JP2007263863A - Seismic sensor - Google Patents

Seismic sensor Download PDF

Info

Publication number
JP2007263863A
JP2007263863A JP2006091615A JP2006091615A JP2007263863A JP 2007263863 A JP2007263863 A JP 2007263863A JP 2006091615 A JP2006091615 A JP 2006091615A JP 2006091615 A JP2006091615 A JP 2006091615A JP 2007263863 A JP2007263863 A JP 2007263863A
Authority
JP
Japan
Prior art keywords
earthquake
function
detection means
signal
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006091615A
Other languages
Japanese (ja)
Other versions
JP4650892B2 (en
Inventor
Yuichiro Hayashi
裕一郎 林
Kenji Ota
賢治 太田
Norihisa Yoshida
法久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAIGAI RUBBER IND
OYO JISHIN KEISOKU KK
Mitsubishi Electric Corp
Naigai Rubber Industry Co Ltd
Original Assignee
NAIGAI RUBBER IND
OYO JISHIN KEISOKU KK
Mitsubishi Electric Corp
Naigai Rubber Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAIGAI RUBBER IND, OYO JISHIN KEISOKU KK, Mitsubishi Electric Corp, Naigai Rubber Industry Co Ltd filed Critical NAIGAI RUBBER IND
Priority to JP2006091615A priority Critical patent/JP4650892B2/en
Publication of JP2007263863A publication Critical patent/JP2007263863A/en
Application granted granted Critical
Publication of JP4650892B2 publication Critical patent/JP4650892B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an inexpensive seismic sensor capable of effectively controlling seismic information of the whole building with a simple structure. <P>SOLUTION: The process recording section 6 comprises the function of performing a trigger judgment process, i.e., a trigger/detrigger function, for waveform data included in a sensing result signal. The trigger function judges that the earthquake happens when a waveform data value acquired from a seismic sensor 1 placed on a basement floor exceeds then the reference value for starting recording prespecified, and then starts the recording the sensing result signal and processing therefor. Then, when the process recording section 6 judges that the trigger is in the ON status, the section traces back by preset pre-trigger time (i.e., 20 to 30 seconds) and performs recording of a sensing result signal and processing thereof. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、建物などに据え付けられ地震を感知する地震感知装置に関するものである。   The present invention relates to an earthquake sensing device that is installed in a building or the like and senses an earthquake.

従来の地震観測システムでは、建物の地下階、最上階及び中間階に地震計が設置されて
おり、各地震計はGPS(Global Positioning System)信号により時刻が同期させられる。地震等で建物に振動が生じると、その振動が各地震計で検出されてデジタルデータに変換される。このデジタルデータは、EPS(Electric Pipe Space)を用いた配線により、各地震計内のサーバに送られて保持される(例えば、特許文献1参照)。
In conventional seismic observation systems, seismometers are installed on the basement floor, top floor, and intermediate floor of a building, and the time of each seismometer is synchronized by a GPS (Global Positioning System) signal. When vibration occurs in a building due to an earthquake or the like, the vibration is detected by each seismometer and converted into digital data. This digital data is sent to and stored in a server in each seismometer by wiring using EPS (Electric Pipe Space) (see, for example, Patent Document 1).

特開2000−214267号公報JP 2000-214267 A

上記のような従来の建物に設置される地震観測システムでは、サーボ型加速度計を使用し、GPS信号により時刻を同期させ、計測震度の計算にはFFT(Fast Fourier Transform)を用いており、建物内配線用に使われるEPSを用いて配線しており、総じて製品、設置に要するコストが高く、広く普及することが難しかった。また、建物用地震計は、多くの場合、地震波形の収録を目的としていて、建物各階の揺れの程度をリアルタイムで居住者に知らせることが難しかった。また、エレベータ昇降路には、地震感知器を設置することがあるが、この場合地震を感知して、接点を出力してエレベータの運転に役立てるものであり、地震波形を記録したり、計測震度相当値を出力することはなかった。   The seismic observation system installed in the conventional building as described above uses a servo accelerometer, synchronizes the time with GPS signals, and uses FFT (Fast Fourier Transform) to calculate the seismic intensity. Wiring is performed using EPS used for internal wiring, and the cost required for the product and installation is generally high, and it has been difficult to spread widely. In many cases, seismometers for buildings are intended to record seismic waveforms, and it is difficult to inform residents in real time of the degree of shaking of each floor of the building. In addition, an earthquake detector may be installed in the elevator hoistway. In this case, an earthquake is detected and the contact point is output to help the operation of the elevator. The equivalent value was not output.

この発明は、上記のような課題を解決するためになされたものであり、簡単な構成により、建物全体の地震情報を効率的に管理することができる低コストな地震感知装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a low-cost earthquake sensing device that can efficiently manage earthquake information of the entire building with a simple configuration. And

この発明に係る地震感知装置は、建物に据え付けられ地震を感知する複数の地震感知手段と、当該地震感知手段の感知結果信号を伝送する伝送手段と、当該伝送手段と接続し、複数の地震感知手段の感知結果信号を受信して収録する収録手段とを備え、当該収録手段は、複数の地震感知手段の感知結果信号の同期を取るための同期信号を当該地震感知手段に送信し、所定の地震感知手段から受信した感知結果信号に含まれる波形データに対して、トリガフィルタ、トリガ判定処理を行い、トリガONと判定したらプレトリガ時間分遡って複数の地震感知手段から感知結果信号を受信する。   The earthquake sensing device according to the present invention comprises a plurality of earthquake sensing means installed in a building for sensing an earthquake, a transmission means for transmitting a detection result signal of the earthquake sensing means, and a plurality of earthquake sensing devices connected to the transmission means. A recording means for receiving and recording the sensing result signal of the means, the recording means transmitting a synchronization signal for synchronizing the sensing result signals of the plurality of earthquake sensing means to the earthquake sensing means, A trigger filter and a trigger determination process are performed on the waveform data included in the detection result signal received from the earthquake detection means. If it is determined that the trigger is ON, the detection result signals are received from a plurality of earthquake detection means retroactively by the pre-trigger time.

