酸発生剤又は塩基発生剤には、一般的に化学増幅型フォトレジスト、及び光カチオン重合などに利用されている光酸発生剤や光塩基発生剤と呼ばれているものを用いることができる。
本発明に好適な光酸発生剤としては、
(1)ジアゾニウム塩系化合物
(2)アンモニウム塩系化合物
(3)ヨードニウム塩系化合物
(4)スルホニウム塩系化合物
(5)オキソニウム塩系化合物
(6)ホスホニウム塩系化合物
などから選ばれた芳香族もしくは脂肪族オニウム化合物のPF6 、AsF6 、SbF6 、CF3SO3 塩を挙げることができる。その具体例を下記に列挙するが、これら例示したものに限定されるものではない。
ビス(フェニルスルホニル)ジアゾメタン、
ビス(シクロヘキシルスルホニル)ジアゾメタン、
ビス(tert−ブチルスルホニル)ジアゾメタン、
ビス(p−メチルフェニルスルホニル)ジアゾメタン、
ビス(4−クロロフェニルスルホニル)ジアゾメタン、
ビス(p−トリルスルホニル)ジアゾメタン、
ビス(4−tert−ブチルフェニルスルホニル)ジアゾメタン、
ビス(2,4−キシリルスルホニル)ジアゾメタン、
ベンゾイルフェニルスルホニルジアゾメタン、
トリフルオロメタンスルホネート、
トリメチルスルホニウムトリフルオロメタンスルホネート、
トリフェニルスルホニウムトリフルオロメタンスルホネート、
トリフェニルスルホニウムヘキサフルオロアンチモネート、
2,4,6−トリメチルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート、p−トリルジフェニルスルホニウム トリフルオロメタンスルホネート、
4−フェニルチオフェニルジフェニルスルホニウムヘキサフルオロホスフェート、
4−フェニルチオフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、
1−(2−ナフトイルメチル)チオラニウムヘキサフルオロアンチモネート、
1−(2−ナフトイルメチル)チオラニウムトリフルオロメタンスルホネート、
4−ヒドロキシ−1−ナフチルジメチルスルホニウムヘキサフルオロアンチモネート、
4−ヒドロキシ−1−ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、
(2−オキソ−1−シクロヘキシル)(シクロヘキシル)メチルスルホニウムトリフルオロメタンスルホネート、
(2−オキソ−1−シクロヘキシル)(2−ノルボルニル)メチルスルホニウムトリフルオロメタンスルホネート、
ジフェニル−4−メチルフェニルスルホニウムパーフルオロメタンスルホネート、
ジフェニル−4−tert−ブチルフェニルスルホニウムパーフルオロオクタンスルホネート、
ジフェニル−4−メトキシフェニルスルホニウムパーフルオロブタンスルホネート、
ジフェニル−4−メチルフェニルスルホニウムトシレート、
ジフェニル−4−メトキシフェニルスルホニウムトシレート、
ジフェニル−4−イソプロピルフェニルスルホニウムトシレート
ジフェニルヨードニウム、
ジフェニルヨードニウムトシレート、
ジフェニルヨードニウムクロライド、
ジフェニルヨードニウムヘキサフルオロアルセネート、
ジフェニルヨードニウムヘキサフルオロフォスフェート、
ジフェニルヨードニウムナイトレート、
ジフェニルヨードニウムパークロレート、
ジフェニルヨードニウムトリフルオロメタンスルホネート、
ビス(メチルフェニル)ヨードニウムトリフルオロメタンスルホネート、
ビス(メチルフェニル)ヨードニウムテトラフルオロボレート、
ビス(メチルフェニル)ヨードニウムヘキサフルオロフォスフェート、
ビス(メチルフェニル)ヨードニウムヘキサフルオロアンチモネート、
ビス(4−tert−ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、
ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロフォスフェート、
ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロアンチモネート、
ビス(4−tert−ブチルフェニル)ヨードニウムパーフルオロブタンスルホネート、
2−メチル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2,4,6−トリ(トリクロロメチル)−1,3,5−トリアジン、
2−フェニル−4,6−ジトリクロロメチル−1,3,5−トリアジン、
2−(p−メトキシフェニル)−4,6−ジトリクロロメチル−1,3,5−トリアジン、
2−ナフチル−4,6−ジトリクロロメチル−1,3,5−トリアジン、
2−ビフェニル−4,6−ジトリクロロメチル−1,3,5−トリアジン、
2−(4’−ヒドロキシ−4−ビフェニル)−4,6−ジトリクロロメチル−1,3,5−トリアジン、
2−(4’−メチル−4−ビフェニル)−4,6−ジトリクロロメチル−1,3,5−トリアジン、
2−(p−メトキシフェニルビニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2−(4−クロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2−(4−メトキシフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2−(4−メトキシ−1−ナフチル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2−(ベンゾ[d][1,3]ジオキソラン−5−イル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2−(4−メトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2−(3,4,5−トリメトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2−(3,4−ジメトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2−(2,4−ジメトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2−(2−メトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2−(4−ブトキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2−(4−ペンチルオキシスチリル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、
2,6−ジ−tert−ブチル−4−メチルピリリウムトリフロオロメタンスルホネート、
トリメチルオキシニウムテトラフロオロボレート、
トリエチルオキシニウムテトラフロオロボレート、
N−ヒドロキシフタルイミドトリフルオロメタンスルホネート、
N−ヒドロキシナフタルイミドトリフルオロメタンスルホネート、
(α−ベンゾイルベンジル)p−トルエンスルホネート、
(β−ベンゾイル−β−ヒドロキシフェネチル)p−トルエンスルホネート、
1,2,3−ベンゼントリイルトリスメタンスルホネート、
(2,6−ジニトロベンジル)p−トルエンスルホネート、
(2−ニトロベンジル)p−トルエンスルホネート、
(4−ニトロベンジル)p−トルエンスルホネート、
などが挙げられる。なかでも、ヨードニウム塩系化合物、スルホニウム塩系化合物が好ましい。
また、前記オニウム化合物以外にも、活性エネルギー線照射によりスルホン酸を光発生するスルホン化物、例えば2−フェニルスルホニルアセトフェノン、活性エネルギー線照射によりハロゲン化水素を光発生するハロゲン化物、例えば、フェニルトリブロモメチルスルホン、及び1,1−ビス(4−クロロフェニル)−2,2,2−トリクロロエタン、並びに活性エネルギー線照射により燐酸を光発生するフェロセニウム化合物、例えば、ビス(シクロペンタジエニル)フェロセニウムヘキサフルオロフォスフェート、及びビス(ベンジル)フェロセニウムヘキサフルオロフォスフェートなどを用いることができる。
さらには、下記に挙げる酸発生能を有するイミド化合物誘導体も使用できる。
N−(フェニルスルホニルオキシ)スクシンイミド、
N−(トリフルオロメチルスルホニルオキシ)スクシンイミド、
N−(10−カンファースルホニルオキシ)スクシンイミド、
N−(トリフルオロメチルスルホニルオキシ)フタルイミド、
N−(トリフルオロメチルスルホニルオキシ)−5−ノルボルネン−2,3−ジカルボキシイミド、
N−(トリフルオロメチルスルホニルオキシ)ナフタルイミド、
N−(10−カンファースルホニルオキシ)ナフタルイミド。
本発明に好適な光塩基発生剤としては、
(1)オキシムエステル系化合物
(2)アンモニウム系化合物
(3)ベンゾイン系化合物
(4)ジメトキシベンジルウレタン系化合物
(5)オルトニトロベンジルウレタン系化合物
などが挙げられ、これらは活性エネルギー線の照射により塩基としてアミンを発生する。その他にも、光の作用によりアンモニアやヒドロキシイオンを発生する塩基発生剤を用いてもよい。これらは、例えばN−(2−ニトロペンジルオキシカルボニル)ピペリジン、1,3−ビス〔N−(2−ニトロベンジルオキシカルボニル)−4−ピペリジル〕プロパン、N,N’−ビス(2−ニトロベンジルオキシカルボニル)ジヘキシルアミン、及びO−ベンジルカルボニル−N−(1−フェニルエチリデン)ヒドロキシルアミンなどから選ぶことができる。さらには加熱により塩基が発生する化合物を上記光塩基発生剤と併用してもよい。
