JP2007263166A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device Download PDF

Info

Publication number
JP2007263166A
JP2007263166A JP2006086091A JP2006086091A JP2007263166A JP 2007263166 A JP2007263166 A JP 2007263166A JP 2006086091 A JP2006086091 A JP 2006086091A JP 2006086091 A JP2006086091 A JP 2006086091A JP 2007263166 A JP2007263166 A JP 2007263166A
Authority
JP
Japan
Prior art keywords
inclined groove
dynamic pressure
smooth surface
groove group
pressure generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006086091A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamamoto
哲也 山本
Isao Komori
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006086091A priority Critical patent/JP2007263166A/en
Publication of JP2007263166A publication Critical patent/JP2007263166A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure generating device which can suppress deterioration in bearing performance caused by the occurrence of contamination as much as possible. <P>SOLUTION: A dynamic pressure generating part A is disposed on a radial bearing face out of the inner peripheral face 8a of a sleeve 8 as a porous member. The dynamic pressure generating part A comprises: a first inclined groove group A1 constituted of a plurality of first inclined grooves A11 arranged in a circumferential direction; and a second inclined groove group A2 constituted of a plurality of second inclined grooves A21 different in inclination direction from the first inclined grooves A11 and arranged in the circumferential direction. In the first inclined groove group A1 of the dynamic pressure generating part A, a hill A12 is formed between the first inclined grooves A11, A11 adjacent to each other in the circumferential direction. In the second inclined groove group A2, a hill A22 is formed between the adjacent second inclined grooves A21, A21. A smooth surface A3 is formed between the first inclined groove group A1 and the second inclined groove group A2 around the whole circumference of the inner peripheral face 8a. Here, a surface opening hole ratio of the inner peripheral face 8a is maximized at a smooth surface A3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、動圧軸受装置に関する。 The present invention relates to a hydrodynamic bearing device.

動圧軸受装置は、軸受隙間に生じる流体の動圧作用で軸部材などの回転側部材を回転自在に非接触支持するものである。この種の軸受装置は、高速回転、高回転精度、低騒音等の特徴を備えるものであり、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的にはHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるディスクドライブのスピンドルモータ用の軸受装置として、あるいはレーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、ファンモータなどのモータ用軸受装置として好適に使用される。   The dynamic pressure bearing device supports a rotary member such as a shaft member in a non-contact manner in a freely rotatable manner by a dynamic pressure action of a fluid generated in a bearing gap. This type of bearing device has features such as high-speed rotation, high rotation accuracy, and low noise, and more specifically as a bearing device for motors installed in various electrical equipment including information equipment. As a bearing device for a spindle motor of a disk drive in an optical disk device such as a magnetic disk device such as CD-ROM, CD-R / RW, DVD-ROM / RAM, or a magneto-optical disk device such as MD or MO, or a laser It is preferably used as a bearing device for a motor such as a polygon scanner motor of a beam printer (LBP), a color wheel motor of a projector, or a fan motor.

例えば、HDD用スピンドルモータに組み込まれる動圧軸受装置において、軸部材をラジアル方向に支持するラジアル軸受部と、軸部材をスラスト方向に支持するスラスト軸受部の一方または双方を動圧軸受で構成したものが知られている。この場合、軸受スリーブの内周面と、これに対向する軸部材の外周面との何れか一方に動圧発生部を構成する動圧溝が形成されると共に、両面間のラジアル軸受隙間にラジアル軸受部が形成されることが多い。また、軸部材に設けたフランジ部の一端面と、これに対向する軸受スリーブの端面との何れか一方に動圧溝が形成されると共に、両面間のスラスト軸受隙間にスラスト軸受部が形成されることが多い(例えば、特許文献1を参照)。   For example, in a hydrodynamic bearing device incorporated in an HDD spindle motor, one or both of a radial bearing portion that supports a shaft member in a radial direction and a thrust bearing portion that supports the shaft member in a thrust direction are configured by a hydrodynamic bearing. Things are known. In this case, a dynamic pressure groove that forms a dynamic pressure generating portion is formed on either the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member facing the bearing sleeve, and the radial bearing gap between the two surfaces is radial. A bearing part is often formed. In addition, a dynamic pressure groove is formed on one end surface of the flange portion provided on the shaft member and an end surface of the bearing sleeve facing the flange portion, and a thrust bearing portion is formed in the thrust bearing gap between both surfaces. (See, for example, Patent Document 1).

動圧発生部の形状として、例えば図8に示すように、傾斜方向の異なる一対の傾斜溝(動圧溝)105、106をへリングボーン形状に配列したものが公知である(例えば、特許文献2を参照)。また、この場合、一方向に傾斜した複数の傾斜溝105を円周方向に配列してなる一方の傾斜溝群107と、他方向に傾斜した複数の傾斜溝106を円周方向に配列してなる他方の傾斜溝群108との間に、環状の平滑部109が設けられることが多い。かかる構成において、軸部材の回転に伴い、軸受隙間内の流体が各傾斜溝105、106を介して動圧発生部104の軸方向中央(一方の傾斜溝群107と他方の傾斜溝群108との間)に位置する平滑部109に向けて流れ込み、平滑部109上に高圧の油膜が形成される。
特開2003−239951号公報 特開2003−336636号公報
As a shape of the dynamic pressure generating portion, for example, as shown in FIG. 8, a pair of inclined grooves (dynamic pressure grooves) 105 and 106 having different inclination directions are arranged in a herringbone shape is known (for example, Patent Documents). 2). In this case, one inclined groove group 107 formed by arranging a plurality of inclined grooves 105 inclined in one direction in the circumferential direction and a plurality of inclined grooves 106 inclined in the other direction are arranged in the circumferential direction. An annular smooth portion 109 is often provided between the other inclined groove group 108. In such a configuration, as the shaft member rotates, the fluid in the bearing gap passes through the inclined grooves 105 and 106 in the axial center of the dynamic pressure generating unit 104 (one inclined groove group 107 and the other inclined groove group 108 and To the smoothing portion 109 located between the smoothing portion 109 and a high-pressure oil film.
JP 2003-239951 A JP 2003-336636 A

ところで、上記情報機器に搭載される動圧軸受装置では、主に起動、停止時に軸部材と軸受スリーブとが接触し、起動、停止の繰返しにより、かかる接触領域(動圧溝の形成領域、あるいはこれに対向する領域)が磨耗する。特に、最近ではHDDに代表される情報機器の高容量化を目的として、例えばHDD等のディスク駆動装置では、軸部材の側に搭載されるディスク枚数が増加する傾向にある。そのため、上述の如きディスク駆動装置(動圧軸受装置)では、ディスクを含めた動圧軸受装置の回転体重量が増加し、これにより接触面領域における磨耗量の増加が懸念される。この場合、発生した磨耗粉がコンタミとして潤滑油に混入し、潤滑性能の低下ひいては軸受性能の低下を招く恐れがある。また、磨耗粉等のコンタミが軸受隙間内に堆積することで、回転体のロック(回転停止)を引き起こす可能性もあり、長期使用に対する信頼性の低下が懸念される。   By the way, in the hydrodynamic bearing device mounted on the information device, the shaft member and the bearing sleeve are mainly in contact at the time of starting and stopping, and the contact region (dynamic pressure groove forming region or The area facing this is worn. In particular, recently, for the purpose of increasing the capacity of information devices represented by HDDs, for example, in disk drive devices such as HDDs, the number of disks mounted on the shaft member side tends to increase. Therefore, in the disk drive device (dynamic pressure bearing device) as described above, the rotating body weight of the dynamic pressure bearing device including the disk increases, and there is a concern that the amount of wear in the contact surface area increases. In this case, the generated abrasion powder is mixed into the lubricating oil as contamination, and there is a possibility that the lubrication performance is lowered and the bearing performance is lowered. In addition, contamination such as abrasion powder accumulates in the bearing gap, which may cause the rotating body to be locked (rotation stopped), and there is a concern that reliability for long-term use may be reduced.

本発明の課題は、コンタミの発生に起因する軸受性能の低下を可及的に抑制し得る動圧発生装置を提供することである。   The subject of this invention is providing the dynamic-pressure generator which can suppress the fall of the bearing performance resulting from generation | occurrence | production of contamination as much as possible.

前記課題を解決するため、本発明は、ラジアル軸受隙間と、ラジアル軸受隙間に面するラジアル軸受面を有する多孔質部材と、ラジアル軸受面に設けられ、ラジアル軸受隙間に流体の動圧作用を生じる動圧発生部とを備え、動圧発生部が、円周方向に配列された複数の第1傾斜溝で構成される第1傾斜溝群と、第1傾斜溝とは傾斜方向が異なりかつ円周方向に配列された複数の第2傾斜溝で構成される第2傾斜溝群とからなり、第1傾斜溝および第2傾斜溝を介して第1傾斜溝群と第2傾斜溝群との間に流体が流れ込む動圧発生装置において、双方の傾斜溝群の間に平滑面が設けられると共に、ラジアル軸受面の表面開孔率が、平滑面で最大となることを特徴とする動圧軸受装置を提供する。ここで、表面開孔率は、単位面積当たりに占める、各開孔の面積の総和(総面積)の比率をいう。   In order to solve the above-described problems, the present invention provides a radial bearing gap, a porous member having a radial bearing surface facing the radial bearing gap, and a radial bearing surface, and generates a fluid dynamic pressure action in the radial bearing gap. A first inclined groove group including a plurality of first inclined grooves arranged in a circumferential direction, and the first inclined groove has a different inclination direction and a circular shape. The second inclined groove group is composed of a plurality of second inclined grooves arranged in the circumferential direction, and the first inclined groove group and the second inclined groove group are interposed via the first inclined groove and the second inclined groove. In a dynamic pressure generating device in which a fluid flows between, a smooth surface is provided between both the inclined groove groups, and the surface opening ratio of the radial bearing surface is maximized on the smooth surface. Providing equipment. Here, the surface opening ratio refers to the ratio of the total area (total area) of each opening, which occupies per unit area.