この発明の地震感知装置は、収録手段が、複数の地震感知手段の感知結果信号の同期を取るための同期信号を地震感知手段に送信し、所定の地震感知手段から受信した感知結果信号に含まれる波形データに対して、トリガフィルタ、トリガ判定処理を行い、トリガONと判定したらプレトリガ時間分遡って複数の地震感知手段から感知結果信号を受信するので、簡単な構成により、建物全体の地震情報を効率的に管理することができる。   In the earthquake sensing device of the present invention, the recording means transmits a synchronization signal for synchronizing the sensing result signals of the plurality of earthquake sensing means to the earthquake sensing means, and is included in the sensing result signal received from the predetermined earthquake sensing means. If the trigger data is processed, trigger detection processing is performed on the waveform data, and if the trigger is determined to be ON, the detection result signals are received from a plurality of earthquake detection means retroactively by the pre-trigger time. Can be managed efficiently.

以下、この発明を実施するための最良の形態について、図面を参照して説明する。
実施の形態1.
図1はこの発明の実施の形態1による地震感知装置を示すブロック図である。図において、建物内には、3〜4個(図では1個のみ示す)の地震感知部(地震感知手段)1が設置されている。地震感知部1は、例えば地下階(下層階)のエレベータ用のスペース(例えばエレベータホールやエレベータの昇降路など)、最上階(上層階)のエレベータ用のスペース、及び中間階のエレベータ用のスペースにそれぞれ設置されている。また、地震感知部1は、例えばエレベータ用のスペースの梁部等に設置されている。
The best mode for carrying out the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 is a block diagram showing an earthquake sensing apparatus according to Embodiment 1 of the present invention. In the figure, three to four (only one is shown) earthquake sensing units (earthquake sensing means) 1 are installed in the building. The earthquake detection unit 1 includes, for example, an elevator space (for example, an elevator hall and an elevator hoistway) on the basement floor (lower floor), an elevator space on the uppermost floor (upper floor), and an elevator space on the intermediate floor. Respectively. Moreover, the earthquake detection part 1 is installed in the beam part etc. of the space for elevators, for example.

各地震感知部1は、加速度に応じた電圧信号(感知結果信号)を発生する加速度センサ(加速度計)2、加速度センサ2からの信号をデジタル信号に変換するAD変換器3、外部との信号の送受信を行う通信部4とを有している。加速度センサ2は、ステンレス鋼製のばねと、ばねに固着された錘と、錘に対向する電極とを有し、加速度を静電容量の変化として検知する静電容量型である。通信部4としては、シリアル通信ポートであるRS422ポートが用いられている。   Each earthquake sensing unit 1 includes an acceleration sensor (accelerometer) 2 that generates a voltage signal (sensing result signal) corresponding to acceleration, an AD converter 3 that converts a signal from the acceleration sensor 2 into a digital signal, and an external signal. And a communication unit 4 that performs transmission and reception. The acceleration sensor 2 is a capacitance type that has a stainless steel spring, a weight fixed to the spring, and an electrode facing the weight, and detects acceleration as a change in capacitance. As the communication unit 4, an RS422 port that is a serial communication port is used.

地震感知部1からの感知結果信号は、制御通信部5を介して処理収録部(収録手段)6に入力される。制御通信部5及び処理収録部6は、例えばエレベータの昇降路の上部に位置する機械室にエレベータ制御盤と共に設置されている。処理収録部6は、制御通信部5から感知結果信号を受信して収録する。また、処理収録部6は、演算処理部(CPU)、記憶部(ROM、RAM及びハードディスク等)及び信号入出力部を持った処理収録用コンピュータにより構成されている。そして、処理収録用コンピュータの記憶部には、処理収録部6の機能を実現するためのプログラムが格納されている。   A detection result signal from the earthquake detection unit 1 is input to the processing recording unit (recording unit) 6 via the control communication unit 5. The control communication unit 5 and the process recording unit 6 are installed together with the elevator control panel, for example, in a machine room located above the elevator hoistway. The process recording unit 6 receives and records the sensing result signal from the control communication unit 5. The process recording unit 6 includes a processing recording computer having an arithmetic processing unit (CPU), a storage unit (ROM, RAM, hard disk, etc.) and a signal input / output unit. A program for realizing the function of the process recording unit 6 is stored in the storage unit of the process recording computer.

さらに、処理収録部6は、制御通信部5から電力の供給を受けるための受電部7、制御通信部5とのシリアル通信を行うためのシリアルポート8、及び制御通信部5から感知結果信号を受けるためのLAN(Local Area Network)ポート9を有している。   Further, the process recording unit 6 receives the sensing result signal from the power receiving unit 7 for receiving power supply from the control communication unit 5, the serial port 8 for performing serial communication with the control communication unit 5, and the control communication unit 5. It has a LAN (Local Area Network) port 9 for receiving.

処理収録部6には、感知結果信号が常時入力されている。また、処理収録部6には、予め設定された時間分の感知結果信号のデータが保存されている。そして、新たな感知結果信号が入力されると、古いデータから順に消去され、新たなデータが上書きされる。即ち、感知結果信号のデータは常時更新されている。   A sensing result signal is always input to the process recording unit 6. The processing recording unit 6 stores data of a sensing result signal for a preset time. When a new sensing result signal is input, the old data is erased in order, and new data is overwritten. That is, the data of the sensing result signal is constantly updated.

また、処理収録部6は、感知結果信号に含まれる波形データ(観測データ)に対してトリガ判定処理を行う機能、即ちトリガ・デトリガ機能を有している。トリガ機能とは、地下階に設置された地震感知部1から取得した波形データの値が予め設定した収録開始基準値を超えたら、地震が発生したと判定し、感知結果信号(地震データ)の収録及び処理を開始する機能である。このとき、処理収録部6は、トリガONと判定したら、予め設定されたプレトリガ時間(例えば20〜30秒)分遡って感知結果信号の収録及び処理を行う。   Further, the process recording unit 6 has a function of performing a trigger determination process on waveform data (observation data) included in the sensing result signal, that is, a trigger / detrigger function. The trigger function determines that an earthquake has occurred if the value of the waveform data acquired from the earthquake sensing unit 1 installed on the basement floor exceeds the preset recording start reference value, and the detection result signal (earthquake data) This function starts recording and processing. At this time, if the process recording unit 6 determines that the trigger is ON, the process recording unit 6 records and processes the sensing result signal retroactively by a preset pre-trigger time (for example, 20 to 30 seconds).