また、光酸発生剤または光塩基発生剤の活性エネルギー線の波長領域をシフトまたは拡大するために、適宜光増感剤を併用してもよい。例えば、オニウム塩化合物に対する光増感剤には、アクリジンイエロー、ベンゾフラビン、アクリジンオレンジなどが挙げられる。
必要な酸を生成しながらも酸発生剤または塩基発生剤の添加量や光照射エネルギーを最小限に抑制する方法として、酸増殖剤や塩基増殖剤を酸発生剤または塩基発生剤とともに用いることができる。酸増殖剤は、常温付近で熱力学的に安定であるが、酸によって分解し、自ら強酸を発生し、酸触媒反応を大幅に加速させる。この反応を利用することにより、酸または塩基の発生効率を向上させて、発泡生成速度や発泡構造をコントロールすることも可能である。
<分解発泡性化合物>
本発明に使用する発泡性組成物に用いられる分解発泡性化合物(以下、分解性化合物と略す)は、酸または塩基と反応して一種類以上の低沸点揮発性物質(低沸点揮発性化合物)が分解脱離する。すなわち、この分解性化合物には、低沸点揮発性物質を発生し得る分解性官能基があらかじめ導入されていなければならない。低沸点とは発泡時にガス化する温度が上限になる。通常100℃以下、常温以下が好ましい。低沸点揮発性物質としては、例えばイソブテン(沸点;−7℃)、二酸化炭素(沸点;−79℃)、窒素(沸点;−196℃)などがあげられる。分解性官能基としては、酸と反応するものとしてtert−ブチル基、tert−ブチルオキシカルボニル基、ケト酸およびケト酸エステル基などが挙げられ、塩基と反応するものとしてウレタン基、カーボネート基などが挙げられる。酸と反応するものとしては、tert−ブチル基、tert−ブチルオキシカルボニル基、酸と反応して、tert−ブチル基はイソブテンガスを、tert−ブチルオキシカルボニル基はイソブテンガスと二酸化炭素を、ケト酸部位は二酸化炭素を、ケト酸エステルたとえばケト酸tert−ブチル基は二酸化炭素とイソブテンを発生する。塩基と反応するものとしては、ウレタン基、カーボネート基は二酸化炭素ガスを発生する。このようにして、それぞれのガスが分解性化合物から離脱する。酸と反応して分解する酸分解性化合物また塩基と反応して分解する塩基分解性化合物の形態としては、モノマー、オリゴマー、高分子化合物(ポリマー)等として使用することができ、例えば、以下のような化合物群に分類することができる。
(1)非硬化性低分子系の分解性化合物群
(2)硬化性モノマー系の分解性化合物群
(3)重合体系の分解性化合物群
硬化性モノマー系の分解性化合物に代表される例として、活性エネルギー線を照射したときに重合反応を生じるようなビニル基を含んだ活性エネルギー線硬化性化合物の場合には、均一な微細気泡の形成が容易であり、強度的に優れた発泡体を得ることが可能である。分解性化合物の具体例を下記に列挙するが、これら例示したものに限定されるものではない
(1)−a、非硬化性低分子系の分解性化合物群
<酸分解性化合物>
1−tert−ブトキシ−2−エトキシエタン、
2−(tert−ブトキシカルボニルオキシ)ナフタレン、
N−(tert−ブトキシカルボニルオキシ)フタルイミド、
2,2−ビス[p−(tert−ブトキシカルボニルオキシ)フェニル]プロパンなど
(1)−b、非硬化性低分子系の分解性化合物群
<塩基分解性化合物>
N−(9−フルオレニルメトキシカルボニル)ピペリジンなど
(2)−a、硬化性モノマー系の分解性化合物群
<酸分解性化合物>
tert−ブチルアクリレート、
tert−ブチルメタクリレート、
tert−ブトキシカルボニルメチルアクリレート、
2−(tert−ブトキシカルボニル)エチルアクリレート、
p−(tert−ブトキシカルボニル)フェニルアクリレート、
p−(tert−ブトキシカルボニルエチル)フェニルアクリレート、
1−(tert−ブトキシカルボニルメチル)シクロヘキシルアクリレート、
4−tert−ブトキシカルボニル−8−ビニルカルボニルオキシ−トリシクロ
[5.2.1.02,6]デカン、
2−(tert−ブトキシカルボニルオキシ)エチルアクリレート、
p−(tert−ブトキシカルボニルオキシ)フェニルアクリレート、
p−(tert−ブトキシカルボニルオキシ)ベンジルアクリレート、
2−(tert−ブトキシカルボニルアミノ)エチルアクリレート、
6−(tert−ブトキシカルボニルアミノ)ヘキシルアクリレート、
p−(tert−ブトキシカルボニルアミノ)フェニルアクリレート、
p−(tert−ブトキシカルボニルアミノ)ベンジルアクリレート、
p−(tert−ブトキシカルボニルアミノメチル)ベンジルアクリレート、
(2−tert−ブトキシエチル)アクリレート、
(3−tert−ブトキシプロピル)アクリレート、
(1−tert−ブチルジオキシ−1−メチル)エチルアクリレート、
3,3−ビス(tert−ブチルオキシカルボニル)プロピルアクリレート、
4,4−ビス(tert−ブチルオキシカルボニル)ブチルアクリレート、
p−(tert−ブトキシ)スチレン、
m−(tert−ブトキシ)スチレン、
p−(tert−ブトキシカルボニルオキシ)スチレン、
m−(tert−ブトキシカルボニルオキシ)スチレン、
アクリロイル酢酸、メタクロイル酢酸
tert−ブチルアクロイルアセテート、
tert−ブチルメタクロイルアセテート、
N−(tert−ブトキシカルボニルオキシ)マレイミドなど
(2)−b、硬化性モノマー系の分解性化合物群
<塩基分解性化合物>
4−[(1,1−ジメチル−2−シアノ)エトキシカルボニルオキシ]スチレン、
4−[(1,1−ジメチル−2−フェニルスルホニル)エトキシカルボニルオキシ]スチレン、
4−[(1,1−ジメチル−2−メトキシカルボニル)エトキシカルボニルオキシ]スチレン、
4−(2−シアノエトキシカルボニルオキシ)スチレン、
(1,1−ジメチル−2−フェニルスルホニル)エチルメタクリレート、
(1,1−ジメチル−2−シアノ)エチルメタクリレートなど
(3)−a、重合体系の分解性化合物群
<酸分解性化合物>
ポリ(tert−ブチルアクリレート)、
ポリ(tert−ブチルメタクリレート)、
ポリ(tert−ブトキシカルボニルメチルアクリレート)、
ポリ[2−(tert−ブトキシカルボニル)エチルアクリレート]、
ポリ[p−(tert−ブトキシカルボニル)フェニルアクリレート]、
ポリ[p−(tert−ブトキシカルボニルエチル)フェニルアクリレート]、
ポリ[1−(tert−ブトキシカルボニルメチル)シクロヘキシルアクリレート]、
ポリ{4−tert−ブトキシカルボニル−8−ビニルカルボニルオキシ−トリシクロ[5.2.1.02,6]デカン}、
ポリ[2−(tert−ブトキシカルボニルオキシ)エチルアクリレート]、
ポリ[p−(tert−ブトキシカルボニルオキシ)フェニルアクリレート]、
ポリ[p−(tert−ブトキシカルボニルオキシ)ベンジルアクリレート]、
ポリ[2−(tert−ブトキシカルボニルアミノ)エチルアクリレート]、
ポリ[6−(tert−ブトキシカルボニルアミノ)ヘキシルアクリレート]、
ポリ[p−(tert−ブトキシカルボニルアミノ)フェニルアクリレート]、
ポリ[p−(tert−ブトキシカルボニルアミノ)ベンジルアクリレート]、
ポリ[p−(tert−ブトキシカルボニルアミノメチル)ベンジルアクリレート]、
ポリ(2−tert−ブトキシエチルアクリレート)、
ポリ(3−tert−ブトキシプロピルアクリレート)、
ポリ[(1−tert−ブチルジオキシ−1−メチル)エチルアクリレート]、
ポリ[3,3−ビス(tert−ブチルオキシカルボニル)プロピルアクリレート]、
ポリ[4,4−ビス(tert−ブチルオキシカルボニル)ブチルアクリレート]、
ポリ[p−(tert−ブトキシ)スチレン]、
ポリ[m−(tert−ブトキシ)スチレン]、
ポリ[p−(tert−ブトキシカルボニルオキシ)スチレン]、
ポリ[m−(tert−ブトキシカルボニルオキシ)スチレン]、
ポリアクリロイル酢酸、ポリメタクロイル酢酸、
ポリ[tert−ブチルアクロイルアセテート]、
ポリ[tert−ブチルメタクロイルアセテート]
N−(tert−ブトキシカルボニルオキシ)マレイミド/スチレン共重合体など
(3)−b、重合体系の分解性化合物群
<塩基分解性化合物>
ポリ{p−[(1,1−ジメチル−2−シアノ)エトキシカルボニルオキシ]スチレン}、
ポリ{p−[(1,1−ジメチル−2−フェニルスルホニル)エトキシカルボニルオキシ]スチレン}、
ポリ{p−[(1,1−ジメチル−2−メトキシカルボニル)エトキシカルボニルオキシ]スチレン}、
ポリ[p−(2−シアノエトキシカルボニルオキシ)スチレン]、
ポリ[(1,1−ジメチル−2−フェニルスルホニル)エチルメタクリレート]、
ポリ[(1,1−ジメチル−2−シアノ)エチルメタクリレート]、
などを挙げることができる。
分解性官能基を導入したポリエーテル、ポリアミド、ポリエステル、ポリイミド、ポリビニルアルコール、デンドリマーなどの有機系高分子化合物を酸分解性又は塩基分解性重合体系化合物として用いることができる。さらには、シリカなどの無機系化合物に分解性官能基を導入した酸分解性又は塩基分解性重合体系化合物も含む。なかでも、分解性官能基は、カルボン酸基または水酸基、アミン基からなる群の中から選ばれる官能基を有する化合物群に導入されることが好ましい。
これらの分解性官能基を導入した高分子化合物の中で、光導波路用途で特に好適なのは光学特性に優れ、耐熱性を有する高分子化合物である。例としては、ポリイミド、ポリカーボネート、フッ素系樹脂(特にフッ素系脂肪族環構造含有重合体)、エポキシ樹脂、シリコーン樹脂、ポリシラン、シアン酸エステル樹脂を好ましくが挙げることができる。上記光学特性の優れている高分子材料の中でも、特にポリイミドが耐熱性の点で好ましい。
上記分解性化合物群は単独で用いてもよいし、異なる2種以上を混合併用してもよい。