かかる構成によれば、多孔質部材とラジアル軸受隙間を介して対向する部材(例えば軸部材)の相対回転時、多孔質部材の表面から滲み出た流体が、各傾斜溝群を構成する第1傾斜溝および第2傾斜溝を介して第1傾斜溝群と第2傾斜溝群との間に位置する平滑面に向けて流れ込む。これにより、平滑面上に流体が集められ、かかる領域の圧力が高まる。同時に、平滑面の表面開孔率は、動圧発生部が設けられるラジアル軸受面のうちで最大となるので、平滑面上に集められた流体と共に、流体中に混入した磨耗粉等のコンタミが他所に比べて多孔質部材の内部に流れ込み易くなる。その一方で、ラジアル軸受面のうち平滑面以外の領域は、平滑面に比べて表面開孔率が小さいため、一旦平滑面を介して多孔質部材の内部に入り込んだコンタミを多孔質部材の外部に流出させることなく、多孔質部材の内部で捕捉することができる。従って、軸受内部を循環する流体中から、できる限り多くのコンタミを排除することができ、これにより、コンタミに起因する上記不具合を回避することができる。   According to such a configuration, the fluid that oozes from the surface of the porous member during the relative rotation of the member (for example, the shaft member) that faces the porous member via the radial bearing gap constitutes each inclined groove group. It flows toward the smooth surface located between the first inclined groove group and the second inclined groove group via the inclined groove and the second inclined groove. Thereby, the fluid is collected on the smooth surface, and the pressure in the region is increased. At the same time, the surface open area ratio of the smooth surface is the largest among the radial bearing surfaces on which the dynamic pressure generating portion is provided, so that contamination such as abrasion powder mixed in the fluid is collected along with the fluid collected on the smooth surface. It becomes easier to flow into the porous member than in other places. On the other hand, since the area of the radial bearing surface other than the smooth surface is smaller than that of the smooth surface, the contamination once entering the porous member through the smooth surface is removed from the outside of the porous member. Without being allowed to flow out into the porous member. Therefore, it is possible to eliminate as much contamination as possible from the fluid circulating inside the bearing, thereby avoiding the above-mentioned problems caused by contamination.

また、前記課題を解決するため、本発明は、スラスト軸受隙間と、スラスト軸受隙間に面するスラスト軸受面を有する多孔質部材と、スラスト軸受面に設けられ、スラスト軸受隙間に流体の動圧作用を生じる動圧発生部とを備え、動圧発生部が、円周方向に配列された複数の第1傾斜溝で構成される第1傾斜溝群と、第1傾斜溝とは傾斜方向が異なりかつ円周方向に配列された複数の第2傾斜溝で構成される第2傾斜溝群とからなり、第1傾斜溝および第2傾斜溝を介して第1傾斜溝群と第2傾斜溝群との間に流体が流れ込む動圧軸受装置において、双方の傾斜溝群の間に平滑面が設けられると共に、スラスト軸受面の表面開孔率が、平滑面で最大となることを特徴とする動圧軸受装置を提供する。   In order to solve the above problems, the present invention provides a thrust bearing gap, a porous member having a thrust bearing surface facing the thrust bearing gap, a thrust bearing surface, and a hydrodynamic action of fluid on the thrust bearing gap. The first inclined groove group is composed of a plurality of first inclined grooves arranged in the circumferential direction, and the inclined direction is different from the first inclined groove. And a second inclined groove group composed of a plurality of second inclined grooves arranged in the circumferential direction, and the first inclined groove group and the second inclined groove group via the first inclined groove and the second inclined groove. In the hydrodynamic bearing device in which fluid flows between the two, the smooth surface is provided between the two inclined groove groups, and the surface opening ratio of the thrust bearing surface is maximized on the smooth surface. A pressure bearing device is provided.

このように、本発明は、多孔質部材のラジアル軸受面に設けられた動圧発生部だけでなく、多孔質部材のスラスト軸受面に設けられた動圧発生部に対しても適用することができる。そのため、上述と同様、平滑面上の領域に集められた流体と共に、流体中に混入した磨耗粉等のコンタミが他所に比べて多孔質部材の内部に流れ込み易くなり、また、当該平滑面を介して多孔質部材の内部に入り込んだコンタミを多孔質部材の外部に逃がすことなくその内部で捕捉することができる。従って、軸受内部を循環する流体中から、できる限り多くのコンタミを排除することができ、これにより、コンタミの発生に起因する上記不具合を回避することができる。   As described above, the present invention can be applied not only to the dynamic pressure generating portion provided on the radial bearing surface of the porous member but also to the dynamic pressure generating portion provided on the thrust bearing surface of the porous member. it can. Therefore, as described above, contamination such as wear powder mixed in the fluid together with the fluid collected in the area on the smooth surface is more likely to flow into the porous member than in other places, and also through the smooth surface. Thus, the contamination that has entered the inside of the porous member can be captured inside the porous member without escaping to the outside. Accordingly, it is possible to eliminate as much contamination as possible from the fluid circulating inside the bearing, thereby avoiding the above-described problems caused by the occurrence of contamination.

また、上記何れの場合においても、第1傾斜溝群と第2傾斜溝群との間に、平滑面を底面とする凹部が形成されるよう、傾斜溝に対する平滑面の形成位置を定めるのがよい。かかる構成によれば、流体と共に平滑面の表面開孔を介して流れ込んだコンタミが多孔質スリーブの内部で捕捉される一方で、コンタミが双方の傾斜溝群の間に形成された凹部に溜められる。そのため、かかるコンタミが流体と共に再び軸受隙間等に還流する事態を極力回避することができる。従って、多孔質部材内部でコンタミが捕捉されると共に、平滑面によって形成される凹部でコンタミが捕捉されることにより、かかるコンタミの排除能を一層高めることができる。   In any of the above cases, the position where the smooth surface is formed with respect to the inclined groove is determined so that a recess having the smooth surface as a bottom surface is formed between the first inclined groove group and the second inclined groove group. Good. According to such a configuration, the contamination that has flowed through the surface opening of the smooth surface together with the fluid is captured inside the porous sleeve, while the contamination is stored in the recess formed between the two inclined groove groups. . Therefore, it is possible to avoid as much as possible such a situation in which such contamination returns to the bearing gap and the like together with the fluid. Therefore, contamination is captured inside the porous member, and contamination is captured by the concave portion formed by the smooth surface, so that the ability to eliminate such contamination can be further enhanced.

上記構成の多孔質部材は、例えば焼結金属で形成することができる。この場合、平滑面とそれ以外の表面領域とで焼結後の加工プロセスを異ならせることで、例えば平滑面以外の表面にサイジング加工を施すことで、表面開孔率の違いを生み出すことができる。   The porous member having the above configuration can be formed of, for example, a sintered metal. In this case, it is possible to create a difference in surface area ratio by, for example, sizing the surface other than the smooth surface by making the processing process after sintering different between the smooth surface and the other surface region. .

また、上記構成の多孔質部材は、例えば互いに内部空孔率の異なる第1の多孔質樹脂部と、第2多孔質樹脂部とからなり、相対的に内部空孔率の高い第1の多孔質樹脂部が平滑面を有するものであってもよい。この場合には、平滑面の表面開孔率や、平滑面以外の領域の表面開孔率を比較的容易に調整することができる。   In addition, the porous member having the above-described configuration includes, for example, a first porous resin portion and a second porous resin portion having different internal porosity, and the first porosity having a relatively high internal porosity. The quality resin part may have a smooth surface. In this case, the surface aperture ratio of the smooth surface and the surface aperture ratio of the region other than the smooth surface can be adjusted relatively easily.

以上のように、本発明によれば、コンタミの発生に起因する軸受性能の低下を可及的に抑制し得る動圧発生装置を提供することができる。   As described above, according to the present invention, it is possible to provide a dynamic pressure generating device capable of suppressing as much as possible a decrease in bearing performance due to the occurrence of contamination.

以下、本発明の一実施形態を図1〜図5に基づいて説明する。なお、以下の説明における『上下』方向は単に各図における上下方向を便宜的に示すもので、動圧軸受装置の設置方向や使用態様等を特定するものではない。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. The “up and down” direction in the following description merely indicates the up and down direction in each drawing for the sake of convenience, and does not specify the installation direction, usage mode, or the like of the hydrodynamic bearing device.

図1は、本発明の一実施形態に係る動圧軸受装置1を具備したスピンドルモータの一構成例を概念的に示している。このスピンドルモータは、例えば磁気ディスクを備えたHDD用として用いられるもので、軸部材2およびハブ部11を有する回転部材3をラジアル方向に非接触支持する動圧軸受装置1と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bとからなる駆動部4と、ブラケット5とを備えている。ステータコイル4aはブラケット5に固定され、ロータマグネット4bは回転部材3(ハブ部11)に固定される。動圧軸受装置1のハウジング部7は、ブラケット5の内周に固定される。また、同図に示すように、ハブ部11にはディスク6(図1では2枚)が保持される。このように構成されたスピンドルモータにおいて、ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間に発生する励磁力でロータマグネット4bが回転し、これに伴って、ハブ部11およびハブ部11に固定されたディスク6が軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor provided with a fluid dynamic bearing device 1 according to an embodiment of the present invention. This spindle motor is used, for example, for an HDD equipped with a magnetic disk, and includes a hydrodynamic bearing device 1 that supports a rotary member 3 having a shaft member 2 and a hub portion 11 in a non-contact manner in the radial direction, A drive unit 4 including a stator coil 4a and a rotor magnet 4b opposed to each other through a gap and a bracket 5 are provided. The stator coil 4a is fixed to the bracket 5, and the rotor magnet 4b is fixed to the rotating member 3 (hub portion 11). The housing part 7 of the fluid dynamic bearing device 1 is fixed to the inner periphery of the bracket 5. Further, as shown in the figure, the hub 6 holds disks 6 (two in FIG. 1). In the spindle motor configured as described above, when the stator coil 4a is energized, the rotor magnet 4b is rotated by the exciting force generated between the stator coil 4a and the rotor magnet 4b. The disk 6 fixed to the portion 11 rotates integrally with the shaft member 2.

図2は、動圧軸受装置1を示している。この動圧軸受装置1は、ハウジング部7と、ハウジング部7の内周に固定されるスリーブ部8と、ハウジング部7の一端を閉口する蓋部材9と、ハウジング部7およびスリーブ部8に対して相対回転する軸部材2と、シール部10とを主に備えている。   FIG. 2 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a housing portion 7, a sleeve portion 8 fixed to the inner periphery of the housing portion 7, a lid member 9 that closes one end of the housing portion 7, and the housing portion 7 and the sleeve portion 8. The shaft member 2 that relatively rotates and the seal portion 10 are mainly provided.

軸部材2は、例えばSUS鋼などの金属材料で形成され、軸部2aと、軸部2aの下端に一体又は別体に設けられるフランジ部2bとを備える。この実施形態では、軸部2aの外周面2a1に、後述するスリーブ部8の内周面8aとの間に各ラジアル軸受部R1、R2のラジアル軸受隙間を形成する大径面2a2、2a2が設けられる。   The shaft member 2 is formed of, for example, a metal material such as SUS steel, and includes a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a. In this embodiment, on the outer peripheral surface 2a1 of the shaft portion 2a, there are provided large-diameter surfaces 2a2, 2a2 that form radial bearing gaps of the radial bearing portions R1, R2 between the inner peripheral surface 8a of the sleeve portion 8 described later. It is done.

ハウジング部7は、例えば真ちゅう等の金属材料や樹脂材料で筒状に形成され、その軸方向両端を開口した形態をなす。ハウジング部7の下端内周には、後述する蓋部材9を固定するための固定面7aが形成される。また、固定面7aの上方に位置するハウジング部7の内周面7bには、スリーブ部8の外周面8cが、例えば接着(ルーズ接着や圧入接着を含む)、圧入、溶着(超音波溶着やレーザ溶着を含む)など適宜の手段で固定される。   The housing part 7 is formed in a cylindrical shape with a metal material such as brass or a resin material, for example, and has a form in which both axial ends thereof are opened. A fixing surface 7 a for fixing a lid member 9 to be described later is formed on the inner periphery of the lower end of the housing part 7. Further, the outer peripheral surface 8c of the sleeve portion 8 is bonded to the inner peripheral surface 7b of the housing portion 7 located above the fixed surface 7a by, for example, bonding (including loose bonding or press-fitting bonding), press-fitting, welding (ultrasonic welding, (Including laser welding).

スリーブ部8は、多孔質体で円筒状に形成される。この実施形態では、スリーブ部8は、銅を主成分とする焼結金属の多孔質体で円筒状に形成される。もちろん、スリーブ部8を樹脂やセラミックス等、金属以外の材料で形成することも可能である。   The sleeve portion 8 is a porous body and is formed in a cylindrical shape. In this embodiment, the sleeve portion 8 is formed in a cylindrical shape from a sintered metal porous body mainly composed of copper. Of course, the sleeve portion 8 can be formed of a material other than metal, such as resin or ceramics.

スリーブ部8の内周面8aの全面又は一部領域には動圧発生部Aが設けられる。この実施形態では、動圧発生部Aは軸方向に離隔して2箇所形成され、各動圧発生部Aは、図3に示すように、円周方向に配列された複数の第1傾斜溝A11で構成される第1傾斜溝群A1と、第1傾斜溝A11とは傾斜方向が異なりかつ円周方向に配列された複数の第2傾斜溝A21で構成される第2傾斜溝群A2とからなる。これら動圧発生部A、Aは、軸部2aをスリーブ部8の内周に挿入した状態では、ラジアル軸受面として軸部2aの外周面2a1(この実施形態では大径面2a2)と対向し、軸部2a(回転部材3)の回転時、対向する軸部2aの外周面2a1との間に後述する第一、第二ラジアル軸受部R1、R2のラジアル軸受隙間をそれぞれ形成する(図2を参照)。   A dynamic pressure generating portion A is provided on the entire or partial region of the inner peripheral surface 8a of the sleeve portion 8. In this embodiment, the dynamic pressure generating parts A are formed at two locations apart in the axial direction, and each dynamic pressure generating part A has a plurality of first inclined grooves arranged in the circumferential direction as shown in FIG. A first inclined groove group A1 composed of A11 and a second inclined groove group A2 composed of a plurality of second inclined grooves A21 that are different in inclination direction and arranged in the circumferential direction from the first inclined groove A11. Consists of. These dynamic pressure generating portions A and A face the outer peripheral surface 2a1 (large diameter surface 2a2 in this embodiment) of the shaft portion 2a as a radial bearing surface when the shaft portion 2a is inserted into the inner periphery of the sleeve portion 8. When the shaft portion 2a (rotating member 3) rotates, radial bearing gaps of first and second radial bearing portions R1 and R2 described later are formed between the outer peripheral surface 2a1 of the opposing shaft portion 2a (FIG. 2). See).

詳述すると、動圧発生部Aの第1傾斜溝群A1においては、図3に示すように、スリーブ部8の軸方向一方に傾斜してなる複数の第1傾斜溝A11が円周方向に亘って形成されると共に、円周方向で互いに近接する第1傾斜溝A11、A11間には丘部A12(図3中、目の細かいクロスハッチングで示す領域)が形成される。また、第2傾斜溝群A2においては、軸方向他方に傾斜してなる複数の第2傾斜溝A21が円周方向に亘って形成されると共に、近接する第2傾斜溝A21、A21間にも丘部A22(図3中、目の細かいクロスハッチングで示す領域)が形成される。上記構成をなす第1傾斜溝群A1と第2傾斜溝群A2との間には平滑面A3(図3中、目の粗いクロスハッチングで示す領域)が内周面8aの全周に亘って形成される。   More specifically, in the first inclined groove group A1 of the dynamic pressure generating part A, as shown in FIG. 3, a plurality of first inclined grooves A11 inclined in one axial direction of the sleeve part 8 are arranged in the circumferential direction. A hill portion A12 (a region indicated by fine cross-hatching in FIG. 3) is formed between the first inclined grooves A11 and A11 that are formed over the circumferential direction and close to each other. In the second inclined groove group A2, a plurality of second inclined grooves A21 inclined in the other axial direction are formed in the circumferential direction, and between the adjacent second inclined grooves A21 and A21. Hill part A22 (area shown by fine cross-hatching in FIG. 3) is formed. Between the first inclined groove group A1 and the second inclined groove group A2 having the above-described configuration, a smooth surface A3 (a region indicated by cross-hatching in FIG. 3) extends over the entire circumference of the inner peripheral surface 8a. It is formed.

ここで、動圧発生部A、Aを有する内周面8aの表面開孔率は、平滑面A3で最大となる。すなわち、平滑面A3の表面開孔率は、少なくとも第1、第2傾斜溝A11、A21(の底面)のそれよりも大きく、また丘部A12、A22の(頂端面の)それよりも大きい。従って、この実施形態では、スリーブ部8が多孔質部材に該当する。   Here, the surface open area ratio of the inner peripheral surface 8a having the dynamic pressure generating portions A and A becomes maximum at the smooth surface A3. That is, the surface area ratio of the smooth surface A3 is at least larger than that of the first and second inclined grooves A11 and A21 (bottom surfaces thereof) and larger than that of the hill portions A12 and A22 (top surface). Therefore, in this embodiment, the sleeve portion 8 corresponds to the porous member.

また、この実施形態では、第1および第2傾斜溝A11、A21が、図4に示すように、内周面8aの、動圧発生部Aを除く領域と同一面上にあり、平滑面A3は、各傾斜溝A11、A21よりも大径の円筒面上にある。また、丘部A12、A22は、傾斜溝A11、A12より小径の同一面上にある。内周面8aの軸方向下側に位置する動圧発生部Aに関しても、上記と同様の構成をなす傾斜溝A11、A21や傾斜溝群A1、A2、および平滑面A3が形成されている。   In this embodiment, the first and second inclined grooves A11, A21 are on the same plane as the region excluding the dynamic pressure generating portion A on the inner peripheral surface 8a as shown in FIG. Is on a cylindrical surface having a larger diameter than the inclined grooves A11 and A21. Further, the hill portions A12, A22 are on the same surface having a smaller diameter than the inclined grooves A11, A12. With respect to the dynamic pressure generating portion A located on the lower side in the axial direction of the inner peripheral surface 8a, the inclined grooves A11 and A21 and the inclined groove groups A1 and A2 and the smooth surface A3 having the same configuration as described above are formed.

スリーブ部8の下端面8bの全面又は一部環状領域には、所定の形状に配列された複数の傾斜溝で構成される動圧発生部Bが形成される。この実施形態では、例えば図5に示すように、複数の傾斜溝B1がスパイラル形状に配列され、これら複数の傾斜溝B1と、線周方向に近接する傾斜溝B1、B1間に設けられる丘部B2とで動圧発生部Bが形成される。この動圧発生部Bはスラスト軸受面としてフランジ部2bの上端面2b1と対向し、軸部2aの回転時、対向する上端面2b1との間に後述する第一スラスト軸受部T1のスラスト軸受隙間を形成する(図2を参照)。   A dynamic pressure generating portion B composed of a plurality of inclined grooves arranged in a predetermined shape is formed on the entire lower surface 8b of the sleeve portion 8 or a partial annular region. In this embodiment, for example, as shown in FIG. 5, a plurality of inclined grooves B1 are arranged in a spiral shape, and the hill portion is provided between the plurality of inclined grooves B1 and the inclined grooves B1 and B1 adjacent to each other in the line circumferential direction. The dynamic pressure generating part B is formed with B2. This dynamic pressure generating portion B is opposed to the upper end surface 2b1 of the flange portion 2b as a thrust bearing surface, and a thrust bearing gap of a first thrust bearing portion T1 to be described later is formed between the upper end surface 2b1 and the opposite end surface 2b1 when the shaft portion 2a rotates. (See FIG. 2).

スリーブ部8の内周面8aと下端面8bとの間には、環状の第1面取り部8a1が形成される。また、内周面8aと上端面8dとの間にも、環状の第2面取り部8a2が形成される。   An annular first chamfered portion 8 a 1 is formed between the inner peripheral surface 8 a and the lower end surface 8 b of the sleeve portion 8. An annular second chamfered portion 8a2 is also formed between the inner peripheral surface 8a and the upper end surface 8d.

ハウジング部7の下端側を閉口する蓋部材9は、例えば金属材料あるいは樹脂材料で形成され、ハウジング部7の内周下端に設けられた固定面7aに固定される。   The lid member 9 that closes the lower end side of the housing portion 7 is formed of, for example, a metal material or a resin material, and is fixed to a fixing surface 7 a provided at the inner peripheral lower end of the housing portion 7.