さらに、処理収録部6は、地震が発生したと判定すると、全ての地震感知部1からの感知結果信号に基づいて、震度相当値及び最大加速度等の地震動指標を算出する処理を行う。震度計算を行う際、処理収録部6は、FIR(Finite Impulse Response)フィルタを使用する。   Further, when the process recording unit 6 determines that an earthquake has occurred, the process recording unit 6 performs a process of calculating seismic intensity indexes such as seismic intensity equivalent values and maximum accelerations based on the detection result signals from all the earthquake detection units 1. When performing seismic intensity calculation, the process recording unit 6 uses a FIR (Finite Impulse Response) filter.

処理収録部6で求められた震度(震度相当値)や最大加速度の情報は、ネットワークを通じて表示器等10によりリアルタイムで表示され、建物の利用者や管理者に報知される。表示器等10には、建物内に設置された専用の表示器や、制御通信部5に接続されたパーソナルコンピュータ等が含まれる。また、収録された波形データは、地震による建物の損傷の解析・診断に用いられる。   Information on seismic intensity (seismic intensity equivalent value) and maximum acceleration obtained by the processing recording unit 6 is displayed in real time by a display 10 or the like through a network, and is notified to a building user and an administrator. The indicator 10 or the like includes a dedicated indicator installed in the building, a personal computer connected to the control communication unit 5, or the like. The recorded waveform data is used for analysis and diagnosis of building damage caused by earthquakes.

一方、デトリガ機能とは、最上階に設置された地震感知部1から取得した波形データの値が予め設定された収録終了基準値未満となったら、感知結果信号の収録及び処理を終了する機能である。トリガ判定に地下階の地震感知部1を用いるのは、地震による揺れが地下階から始まるためである。また、デトリガ判定に最上階の地震感知部1を用いるのは、地震による揺れが最上階に最後まで残るためである。   On the other hand, the detrigger function is a function for ending the recording and processing of the detection result signal when the value of the waveform data acquired from the earthquake detection unit 1 installed on the top floor is less than a preset recording end reference value. is there. The reason why the earthquake detection unit 1 in the basement is used for the trigger determination is that the shaking due to the earthquake starts from the basement. Moreover, the reason why the earthquake detection unit 1 on the top floor is used for the detrigger determination is that the shaking due to the earthquake remains on the top floor to the end.

さらにまた、処理収録部6は、トリガ判定処理を行うために最下階の地震感知部1から取得した波形データを監視する際、トリガフィルタ処理を行う。トリガフィルタ処理とは、例えば地下工事による揺れや地下鉄の運行による揺れ等の外乱を排除する処理である。   Furthermore, the process recording unit 6 performs a trigger filter process when monitoring the waveform data acquired from the earthquake detection unit 1 on the lowest floor in order to perform the trigger determination process. The trigger filter processing is processing for eliminating disturbances such as shaking due to underground construction and shaking due to subway operation.

制御通信部5は、同期回路11、LAN/RS422変換器12、HUB13、制御ボード14、電源部15、リレー16及び異常出力部17を有している。   The control communication unit 5 includes a synchronization circuit 11, a LAN / RS 422 converter 12, a HUB 13, a control board 14, a power supply unit 15, a relay 16, and an abnormal output unit 17.

同期回路11は、地震感知部1の感知結果信号の同期を取るため、即ち時間ずれを生じさせないための同期信号を地震感知部1に送信する。具体的には、同期回路11は、地震感知部1による感知結果信号の時刻を共通化するための手段として、RS422回路(伝送手段)を通じて、全ての地震感知部1に対して1/100秒間隔(100Hz)で同期信号(クロック信号)を送信する。地震感知部1は、RS422回路を通じて、AD変換された感知結果信号を同期信号に同期して同期回路11に出力する。   The synchronization circuit 11 transmits to the earthquake sensing unit 1 a synchronization signal for synchronizing the detection result signal of the earthquake sensing unit 1, that is, not causing a time lag. Specifically, the synchronization circuit 11 is used as a means for sharing the time of the detection result signal by the earthquake sensing unit 1 through the RS422 circuit (transmission means) for 1/100 second with respect to all the earthquake sensing units 1. A synchronization signal (clock signal) is transmitted at an interval (100 Hz). The earthquake sensing unit 1 outputs the AD converted sensing result signal to the synchronizing circuit 11 in synchronization with the synchronizing signal through the RS422 circuit.

同期回路11に入力された感知結果信号は、LAN/RS422変換器12によりLAN用信号に変換され、HUB13を介して処理収録部6に送信される。また、同期回路11は、処理収録部6からの指令に応じて、地震感知部1への同期信号の送信及び地震感知部1からの感知結果信号の取得を開始・終了する。   The sensing result signal input to the synchronization circuit 11 is converted into a LAN signal by the LAN / RS 422 converter 12 and transmitted to the processing recording unit 6 via the HUB 13. In addition, the synchronization circuit 11 starts and ends transmission of a synchronization signal to the earthquake detection unit 1 and acquisition of a detection result signal from the earthquake detection unit 1 in response to a command from the processing recording unit 6.

制御通信部5は、電源部15から供給される電力により駆動される。電源部15は、商用電源から電力の供給を受ける。また、電源部15は、充電式バッテリを内蔵している。充電式バッテリは通常時に充電されており、停電時には充電式バッテリにより制御通信部5及び処理収録部6に電力が供給される。   The control communication unit 5 is driven by power supplied from the power supply unit 15. The power supply unit 15 is supplied with power from a commercial power supply. The power supply unit 15 has a built-in rechargeable battery. The rechargeable battery is normally charged, and power is supplied to the control communication unit 5 and the process recording unit 6 by the rechargeable battery during a power failure.

処理収録部6は、制御ボード14及びリレー16を介して電源部15から電力を供給される。即ち、制御通信部5と処理収録部6とは、共通の電源に接続されている。リレー16のON/OFFは、制御ボード14により制御されている。   The process recording unit 6 is supplied with power from the power supply unit 15 via the control board 14 and the relay 16. That is, the control communication unit 5 and the process recording unit 6 are connected to a common power source. ON / OFF of the relay 16 is controlled by the control board 14.