また、上記分解性化合物は他の樹脂と混合して用いることもできる。混合した時に分解性化合物と他樹脂とが相溶でも非相溶でもどちらでもかまわない。他の樹脂としてはポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、不飽和ポリエステル樹脂、ポリカーボネート樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリオレフィン系複合樹脂、ポリスチレン樹脂、ポリブタジエン樹脂、(メタ)アクリル樹脂、アクリロイル樹脂、ABS樹脂、フッ素樹脂、ポリイミド樹脂、ポリアセタール樹脂、ポリサルホン樹脂、塩化ビニル樹脂、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、でんぷん、ポリビニルアルコール、ポリアミド樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂、ウレタン樹脂、エポキシ樹脂、及びシリコーン樹脂など一般に用いられる樹脂から適宜選択して用いることができる。また、分解性化合物から分解してガス化する低沸点揮発性物質を成形体内に内在させることを目的として、ガスバリヤ性樹脂を用いることもできる。ガスバリヤ性樹脂は、混合しても被覆または積層してもよく、低沸点揮発性物質を成形体内により内在させるには、成形体表面に被覆または積層するのが好ましい。
分解性発泡化合物のうち、硬化性モノマー系の分解性化合物群および重合体系の分解性化合物群は単独で用いてもよいし、上記の一般に用いられる樹脂と混合して用いてもよい。これに対して、非硬化性低分子系の分解性化合物群は単独では成形できないので、上記の一般に用いられる樹脂と混合して用いる必要がある。
本発明の発泡体の耐水性をあげるためには、発泡性組成物として少なくとも一種類以上の疎水性官能基を含む化合物に分解発泡性官能基を導入した化合物を用いることもできる。本発明に用いられる疎水性官能基は、主に脂肪族基、脂肪環族基、芳香族基、ハロゲン基、ニトリル基からなる群の中から選ばれることが好ましい。分解発泡性官能基は、主にカルボン酸基または水酸基、アミン基からなる群の中から選ばれる親水性官能基に導入されやすい。したがって、本発明の分解性化合物としては、前記親水性官能基に分解発泡性官能基を導入した分解性ユニットと、疎水性官能基を含む疎水性ユニットからなる複合化合物が好ましい。より好ましい前記複合化合物は、分解性ユニットおよび疎水性ユニットがビニル系重合体である。疎水性ユニットは、メチル(メタ)アクリレートやエチル(メタ)アクリレートなどの脂肪族(メタ)アクリレート群、スチレン、メチルスチレン、ビニルナフタレンなどの芳香族ビニル化合物群、(メタ)アクリロニトリル化合物群、酢酸ビニル化合物群、塩化ビニル化合物群などが挙げられる。分解性化合物の代表的な例としては、分解性ユニットが、親水性官能基のカルボン酸基を有するアクリル酸に分解性官能基であるtert−ブチル基を導入したtert−ブチルアクリレートであり、そして疎水性ユニットが疎水性官能基のメチル基を有するメチルアクリレートである組合わせからなるビニル系共重合体が挙げられる。分解性ユニット/疎水性ユニットの組合わせからなる分解性化合物の具体例を以下に示す。
tert−ブチルアクリレート/メチルメタクリレート共重合体、
tert−ブチルメタクリレート/メチルアクリレート共重合体、
tert−ブチルメタアクリレート/メチルメタクリレート共重合体、
tert−ブチルアクリレート/エチルアクリレート共重合体、
tert−ブチルアクリレート/エチルメタクリレート共重合体、
tert−ブチルメタクリレート/エチルアクリレート共重合体、
tert−ブチルメタクリレート/エチルメタクリレート共重合体、
tert−ブチルアクリレート/スチレン共重合体、
tert−ブチルアクリレート/塩化ビニル共重合体、
tert−ブチルアクリレート/アクリロニトリル共重合体、
p−(tert−ブトキシカルボニルオキシ)スチレン/スチレン共重合体。
また、分解性化合物中の分解性ユニットおよび疎水性ユニットは、一種単独でまたは2種以上併用することができる。共重合の形式は、ランダム共重合、ブロック共重合、グラフト共重合などの任意に行なうことができる。また、疎水性ユニットの共重合比は、分解性化合物全量に対して1〜95質量%であることが好ましく、分解性化合物の分解発泡性および発泡構造の環境保存性を勘案すると、5〜80質量%がより好ましい。
上記分解性化合物は、単独で用いてもよいし、異なる2種以上を混合併用してもよい。 上記分解性化合物は、分解発泡性官能基が分解脱離して気泡形成ガスを発生した後に、少なくとも一種類以上の疎水性官能基を含む化合物となる。
本発明の発泡体の耐水性をあげるためには、発泡性組成物として、温度30℃相対湿度60%の環境雰囲気下においてJIS K−7209D法で測定した平衡吸水率が10%未満低の吸湿性化合物に分解発泡性官能基を導入した化合物を用いることもできる。分解発泡性官能基を導入しやすい構造を有する低吸湿性化合物としては、例えばp−ヒドロキシスチレン、m−ヒドロキシスチレンなどが挙げられる。したがって、分解性化合物は、p−(tert−ブトキシ)スチレン、m−(tert−ブトキシ)スチレン、p−(tert−ブトキシカルボニルオキシ)スチレン、m−(tert−ブトキシカルボニルオキシ)スチレンが挙げられる。これらは硬化性モノマーでも一種類以上を混合した重合体でもよい。
また、吸水率が10%以上の高吸湿性化合物と、吸水率10%未満の低吸湿性化合物との組合わせからなる複合化合物に分解発泡性官能基を導入してもよい。ただし、複合化合物は、適切な組合わせにより10%未満の吸水率を有していることが好ましい。例えば、高吸湿性化合物であるアクリル酸と低吸湿性化合物であるp−ヒドロキシスチレンの共重合体(複合化合物)は、その共重合比がアクリル酸/p−ヒドロキシスチレン=90/10〜0/100であることが好ましい。分解性化合物の具体的な例としては、
tert−ブチルアクリレート/p−(tert−ブトキシ)スチレン共重合体、
tert−ブチルアクリレート/m−(tert−ブトキシ)スチレン共重合体、
tert−ブチルアクリレート/p−(tert−ブトキシカルボニルオキシ)スチレン共重合体、
tert−ブチルアクリレート/m−(tert−ブトキシカルボニルオキシ)スチレン共重合体、
tert−ブチルメタクリレート/p−(tert−ブトキシカルボニルオキシ)スチレン共重合体等を挙げることができる。
さらには、ポリエステル、ポリイミド、ポリ酢酸ビニル、ポリ塩化ビニル、ポリアクリロニトリル、フェノール樹脂、デンドリマーからなる群の中から選ばれた低吸湿性高分子材料などに分解発泡性官能基を導入してもよい。
上記分解性化合物は、単独で用いてもよいし、異なる2種以上を混合併用してもよい。
上記分解性化合物は、分解発泡性官能基が分解脱離して気泡形成ガスを発生した後に、低吸湿性化合物となる。
<発泡性組成物>
本発明に使用する発泡性組成物には、酸発生剤または塩基発生剤と分解発泡性化合物以外に、他の活性エネルギー線硬化性不飽和有機化合物を組み合わせて用いてもよい。併用化合物の例としては、
(1)脂肪族、脂環族、芳香族の1〜6価のアルコール及びポリアルキレングリコールの(メタ)アクリレート類
(2)脂肪族、脂環族、芳香族の1〜6価のアルコールにアルキレンオキサイドを付加させて得られた化合物の(メタ)アクリレート類
(3)ポリ(メタ)アクリロイルアルキルリン酸エステル類
(4)多塩基酸とポリオールと(メタ)アクリル酸との反応生成物
(5)イソシアネート、ポリオール、(メタ)アクリル酸の反応生成物
(6)エポキシ化合物と(メタ)アクリル酸の反応生成物
(7)エポキシ化合物、ポリオール、(メタ)アクリル酸の反応生成物
(8)メラミンと(メタ)アクリル酸の反応生成物
等を挙げることができる。
併用できる化合物の中で、硬化性モノマーや樹脂は、発泡体の強度や耐熱性といった物性の向上効果や発泡性の制御効果などが期待できる。また分解性化合物および併用化合物に硬化性モノマーを用いれば、無溶剤成形ができ、環境負荷の少ない製造方法を提供できる。例としては次のような材料を挙げることが出来る。
併用化合物の具体的な例として、メチルアクリレート、エチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、 2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシプロピルメタクリレート、2−ヒドロキシブチルアクリレート、2−ヒドロキシブチルメタクリレート、テトラヒドロフルフリルアクリレート、テトラヒドロフルフリルメタクリレート、カプロラクトン変性テトラヒドロフルフリルアクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレート、ジシクロヘキシルアクリレート、イソボロニルアクリレート、イソボロニルメタクリレート、ベンジルアクリレート、ベンジルメタクリレート、エトキシジエチレングリコールアクリレート、メトキシトリエチレングリコールアクリレート、メトキシプロピレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、フェノキシポリプロピレングリコールアクリレート、エチレンオキシド変性フェノキシアクリレート、N,N−ジメチルアミノエチルアクリレート、N,N−ジメチルアミノエチルメタクリレート、2−エチルヘキシルカルビトールアクリレート、ω−カルボキシポリカプロラクトンモノアクリレート、フタル酸モノヒドロキシエチルアクリレート、アクリル酸ダイマー、2−ヒドロキシ−3−フェノキシプロピルアクリレート、アクリル酸−9,10−エポキシ化オレイル、マレイン酸エチレングリコールモノアクリレート、ジシクロペンテニルオキシエチレンアクリレート、4,4−ジメチル−1,3−ジオキソランのカプロラクトン付加物のアクリレート、3−メチル−5,5−ジメチル−1,3−ジオキソランのカプロラクトン付加物のアクリレート、ポリブタジエンアクリレート、エチレンオキシド変性フェノキシ化リン酸アクリレート、エタンジオールジアクリレート、エタンジオールジメタクリレート、1,3−プロパンジオールジアクリレート、1,3−プロパンジオールジメタクリレート、1,4−ブタンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート、1,9−ノナンジオールジアクリレート、1,9−ノナンジオールジメタクリレート、ジエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、ポリプロピレングリコールジメタクリレート、ネオペンチルグリコールジアクリレート、2−ブチル−2−エチルプロパンジオールジアクリレート、エチレンオキシド変性ビスフェノールAジアクリレート、ポリエチレンオキシド変性ビスフェノールAジアクリレート、ポリエチレンオキシド変性水添ビスフェノールAジアクリレート、プロピレンオキシド変性ビスフェノールAジアクリレート、ポリプロピレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性イソシアヌル酸ジアクリレート、ペンタエリスリトールジアクリレートモノステアレート、1,6−ヘキサンジオールジグリシジルエーテルアクリル酸付加物、ポリオキシエチレンエピクロロヒドリン変性ビスフェノールAジアクリレート、トリメチロールプロパントリアクリレート、エチレンオキシド変性トリメチロールプロパントリアクリレート、ポリエチレンオキシド変性トリメチロールプロパントリアクリレート、プロピレンオキシド変性トリメチロールプロパントリアクリレート、ポリプロピレンオキシド変性トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、エチレンオキシド変性イソシアヌル酸トリアクリレート、エチレンオキシド変性グリセロールトリアクリレート、ポリエチレンオキシド変性グリセロールトリアクリレート、プロピレンオキシド変性グリセロールトリアクリレート、ポリプロピレンオキシド変性グリセロールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ポリカプロラクトン変性ジペンタエリスリトールヘキサアクリレート等を挙げることが出来るが、これらに限られるものではない。
さらに、前記の併用活性エネルギー線硬化性不飽和有機化合物の一部または全部として、分子鎖末端に(メタ)アクリロイル基を有する分子量が400〜5000程度の活性エネルギー線硬化性樹脂を組み合わせることもできる。このような硬化性樹脂として、例えば、ポリウレタン変性ポリエーテルポリ(メタ)アクリレートやポリウレタン変性ポリエステルポリ(メタ)アクリレートなどのポリウレタンポリ(メタ)アクリレートポリマー類を用いることが好ましい。
本発明に使用する発泡性組成物は、必要により、分解性化合物以外の添加物を含ませることができる。添加物としては、無機系または有機系化合物充填剤、並びに各種界面活性剤などの分散剤、多価イソシアネート化合物、エポキシ化合物、有機金属化合物などの反応性化合物および酸化防止剤、シリコーンオイルや加工助剤、紫外線吸収剤、蛍光増白剤、スリップ防止剤、帯電防止剤、ブロッキング防止剤、防曇剤、光安定剤、滑剤、軟化剤、有色染料、その他の安定剤等が一種類以上を含ませてもよい。添加剤を用いることにより、成形性や発泡性などの向上が期待できる。
無機系化合物充填剤の具体例としては、酸化チタン、酸化マグネシウム、酸化アルミニウム、酸化珪素、炭酸カルシウム、硫酸バリウム、炭酸マグネシウム、珪酸カルシウム、水酸化アルミニウム、クレー、タルク、シリカ等の顔料、ステアリン酸亜鉛のような金属石鹸、並びに各種界面活性剤などの分散剤、硫酸カルシウム、硫酸マグネシウム、カオリン、珪酸白土、珪藻土、酸化亜鉛、酸化珪素、水酸化マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ、マイカ、アスベスト粉、ガラス粉、シラスバルーン、ゼオライトなどが遂げられる。
有機系化合物充填剤としては、例えば、木粉、パルプ粉などのセルロース系粉末、ポリマービーズなどが挙げられる。ポリマービーズとしては、例えばアクリル樹脂、スチレン樹脂又はセルロース誘導体、ポリビニル樹脂、ポリ塩化ビニル、ポリエステル、ポリウレタン及びポリカーボネート、架橋用モノマーなどから製造されたものが使用できる。
これらの充填剤は、2種類以上混合したものであってもよい。これらの充填剤を添加する場合は、光導波路としての特性を低下させないように好ましくは100nm以下の大きさまで微粒子化したものを添加することが好ましい。
紫外線吸収剤の具体例としては、サリチル酸系、ベンゾフェノン系、またはベンゾトリアゾール系紫外線吸収剤から選ばれる。サリチル酸系紫外線吸収剤としては、フェニルサリシレート、p−t−ブチルフェニルサリシレート、p−オクチルフェニルサリシレートなどが挙げられる。ベンゾフェノン系紫外線吸収剤としては、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノンなどが挙げられる。ベンゾトリアゾール系紫外線吸収剤としては、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−5’−t−ブチルフェニル)ベンゾトリアゾールなどが挙げられる。
酸化防止剤の具体例としては、モノフェノール系、ビスフェノール系、高分子型フェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤などが挙げられる。
光安定剤としては、代表的なものにヒンダードアミン系化合物が挙げられる。
軟化剤は、成形性または成形体の加工性を向上させる目的で使用でき、具体的には、エステル化合物類、アミド化合物類、側鎖を有する炭化水素重合体類、鉱油類、流動パラフィン類、ワックス類などが挙げられる。
エステル化合物としては、アルコールとカルボン酸からなる構造のモノまたはポリエステルであれば特に制限はなく、ヒドロキシル基およびカルボニル基末端を分子内に残した化合物でも、エステル基の形で封鎖された化合物でもよい。具体的には、ステアリルステアレート、ソルビタントリステアレート、エポキシ大豆油、精製ひまし油、硬化ひまし油、脱水ひまし油、エポキシ大豆油、極度硬化油、トリメリット酸トリオクチル、エチレングリコールジオクタノエート、ペンタエリスリトールテトラオクタノエートなどが挙げられる。
アミド化合物としては、アミンとカルボン酸からなる構造のモノまたはポリアミド化合物であれば特に制限はなく、アミノ基およびカルボニル基末端を分子内に残した化合物でも、アミド基の形で封鎖された化合物でもよい。具体的には、ステアリン酸アミド、ベヘニン酸アミド、ヘキサメチレンビスステアリン酸アミド、トリメチレンビスオクチル酸アミド、ヘキサメチレンビスヒドロキシステアリン酸アミド、トリオクタトリメリット酸アミド、ジステアリル尿素、ブチレンビスステアリン酸アミド、キシリレンビスステアリン酸アミド、ジステアリルアジピン酸アミド、ジステアリルフタル酸アミド、ジステアリルオクタデカ二酸アミド、イプシロンカプロラクタム、およびこれらの誘導体が挙げられる。
側鎖を有する炭化水素重合体としては、ポリα−オレフィン類で、炭素数4以上の側鎖を有する通常オリゴマーに分類されるものが好ましい。具体的には、エチレン−プロピレンの共重合体やそのマレイン酸誘導体、イソブチレンの重合体、ブタジエン、イソプレンのオリゴマーおよびその水添物、1−ヘキセンの重合物、ポリスチレンの重合物およびこれらから誘導される誘導体、ヒドロキシポリブタジエンやその水添物、末端ヒドロキシポリブタジエン水添物などが挙げられる。
本発明に使用する発泡性組成物は、一般的な混練機を用いて調製することができる。例えば、二本ロール、三本ロール、カウレスデゾルバー、ホモミキサー、サンドグラインダー、プラネタリーミキサー、ボールミル、ニーダー、高速ミキサー、ホモジナイザーなどである。また超音波分散機などを使用することもできる。
また、本発明で用いられる発泡性組成物の光損失は、600nm〜1600nmの範囲内にある波長の光において3dB/cm以下となっていることが好ましい。3dB/cmより大きい場合、得られる光導波路としては、光損失が大き過ぎて実用に耐えない場合がある。光損失の下限については特に限定されるものではなく、光損失が少なければ少ない程良い。
<光導波路の製造工程>
本発明の光導波路の製造工程は、発泡性組成物に活性エネルギー線を照射する工程と、発泡性組成物から低沸点揮発性物質が分解脱離する温度領域で圧力制御して発泡させる工程とを含む。低沸点揮発物質が分解脱離して発泡する際に圧力を制御することにより、クラッド部の発泡構造制御及び形状制御を容易にすることが可能になる。
所望の厚さ、形状及び発泡構造を有する微細気泡発泡体を安定的に得るために、本発明の製造方法では成形工程を含めることができる。成形工程は予備成形工程と発泡体成形工程に分類できる。予備成形工程とは、活性エネルギー線を照射する工程の前後に設けた成形工程、および照射中に成形する工程で、発泡前の樹脂である発泡性組成物を成形する工程である。発泡体成形工程とは、低沸点揮発性物質が分解脱離する温度領域で圧力制御して発泡させながら成形する工程、および発泡工程後に発泡体を成形する工程で、発泡後の発泡樹脂を成形する工程である。
まず、発泡組成物に活性エネルギー線を照射する工程について説明する。本発明で使用する活性エネルギー線としては、電子線、紫外線、可視光線、γ線等の電離性放射線などが挙げられる。これらの中では電子線および紫外線を用いることが好ましい。