蓋部材9の上端面9aの全面又は一部環状領域には、例えば図5と同様の配列態様(スパイラルの方向は逆)をなす動圧発生部Cが形成される。この動圧発生部Cはスラスト軸受面としてフランジ部2bの下端面2b2と対向し、軸部2aの回転時には、下端面2b2との間に後述する第2スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。   On the entire upper surface 9a of the lid member 9 or a partial annular region, for example, a dynamic pressure generating portion C having the same arrangement mode as in FIG. 5 (the direction of the spiral is reversed) is formed. This dynamic pressure generating portion C is opposed to the lower end surface 2b2 of the flange portion 2b as a thrust bearing surface, and forms a thrust bearing gap of the second thrust bearing portion T2 described later between the lower end surface 2b2 and the shaft portion 2a when rotating. (See FIG. 2).

シール手段としてのシール部10は、ハウジング部7とは別体に金属材料あるいは樹脂材料で形成され、ハウジング部7の上端内周に圧入、接着、溶着、溶接等の手段で固定される。この実施形態では、シール部10の固定は、シール部10の下端面10bをスリーブ部8の上端面8dに当接させた状態で行われる(図2を参照)。   The seal part 10 as a sealing means is formed of a metal material or a resin material separately from the housing part 7 and is fixed to the inner periphery of the upper end of the housing part 7 by means such as press fitting, adhesion, welding, welding or the like. In this embodiment, the sealing portion 10 is fixed in a state where the lower end surface 10b of the sealing portion 10 is in contact with the upper end surface 8d of the sleeve portion 8 (see FIG. 2).

シール部10の内周にはシール面10aが形成されており、このシール面10aと、シール面10aに対向する軸部2aの外周面2a1との間にシール空間Sが形成される。後述する潤滑油を動圧軸受装置1内部に充満させた状態では、潤滑油の油面は常時シール空間Sの範囲内に維持される。   A seal surface 10a is formed on the inner periphery of the seal portion 10, and a seal space S is formed between the seal surface 10a and the outer peripheral surface 2a1 of the shaft portion 2a facing the seal surface 10a. In a state where lubricating oil, which will be described later, is filled inside the hydrodynamic bearing device 1, the oil level of the lubricating oil is always maintained within the range of the seal space S.

動圧軸受装置1内部に充満される潤滑油としては、種々のものが使用可能であるが、HDD等のディスク駆動装置用の動圧軸受装置に提供される潤滑油には、その使用時あるいは輸送時における温度変化を考慮して、低蒸発率及び低粘度性に優れたエステル系潤滑油、例えばジオクチルセバケート(DOS)、ジオクチルアゼレート(DOZ)等が好適に使用可能である。   As the lubricating oil filled in the hydrodynamic bearing device 1, various types of lubricating oil can be used, but the lubricating oil provided to the hydrodynamic bearing device for a disk drive device such as an HDD may be used at the time of use or Considering temperature changes during transportation, ester-based lubricating oils excellent in low evaporation rate and low viscosity, such as dioctyl sebacate (DOS), dioctyl azelate (DOZ) and the like can be suitably used.

上記構成の動圧軸受装置1において、軸部材2の回転時、スリーブ部8の内周面8aに形成された動圧発生部A(上下共に同じ)はラジアル軸受面として、対向する軸部2aの外周面2a1(この実施形態では大径面2a2、2a2)との間にラジアル軸受隙間を形成する。そして、軸部2aの回転に伴い潤滑油が動圧発生部Aの両端側から各傾斜溝A11、A21へと流れ込み、さらに上下方向から合流する形で平滑面A3上へと流れ込む。この場合、傾斜溝A11、A21により生じる潤滑油の動圧作用で、平滑面上A3に形成される油膜の圧力が高められる。このように、各動圧発生部A、Aによって生じる潤滑油の動圧作用によって、軸部材2をラジアル方向に非接触支持する第一ラジアル軸受部R1と第二ラジアル軸受部R2とがそれぞれ構成される。   In the dynamic pressure bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the dynamic pressure generating portion A (same for both upper and lower sides) formed on the inner peripheral surface 8a of the sleeve portion 8 serves as a radial bearing surface and faces the opposite shaft portion 2a. A radial bearing gap is formed between the outer peripheral surface 2a1 (in this embodiment, the large-diameter surfaces 2a2 and 2a2). Then, along with the rotation of the shaft portion 2a, the lubricating oil flows into the inclined grooves A11 and A21 from both ends of the dynamic pressure generating portion A, and further flows onto the smooth surface A3 so as to merge from the vertical direction. In this case, the pressure of the oil film formed on the smooth surface A3 is increased by the dynamic pressure action of the lubricating oil generated by the inclined grooves A11 and A21. In this way, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner in the radial direction are configured by the dynamic pressure action of the lubricating oil generated by the respective dynamic pressure generating portions A and A. Is done.

これと同時に、スリーブ部8の下端面8bに形成される動圧発生部Bとこれに対向するフランジ部2bの上端面2b1との間のスラスト軸受隙間、および蓋部材9の上端面9aに形成される動圧発生部Cとこれに対向するフランジ部2bの下端面2b2との間のスラスト軸受隙間に形成される潤滑油膜の圧力が、傾斜溝B1等の動圧作用により高められる。そして、これら油膜の圧力によって、回転部材3(ハブ部11)をスラスト方向に非接触支持する第一スラスト軸受部T1と第二スラスト軸受部T2とがそれぞれ構成される。   At the same time, a thrust bearing gap formed between the dynamic pressure generating portion B formed on the lower end surface 8b of the sleeve portion 8 and the upper end surface 2b1 of the flange portion 2b opposed thereto, and formed on the upper end surface 9a of the lid member 9 is formed. The pressure of the lubricating oil film formed in the thrust bearing gap between the generated dynamic pressure portion C and the lower end surface 2b2 of the flange portion 2b opposed thereto is increased by the dynamic pressure action of the inclined groove B1 and the like. The first thrust bearing portion T1 and the second thrust bearing portion T2 that support the rotating member 3 (hub portion 11) in a non-contact manner in the thrust direction are configured by the pressure of these oil films.

この場合、内周面8aの動圧発生部A、Aを設けた領域、すなわちラジアル軸受面の表面開孔率は、平滑面A3で最大となる。すなわち、平滑面A3の表面開孔率は、少なくとも第1、第2傾斜溝A11、A21(の底面)のそれよりも大きく、また丘部A12、A22(の頂端面)のそれよりも大きい。従って、平滑面A3上に集められた流体と共に、潤滑油中に混入した磨耗粉等のコンタミが他所に比べてスリーブ部8(多孔質部材)の内部に流れ込み易くなる。その一方で、内周面8aのうち平滑面A3以外の領域は、平滑面A3に比べて表面開孔率が小さいため、平滑面A3を介してスリーブ部8の内部に入り込んだコンタミを、スリーブ部8の外部に極力逃すことなくその内部で捕捉することができる。従って、動圧軸受装置1の使用時、例えば起動、停止時の摺動接触の繰り返しにより生じる磨耗粉が軸受内部空間(例えば図2中、散点模様で示す領域)を循環する潤滑油にコンタミとして混入する場合、できる限り多くのコンタミを潤滑油中から排除することができ、これにより、コンタミに起因する軸受性能の低下をできる限り抑止することができる。   In this case, the area of the inner peripheral surface 8a in which the dynamic pressure generating portions A and A are provided, that is, the surface opening ratio of the radial bearing surface is maximum at the smooth surface A3. That is, the surface area ratio of the smooth surface A3 is at least larger than that of the first and second inclined grooves A11 and A21 (bottom surfaces thereof) and larger than that of the hill portions A12 and A22 (top edge surfaces thereof). Accordingly, contamination such as wear powder mixed in the lubricating oil together with the fluid collected on the smooth surface A3 is more likely to flow into the sleeve portion 8 (porous member) than in other places. On the other hand, since the area of the inner peripheral surface 8a other than the smooth surface A3 is smaller than that of the smooth surface A3, the contamination that has entered the sleeve portion 8 via the smooth surface A3 is reduced. It is possible to capture the inside of the portion 8 without losing it as much as possible. Therefore, when the hydrodynamic bearing device 1 is used, for example, the wear powder generated by repeated sliding contact at the time of starting and stopping is contaminated with the lubricating oil circulating in the bearing internal space (for example, a region indicated by a dotted pattern in FIG. 2). As a result, it is possible to eliminate as much contamination as possible from the lubricating oil, thereby suppressing the deterioration in bearing performance due to contamination as much as possible.

また、この実施形態においては、スリーブ部8の内周面8aと上端面8dとの間、および内周面8aと下端面8bとの間にそれぞれ第1、第2面取り部8a1、8a2を設けている。これら面取り部8a1、8a2は、通常ラジアル軸受隙間外へと逃げる潤滑油をなるべく多くスリーブ部8の内部に取り込み、またなるべく多くの潤滑油をラジアル軸受隙間へと供給する目的で形成される。そのため、面取り部8a1、8a2の表面開孔率は、内周面8aの平滑面A3を除く領域の表面開孔率よりも大きく、かつ平滑面A3の表面開孔率よりも小さいことが好ましい。かかる構成にすることで、ラジアル軸受隙間に還流する潤滑油量をできるだけ多く確保すると共に、一旦スリーブ部8内部に潤滑油と共に流れ込んだコンタミが、第1面取り部8a1(あるいは第2面取り部8a2)を介してラジアル軸受隙間に戻るのを極力避けることができる。従って、平滑面A3を設けたことによるスリーブ部8のコンタミ捕捉能をより一層高めることができる。   In this embodiment, the first and second chamfered portions 8a1 and 8a2 are provided between the inner peripheral surface 8a and the upper end surface 8d of the sleeve portion 8 and between the inner peripheral surface 8a and the lower end surface 8b, respectively. ing. These chamfered portions 8a1 and 8a2 are usually formed for the purpose of taking in as much lubricating oil as possible to escape out of the radial bearing gap into the sleeve portion 8 and supplying as much lubricating oil as possible to the radial bearing gap. Therefore, it is preferable that the surface open area ratio of the chamfered portions 8a1 and 8a2 is larger than the surface open area area of the inner peripheral surface 8a excluding the smooth surface A3 and smaller than the surface open area ratio of the smooth surface A3. With this configuration, the amount of lubricating oil returning to the radial bearing gap is ensured as much as possible, and the contamination once flowing into the sleeve portion 8 together with the lubricating oil is first chamfered portion 8a1 (or second chamfered portion 8a2). It is possible to avoid returning to the radial bearing gap through the bearing as much as possible. Therefore, the contamination capturing ability of the sleeve portion 8 by providing the smooth surface A3 can be further enhanced.