制御ボード14には、処理収録部6からのウォッチドッグ信号(監視用信号)18及び生存信号19が入力される。処理収録部6のOS(Operating System)が正常に動作している場合、処理収録部6は、制御ボード14にウォッチドッグ信号18を出力している。制御ボード14は、ウォッチドッグ信号18が受信されない状態が予め設定された時間(例えば3分間)継続すると、処理収録部6のOSの動作に異常が発生したと判定し、リレー16を介して処理収録部6の電源をリセットする。これにより、処理収録部6は再起動され、処理収録部6の継続的動作が保証される。   The control board 14 receives a watchdog signal (monitoring signal) 18 and a survival signal 19 from the process recording unit 6. When the OS (Operating System) of the process recording unit 6 is operating normally, the process recording unit 6 outputs a watchdog signal 18 to the control board 14. When the state in which the watchdog signal 18 is not received continues for a preset time (for example, 3 minutes), the control board 14 determines that an abnormality has occurred in the operation of the OS of the process recording unit 6 and performs processing via the relay 16. The power supply of the recording unit 6 is reset. Thereby, the process recording unit 6 is restarted, and the continuous operation of the process recording unit 6 is guaranteed.

また、処理収録部6内のアプリケーション(収録用ソフト等)が正常に動作している場合、処理収録部6は、制御ボード14に生存信号19を出力している。制御ボード14は、生存信号が受信されなくなると、処理収録部6内のアプリケーションの動作に異常が発生したと判定し、異常検出信号を異常出力部17に送る。   Further, when the application (recording software or the like) in the process recording unit 6 is operating normally, the process recording unit 6 outputs a survival signal 19 to the control board 14. When the survival signal is not received, the control board 14 determines that an abnormality has occurred in the operation of the application in the process recording unit 6 and sends an abnormality detection signal to the abnormality output unit 17.

異常出力部17は、制御ボード14から異常検出信号を受けると、制御通信部5に設けられた異常警告用のLEDを点灯させるとともに、エレベータ管理室等に設けられた監視盤に異常検出信号を送信し異常情報を表示させる。   When the abnormality output unit 17 receives the abnormality detection signal from the control board 14, the abnormality output unit 17 lights an abnormality warning LED provided in the control communication unit 5 and outputs an abnormality detection signal to a monitoring panel provided in the elevator management room or the like. Send and display error information.

また、制御ボード14は、処理収録部6に供給される電源電圧が予め設定された電圧値以下に低下すると、遮断要求信号20を処理収録部6に送信し、処理収録部6をシャットダウンさせる。例えば、停電が継続することにより電源部15の充電式バッテリの電圧が所定値以下に降下すると、制御ボード14から処理収録部6に遮断要求信号20が送信され、処理収録部6の動作が安全に停止される。   In addition, when the power supply voltage supplied to the process recording unit 6 falls below a preset voltage value, the control board 14 transmits a shut-off request signal 20 to the process recording unit 6 and shuts down the process recording unit 6. For example, when the voltage of the rechargeable battery of the power supply unit 15 drops below a predetermined value due to the continued power failure, the shut-off request signal 20 is transmitted from the control board 14 to the process recording unit 6 and the operation of the process recording unit 6 is safe. To be stopped.

また、制御通信部5には、点検用手動スイッチが設けられており、この点検用手動スイッチが操作された場合にも、制御ボード14から処理収録部6に遮断要求信号20が送信される。   Further, the control communication unit 5 is provided with an inspection manual switch. Even when the inspection manual switch is operated, the control request signal 20 is transmitted from the control board 14 to the processing recording unit 6.

なお、制御ボード14には、上記のような機能を実現するためのPIC(Peripheral Interface Controller)等のマイクロコンピュータが搭載されている。   The control board 14 is equipped with a microcomputer such as a PIC (Peripheral Interface Controller) for realizing the above functions.

このような地震感知装置は、建物内の異なる場所に設置された複数の地震感知部1、地震感知部1からの感知結果信号を処理し収録する処理収録部6、及び地震感知部1からの感知結果信号を受信し処理収録部6に送信する制御通信部5を備え、制御通信部5は、感知結果信号の同期を取るための同期信号を地震感知部1に送信し、地震感知部1は、感知結果信号を同期信号に同期して制御通信部5に出力するので、全ての地震感知部1でGPS信号による時刻スタンプを付ける方法に比べて、安価で簡単な構成により全ての地震感知部1からの感知結果信号の時刻ずれを防止することができる。   Such an earthquake detection device includes a plurality of earthquake detection units 1 installed at different locations in a building, a processing recording unit 6 that processes and records detection result signals from the earthquake detection unit 1, and an earthquake detection unit 1 A control communication unit 5 is provided that receives the sensing result signal and transmits it to the processing recording unit 6. The control communication unit 5 transmits a synchronization signal for synchronizing the sensing result signal to the earthquake sensing unit 1, and the earthquake sensing unit 1 Since the detection result signal is output to the control communication unit 5 in synchronization with the synchronization signal, all the earthquake detection units 1 can detect all earthquakes with a cheap and simple configuration compared to the method of attaching the time stamp by the GPS signal in all the earthquake detection units 1. It is possible to prevent a time lag of the sensing result signal from the unit 1.

ここで、建物に複数の地震感知部1を設置する場合、建物の挙動を解析するため、地震感知部1相互の時刻ずれは少なくともサンプル周波数以下にする必要がある。即ち、実施の形態1では、1秒間に100サンプルのデータを取得するので、最大でも時刻ずれが0.01秒以内でなければならない(理想的には0.001秒以内)。これに対して、この実施の形態1の方法によれば、感知結果信号の時刻ずれを最小限に抑えることができる。   Here, when installing a plurality of seismic sensing units 1 in a building, in order to analyze the behavior of the building, the time lag between the seismic sensing units 1 needs to be at least equal to or less than the sample frequency. That is, in the first embodiment, since 100 samples of data are acquired per second, the time lag must be within 0.01 seconds (ideally within 0.001 seconds). On the other hand, according to the method of the first embodiment, the time lag of the sensing result signal can be minimized.

また、実施の形態1の地震感知装置では、地震感知部1がエレベータ用のスペースに設置されているので、建物の床や天井にケーブル配線用のEPSを設ける必要がなく、エレベータの昇降路を利用してケーブルを配線することができ、ケーブルの配線が容易であるとともに、地震感知部1のメンテナンスが容易である。   Further, in the earthquake sensing device of the first embodiment, since the earthquake sensing unit 1 is installed in the elevator space, there is no need to provide EPS for cable wiring on the floor or ceiling of the building, and the elevator hoistway is used. Thus, the cable can be wired, the cable can be easily wired, and the maintenance of the earthquake sensing unit 1 is easy.

さらに、実施の形態1の地震感知装置では、複数の地震感知部1が上下方向の異なる位置に設置されており、処理収録部6は、一番下に設置された地震感知部1からの波形データに基づいて、感知結果信号の収録及び処理を開始するので、地震発生直後からのデータをより確実に収録することができる。   Furthermore, in the earthquake sensing device of the first embodiment, a plurality of earthquake sensing units 1 are installed at different positions in the vertical direction, and the processing recording unit 6 has a waveform from the earthquake sensing unit 1 installed at the bottom. Since the recording and processing of the sensing result signal is started based on the data, the data immediately after the occurrence of the earthquake can be recorded more reliably.

さらにまた、処理収録部6は、地震が発生したと判定したら、予め設定されたプレトリガ時間分遡って感知結果信号の収録及び処理を行うので、地震発生直前からのデータをより確実に収録することができる。   Furthermore, if the process recording unit 6 determines that an earthquake has occurred, it records and processes the sensing result signal retroactively by a pre-trigger time set in advance, so that the data immediately before the occurrence of the earthquake can be recorded more reliably. Can do.

また、処理収録部6は、震度計算を行う際、FIRフィルタを使用するので、FFTフィルタを使用する場合に比べて、低い能力のCPUを使用したシステムにおいても、感知結果信号の処理をより高速で実行することができ、地震に関する情報の表示の即時性を向上させることができる。   Further, since the process recording unit 6 uses the FIR filter when calculating the seismic intensity, the process recording unit 6 can process the detection result signal faster even in a system using a CPU having a lower capability than when using the FFT filter. Can improve the immediacy of displaying information about earthquakes.

さらに、実施の形態1の地震感知装置では、複数の地震感知部1が上下方向の異なる位置に設置されており、処理収録部6は、一番上に設置された地震感知部1からの波形データに基づいて、感知結果信号の収録及び処理を終了するので、地震による揺れが建物全体で終了するまでのデータをより確実に収録することができる。   Furthermore, in the earthquake sensing device of the first embodiment, a plurality of earthquake sensing units 1 are installed at different positions in the vertical direction, and the processing recording unit 6 is a waveform from the earthquake sensing unit 1 installed at the top. Since the recording and processing of the sensing result signal is completed based on the data, it is possible to more reliably record the data until the shaking due to the earthquake ends in the entire building.

さらにまた、処理収録部6に対する電源供給は制御通信部5により制御されており、制御通信部5は、処理収録部6から常時入力されるウォッチドッグ信号18を監視し、ウォッチドッグ信号18が所定時間入力されないと処理収録部6のコンピュータを再起動させるので、安価な構成により、処理収録部6のコンピュータの継続的動作を保証することができる。   Furthermore, the power supply to the process recording unit 6 is controlled by the control communication unit 5, and the control communication unit 5 monitors the watch dog signal 18 that is constantly input from the process recording unit 6, and the watch dog signal 18 is predetermined. If the time is not input, the computer of the process recording unit 6 is restarted. Therefore, the continuous operation of the computer of the process recording unit 6 can be guaranteed with an inexpensive configuration.

なお、地震感知部は、建物のどこに設置してもよく、例えば昇降路内に設置すれば配線をさらに簡単にすることができると共に、地震時にエレベータのかごを最寄階に停止させる地震時管制運転の地震計としても活用が可能である。
また、地震感知部の設置数は、上記の例に限定されるものではない。
The seismic detector may be installed anywhere in the building. For example, if it is installed in a hoistway, the wiring can be further simplified, and the elevator car can be stopped at the nearest floor in the event of an earthquake. It can also be used as a driving seismometer.
Further, the number of installed earthquake detection units is not limited to the above example.

この発明の実施の形態1による地震感知装置を示すブロック図である。It is a block diagram which shows the earthquake sensing apparatus by Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 地震感知部(地震感知手段)、5 制御通信部、6 処理収録部、10 表示器等、11 同期回路、14 制御ボード、15 電源部、16 リレー。   DESCRIPTION OF SYMBOLS 1 Earthquake detection part (earthquake detection means), 5 Control communication part, 6 Process recording part, 10 Display etc. 11 Synchronous circuit, 14 Control board, 15 Power supply part, 16 Relay.

Claims (9)