電子線照射を用いる場合は、発泡性組成物の厚さに応じて加速電圧を20〜1000kVで調整すると良く、より好ましくは30〜300kVの条件で、カーテン型電子線照射装置、あるいは電子線描画装置を用いることが好ましい。加速電圧が上記範囲より低いと、電子線の透過力が不十分になり、成形体の内部まで十分に透過することができず、またこの範囲より大きすぎると、エネルギー効率が悪化するばかりでなく、得られた成形体の強度が不十分になり、それに含まれる樹脂及び添加剤の分解を生じ、得られる発泡体の品質が不満足なものになることがある。電子線照射に際しては照射雰囲気の酸素濃度が高いと、酸もしくは塩基の発生、および/または硬化性分解性化合物の硬化が妨げられることがあり、このため照射雰囲気の空気を、窒素、ヘリウム、二酸化炭素等の不活性ガスにより置換することが好ましい。照射雰囲気の酸素濃度は1000ppm以下であることが好ましく、さらに安定的な電子線エネルギーを得るため、500ppm以下に抑制されることがより好ましい。
紫外線照射の場合は、半導体・フォトレジスト分野や紫外線硬化分野などで一般的に使用されている紫外線ランプを用いることができる。一般的な紫外線ランプとしては、例えば、ハロゲンランプ、ハロゲンヒーターランプ、キセノンショートアークランプ、キセノンフラッシュランプ、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、中圧水銀ランプ、ディープUVランプ、メタルハライドランプ、希ガス蛍光ランプ、クリプトンアークランプ、エキシマランプなどがあり、近年では、極短波長(214nmにピーク)を発光するY線ランプもある。これらのランプには、オゾン発生の少ないオゾンレスタイプもある。これらの紫外線は、散乱光であっても、直進性の高い平行光であってもよい。部分発泡を精度よく形成するためには、平行光が好ましい。また、紫外線照射には、ArFエキシマレーザー、KrFエキシマレーザーや、非線形光学結晶を含む高調波ユニットを介したYAGレーザーなどに挙げられる種々のレーザーや、紫外発光ダイオードを用いることもできる。紫外線ランプやレーザー、紫外発光ダイオードの発光波長は、発泡性組成物の発泡性を妨げないものであれば限定はないが、好ましくは、光酸発生剤または光塩基発生剤が酸または塩基を効率よく発生させられる発光波長がよい。すなわち、使用する光酸発生剤または光塩基発生剤の感光波長領域と重なる発光波長が好ましい。さらには、それら発生剤の感光波長領域における極大吸収波長または最大吸収波長と重なる発光波長がより好ましく、発生効率が高くなりやすい。紫外線のエネルギー照射強度は、発泡性組成物によって適宜決められる。種々の水銀ランプやメタルハライドランプなどに代表される照射強度が高い紫外線ランプを使用する場合は、生産性を高めることができ、その照射強度(ランプ出力)はロングアークランプのときは30W/cm以上が好ましい。紫外線の積算照射光量(J/cm2)は、エネルギー照射強度に照射時間を積算したものであり、発泡組成物および所望の気泡分布によって適宜決められる。酸発生剤や塩基発生剤の吸光係数に応じて設定することもある。安定かつ連続的に製造する上では、1.0mJ/cm2〜20J/cm2の範囲が好ましい。紫外線ランプを使用する場合は、照射強度が高いため、照射時間を短縮することができる。エキシマランプやエキシマレーザーを使用する場合は、その照射強度は弱いが、ほぼ単一光に近いため、発光波長が発生剤の感光波長に最適化したものであれば、より高い発生効率および発泡性が可能となる。照射光量を多くした場合、紫外線ランプによっては熱の発生が発泡性を妨げる場合がある。そのときは、コールドミラーなどの冷却処置を行なうことができる。
本発明の光導波路の製造方法では、パターン化されたクラッド部を発泡体の形で得るために、照射工程において活性エネルギーの強度分布が生じるようにフォトマスクを使用して活性エネルギー線を照射することができる。描画パターンが含まれるフォトマスクを使用した場合は、その描画パターンを転写した活性エネルギー線の強度分布を得ることができる。フォトマスクの描画パターンとしては、光導波路のコア部をマスクで遮蔽し、クラッド部に活性エネルギー線が当たるようにパターンを作成し、クラッド部の発泡倍率を調整する手段としてエネルギー透過性が階調になっているものなど様々なものを用途によって適宜設計できる。フォトマスクには、クロムマスクやメタルマスク、銀塩ガラスマスク、銀塩フィルム、スクリーンマスク、ガラスをイオンエッチングしたマスク、及び集光機能を有する平面レンズの干渉縞を電子線描画したマスクなどが利用できる。フォトマスク基材上に、インクジェットプリンターや紫外線硬化インクを用いた印刷機などで描画パターンを印刷したものをマスクとして利用することもできる。印刷は基材の片面でも両面でも構わない。また、描画パターンの印刷精度を高めるために、印刷する基材表面側を改質処理することが好ましい。改質処理の具体例としては、印刷するインクの吸収性を高める機能層を基材表面に塗工法や接着法などで設けることが挙げられる。ただし、この機能層はフォトマスクの光学的な基本的性能を大きく損なわないようにしなければならない。さらに、使用するインクは活性エネルギー線を吸収あるいは散乱、反射する材質が好ましく、一方、フォトマスク基材には活性エネルギー線を透過する材質であることが好ましい。波長300nm以下の紫外線を照射する場合は、フォトマスクの基材は石英ガラスを使用することが好ましい。本発明で得られた気泡分布を有する発泡体をフォトマスクとして利用しても構わない。フォトマスクを使用した照射方法は、密着照射、投影照射など方式が採用できる。フォトマスクのパターンを精度良く転写させるためには、照射する光が均一平行光であることが好ましい。平行光を照射するための露光システムとしては、例えば、インテグレーターと放物鏡を利用した光学系、フレネルレンズを利用した光学系、ハニカムボードと拡散板を利用した光学系などが挙げられる。高い均一性を得るには、インテグレーターと放物鏡を利用した光学系が一般的に好ましく、この光学系に用いる光源としては、ショートアークランプが好ましい。ショートアークランプには、メタルハライドランプや超高圧水銀ランプ、水銀キセノンランプ、ナトリウムランプ、Y線ランプが挙げられる。また、干渉縞を発生させた放射線を照射する方法も可能である。
次に、発泡工程では発泡性組成物にかかる温度が高いほど、低沸点揮発物質が分解脱離する反応速度が高いので気泡が微細化しやすくなる。ところが発泡後の発泡体樹脂のガラス転移温度が低いとき、発泡工程の後に高温状態のまま圧力を開放すると、気泡が成長及び合一して気泡径が一気に大きくなり微細気泡を維持できない場合や、発泡による変形倍率が大きくなるため所望の形状の発泡体を得られなくなる場合がある。このような場合、圧力制御発泡工程の後に圧力を制御しながら冷却する工程を含めることがより好ましい。冷却方法としてはプレス機の加圧加熱部位及び成形型に、冷却水を流せる構造を作り水冷によって冷却する方法及びペルチェ素子を用いて電気的に強制冷却する方法などがあげられる。
本発明の光導波路の製造方法における工程はこれらに限定されるものではなく、これら以外にもさまざまな工程を適宜の所望の部分で付加できる。例えば延伸工程、洗浄工程、乾燥工程及び緩和工程などの工程を適宜導入してもかまわない。本発明の製造方法はこれらの工程の組合せにより成り、各工程を不連続若しくは連続に組み合わせたり、又は少なくとも二つ以上の工程を同時工程とすることもできる。バッチ法でも連続法どちらの方法となってもかまわない。さらに本発明の光導波路の製造方法において、活性エネルギーの強度分布、熱エネルギーの強度分布、発泡組成物の濃度分布などをつけることができるので,クラッド部に形成した発泡部位の気泡径や気泡密度に係る気泡分布の制御が任意可変となり、気泡分布を有する光導波路を得ることもできる。以下に各工程の具体例について説明するが、本発明を限定するものではない。
はじめに、発泡性組成物から低沸点揮発性物質が分解脱離する温度領域で圧力制御して発泡させる工程について説明する。圧力制御法の例としては、2枚の板を用いて対向する面からのみ加圧して圧力制御する一部対向面圧力制御方法、型を用いて全面から加圧して圧力制御する全面圧力制御方法などがあげられる。また、ギャップ制御機能を持たないで押込力に応じて圧力を可変できるタイプ、ギャップ制御機能を有しているタイプなどがある。全面圧力制御法の場合、閉じた型内に気体、液体、溶融体などの流体を注入して圧力制御する方法、発泡組成物の発泡による発泡体自己膨張力及び発生ガス圧力により圧力制御する方法、型や型内容物の熱膨張力により圧力制御する方法などがあげられる。
低沸点揮発性物質が分解脱離する温度領域にするためには、加熱器を用いて加熱したり、または前工程で熱がかかる場合、その余熱を利用したりすることができる。発泡性組成物から低沸点揮発性物質が分解脱離する温度領域とは、低沸点揮発性物質が分解脱離する最低温度より高く、さらに低沸点揮発性物質が分解脱離した後の樹脂(すなわち発泡体樹脂)の分解温度若しくは強度などの諸物性を損なわない温度より低い範囲の温度領域をいう。この温度領域は発泡性組成物の種類により変化する。例えば、アクリル系発泡性組成物の場合は分解脱離最低温度は約75〜85℃、発泡体樹脂の分解温度は約180〜200℃であり、スチレン系発泡性組成物の場合は分解脱離最低温度は約65〜80℃、発泡体樹脂の分解温度は約160〜180℃である。発泡時の温度は高い方が低沸点揮発性物質の分解脱離速度が大きくなり過飽和度が上りやすく気泡微細化には一見好ましく思える。しかし、高温になるほど樹脂粘度が低下して気泡が成長及び合一して巨大化しやすくなる。しがたって発泡に適した温度領域が存在する。その領域は発泡性組成物の種類によって異なるが、65〜200℃、好ましくは90〜180℃、さらに好ましくは100〜160℃である。