また、場合によっては、軸受内部空間における潤滑油の循環性を一層高めるために、あるいは局所的な負圧状態の発生を極力避ける目的で、軸方向上側の第1傾斜溝A11の溝長さ(軸方向幅寸法)を、例えば図8に示すように、軸方向下側の第2傾斜溝A21の溝長さ(軸方向幅寸法)に比べて大きくした構成が考えられるが、この場合も、上述の如く平滑面A3の表面開孔率を、面取り部8a1、8a2の表面開孔率よりも大きくすることで、潤滑油の循環能を高めると共に、スリーブ部8のコンタミ捕捉能を高めることができる。   In some cases, the length of the first inclined groove A11 on the upper side in the axial direction (in order to further improve the circulation of the lubricating oil in the bearing internal space or to avoid the occurrence of a local negative pressure state as much as possible ( For example, as shown in FIG. 8, a configuration in which the axial length lower dimension is larger than the groove length (axial width dimension) of the second inclined groove A21 on the lower side in the axial direction is conceivable. As described above, by increasing the surface hole area ratio of the smooth surface A3 to be larger than the surface hole area ratios of the chamfered portions 8a1 and 8a2, it is possible to increase the lubricating oil circulation capability and to increase the contamination capturing capability of the sleeve portion 8. it can.

また、この実施形態では、動圧発生部Aの双方の傾斜溝群A1、A2の間に、平滑面A3を底面とする凹部が形成されるよう、各傾斜溝A11、A12に対する平滑面A3の半径方向位置を定めた。かかる構成によれば、潤滑油と共に平滑面A3の表面開孔を介してスリーブ部8の内部に入り込んだコンタミが、スリーブ部8の内部で捕捉されるのに加えて、コンタミが双方の傾斜溝群A1、A2の間に形成された凹部に溜められる。そのため、かかるコンタミが潤滑油と共に再びラジアル軸受隙間に還流する事態を極力回避することができる。従って、コンタミの排除能を一層高めて、コンタミに起因する軸受性能の低下等をより確実に防止することができる。   Further, in this embodiment, the smooth surface A3 with respect to each of the inclined grooves A11, A12 is formed between the inclined groove groups A1, A2 of the dynamic pressure generating part A so that a recess having the smooth surface A3 as a bottom surface is formed. A radial position was defined. According to such a configuration, in addition to the contamination that has entered the inside of the sleeve portion 8 through the surface opening of the smooth surface A3 together with the lubricating oil being captured inside the sleeve portion 8, the contamination is in both the inclined grooves. It is stored in a recess formed between the groups A1 and A2. For this reason, it is possible to avoid as much as possible such a situation in which such contaminants return to the radial bearing gap together with the lubricating oil. Accordingly, it is possible to further improve the contamination eliminating capability and more reliably prevent the deterioration of the bearing performance caused by the contamination.

また、この実施形態のように、スリーブ部8を焼結金属で形成する場合、上記平滑面A3を有する多孔質部材(スリーブ部8)は、例えば以下の工程を経ることで形成することができる。まず、上記金属粉末を主原料とする原料粉末を所定の形状(例えば図3に示す形状)に圧縮成形する。この際、圧粉成形体の、例えば平滑面A3に対応する領域を、図4に示すように、動圧発生部Aの他の箇所(傾斜溝A11、A21や丘部A12、A22など)に比べて大径に形成しておく。そして、焼結工程を経た後、スリーブ部8(焼結品)に寸法サイジングを施し、内周面8aや下端面8b、8dを含むスリーブ部8を矯正する。この後、主に内周面8aに溝サイジングを施す。具体的には、図3や図4に示す動圧発生部Aに倣った形状の成形型をスリーブ部8の内周面8aに押し付け、かかる型に倣って内周面8aを変形させることで動圧発生部Aの成形を行う。これら寸法サイジングや溝サイジングの際、動圧発生部Aを含む内周面8aのサイジングは、サイジングピンを用いて行われるが、上述の通り平滑面A3は他所に比べて大径に形成されているので、各サイジング時、内周面8aのうち大径となる平滑面A3を除く領域のみをサイジングすることができる。従って、平滑面A3については、圧粉成形時の表面開孔率を維持することができ、これにより他所に比べて大きい表面開孔率を得ることができる。なお、上記溝サイジングの前に、内周面8aに回転サイジング等により封孔処理を施すこともできる。この工程を経ることで、スリーブ部8の動圧作用およびコンタミ捕捉能をより一層高めることが可能となる。   Further, when the sleeve portion 8 is formed of a sintered metal as in this embodiment, the porous member (sleeve portion 8) having the smooth surface A3 can be formed through the following steps, for example. . First, the raw material powder containing the metal powder as a main raw material is compression-molded into a predetermined shape (for example, the shape shown in FIG. 3). At this time, the region corresponding to, for example, the smooth surface A3 of the green compact is formed in another portion of the dynamic pressure generating portion A (inclined grooves A11, A21, hill portions A12, A22, etc.) as shown in FIG. Compared to a larger diameter. Then, after passing through the sintering step, size sizing is performed on the sleeve portion 8 (sintered product) to correct the sleeve portion 8 including the inner peripheral surface 8a and the lower end surfaces 8b and 8d. Thereafter, groove sizing is mainly applied to the inner peripheral surface 8a. Specifically, a molding die having a shape following the dynamic pressure generating portion A shown in FIGS. 3 and 4 is pressed against the inner peripheral surface 8a of the sleeve portion 8, and the inner peripheral surface 8a is deformed following the die. The dynamic pressure generating part A is formed. In the dimension sizing and groove sizing, the sizing of the inner peripheral surface 8a including the dynamic pressure generating portion A is performed using a sizing pin. However, as described above, the smooth surface A3 is formed to have a larger diameter than other portions. Therefore, at the time of each sizing, only the region excluding the smooth surface A3 having a large diameter can be sized in the inner peripheral surface 8a. Therefore, about the smooth surface A3, the surface opening rate at the time of compacting can be maintained, and, thereby, a larger surface opening rate can be obtained compared to other places. Before the groove sizing, the inner peripheral surface 8a can be subjected to a sealing process by rotational sizing or the like. By passing through this process, the dynamic pressure action and the contamination capturing ability of the sleeve portion 8 can be further enhanced.

なお、上記の方法で平滑面A3を形成する場合には、圧粉成形後の脱型が円滑に行われるよう、圧縮後のスプリングバック量を考慮して内周面8a(傾斜溝A11、A21)に対する平滑面A3の内径寸法を決定するのが好ましい。また、平滑面A3の内径寸法を大きくし過ぎると、平滑面A3とこれに対向する面(軸部材2の大径面2a2)との間に形成されるラジアル軸受隙間の幅寸法が過大となり、充分な油膜形成能が得られない恐れがある。従って、成形性と併せて軸受剛性の観点から、平滑面A3の内径寸法を設定するのがよい。   When the smooth surface A3 is formed by the above method, the inner peripheral surface 8a (inclined grooves A11, A21) is taken into account the amount of springback after compression so that the mold removal after the compacting is performed smoothly. It is preferable to determine the inner diameter dimension of the smooth surface A3 with respect to (). Moreover, if the inner diameter dimension of the smooth surface A3 is excessively increased, the width dimension of the radial bearing gap formed between the smooth surface A3 and the surface facing this (the large diameter surface 2a2 of the shaft member 2) becomes excessive. There is a possibility that sufficient oil film forming ability may not be obtained. Therefore, it is preferable to set the inner diameter dimension of the smooth surface A3 from the viewpoint of bearing rigidity together with moldability.

また、潤滑油中に混入するコンタミは、その大部分が使用時に生じる磨耗粉である。そのため、発生する磨耗粉の大きさに合わせて平滑面A3の表面に開口する孔のサイズ(孔径)を決定するのが好ましい。かかる表面開孔径の大きさは、上述のように焼結金属で多孔質部材を形成する場合、例えば使用する原料粉(金属粉末)の大きさを調整することで適宜設定することが可能である。   Further, most of the contamination mixed in the lubricating oil is wear powder generated during use. Therefore, it is preferable to determine the size (hole diameter) of the hole that opens on the surface of the smooth surface A3 in accordance with the size of the generated abrasion powder. When the porous member is formed of sintered metal as described above, the size of the surface opening diameter can be appropriately set by adjusting the size of the raw material powder (metal powder) to be used, for example. .

以上、本発明の一実施形態を説明したが、本発明は、上記形態に限定されるものではない。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said form.

上記実施形態では、多孔質部材としてのスリーブ部8を焼結金属で形成した場合を説明したが、これに限らず例えば多孔質樹脂でスリーブ部8を形成することもできる。具体的には、例えば図6に示すように、多孔質部材としてのスリーブ部8を、互いに内部空孔率の異なる第1の多孔質樹脂部12と、第2の多孔質樹脂部13とで構成し、かつ相対的に内部空孔率の高い第1の多孔質樹脂部12で平滑面A3を形成した構成とすることもできる。   Although the case where the sleeve part 8 as a porous member was formed with a sintered metal was demonstrated in the said embodiment, it is not restricted to this, For example, the sleeve part 8 can also be formed with porous resin. Specifically, for example, as shown in FIG. 6, a sleeve portion 8 as a porous member is composed of a first porous resin portion 12 and a second porous resin portion 13 having different internal porosity. The smooth surface A3 may be formed by the first porous resin portion 12 that is configured and has a relatively high internal porosity.