建物に据え付けられ地震を感知する複数の地震感知手段と、
当該地震感知手段の感知結果信号を伝送する伝送手段と、
当該伝送手段と接続し、複数の地震感知手段の感知結果信号を受信して収録する収録手段とを備えた地震感知装置において、
当該収録手段は、
複数の地震感知手段の感知結果信号の同期を取るための同期信号を当該地震感知手段に送信し、
所定の地震感知手段から受信した感知結果信号に含まれる波形データに対して、トリガフィルタ、トリガ判定処理を行い、トリガONと判定したらプレトリガ時間分遡って複数の地震感知手段から感知結果信号を受信する
ことを特徴とする地震感知装置。
A plurality of earthquake detection means installed on the building to detect earthquakes;
A transmission means for transmitting a detection result signal of the earthquake detection means;
In the earthquake sensing device comprising the recording means connected to the transmission means and receiving and recording the sensing result signals of the plurality of earthquake sensing means,
The recording means is
Sending a synchronization signal for synchronizing the detection result signals of a plurality of earthquake detection means to the earthquake detection means,
Trigger filter and trigger determination processing is performed on the waveform data included in the detection result signal received from the predetermined earthquake detection means, and if the trigger is ON, the detection result signal is received from a plurality of earthquake detection means retroactively by the pre-trigger time A seismic sensing device characterized by
建物に据え付けられ、地震を感知し、デジタル信号に変換する機能と、通信ポートを有する複数の地震感知手段と、
複数の地震感知手段の時間ずれを生じさせないための同期回路と、当該地震感知手段による地震感知結果を伝送する通信機能と、後述の処理収録部の動作を継続させるための制御機能を有する制御通信部と、
当該制御通信部と接続し、複数の地震感知手段による地震データを受信して収録する処理収録部とを備えた地震感知装置において、
当該制御通信部、又は処理収録部は、複数の地震感知手段による地震データの同期を取るための同期信号を当該地震感知手段に送信する同期機能を有し、
所定の地震感知手段から受信した地震データに含まれる波形データに対して、下層階に設置した地震感知手段のデータに対してトリガ判定処理を行い、上層階に設置した地震感知手段のデータに対して記録終了処理を行うトリガ・デトリガ機能を有し、
処理収録部から制御通信部に監視用信号を発信し、当該信号が予め定めた時間受信されない場合に、異常発生と判断してコンピュータの電源を遮断して、再起動することによって、コンピュータの継続的な動作を保証する機能を有し、
処理収録部では、地震データに対して、計測震度、最大加速度等の地震動指標を算出して、全ての地震感知手段に相当する震度相当値をネットワークを通じて表示器などに表示する機能を有する
ことを特徴とする地震感知装置。
A function of being installed in a building, detecting an earthquake and converting it into a digital signal, and a plurality of earthquake detection means having a communication port;
Control communication having a synchronization circuit for preventing time lag of a plurality of earthquake detection means, a communication function for transmitting an earthquake detection result by the earthquake detection means, and a control function for continuing the operation of the processing recording unit described later And
In the earthquake sensing device provided with a processing recording unit connected to the control communication unit and receiving and recording earthquake data from a plurality of earthquake sensing means,
The control communication unit or the process recording unit has a synchronization function for transmitting a synchronization signal for synchronizing earthquake data by a plurality of earthquake sensing means to the earthquake sensing means,
For the waveform data included in the earthquake data received from the specified earthquake detection means, trigger judgment processing is performed on the data of the earthquake detection means installed on the lower floor, and the data of the earthquake detection means installed on the upper floor Has a trigger / detrigger function to perform recording end processing,
When a monitoring signal is transmitted from the process recording unit to the control communication unit and the signal is not received for a predetermined time, it is determined that an abnormality has occurred and the computer is turned off and restarted, thereby continuing the computer. Has the function to guarantee
The processing and recording unit has a function to calculate seismic intensity indicators such as measured seismic intensity and maximum acceleration for earthquake data, and to display seismic intensity equivalent values corresponding to all earthquake detection means on a display etc. via a network. A featured earthquake sensing device.
当該地震感知手段とは、建物に据え付けられ、地震を感知して電圧値として出力し、これをデジタル信号に変換するAD変換機能と、通信用のRS422ポートを有し、建物の梁部等に設置することを特徴とする請求項2記載の地震感知装置。   The earthquake detection means is installed in a building, has an AD conversion function for detecting an earthquake and outputting it as a voltage value, and converting it into a digital signal, and an RS422 port for communication. The earthquake sensing device according to claim 2, wherein the earthquake sensing device is installed. 当該同期回路とは、複数の地震感知手段による観測データの時刻を共通化するための手段として、1/100秒間隔でRS422回路を通じて同期信号を当該地震感知手段に送信し、地震感知手段はこの信号に同期してAD変換された観測データを出力することを特徴とする請求項2記載の地震感知装置。   The synchronization circuit transmits a synchronization signal to the earthquake detection means through the RS422 circuit at an interval of 1/100 seconds as a means for sharing the time of observation data by a plurality of earthquake detection means. 3. The earthquake sensing apparatus according to claim 2, wherein the observation data that is AD-converted in synchronization with the signal is output. 当該トリガ・デトリガ機能とは、複数の地震感知手段から受信した観測データに対して、処理、収録開始のための判定処理は下層階に設置した地震感知手段のデータに基づいて行い、収録終了処理は上層階に設置した地震感知手段のデータに基づいて行うことを特徴とする請求項2記載の地震感知装置。   The trigger / detrigger function is based on the data of the seismic detection means installed on the lower floor for the processing and recording start processing for the observation data received from multiple seismic detection means. 3. The earthquake sensing device according to claim 2, wherein the earthquake sensing is performed based on data of earthquake sensing means installed on an upper floor. 処理収録用コンピュータの継続的動作保証機能とは、処理収録用コンピュータから制御ボードに対して、監視用信号を発信し、当該信号が予め定めた時間受信されない場合に、制御ボードがリレーを介して処理収録用コンピュータの電源を一旦遮断した後、所定時間後に投入して、処理収録用コンピュータは再起動することによって、処理収録用コンピュータの継続的動作を保証する請求項2記載の地震感知装置。   