加熱器としては特に制限はないが、誘導加熱、抵抗加熱、誘電加熱(およびマイクロ波加熱)、赤外線加熱により加熱ができるもの等が例示できる。放射熱を利用した電気あるいはガス式の赤外線ドライヤーや、電磁誘導を利用したロールヒーター、油媒を利用したオイルヒーター、電熱ヒーター、およびこれらの熱風を利用した熱風ドライヤーなどが挙げられる。誘電加熱や赤外線加熱の場合,材料内部を直接加熱する内部加熱方式なので、熱風ドライヤーなどの外部加熱法よりも瞬時に均一な加熱を行うことができるが、圧力制御に用いる板や型の材質を適宜選択する必要がある。誘電加熱の場合、周波数1MHzから300MHz(波長300m〜1m)の高周波エネルギーを用いる。6MHz〜40MHzの周波数が用いられることが多い。誘電加熱のうち特にマイクロ波加熱では周波数が300MHzから300GHz(波長が1m〜1mm)のマイクロ波をもちいるが、2450MHz、915MHz(電子レンジと同じ)を使うことが多い。赤外線加熱の場合,赤外領域の波長0.76〜1000μmの電磁波を利用する。ヒータ表面温度および被加熱材料の赤外吸収スペクトルなどから、状況により選択される波長の最適帯は変化するが、好ましくは1.5〜25μm、さらに好ましくは2〜15μmの波長帯を用いることができる。
本発明の製造方法では、気泡分布を任意に変化させた発泡体部位を得るために、熱エネルギーの強度分布が生じるように加熱処理を施すこともできる。熱エネルギーの強度分布は、加熱温度により調整することが好ましい。熱エネルギーの強度分布を作り出す方法としては、対向する面で温度差を設けておく方法、一般の熱記録用プリンターに使用されている加熱方式を応用した方法、すなわち感熱プリンターに用いられるプリントヘッドのような電流を流すことで発熱する微細な発熱体を多数並べた加熱体により加熱部位を制御する方式、レーザープリンターに用いられるレーザ加熱ヘッドのようなレーザ照射により加熱部位を制御する方式などがあげられる。
本発明の光導波路の製造方法に含まれる成形工程について説明する。成形工程で用いられる成形方法としては、成形したい形状に応じて、塗工成形、押出成形、射出成形、キャスト成形、プレス成形など選択することができる。成形工程で得られる樹脂形状はとくに限定されず、発泡体の使用目的によって適宜決められる。シート状物(フィルム状を含む)、ファイバー状物、ロッド状物、それ以外の所望の形状を有した物などが挙げられる。シート状物においては、単独のシート状物であっても支持体上に密着したシート層であってもよいし、複数の樹脂の積層構造物であってもよい。
塗工成形の例としては、支持体に塗工ヘッドを用いて発泡性組成物を塗工した後、発泡性組成物が溶剤等で希釈された溶液ならば、乾燥器にて溶剤分を除去し、支持体上に発泡性組成物からなるシート層を得る方法などが挙げられる。このとき、支持体からシート層を剥離することで、発泡性組成物からなる単独のシート状物を得ることもできる。塗工方法には、バーコート法、エアードクターコート法、ブレードコート法、スクイズコート法、エアーナイフコート法、ロールコート法、グラビアコート法、トランスファーコート法、コンマコート法、スムージングコート法、マイクログラビアコート法、リバースロールコート法、マルチロールコート法、ディップコート法、ロッドコート法、キスコート法、ゲートロールコート法、落下カーテンコート法、スライドコート法、ファウンテンコート法、およびスリットダイコート法などがあげられる。支持体のとしては、紙、合成紙、プラスチック樹脂シート、金属シート、金属蒸着シート等が挙げられ、これらは単独で用いられてもよく、或は、互いに積層されていてもよい。プラスチック樹脂シートは、例えば、ポリスチレン樹脂シート、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂シート、並びにポリエチレンテレフタレートなどのポリエステル系樹脂シート等の汎用プラスチックシートやポリイミド樹脂シート、ABS樹脂シート、ポリカーボネート樹脂シート等のエンジニアリングプラスチックシートなどが挙げられ、また金属シートを構成する金属としては、アルミニウムおよび銅などが挙げられる。金属蒸着シートとしては、アルミ蒸着シート・金蒸着シート・銀蒸着シートなどが挙げられる。
押出成形法としては、スクリュー状の押出軸を用いた一般の押出成形法、ピストン状押出軸を用いたラム押出成形法などがあげられる。
射出成形法の例としては、通常の射出成形方法に加えて、真空充填成形法、射出圧縮成形法、高速真空充填成形法、ガス吸収溶融成形法、型温冷熱サイクル成形法、低圧低速充填成形法、射出プレス成形法、スタックモールド成形法等があげられる。最近の動向である薄肉成形および微細形状の高転写率成形に向けた方法として、断熱金型成形法、射出速度が1000〜2000mm/secという超高速射出成形法、二酸化炭素や窒素などの不活性ガスを超臨界状態で溶融樹脂に溶解させて発泡させずに成形する超臨界流体を利用した射出成形法なども挙げられる。
キャスト成形の例としては、活性エネルギー線硬化型モノマーを含む液状発泡性組成物をプリズムシート状の型にキャストし、活性エネルギー線を照射して硬化して脱型することで、プリズムシート状成形物を得る方法などが挙げられる。活性エネルギー線の光源および波長等の照射条件を適宜選択することにより、樹脂硬化と酸及び塩基発生剤からの酸及び塩基発生を同時に起こすことも可能である。
前述した通り成形工程は、発泡前の樹脂である発泡性組成物を成形する予備成形工程と、クラッド部を発泡した後の発泡樹脂を成形する光導波路成形工程に分けることができる。予備成形工程では、原料である発泡性組成物を積層前の光導波路の最終形状もしくはそれに近い形状に直接成形する方法を用いることもできるし、シート状、ロット状、ペレット状、粉体状など比較的単純な形状に仮成形してから発泡体の最終形状もしくはそれに近い形状に多段階で成形する方法を用いることもできる。どちらの方法でも、前述した成形方法を適宜使うことができる。
光導波路成形工程としては、(1)活性エネルギー線を用いてパターンに従って照射したものを単独、あるいは積層して、低沸点揮発性物質が分解脱離する温度領域で圧力制御して発泡させながら成形する工程、および、(2)クラッド部を発泡工程後に単独、あるいは積層して光導波路を成形する工程が挙げられる。
(1)の工程では、前述した成形方法の他、成形型内で活性エネルギー線照射と温度及び圧力制御を同時に行う方法などもある。成形型内で活性エネルギー線照射と温度及び圧力制御を同時に行う方法としては、成形型に石英ガラスを用いて成形型周辺から活性エネルギー線を照射、さらに加熱および加圧制御するものである。また射出成形のシリンダーの一部に石英ガラスを取付け、シリンダー外部からシリンダー内の樹脂に活性エネルギー線を照射し、成形型内に射出成形し、発泡と成形を同時に行う方法などもある。
(2)の発泡工程後に発泡体を成形する工程はこれまでにあげた成形法を適宜用いることができるが、発泡工程後の成形よりも、発泡させながらの成形の方が好ましい。せっかく形成された発泡構造をつぶすことがなく、発泡による内圧で成形型面の転写効率を上げることもできるからである。
光導波路成形工程で積層成形する場合、積層されている各層は発泡層でも未発泡層でもかまわない。ただし、コア部とクラッド部を形成したシートに未発泡層を積層する場合は、未発泡層を構成する材料の屈折率はコア部の屈折率より低い材料を用いる必要がある。
<光導波路の構造>
本発明により製造されたコア部とクラッド部を含めた光導波路の断面形状は、光導波路部の長さを縦長さ、これに垂直な方向の光導波路部の長さを横長さとするとき、(横長さ)÷(縦長さ)をアスペクト比とした。該アスペクト比は0.1〜10である。アスペクト比が0.1より小さくなると、光ファイバーとの接続損失が大きくなり、結合効率が低下する。また、アスペクト比が10より大きくなると、光ファイバーとの接続損失が大きくなり過ぎ、通信効率が低下する。
また、光導波路のコア部の厚み方向の長さである縦長さおよびこれに垂直な方向の横長さはそれぞれ1μm以上2mm以下である。該範囲にあるとき、通信モードであるシングルモードおよびマルチモードの両方に対応することができる。該範囲外のコア径になると、光ファイバーとの接続損失が大きくなり過ぎ、光導波路内を光が導波しなくなってしまう。
光導波路のコア部の縦長さと横長さが1μm以上20μm未満の場合、特にシングルモード導波に適している。コア部の縦長さと横長さが該範囲を外れると、光をシングルモード導波できなくなる。
光導波路のコア部の縦長さと横長さが20μm以上2mm未満の場合、特にマルチモード導波に適している。コア部の縦長さと横長さが該範囲を外れると、光をマルチモード導波できなくなる。
さらに、本発明では、光導波路は基板上に積層されて形成されてもよい。このとき用いられる基板としては、可撓性がほとんど無い板状であってもよいし、可撓性を有するフィルム状であってもよいし、その中間的なものであってもよく、特に限定されるものではない。用いられる材料としても特に限定されるものではなく、具体的には、例えば、シリコンウエハー、金属基板、セラミック基板、高分子基板等を挙げることができる。
高分子基板の材質としても特に限定されるものではないが、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリケトン系樹脂、ポリスルホン系樹脂、ポリフェニレンエーテル樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリフェニレンスルフィド樹脂、フッ素樹脂、ポリアリレート樹脂、液晶ポリマー樹脂、エポキシ樹脂、シアナート樹脂等を挙げることができる。この中でも、耐熱性の点や光導波路 となる高分子材料(母材)との接着性、線膨張係数が近いなどの点からポリイミド樹脂、エポキシ樹脂、シアナート樹脂が好ましく用いられる。