この場合、各多孔質樹脂部12、13は、例えば、気孔形成材を配合した樹脂組成物を所定の形状に成形(射出成形など)した後、気孔形成材を水、アルコール等の溶媒で除去することで形成される。上記構成の多孔質部材(スリーブ部8)でいえば、例えば予めリング状に形成しておいた第1の多孔質樹脂部12をインサート部品としてスリーブ部8の残り、すなわち第2の多孔質樹脂部13を成形することで形成することが可能である。かかる構成であれば、内周面8aのうち平滑面A3とそれ以外の領域とをそれぞれ別個の部材で形成することができるので、平滑面A3やこれ以外の領域の表面開孔率を比較的容易に調整することが可能である。また、平滑面A3の内径寸法を、傾斜溝A11等とは別個に設定することもできる。   In this case, each of the porous resin portions 12 and 13 is formed by, for example, molding a resin composition containing a pore forming material into a predetermined shape (such as injection molding), and then removing the pore forming material with a solvent such as water or alcohol. It is formed by doing. Speaking of the porous member (sleeve portion 8) having the above configuration, for example, the first porous resin portion 12 formed in a ring shape in advance is used as an insert part, and the remaining portion of the sleeve portion 8, that is, the second porous resin. It can be formed by molding the portion 13. With such a configuration, the smooth surface A3 and the other regions of the inner peripheral surface 8a can be formed by separate members, so that the surface area ratio of the smooth surface A3 and other regions can be relatively high. It can be easily adjusted. Further, the inner diameter dimension of the smooth surface A3 can be set separately from the inclined groove A11 and the like.

上記多孔質樹脂部12、13に用いるベース樹脂としては、射出成形可能で、かつ求められる耐熱性、耐油性、機械的強度等を満足するものであれば熱可塑性樹脂、熱硬化性樹脂を問わず使用可能で、例えば、以下例示する材料群から選定された一または複数種からなるものが使用可能である。かかるベース樹脂には、強化材や潤滑剤、導電材等の各種充填材を一または複数種配合させることもできる。なお、上述のようにして多孔質樹脂からなるスリーブ部8を形成する場合、第1の多孔質樹脂部12のベース樹脂には、第2の多孔質樹脂部13に使用するベース樹脂よりも融点の高いものが使用される。   The base resin used for the porous resin parts 12 and 13 may be any thermoplastic resin or thermosetting resin as long as it can be injection-molded and satisfies the required heat resistance, oil resistance, mechanical strength, and the like. For example, one or a plurality of materials selected from the material group exemplified below can be used. One or more kinds of various fillers such as a reinforcing material, a lubricant, and a conductive material can be blended with the base resin. When the sleeve portion 8 made of porous resin is formed as described above, the base resin of the first porous resin portion 12 has a melting point higher than that of the base resin used for the second porous resin portion 13. Higher ones are used.

ここで、ベース樹脂として使用可能な樹脂材料として、例えば、ポリフェニレンサルファイド(PPS)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリエーテルサルフォン(PES)、ポリアミドイミド(PAI)、熱可塑性ポリイミド(TPI)、熱硬化性ポリイミド、ポリアミド(PA)、ポリアミド6T、ポリアミド9T等の芳香族ポリアミド、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)等のフッ素系共重合体樹脂等が挙げられる。   Here, as resin materials that can be used as the base resin, for example, polyphenylene sulfide (PPS), polyether ketone (PEK), polyether ether ketone (PEEK), polyether imide (PEI), polyether sulfone (PES) , Polyamideimide (PAI), thermoplastic polyimide (TPI), thermosetting polyimide, polyamide (PA), polyamide 6T, polyamide 9T, and other aromatic polyamides, tetrafluoroethylene / hexafluoropropylene copolymer (PFA), ethylene -Fluorine-based copolymer resins such as tetrafluoroethylene copolymer (ETFE).

上記のベース樹脂に、ドライブレンド、溶融混錬等、樹脂の混合に一般に使用する混錬法で気孔形成材、充填材を混合させることにより、多孔質樹脂部12、13の成形に用いる樹脂組成物が得られる。気孔形成材としては、成形時の融解を防止するため、選定されるベース樹脂の溶融温度よりも高い融点を有し、かつベース樹脂に配合して多孔質樹脂部12、13を成形した後、ベース樹脂に対して不溶性を有する溶媒を用いて除去可能なものが使用可能である。この中でも、特に、成形後の除去作業を容易に行い得る(例えば水溶性の)もので、かつ防錆剤として使用できる弱アルカリ性物質などが好適に使用可能である。   Resin composition used for molding porous resin portions 12 and 13 by mixing pore forming material and filler with the above base resin by a kneading method generally used for resin mixing such as dry blending and melt kneading. Things are obtained. As the pore-forming material, in order to prevent melting at the time of molding, after having a melting point higher than the melting temperature of the selected base resin, and blended with the base resin to mold the porous resin parts 12, 13, Those that can be removed using a solvent that is insoluble in the base resin can be used. Among these, in particular, weak alkaline substances that can be easily removed after molding (for example, water-soluble) and can be used as a rust preventive agent can be suitably used.

気孔形成材としては、安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウム、コハク酸ナトリウム、あるいはステアリン酸ナトリウムに代表される有機アルカリ金属塩や、炭酸カリウム、モリブデン酸ナトリウム、モリブデン酸カリウム、タングステン酸ナトリウム、三リン酸ナトリウム、ピロリン酸ナトリウムに代表される無機アルカリ金属塩等を使用することができる。この中でも、高融点で、ベース樹脂の選定自由度を高められ、かつ優れた水溶性を示す安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウムが特に好ましい。これらの金属塩は一種のみ使用する他、二種以上混合して使用しても良い。なお、使用する気孔形成材の平均粒径は、上述の如く、考慮すべき磨耗粉の大きさにもよるが、0.1〜500μmとするのが望ましい。気孔形成材の粒径、すなわちスリーブ部8に形成される空孔径が0.1μm以下となると、潤滑油の表面張力によって軸受隙間への潤滑油の供給が円滑に行われず、空孔径が500μm以上となると、表面積が小さくなって所期の軸受剛性が得られないからである。   As the pore-forming material, organic alkali metal salts represented by sodium benzoate, sodium acetate, sodium sebacate, sodium succinate, or sodium stearate, potassium carbonate, sodium molybdate, potassium molybdate, sodium tungstate, Inorganic alkali metal salts such as sodium triphosphate and sodium pyrophosphate can be used. Among these, sodium benzoate, sodium acetate, and sodium sebacate are particularly preferable because they have a high melting point, increase the degree of freedom in selecting a base resin, and exhibit excellent water solubility. These metal salts may be used alone or in combination of two or more. The average particle diameter of the pore forming material used is preferably 0.1 to 500 μm, although it depends on the size of the wear powder to be considered as described above. When the particle diameter of the pore forming material, that is, the hole diameter formed in the sleeve portion 8 is 0.1 μm or less, the lubricating oil is not smoothly supplied to the bearing gap due to the surface tension of the lubricating oil, and the hole diameter is 500 μm or more. This is because the surface area becomes small and the desired bearing rigidity cannot be obtained.

気孔形成材の配合比は、ベース樹脂、気孔形成材および充填材などを含めた全量に対して、10vol%〜90vol%とするのが好ましい。10vol%より小さい場合は十分量の空孔を確保することができず、90vol%を超えた場合は所期の機械的強度が得られないからである。なお、上記実施形態のように、軸受内部空間全体に潤滑油が充填され、軸受内部の油量を最小限に抑える必要がある場合は、スリーブ部8の含油量を少なくする目的で上記配合比を10vol%〜30vol%とするのが特に好ましい。あるいは耐久性が重視される用途に使用される場合は、含油量を多くする目的で上記配合比を40vol%〜60vol%とするのが特に好ましい。   The mixing ratio of the pore forming material is preferably 10 vol% to 90 vol% with respect to the total amount including the base resin, the pore forming material, the filler, and the like. This is because if the amount is less than 10 vol%, a sufficient amount of pores cannot be secured, and if it exceeds 90 vol%, the desired mechanical strength cannot be obtained. If the entire bearing internal space is filled with lubricating oil and the amount of oil inside the bearing needs to be minimized as in the above embodiment, the above blending ratio is used for the purpose of reducing the oil content of the sleeve portion 8. Is preferably 10 vol% to 30 vol%. Alternatively, when used in applications where durability is important, the blending ratio is particularly preferably 40 vol% to 60 vol% for the purpose of increasing the oil content.

また、以上の説明では、ラジアル軸受隙間に面するスリーブ部8の内周面8a(ラジアル軸受面)に動圧発生部Aを設け、動圧発生部Aを構成する第1、第2傾斜溝群A1、A2の間に上記構成の平滑面A3を設けた場合を説明したが、かかる平滑面は、例えばスリーブ部8の端面に設けられた動圧発生部に設けることもできる。   In the above description, the dynamic pressure generating portion A is provided on the inner peripheral surface 8a (radial bearing surface) of the sleeve portion 8 facing the radial bearing gap, and the first and second inclined grooves constituting the dynamic pressure generating portion A are provided. Although the case where the smooth surface A3 having the above-described configuration is provided between the groups A1 and A2 has been described, such a smooth surface can be provided, for example, in a dynamic pressure generating portion provided on the end surface of the sleeve portion 8.

図7はその一例を示すもので、スリーブ部8の下端面8bに設けられる動圧発生部Bは、円周方向に配列された複数の第1傾斜溝B31で構成される第1傾斜溝群B3と、第1傾斜溝B31とは傾斜方向が異なりかつ円周方向に配列された複数の第2傾斜溝B41で構成される第2傾斜溝群B4とからなる。   FIG. 7 shows an example thereof. The dynamic pressure generating portion B provided on the lower end surface 8b of the sleeve portion 8 is a first inclined groove group configured by a plurality of first inclined grooves B31 arranged in the circumferential direction. B3 and the first inclined groove B31 are composed of a second inclined groove group B4 including a plurality of second inclined grooves B41 having different inclination directions and arranged in the circumferential direction.

詳述すると、スラスト軸受面をなす動圧発生部Bの第1傾斜溝群B3においては、図7に示すように、スリーブ部8の半径方向一方に傾斜してなる複数の第1傾斜溝B31が円周方向に亘って形成されると共に、円周方向で互いに近接する第1傾斜溝B31、B31には丘部B32(図7中、目の細かいクロスハッチングで示す領域)が形成される。また、第2傾斜溝群B4においては、半径方向他方に傾斜してなる複数の第2傾斜溝B41が円周方向に亘って形成されると共に、近接する第2傾斜溝B41、B41間にも丘部B42(図7中、目の細かいクロスハッチングで示す領域)が形成される。上記構成をなす第1傾斜溝群B3と第2傾斜溝群B4との間には環状の平滑面B5(図7中、目の粗いクロスハッチングで示す領域)が下端面8bの全周に亘って形成される。   More specifically, in the first inclined groove group B3 of the dynamic pressure generating part B forming the thrust bearing surface, as shown in FIG. 7, a plurality of first inclined grooves B31 inclined to one side in the radial direction of the sleeve part 8 are provided. Are formed in the circumferential direction, and a hill portion B32 (a region indicated by fine cross-hatching in FIG. 7) is formed in the first inclined grooves B31 and B31 that are close to each other in the circumferential direction. In the second inclined groove group B4, a plurality of second inclined grooves B41 inclined in the other radial direction are formed over the circumferential direction, and also between the adjacent second inclined grooves B41 and B41. Hill part B42 (region shown by fine cross-hatching in FIG. 7) is formed. Between the first inclined groove group B3 and the second inclined groove group B4 having the above-described configuration, an annular smooth surface B5 (a region indicated by rough cross-hatching in FIG. 7) extends over the entire periphery of the lower end surface 8b. Formed.

ここで、動圧発生部Bを有するスラスト軸受面(ここでは下端面8b)の表面開孔率は、平滑面B5で最大となる。すなわち、平滑面B5の表面開孔率は、少なくとも第1、第2傾斜溝B31、B41(の底面)のそれよりも大きく、また丘部B32、B42の(頂端面の)それよりも大きい。従って、この実施形態でも、スリーブ部8が多孔質部材に該当する。   Here, the surface opening ratio of the thrust bearing surface (here, the lower end surface 8b) having the dynamic pressure generating portion B is maximized on the smooth surface B5. That is, the surface area ratio of the smooth surface B5 is at least larger than that of the first and second inclined grooves B31 and B41 (bottom surfaces thereof) and larger than that of the hill portions B32 and B42 (of the top end surface). Therefore, also in this embodiment, the sleeve portion 8 corresponds to the porous member.

また、この実施形態では、平滑面B5は、各傾斜溝B31、B41よりも軸方向上側(スリーブ部8の軸方向中央側)の同一平面上にある。また、丘部B32、B42は、傾斜溝B31、B41より軸方向下側(スリーブ部8の軸方向下端側)の同一平面上にある。   Further, in this embodiment, the smooth surface B5 is on the same plane on the upper side in the axial direction (the central side in the axial direction of the sleeve portion 8) than the inclined grooves B31 and B41. Further, the hill portions B32 and B42 are on the same plane on the lower side in the axial direction (the lower end side in the axial direction of the sleeve portion 8) than the inclined grooves B31 and B41.

上記構成の動圧発生部Bは、軸部材2の回転時、対向するフランジ部2bの上端面2b1との間にスラスト軸受隙間を形成する。そして、軸部2aの回転に伴い潤滑油が動圧発生部Bの両端側(内径側および外径側)から各傾斜溝B31、B41へと流れ込み、さらに内外径方向から合流する形で平滑面B5上へと流れ込む。この場合、傾斜溝B31、B41により生じる潤滑油の動圧作用で、平滑面上B5に形成される油膜の圧力が高められる。このように、動圧発生部Bによって生じる潤滑油の動圧作用によって、軸部材2をスラスト方向に非接触支持する第一スラスト軸受部T1が構成される。   The dynamic pressure generating part B having the above configuration forms a thrust bearing gap with the upper end surface 2b1 of the opposing flange part 2b when the shaft member 2 rotates. Then, along with the rotation of the shaft portion 2a, the lubricating oil flows into the inclined grooves B31 and B41 from both end sides (inner diameter side and outer diameter side) of the dynamic pressure generating part B, and further joins from the inner and outer diameter directions in a smooth surface. Flow onto B5. In this case, the pressure of the oil film formed on the smooth surface B5 is increased by the dynamic pressure action of the lubricating oil generated by the inclined grooves B31 and B41. Thus, the first thrust bearing portion T1 that supports the shaft member 2 in the thrust direction in a non-contact manner is configured by the dynamic pressure action of the lubricating oil generated by the dynamic pressure generating portion B.

この場合、動圧発生部Bを有する下端面8bの表面開孔率は、平滑面B5で最大となる。すなわち、平滑面B5の表面開孔率は、少なくとも第1、第2傾斜溝B31、B41(の底面)のそれよりも大きく、また丘部B32、B42の(頂端面の)それよりも大きい。従って、平滑面B5上に集められた流体と共に、潤滑油中に混入した磨耗粉等のコンタミが他所に比べてスリーブ部8(多孔質部材)の内部に流れ込み易くなる。その一方で、下端面8bのうち平滑面B5以外の領域は、平滑面B5に比べて表面開孔率が小さいため、平滑面B5を介してスリーブ部8の内部に入り込んだコンタミを、スリーブ部8の外部に極力逃すことなくその内部で捕捉することができる。従って、動圧軸受装置1の使用時、例えば起動、停止時の摺動接触の繰り返しにより生じる磨耗粉が潤滑油にコンタミとして混入する場合、極力多くのコンタミを潤滑油中から排除することができ、これにより、コンタミに起因する軸受性能の低下をできる限り抑止することができる。   In this case, the surface area ratio of the lower end surface 8b having the dynamic pressure generating portion B is maximized on the smooth surface B5. That is, the surface area ratio of the smooth surface B5 is at least larger than that of the first and second inclined grooves B31 and B41 (bottom surfaces thereof) and larger than that of the hill portions B32 and B42 (of the top end surface). Accordingly, contamination such as wear powder mixed in the lubricating oil together with the fluid collected on the smooth surface B5 is more likely to flow into the sleeve portion 8 (porous member) than in other places. On the other hand, the area other than the smooth surface B5 in the lower end surface 8b has a smaller surface area ratio than that of the smooth surface B5. Therefore, the contamination that has entered the sleeve portion 8 through the smooth surface B5 is removed from the sleeve portion. 8 can be captured inside the 8 without losing as much as possible. Therefore, when the hydrodynamic bearing device 1 is used, for example, when wear powder generated due to repeated sliding contact at the time of starting and stopping is mixed into the lubricating oil as much as possible, it is possible to eliminate as much contamination as possible from the lubricating oil. As a result, it is possible to suppress the deterioration of the bearing performance due to contamination as much as possible.

もちろん、上述の如く、スリーブ部8の内周面8aに設けられた動圧発生部Aの平滑面A3がとり得る範囲において、下端面8bに設けられた動圧発生部Bの平滑面B5についても同様の構成(材質、形成方法等を含む)が可能である。   Of course, as described above, the smooth surface B5 of the dynamic pressure generating portion B provided on the lower end surface 8b is within the range that the smooth surface A3 of the dynamic pressure generating portion A provided on the inner peripheral surface 8a of the sleeve portion 8 can take. The same configuration (including material, formation method, etc.) is possible.

また、以上の説明では、平滑面A3、B5が設けられる多孔質部材としてスリーブ部8を例示したが、特にこの部材に限るものではない。すなわち、ラジアル軸受隙間やスラスト軸受隙間に面し、かかる軸受隙間に潤滑油の動圧作用を生じる動圧発生部を有する面を備えている多孔質部材であれば、任意の部材に適用可能である。例えば図2に示す動圧軸受装置1でいえば、軸部材2の軸部2aやフランジ部2b、あるいは蓋部材9を本発明に係る多孔質部材とすることも可能である。この場合、油漏れの観点から、各部材の一部のみを多孔質部材とする(例えば各軸受隙間に面する箇所を部分的に多孔質樹脂で形成する)他、軸受外部に面する領域を油漏れが生じない程度に封孔処理する等して使用することができる。もちろん、動圧軸受装置1についても、図2に示す形態に限らず、動圧発生部を有する限り、任意の形態をなす動圧軸受装置について本発明を適用することができる。   In the above description, the sleeve portion 8 is exemplified as the porous member provided with the smooth surfaces A3 and B5. However, the present invention is not limited to this member. In other words, any porous member can be used as long as it is a porous member that faces a radial bearing gap or a thrust bearing gap and has a surface having a dynamic pressure generating portion that generates a dynamic pressure action of the lubricating oil in the bearing gap. is there. For example, in the case of the hydrodynamic bearing device 1 shown in FIG. 2, the shaft portion 2a, the flange portion 2b, or the lid member 9 of the shaft member 2 can be a porous member according to the present invention. In this case, from the viewpoint of oil leakage, only a part of each member is made a porous member (for example, a part facing each bearing gap is partially formed of porous resin), and a region facing the outside of the bearing is It can be used after being sealed to such an extent that oil leakage does not occur. Of course, the present invention is not limited to the form shown in FIG. 2 but can be applied to the hydrodynamic bearing apparatus 1 having any form as long as the hydrodynamic bearing apparatus 1 has a dynamic pressure generating portion.

上記構成の動圧軸受装置1は、上述のHDD用のスピンドルモータだけでなく、例えばCD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等の情報機器に搭載されるスピンドルモータ用など、情報機器をはじめとする電気機器用の軸受装置として好適に適用可能である。また、本発明のように、磨耗粉をはじめとするコンタミを潤滑油中から除去可能な動圧軸受装置であれば、連続運転中、摩耗粉等の堆積に起因してロックが発生するのを確実に避けることができる。そのため、例えばサーバ用HDDなど、長期間に亘って安定した回転性能(軸受性能)を要求される機器に対しても、高い信頼性を有する軸受装置として好適に提供することができる。また、情報機器の高容量化に対応して複数枚のディスク6を搭載したディスク駆動装置に対しても、あるいは高速回転下での高い回転性能(軸受性能)を要求されるモータに対しても、長期に亘って安定した軸受性能を発揮し得る動圧軸受装置を提供することができる。   The hydrodynamic bearing device 1 having the above-described configuration is not limited to the above-described spindle motor for HDD, but also includes optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, and magneto-optical disks such as MD and MO. The present invention can be suitably applied as a bearing device for electrical equipment including information equipment such as a spindle motor mounted on information equipment such as equipment. In addition, as in the present invention, if the hydrodynamic bearing device is capable of removing contamination such as wear powder from the lubricating oil, the lock is generated due to the accumulation of wear powder during continuous operation. It can certainly be avoided. Therefore, it can be suitably provided as a bearing device having high reliability even for devices that require stable rotation performance (bearing performance) for a long period of time, such as a server HDD. Also for disk drives equipped with a plurality of disks 6 corresponding to the increase in capacity of information equipment, or for motors that require high rotational performance (bearing performance) under high-speed rotation. Thus, it is possible to provide a dynamic pressure bearing device that can exhibit stable bearing performance over a long period of time.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により潤滑流体の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。すなわち、本発明に係る動圧発生部が、上述の如く平滑面A3(あるいは平滑面B5)を有するものであればよく、上記構成の平滑面A3等を有さない動圧発生部であれば、任意の形態をなす動圧発生部(例えばステップ軸受、多円弧軸受など)が構成可能である。   In the above embodiment, the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2 are configured to generate the dynamic pressure action of the lubricating fluid by the herringbone shape or spiral shape dynamic pressure grooves. However, the present invention is not limited to this. That is, the dynamic pressure generating unit according to the present invention only needs to have the smooth surface A3 (or smooth surface B5) as described above, and may be any dynamic pressure generating unit that does not have the smooth surface A3 having the above-described configuration. A dynamic pressure generating portion (for example, a step bearing, a multi-arc bearing, etc.) having an arbitrary form can be configured.

また、以上の説明では、動圧軸受装置1の内部に充満し、ラジアル軸受隙間や、スラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、それ以外にも各軸受隙間に動圧作用を発生可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。   Further, in the above description, the lubricating oil is exemplified as the fluid that fills the inside of the hydrodynamic bearing device 1 and causes the hydrodynamic action in the radial bearing gap or the thrust bearing gap. A fluid capable of generating a dynamic pressure action, for example, a gas such as air, a fluid lubricant such as a magnetic fluid, or lubricating grease may be used.

本発明の第1実施形態に係る動圧軸受装置を具備したスピンドルモータの断面図である。1 is a cross-sectional view of a spindle motor provided with a fluid dynamic bearing device according to a first embodiment of the present invention. 動圧軸受装置の断面図である。It is sectional drawing of a hydrodynamic bearing apparatus. スリーブ部の縦断面図である。It is a longitudinal cross-sectional view of a sleeve part. 図3に示す動圧発生部のD−D断面図である。It is DD sectional drawing of the dynamic-pressure generation | occurrence | production part shown in FIG. スリーブ部の下側面図である。It is a lower side view of a sleeve part. スリーブ部の他構成を示す断面図である。It is sectional drawing which shows the other structure of a sleeve part. スリーブ部の下端面の他構成を示す下側面図である。It is a lower side view which shows the other structure of the lower end surface of a sleeve part. 従来の動圧発生部形状を示すスリーブ部の縦断面図である。It is a longitudinal cross-sectional view of the sleeve part which shows the conventional dynamic pressure generating part shape.

符号の説明Explanation of symbols

1 動圧軸受装置
8 スリーブ部
8b 下端面
8a 内周面
12 第1の多孔質樹脂部
13 第2の多孔質樹脂部
A 動圧発生部(内周面)
A1、A2 傾斜溝群
A11、A21 傾斜溝
A12、A22 丘部
A3 平滑面
B 動圧発生部(下端面)
B3、B4 傾斜溝群
B31、B41 傾斜溝
B32、B42 丘部
B5 平滑面
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S シール空間
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 8 Sleeve part 8b Lower end surface 8a Inner peripheral surface 12 1st porous resin part 13 2nd porous resin part A Dynamic pressure generating part (inner peripheral surface)
A1, A2 Inclined groove group A11, A21 Inclined groove A12, A22 Hill part A3 Smooth surface B Dynamic pressure generating part (lower end surface)
B3, B4 Inclined groove group B31, B41 Inclined groove B32, B42 Hill part B5 Smooth surface R1, R2 Radial bearing part T1, T2 Thrust bearing part S Seal space

Claims (5)

ラジアル軸受隙間と、該ラジアル軸受隙間に面するラジアル軸受面を有する多孔質部材と、前記ラジアル軸受面に設けられ、前記ラジアル軸受隙間に流体の動圧作用を生じる動圧発生部とを備え、
前記動圧発生部が、円周方向に配列された複数の第1傾斜溝で構成される第1傾斜溝群と、前記第1傾斜溝とは傾斜方向が異なりかつ円周方向に配列された複数の第2傾斜溝で構成される第2傾斜溝群とからなり、前記第1傾斜溝および前記第2傾斜溝を介して前記第1傾斜溝群と前記第2傾斜溝群との間に流体が流れ込む動圧軸受装置において、
前記双方の傾斜溝群の間に平滑面が設けられると共に、前記ラジアル軸受面の表面開孔率が、前記平滑面で最大となることを特徴とする動圧軸受装置。
A radial bearing gap, a porous member having a radial bearing surface facing the radial bearing gap, and a dynamic pressure generating portion that is provided on the radial bearing surface and generates a dynamic pressure action of fluid in the radial bearing gap,
The dynamic pressure generating portion includes a first inclined groove group including a plurality of first inclined grooves arranged in a circumferential direction, and the first inclined groove has a different inclination direction and is arranged in a circumferential direction. A second inclined groove group composed of a plurality of second inclined grooves, and between the first inclined groove group and the second inclined groove group via the first inclined groove and the second inclined groove. In the hydrodynamic bearing device into which fluid flows,
A hydrodynamic bearing device, wherein a smooth surface is provided between the two inclined groove groups, and the surface opening ratio of the radial bearing surface is maximized on the smooth surface.
スラスト軸受隙間と、該スラスト軸受隙間に面するスラスト軸受面を有する多孔質部材と、前記スラスト軸受面に設けられ、前記スラスト軸受隙間に流体の動圧作用を生じる動圧発生部とを備え、
前記動圧発生部が、円周方向に配列された複数の第1傾斜溝で構成される第1傾斜溝群と、前記第1傾斜溝とは傾斜方向が異なりかつ円周方向に配列された複数の第2傾斜溝で構成される第2傾斜溝群とからなり、前記第1傾斜溝および前記第2傾斜溝を介して前記第1傾斜溝群と前記第2傾斜溝群との間に流体が流れ込む動圧軸受装置において、
前記双方の傾斜溝群の間に平滑面が設けられると共に、前記スラスト軸受面の表面開孔率が、前記平滑面で最大となることを特徴とする動圧軸受装置。
A thrust bearing gap, a porous member having a thrust bearing surface facing the thrust bearing gap, and a dynamic pressure generating portion that is provided on the thrust bearing surface and generates a dynamic pressure action of fluid in the thrust bearing gap,
The dynamic pressure generating portion includes a first inclined groove group including a plurality of first inclined grooves arranged in a circumferential direction, and the first inclined groove has a different inclination direction and is arranged in a circumferential direction. A second inclined groove group composed of a plurality of second inclined grooves, and between the first inclined groove group and the second inclined groove group via the first inclined groove and the second inclined groove. In the hydrodynamic bearing device into which fluid flows,
A hydrodynamic bearing device characterized in that a smooth surface is provided between the two inclined groove groups, and the surface opening ratio of the thrust bearing surface is maximized on the smooth surface.
前記第1傾斜溝群と前記第2傾斜溝群との間に、前記平滑面を底面とする凹部が形成されている請求項1又は2記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a recess having the smooth surface as a bottom surface is formed between the first inclined groove group and the second inclined groove group. 前記多孔質部材は、焼結金属で形成されたものである請求項1又は2記載の動圧軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the porous member is formed of a sintered metal. 前記多孔質部材は、互いに内部空孔率の異なる第1の多孔質樹脂部と、第2の多孔質樹脂部とからなり、相対的に内部空孔率の高い第1の多孔質樹脂部が前記平滑面を有する請求項1又は2記載の動圧軸受装置。   The porous member includes a first porous resin portion and a second porous resin portion having different internal porosity, and the first porous resin portion having a relatively high internal porosity is provided. The hydrodynamic bearing device according to claim 1, which has the smooth surface.
JP2006086091A 2006-03-27 2006-03-27 Dynamic pressure bearing device Withdrawn JP2007263166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086091A JP2007263166A (en) 2006-03-27 2006-03-27 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086091A JP2007263166A (en) 2006-03-27 2006-03-27 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JP2007263166A true JP2007263166A (en) 2007-10-11

Family

ID=38636369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086091A Withdrawn JP2007263166A (en) 2006-03-27 2006-03-27 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JP2007263166A (en)

Similar Documents

Publication Publication Date Title
US8128289B2 (en) Fluid dynamic bearing device
JP6100046B2 (en) Fluid dynamic bearing device and motor including the same
KR20100125251A (en) Sintered bearing
JP2009511829A (en) Fluid dynamic bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
US20070092170A1 (en) Fluid bearing device
JP2007024089A (en) Dynamic pressure bearing device and motor
US20090022439A1 (en) Fluid dynamic bearing device
JP5558041B2 (en) Fe-based sintered metal bearing and manufacturing method thereof
JP5220339B2 (en) Hydrodynamic bearing device
JP2006112614A (en) Dynamic pressure bearing device
JP2009103280A (en) Dynamic pressure bearing device and its manufacturing method
JP5172576B2 (en) Fluid dynamic bearing device and manufacturing method thereof
WO2012144288A1 (en) Fluid dynamic pressure bearing device
JP2005114164A (en) Dynamic pressure bearing device
JP2007263166A (en) Dynamic pressure bearing device
JP5133008B2 (en) Hydrodynamic bearing device
JP2009228873A (en) Fluid bearing device
JP2008039104A (en) Fluid bearing device
JP2007327545A (en) Dynamic-pressure bearing device
JP2006258123A (en) Dynamic pressure bearing device
JP2006194383A (en) Dynamic pressure bearing device
JP2011007336A (en) Dynamic pressure bearing device and motor
JP5231095B2 (en) Hydrodynamic bearing device
JP4739114B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602