The continuous operation guarantee function of the process recording computer is to send a monitoring signal from the process recording computer to the control board, and when the signal is not received for a predetermined time, the control board passes through a relay. 3. The earthquake sensing device according to claim 2, wherein the processing recording computer is turned off and then turned on after a predetermined time, and the processing recording computer is restarted to guarantee continuous operation of the processing recording computer. 処理収録用コンピュータの地震動指標の計算、表示機能は、処理収録用コンピュータが受信した地震波形データに基づいてFIRフィルタを使って計測震度相当値を計算、最大加速度値等と共に、表示器などに出力するもので、制御通信部に接続される全ての地震感知手段から得られた記録について計算する機能を有することを特徴とする請求項5記載の地震感知装置。   The calculation and display function of the seismic motion index of the processing recording computer calculates the measured seismic intensity equivalent value using the FIR filter based on the seismic waveform data received by the processing recording computer, and outputs it to the display unit along with the maximum acceleration value etc. 6. The earthquake sensing device according to claim 5, further comprising a function of calculating records obtained from all the earthquake sensing means connected to the control communication unit. 建物に据え付けられ、地震の揺れを静電容量の変化として感知し、電気信号に変換する静電容量型の加速度計と、電気信号をデジタル信号に変換する機能と、通信ポートを有する複数の地震感知手段と、
複数の地震感知手段の時間ずれを生じさせないための同期回路と、当該地震感知手段による地震感知結果を伝送する通信機能と、後述の処理収録部の動作を継続させるための制御機能を有する制御通信部と、
当該制御通信部と接続し、複数の地震感知手段による地震データを受信して収録する処理収録部とを備えた地震感知装置において、
当該制御通信部、又は処理収録部は、複数の地震感知手段による地震データの同期を取るために100分の1秒毎に同期信号を当該地震感知手段に送信する同期機能を有し、当該地震感知手段は、同期信号に応じて、AD変換の1サンプルを送出する機能を有し、
通信機能は、4個のRS422ポートを1個のイーサネットポートに変換することにより、複数の地震感知手段を1個のイーサネットポートで制御する機能を有し、
所定の地震感知手段から受信した地震データに含まれる波形データに対して、下層階に設置した地震感知手段のデータに対してトリガ判定処理を行い、上層階に設置した地震感知手段のデータに対して記録終了処理を行うトリガ・デトリガ機能を有し、
処理収録部から制御通信部に監視用信号を発信し、当該信号が予め定めた時間受信されない場合に、異常発生と判断してコンピュータの電源を遮断して、再起動することによって、コンピュータの継続的な動作を保証する機能を有し、
処理収録部は、アプリケーションプログラムが動作中に制御通信部に対して生存信号を発し、生存信号が停止した場合に、制御通信部がシリアルポートの信号線を通じて、処理収録部をリブートする機能を有し、
処理収録部では、地震データに対して、計測震度、最大加速度を算出して、全ての地震感知手段に相当する震度相当値または、最大加速度をネットワークを通じて表示器などに表示する機能を有する
ことを特徴とする地震感知装置。
Capacitive accelerometers that are installed in buildings and sense seismic vibrations as capacitance changes and convert them into electrical signals, functions that convert electrical signals into digital signals, and multiple earthquakes with communication ports Sensing means;
Control communication having a synchronization circuit for preventing time lag of a plurality of earthquake detection means, a communication function for transmitting an earthquake detection result by the earthquake detection means, and a control function for continuing the operation of the processing recording unit described later And
In the earthquake sensing device provided with a processing recording unit connected to the control communication unit and receiving and recording earthquake data from a plurality of earthquake sensing means,
The control communication unit or the processing recording unit has a synchronization function for transmitting a synchronization signal to the earthquake detection unit every 1/100 second in order to synchronize the earthquake data by the plurality of earthquake detection units. The sensing means has a function of sending one sample of AD conversion according to the synchronization signal,
The communication function has a function to control multiple earthquake detection means with one Ethernet port by converting four RS422 ports into one Ethernet port,
For the waveform data included in the earthquake data received from the specified earthquake detection means, trigger judgment processing is performed on the data of the earthquake detection means installed on the lower floor, and the data of the earthquake detection means installed on the upper floor Has a trigger / detrigger function to perform recording end processing,
When a monitoring signal is transmitted from the process recording unit to the control communication unit and the signal is not received for a predetermined time, it is determined that an abnormality has occurred and the computer is turned off and restarted, thereby continuing the computer. Has the function to guarantee
The processing recording unit has a function to send a survival signal to the control communication unit while the application program is running, and to reboot the processing recording unit through the signal line of the serial port when the survival signal stops. And
The processing recording unit shall have a function to calculate measured seismic intensity and maximum acceleration for seismic data, and to display seismic intensity equivalent values or maximum acceleration corresponding to all earthquake detection means on a display unit etc. through a network. A featured earthquake sensing device.
当該地震感知手段とは、建物に据え付けられ、地震の揺れを静電容量の変化として感知して電圧値として出力する加速度計と、これをデジタル信号に変換するAD変換機能と、通信用のRS422ポートを有し、建物の梁部等に設置することを特徴とする請求項8記載の地震感知装置。   The earthquake detection means is an accelerometer that is installed in a building, detects an earthquake shake as a change in capacitance, and outputs it as a voltage value, an AD conversion function that converts this into a digital signal, and RS422 for communication The earthquake sensing device according to claim 8, wherein the earthquake sensing device has a port and is installed in a beam portion of a building.
JP2006091615A 2006-03-29 2006-03-29 Earthquake detection device Expired - Fee Related JP4650892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091615A JP4650892B2 (en) 2006-03-29 2006-03-29 Earthquake detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091615A JP4650892B2 (en) 2006-03-29 2006-03-29 Earthquake detection device