さらに、必要に応じて、光導波路や基板を複数層積層してもよい。
このときの積層方法についても特に限定されるものではなく、従来公知の方法を用いることができる。具体的には、例えば、光導波路 と基板とを直接接着剤を介さないで積層することも可能であるし、接着剤を介して積層することも可能である。接着剤を使用する方法においては、当該接着剤として熱可塑性ポリイミドを用いることが好ましい。これにより耐熱性、接着性をより優れたものとすることができる。特に、光導波路 の材料(母材の主成分である高分子材料)や基板材料にポリイミドを用いる場合、接着性が良好で線膨張係数の差が小さいため、反りを少なくできる等の利点があるため好ましい。
また、本発明にかかる光導波路においては、基板上に電気配線を設けてもよい。すなわち、上記基板に予め電気配線を公知の方法で形成して電気配線基板としておき、当該電気配線基板上に母材を積層して光導波路 を形成するか、光導波路を形成した母材を電気配線基板に積層してもよい。このように、光導波路と電気配線とが一つの積層板上に配置することによって、得られる積層基板を光電気混合基板(光電気混載基板)として用いることができる。
<光導波路の用途>
本発明を用いて得られる光導波路とは、本発明にかかる製造方法を用いて得られる。例えば、光通信に用いられる様々な部品(光通信用部品、光通信用光学素子)に適用することができる。具体的には、例えば、光分岐結合器(光カプラ)、光合波分波器(光合分波器)、光アイソレータ、リングカプラ、光ファイバーアンプ、導波路型素子(導波路型光変調器)等が挙げられる。これらの光部品は上記光導波路を用いて製造することができる。中でも、特に導波路型素子は、光の強度や位相を電気信号に合わせて制御する光集積回路の一種であり、小型で高速、高効率で動作する素子にできること等の利点があるため、本発明の用途の一つとして非常に有望である。
本発明を下記実施例により詳細に説明するが、本発明はこれらの実施例により限定されるものではない。また、特に断らない限り、例中の「部」および「%」は各々「質量部」および「質量%」を表わす。
<実施例1>
(1)発泡性組成物
分解性化合物としてtert−ブチルアクリレート(20%)とtert−ブチルメタクリレート(40%)とメタクリル酸メチル(40%)との共重合体100部に対して、ヨードニウム塩系酸発生剤としてビス(4−tert−ブチルフェニル)ヨードニウムパーフルオロブタンスルホネート(BBI−109、ミドリ化学製)3部の配合比した発泡性組成物Aを用いた。
(2)予備成形工程
前記配合比の発泡性組成物をMEK/酢酸エチル=65/35(質量比)の希釈液で25%の溶液を調製し、これを塗布液として用いた。この塗布液(図1a)を、厚さ75μmのシリコーンPET(図1b)(MR−75:三菱ポリエステル製)からなる支持体のシリコーン処理面上に300μmのクリアランスをもつアプリケーターを用いてコーティングし、温度110℃の恒温乾燥機内で10分間放置して希釈液を蒸発除去した。サンプルを恒温乾燥機から取り出した後、塗布層をシリコーンPETから剥離して、厚さ45μmの発泡組成物フィルムを得た。
(3)紫外線照射
前記工程(2)の発泡組成物フィルムに、低屈折率クラッド部となる部分に紫外線が当たるようにクロムメッキによるマスクが施された石英板(図1c)をフィルムに重ね、メタルハライドランプ(アイグラフィック(株)製 紫外線硬化用マルチメタルランプM03−L31)を光源として、照射線量2000mJ/cm2で紫外線照射したものをシート1(図1d)、マスクを施さずにシート全面に照射線量2000mJ/cm2で紫外線照射したものをシート2(図1e)とする。
(4)発泡工程
前記工程(3)によって得られたシート1およびシート2をそれぞれ5cm×6cmで切り出し、シート1の上下にシート2をそれぞれ積層したものを、10cm×10cm、厚さ1mmのSUS板で挟み、ハンドプレス機(TOYOSEIKI製 Mini TEST PRESS−10)を用いて、当該積層サンプルに6MPaの圧力がかかる状態で150℃3分間プレス成形した。プレスを開放した後、SUS板にはさんだ状態のままサンプルをプレス機から取り出し、自然空冷し、SUS板から光導波路成形品を取り外した。
(5)光導波路構造評価
得られた光導波路の構造を確認するために断面観察した。サンプルを液体窒素中で凍結割断し、光学顕微鏡にてコア部(図2f)のサイズを測定した。コア部のサイズは80μm×80μmであった。
さらに発泡体断面上に金蒸着処理を施し、この金蒸着面を走査型電子顕微鏡(S−510、日立製作所製)を用いて断面構造を観察した。クラッド部(図2g)の発泡部分の平均気泡径は、断面観察画像(拡大倍率:20000倍)から無作為に100個の気泡を選び出し、それらの直径の平均とした。発泡倍率は単位面積当たりの気泡数(Nf)と気泡径(D)から次式を用いて算出した:発泡倍率=1/(1−πD3Nf/6)。クラッド部の平均気泡径は100nm、発泡倍率は1.5倍であった。
(6)屈折率算出
前記シート1のコア部、クラッド部それぞれの屈折率測定はビームプロファイル反射率測定法を応用して、測定装置として高精度膜厚計Opti−Probe2000(サーマウェーブ社製)を使用し、測定波長675nm、ビームスポット径1μmという条件で測定を行った。測定の結果、コア部は1.57、クラッド部は1.38であった。
(7)曲げ損失測定方法
(3)の紫外線照射工程に使用するマスクを曲率半径が様々なS字型パターンに作成し、直線状のものをリファレンスとして、波長1.55μmの光をコア径80μmのマルチモードファイバーで導光して、コア部の一方の端から上記光を入射させ、もう一方の端から出射された光の強度をパワーメーターで測定した。光導波路長を変えて出射された光の強度を測定し、光の強度を用いてリファレンスからの光損失増大分を算出した。曲率半径と光損失増大分をプロットして、損失増大分が3dBとなる曲率半径を計算した。計算した結果、曲率半径は0.5mmであった。
<実施例2>
(4)発泡工程での積層サンプルにかかる圧力を2MPaにした以外は、実施例1と同様な方法で光導波路を形成した。
<実施例3>
(1)〜(3)までの工程は実施例1と同様。
(4)発泡成形工程
積層したシートを底面が5cm×6cmの直方体成形用金型にセットして、4MPaの圧力がかかる状態で130℃2分間プレス成形しながら発泡させた。プレス開放後に型をハンドプレス機から取り外し自然空冷し、金型温度が40℃程度になったところで、直方体成形用型から光導波路を取り外した。後は、実施例1と同様にして評価を行った。
<実施例4>
(1)発泡性組成物
分解性化合物としてtert−ブチルアクリレート(60%)とメタクリル酸メチル(30%)とメタクリル酸(10%)の共重合体100部に対して、ヨードニウム塩系酸発生剤としてビス(4−tert−ブチルフェニル)ヨードニウムパーフルオロブタンスルホネート3部の配合比した発泡性組成物Bを用いた。
後は実施例1と同様にして光導波路を形成、評価した。
<実施例5>
実施例1の(3)のシート2の代わりに、塩化ビニルシート(屈折率1.54)を用いた以外は実施例1と同様にして光導波路を形成、評価した。
<比較例1>
実施例1の(4)発泡工程での積層サンプルにかかる圧力を1MPa、発泡温度を150℃にした以外は、実施例1と同様な方法で光導波路を作成、評価した。
その結果、クラッド部の気泡径が大きくなりすぎて白濁し、屈折率が評価出来なかった。
<比較例2>
実施例5の塩化ビニルフィルムの代わりにポリスチレンフィルム(屈折率1.59)を使用した以外は、実施例5と同様な方法で光導波路を作成、評価した。
この場合、リファレンスの損失が3dBを超えたため、評価不可能であった。
Figure 2007264502
このように、本発明では、光導波路のクラッド部を形成する低屈折率材料の一部が平均気泡径が5〜200nmであり発泡部位の空隙率が1〜95%であるような発泡体部から成り、その発泡体部は活性エネルギー線により酸および塩基を発生する物質と酸または塩基と反応して低分点揮発物を分解脱離する化合物を含有する発泡性組成物に電子線照射や紫外線を照射後、加熱して微細な気泡を発生させることで形成されることにより曲げ損失に優れた光導波路を製造することができる。それゆえ、本発明は、光導波路の小型化に寄与が大であり、高分子材料を光導波路 に加工する樹脂産業や、素材産業に利用できるだけでなく、具体的な光部品を製造する光学機器関連の産業や、光電子関連の機器に関わる電子機器関連の産業、さらには光通信に関わる通信産業等に広く応用することができる。
本発明にかかる光導波路の製造方法を示す模式図である。 本発明にかかる光導波路の断面を示す模式図である。
符号の説明
a 発泡性組成物
b 基材(フィルムなど)
c 紫外線遮蔽マスク
d シート1(コア部以外紫外線照射)
e シート2(全面紫外線照射)
f コア部(未発泡)
g クラッド部(発泡またはコア部より低屈折率の材料)










Claims (7)

  1. コア部と該コア部より屈折率の低い材料からなり、該コア部を囲むように配置されたクラッド部を備えた光導波路であって、該クラッド部の一部が平均気泡径5〜200nmの微細独立気泡を内包する主に高分子材料からなる発泡体からなり、該発泡体部の体積空隙率が1〜95%であることを特徴とする光導波路。
  2. 前記発泡体部は、下記a成分及びb成分を含有する発泡性組成物に活性エネルギー線を照射して得られた発泡体であることを特徴とする請求項1に記載の光導波路。
    a.活性エネルギー線の作用によって酸を発生する酸発生剤または塩基を発生する塩基発生剤。
    b.酸または塩基と反応して一種類以上の低沸点揮発性物質を分解脱離する分解発泡性官能基を有する化合物。
  3. 少なくとも1つは前記発泡体部を含むような2つ以上のシートを積層または貼合させることを特徴とする請求項1または2に記載の光導波路。
  4. コア部と該コア部より屈折率の低い材料からなり、該コア部を囲むように配置されたクラッド部を備えた光導波路であって、該クラッド部の一部が平均気泡径5〜200nmの微細独立気泡を内包する主に高分子材料からなる発泡体からなり、該発泡体部の体積空隙率が1〜95%である光導波路の製造方法であって、発泡体部を形成すべき部位に活性エネルギー線を照射する工程と、発泡体成形工程とを含むことを特徴とする光導波路の製造方法。
  5. 前記発泡体成形工程が、低沸点揮発物質が分解脱離する温度領域で圧力制御して発泡させる工程を含むことを特徴とする請求項4に記載の光導波路の製造方法。
  6. 前記発泡体成形工程が、低沸点揮発物質が分解脱離する温度領域で圧力制御して発泡させる工程の後に圧力制御しながら冷却する工程を含むことを特徴とする請求項4または5に記載の光導波路の製造方法。
  7. 該発泡体を形成すべき部位は、「活性エネルギー線の作用によって酸を発生する酸発生剤または塩基を発生する塩基発生剤を含有し、さらに、酸または塩基と反応して一種類以上の低沸点揮発性物質を分解脱離する分解発泡性官能基を有する化合物を含有する発泡組成物」から構成されていることを特徴とする請求項4〜6のいずれかに記載の光導波路の製造方法。

JP2006092482A 2006-03-29 2006-03-29 光導波路およびその製造方法 Pending JP2007264502A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092482A JP2007264502A (ja) 2006-03-29 2006-03-29 光導波路およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092482A JP2007264502A (ja) 2006-03-29 2006-03-29 光導波路およびその製造方法

Publications (1)

Publication Number Publication Date
JP2007264502A true JP2007264502A (ja) 2007-10-11

Family

ID=38637519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092482A Pending JP2007264502A (ja) 2006-03-29 2006-03-29 光導波路およびその製造方法

Country Status (1)

Country Link
JP (1) JP2007264502A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113566A1 (ja) * 2008-03-11 2009-09-17 積水化学工業株式会社 光応答性ガス発生材料、マイクロポンプ及びマイクロ流体デバイス
JP2011107196A (ja) * 2009-11-12 2011-06-02 Sumitomo Bakelite Co Ltd 光導波路及びその製造方法
JP2014182191A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd 光導波路デバイスの製造方法、光導波路デバイス、及び光導波路コネクタ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045891A (ja) * 2002-07-12 2004-02-12 Ricoh Co Ltd 導波路型光変調器
US20050001862A1 (en) * 2003-07-02 2005-01-06 Masahiro Kimura Data transferring apparatus for transferring liquid ejection data and a liquid ejecting apparatus
JP2006009167A (ja) * 2004-06-23 2006-01-12 Oji Paper Co Ltd 繊維状発泡体およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045891A (ja) * 2002-07-12 2004-02-12 Ricoh Co Ltd 導波路型光変調器
US20050001862A1 (en) * 2003-07-02 2005-01-06 Masahiro Kimura Data transferring apparatus for transferring liquid ejection data and a liquid ejecting apparatus
JP2006009167A (ja) * 2004-06-23 2006-01-12 Oji Paper Co Ltd 繊維状発泡体およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113566A1 (ja) * 2008-03-11 2009-09-17 積水化学工業株式会社 光応答性ガス発生材料、マイクロポンプ及びマイクロ流体デバイス
JP4454694B2 (ja) * 2008-03-11 2010-04-21 積水化学工業株式会社 光応答性ガス発生材料、マイクロポンプ及びマイクロ流体デバイス
JP2010089259A (ja) * 2008-03-11 2010-04-22 Sekisui Chem Co Ltd 光応答性ガス発生材料、マイクロポンプ及びマイクロ流体デバイス
JPWO2009113566A1 (ja) * 2008-03-11 2011-07-21 積水化学工業株式会社 光応答性ガス発生材料、マイクロポンプ及びマイクロ流体デバイス
US8771612B2 (en) 2008-03-11 2014-07-08 Sekisui Chemical Co., Ltd. Photoresponsive gas-generating material, micropump and microfluid device
EP2258951A4 (en) * 2008-03-11 2016-01-20 Sekisui Chemical Co Ltd PHOTOSENSITIVE MATERIAL GAS GENERATOR, MICROPUMP AND MICROFLUIDIC DEVICE
JP2011107196A (ja) * 2009-11-12 2011-06-02 Sumitomo Bakelite Co Ltd 光導波路及びその製造方法
JP2014182191A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd 光導波路デバイスの製造方法、光導波路デバイス、及び光導波路コネクタ

Similar Documents

Publication Publication Date Title
KR101031023B1 (ko) 발포체의 제조방법
JP2007264343A (ja) 光拡散体、光拡散体の製造方法、面発光装置、表示装置及び照明装置
US20090130419A1 (en) Foam sheet and production process thereof
JP4608977B2 (ja) 光反射体
CN100564432C (zh) 泡沫体的制造方法
JP2009086577A (ja) 光拡散体、光拡散体の製造方法、面発光装置、表示装置及び照明装置
JP4609047B2 (ja) 導光体及びその製造方法、面発光装置、表示装置並びに照明装置
KR102168772B1 (ko) 임프린트용 프라이머층 형성용 조성물, 임프린트용 프라이머층 및 적층체
JP2007145960A (ja) エレクトレット用高分子発泡体及びその製造法並びにエレクトレット
JP2007264502A (ja) 光導波路およびその製造方法
JP4802477B2 (ja) 不均一発泡体の製造方法
JP2009086436A (ja) 光拡散体、光拡散体の製造方法、面発光装置、表示装置及び照明装置
JP2004002812A (ja) 発泡性組成物およびそれを用いる発泡体の製造方法
JP2009221327A (ja) 分解発泡性化合物および発泡性組成物、ならびに発泡体および該製造方法
JP2005054176A (ja) シート状発泡体およびその製造方法
JP2009220355A (ja) 発泡体および該発泡体の製造方法
JP2008209794A (ja) マイクロレンズの製造方法
JP2008192527A (ja) 導光体およびその製造法
JP2010003646A (ja) 液晶用照明装置及びその製造方法
JP2010145428A (ja) 光学シートおよびその製造方法、照明装置、投影装置、看板並びに画像表示装置
JP2010053276A (ja) 発泡組成物および発泡組成物よりなる光学部材
JP2009098607A (ja) 光拡散体、光拡散体の製造方法、面発光装置、表示装置及び照明装置
JP2009002970A (ja) マイクロレンズの製造方法およびマイクロレンズ
CN108541333A (zh) 压印材料
KR102420767B1 (ko) 키트, 임프린트용 하층막 형성 조성물, 패턴 형성 방법, 반도체 디바이스의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221