Publications (2)

Publication Number Publication Date
JP2007263863A true JP2007263863A (en) 2007-10-11
JP4650892B2 JP4650892B2 (en) 2011-03-16

Family

ID=38636991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091615A Expired - Fee Related JP4650892B2 (en) 2006-03-29 2006-03-29 Earthquake detection device

Country Status (1)

Country Link
JP (1) JP4650892B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175130A (en) * 2007-12-28 2009-08-06 Cygnet Corp Real-time seismic intensity meter and method of predicting seismic intensity, and the like, using the same
JP2010038790A (en) * 2008-08-06 2010-02-18 Kajima Corp Elastic wave probe system
JP2011039022A (en) * 2009-08-11 2011-02-24 Rong Zhi Xin Science & Technology Development (Beijing) Co Ltd Radio earthquake alarm based on mems accelerometer
JP2011174795A (en) * 2010-02-24 2011-09-08 Nec Corp Data processing device, and program
JP2012018069A (en) * 2010-07-07 2012-01-26 Univ Of Tsukuba Building damage level determining apparatus and building damage level determining method
JP2020041964A (en) * 2018-09-13 2020-03-19 株式会社大林組 Earthquake observation system

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155183A (en) * 1984-12-28 1986-07-14 株式会社日立ビルシステムサービス Control operating device for elevator
JPS61169468A (en) * 1985-01-21 1986-07-31 三菱電機株式会社 Elevator device
JPS6461680A (en) * 1987-09-01 1989-03-08 Takamisawa Cybernetics Small-sized seismometer
JPH0273500A (en) * 1988-09-09 1990-03-13 Sato:Kk Monitor device for traveling object on road
JPH0389124A (en) * 1989-08-31 1991-04-15 Omron Corp Seismic sensor
JPH03108203U (en) * 1990-02-22 1991-11-07
JPH07311125A (en) * 1994-05-20 1995-11-28 Mitsubishi Heavy Ind Ltd Method for observing earthquake and strong wind for structure
JPH0916856A (en) * 1995-07-03 1997-01-17 Sanyo Electric Co Ltd Pos system
JPH11183631A (en) * 1997-12-22 1999-07-09 Osaka Gas Co Ltd Method for estimating amplification characteristic of ground at earthquake
JPH11304939A (en) * 1998-04-22 1999-11-05 Akashi Corp Earthquake data recorder
JP2000214267A (en) * 1999-01-28 2000-08-04 Ntt Power & Building Facilities Inc Earthquake observation system
JP2001013258A (en) * 1999-06-28 2001-01-19 Sumitomo Forestry Co Ltd Horizontal displacement-recording device
JP2001306012A (en) * 2000-04-24 2001-11-02 Mitsubishi Electric Engineering Co Ltd Information display device
JP2003042834A (en) * 2001-08-03 2003-02-13 Naigai Rubber Kk Earthquake detector
JP2003173274A (en) * 2001-12-07 2003-06-20 Hitachi Kokusai Electric Inc Software system
JP2003344550A (en) * 2002-05-28 2003-12-03 Kajima Corp System and program for earthquake observation, earthquake analyzer, and recording medium
JP2006038694A (en) * 2004-07-28 2006-02-09 Mitsutoyo Corp Data sampling system

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155183A (en) * 1984-12-28 1986-07-14 株式会社日立ビルシステムサービス Control operating device for elevator
JPS61169468A (en) * 1985-01-21 1986-07-31 三菱電機株式会社 Elevator device
JPS6461680A (en) * 1987-09-01 1989-03-08 Takamisawa Cybernetics Small-sized seismometer
JPH0273500A (en) * 1988-09-09 1990-03-13 Sato:Kk Monitor device for traveling object on road
JPH0389124A (en) * 1989-08-31 1991-04-15 Omron Corp Seismic sensor
JPH03108203U (en) * 1990-02-22 1991-11-07
JPH07311125A (en) * 1994-05-20 1995-11-28 Mitsubishi Heavy Ind Ltd Method for observing earthquake and strong wind for structure
JPH0916856A (en) * 1995-07-03 1997-01-17 Sanyo Electric Co Ltd Pos system
JPH11183631A (en) * 1997-12-22 1999-07-09 Osaka Gas Co Ltd Method for estimating amplification characteristic of ground at earthquake
JPH11304939A (en) * 1998-04-22 1999-11-05 Akashi Corp Earthquake data recorder
JP2000214267A (en) * 1999-01-28 2000-08-04 Ntt Power & Building Facilities Inc Earthquake observation system
JP2001013258A (en) * 1999-06-28 2001-01-19 Sumitomo Forestry Co Ltd Horizontal displacement-recording device
JP2001306012A (en) * 2000-04-24 2001-11-02 Mitsubishi Electric Engineering Co Ltd Information display device
JP2003042834A (en) * 2001-08-03 2003-02-13 Naigai Rubber Kk Earthquake detector
JP2003173274A (en) * 2001-12-07 2003-06-20 Hitachi Kokusai Electric Inc Software system
JP2003344550A (en) * 2002-05-28 2003-12-03 Kajima Corp System and program for earthquake observation, earthquake analyzer, and recording medium
JP2006038694A (en) * 2004-07-28 2006-02-09 Mitsutoyo Corp Data sampling system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175130A (en) * 2007-12-28 2009-08-06 Cygnet Corp Real-time seismic intensity meter and method of predicting seismic intensity, and the like, using the same
JP2010038790A (en) * 2008-08-06 2010-02-18 Kajima Corp Elastic wave probe system
JP2011039022A (en) * 2009-08-11 2011-02-24 Rong Zhi Xin Science & Technology Development (Beijing) Co Ltd Radio earthquake alarm based on mems accelerometer
US8686850B2 (en) 2009-08-11 2014-04-01 Empire Technology Development Llc Wireless earthquake alarm based on mems accelerometers
JP2011174795A (en) * 2010-02-24 2011-09-08 Nec Corp Data processing device, and program
JP2012018069A (en) * 2010-07-07 2012-01-26 Univ Of Tsukuba Building damage level determining apparatus and building damage level determining method
JP2020041964A (en) * 2018-09-13 2020-03-19 株式会社大林組 Earthquake observation system
JP7195830B2 (en) 2018-09-13 2022-12-26 株式会社大林組 seismic observation system

Also Published As

Publication number Publication date
JP4650892B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4650892B2 (en) Earthquake detection device
JP6082191B2 (en) Monitoring system
US20200284930A1 (en) Building integrity assessment system
EP2902809B1 (en) Seismic-detection sensor device for vertical transportation equipment
JP6018898B2 (en) Building safety management system
JP2008249345A (en) Earthquake observation standby system, method, and program
EP3640178B1 (en) Determining elevator car location using vibrations
JP5246636B2 (en) Elevator seismic control system
JP2007322217A (en) Earthquake observation system
JP4510071B2 (en) Seismic system
JP2006306577A (en) In-earthquake operation device of elevator
JP2009258063A (en) Damage monitoring system and measuring device
JP2009298546A (en) Control system for elevator
JP7294785B2 (en) Theft monitoring system and its monitoring method
JP4701759B2 (en) Seismic isolation evaluation device, vibration measurement system
JP6737254B2 (en) Information processing equipment
JP5101450B2 (en) Seismic device
JP2007297178A (en) Earthquake monitoring control device and earthquake monitoring control system
KR101514817B1 (en) Seismometer including MEMS(Micro-Electro-Mechanical Systems) based Accelerometer
EP3446092A1 (en) System for continuously monitoring the integrity of a structure or infrastructure
JP2013082511A (en) Device and method for automatically restoring elevator
WO2011161790A1 (en) Elevator control system
JP7181162B2 (en) Diagnostic device, diagnostic system and diagnostic method
JP7075824B2 (en) Escalator monitoring method and monitoring system
CN110011593A (en) Safe circuit board for passenger traffic facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

R150 Certificate of patent or registration of utility model

Ref document number: 4650892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees