JP2007263165A - 流体軸受装置 - Google Patents

流体軸受装置 Download PDF

Info

Publication number
JP2007263165A
JP2007263165A JP2006086088A JP2006086088A JP2007263165A JP 2007263165 A JP2007263165 A JP 2007263165A JP 2006086088 A JP2006086088 A JP 2006086088A JP 2006086088 A JP2006086088 A JP 2006086088A JP 2007263165 A JP2007263165 A JP 2007263165A
Authority
JP
Japan
Prior art keywords
seal
elastic body
shaft
seal portion
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006086088A
Other languages
English (en)
Inventor
Kenji Ito
健二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006086088A priority Critical patent/JP2007263165A/ja
Publication of JP2007263165A publication Critical patent/JP2007263165A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

【課題】 この種の流体軸受装置における油漏れを可及的に防止する。
【解決手段】流体軸受装置1は、軸受部材7と、軸受部材7の内周に挿入され、軸受部材7に対して相対回転する軸部材2とを備える。軸部材2は、軸部12と、軸部12の外周に設けられ、軸受部材7との間に第1のシール空間S1を形成する第1のシール部8と、第1のシール部8と軸方向に離隔して軸部12に設けられ、軸受部材7との間に第2のシール空間S2を形成する第2のシール部9とを有する。第1のシール部8と軸部12との間には、第1のシール部8よりも高い線膨張係数を有する第1の弾性体13が設けられる。同様に、第2のシール部9と軸部12との間には、第2のシール部9よりも高い線膨張係数を有する第2の弾性体14が設けられる。
【選択図】図5

Description

本発明は、流体軸受装置に関するものである。
流体軸受装置は、軸受部材と、軸受部材の内周に挿入した軸部材との相対回転により軸受隙間に生じた流体の潤滑膜で軸部材を回転自在に支持する軸受装置である。この種の軸受装置は、高速回転、高回転精度、低騒音等の特徴を備えるものであり、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的にはHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等におけるディスクドライブのスピンドルモータ用の軸受装置として、あるいはレーザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイールモータ、ファンモータなどのモータ用軸受装置として好適に使用される。
例えば、HDD等のディスク駆動装置のスピンドルモータに組込まれる流体軸受装置では、軸部材をラジアル方向に支持するラジアル軸受部と、軸部材をスラスト方向に支持するスラスト軸受部とが設けられる。このラジアル軸受部の軸受としては、軸受部材を構成する軸受スリーブの内周面に動圧発生用の溝(動圧溝)を設けた動圧軸受が公知であり、スラスト軸受部の軸受としては、例えば軸部材のフランジ部の両端面、あるいは、これに対向する面(軸受スリーブの端面や、ハウジングに固定される蓋部材の端面等)に動圧溝を設けた動圧軸受が公知である(例えば、特許文献1や2を参照)。
この種の流体軸受装置(動圧軸受装置)において、通常、軸受スリーブはハウジングの内周の所定位置に固定され、また、ハウジングの内部空間に注油した潤滑油が外部に漏れるのを防止するために、ハウジングの開口部にシール部材を配設する場合が多い。シール部材の内周面は、軸部材の外周面との間にシール空間を形成し、このシール空間の容積は、ハウジングの内部空間に充満された潤滑油が使用温度範囲内での熱膨張・収縮によって容積変化する量よりも大きくなるように設定される。従って、温度変化に伴う潤滑油の容積変化があった場合でも、潤滑油の油面は常にシール空間内に維持される(特許文献1参照)。シール部材はハウジングに設けられる他、軸部材に設けられるものもある。この場合、シール部材の外周面とこれに対向するハウジングの内周面との間にシール空間が形成される(例えば、特許文献3を参照)。
特開2003−65324号公報 特開2003−336636号公報 特開2005−299777号公報
しかしながら、上記流体軸受装置を例えば高温雰囲気下で使用する場合、軸部材とシール部材の線膨張係数の大小関係によっては、両部材間にすき間が生じる恐れがある。すなわち、軸部材が、主に軸方向負荷やモーメント荷重に対する耐性を考慮してステンレス鋼などの高強度材で形成されるのに対し、シール部材は、その加工性やコストを考慮して軟質金属や樹脂などで形成されることが多い。そのため、シール部材を形成する材料の線膨張係数が軸部材を形成する材料の線膨張係数を上回ることが少なくない。これでは、高温時、シール部材の内周面と軸部材の外周面との間に半径方向のすき間が生じ、このすき間から軸受内部に充満した潤滑油が漏れ出す恐れがある。
本発明の課題は、この種の流体軸受装置における油漏れを可及的に防止することである。
前記課題を解決するため、本発明は、軸受部材と、軸受部材に対して相対回転する軸部材と、軸受部材と軸部材との間に形成される軸受隙間と、軸受隙間を満たす潤滑流体とを備え、軸部材が、軸部と、軸部の外周に設けられ、軸受部材との間にシール空間を形成するシール部とを有するものにおいて、軸部とシール部との間に、シール部よりも高い線膨張係数を有する弾性体を介在させたことを特徴とする流体軸受装置を提供する。
上述のように、本発明は、軸部とシール部との間に、シール部よりも高い線膨張係数を有する弾性体を介在させたことを特徴とするものであり、高温時、互いに拘束のない状態では、弾性体はシール部に比べて外径側に大きく膨張する。そのため、シール部を弾性体の外径側に配した状態では、高温時、弾性体はシール部により外径側への膨張を制限(拘束)され、かかる拘束を受けて外径側へ膨張できなかった分が内径側のすき間の発生を防止する方向に作用する。従って、シール部が軸部に比べて外径側に大きく膨張する場合であっても、弾性体と軸部との間にすき間が発生する事態を極力避けることができる。
また、低温時における油漏れを防止する観点から、弾性体は軸部材よりも線膨張係数の高い材料で形成されているのが好ましい。かかる構成によれば、低温時、弾性体は軸部により内径側への収縮を制限(拘束)され、かかる拘束を受けて内径側へ収縮できなかった分が外径側のすき間の発生を防止する方向に作用する。従って、弾性体がシール部に比べて内径側に大きく収縮する場合であっても、弾性体とシール部との間にすき間が発生する事態を極力避けることができる。
上記弾性体は、軸部やシール部とそれぞれ別体に形成し、これらをアセンブリすることもできるが、アセンブリ工程の簡略化等を図る目的で、例えば軸部をインサート部品とする射出成形で軸部と一体に形成することができる。あるいは、シール部をインサート部品とする射出成形で弾性体をシール部と一体に形成することができる。
特に後者の場合、シール部を芯部と被覆部とで構成し、かかる芯部と軸部との間に弾性体を配した構造をとることも可能である。この場合には、弾性体が芯部に比べて高い線膨張係数を有することから、シール部の外径寸法を大きくすることなく、弾性体の半径寸法を大きくして、内径側への膨張量を増加させることができる。なお、弾性体と被覆部は別体に形成してもよいが、作業工程の簡略化や固定力を考慮して、例えば芯部をインサート部品とする射出成形で被覆部と弾性体とを一体に成形することも可能である。
また、弾性体と、軸部材とシール部何れか一方の部材との一体品を他方の部材に固定するための手段として、例えば他方の部材と弾性体との間で締め代を持たせた固定手段が有効である。すなわち、例えば軸部材と一体的に設けられた弾性体と、これを固定すべきシール部との間に所定の締め代を持たせて、弾性体とシール部を締結固定する。これによれば、高温時、弾性体がシール部に比べて外径側に大きく膨張しようとすることで、両部材間の締め代を大きくとるのと同様の作用を生じる(締結力が増大する)。そのため、従来のように、軸部材に圧入固定されたシール部が、高温時、軸部材に比べて外径側に大きく膨張することで両部材間の締め代が減少するといった事態を避けて、両部材間で高い固定力を確保することができる。あるいは、両部材間の締め代を高温時の減少分を差し引いて設定する必要がないので、常温時、必要とされる大きさの固定力が得られる程度の締め代があればよい。これにより、弾性体とシール部、あるいは軸部材との間の締め代を小さくすることも可能である。上述の作用効果は、シール部と一体的に設けられた弾性体を軸部材に締結固定する場合にも同様に生じ得る。
また、アセンブリ工程のさらなる簡略化を図るのであれば、軸部材およびシール部をインサート部品とする射出成形で弾性体を軸部材およびシール部と一体に形成することも可能である。
本発明は、例えばシール部の端面とこれに対向する軸受部材の端面との間にスラスト軸受隙間を形成した構成の流体軸受装置に対しても適用可能である。また、軸部に固定されるシール部は1個に限らず、例えば軸方向に離隔させて2個以上のシール部を軸部材に設けた流体軸受装置に対しても本発明が適用可能である。
以上のように、本発明によれば、この種の流体軸受装置における油漏れを可及的に防止することができる。
以下、本発明の一実施形態を図1〜図5に基づいて説明する。
図1は、本発明の一実施形態に係る流体軸受装置(動圧軸受装置)1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、例えばHDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2に固定されたハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5はハブ3の内周に取付けられる。流体軸受装置1はブラケット6の内周に固定される。ハブ3には、情報記憶媒体としてのディスクDが1又は複数枚(図1では2枚)保持される。上述のように構成されたスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間に発生する励磁力でロータマグネット5が回転し、それによってハブ3およびハブ3に保持されたディスクDが軸部材2と一体に回転する。
図2は、流体軸受装置1を示している。この流体軸受装置1は、軸受部材7と、軸受部材7の内周に挿入され、軸受部材7に対して相対回転する軸部材2とを備える。軸部材2は、軸部12と、軸部12の外周に設けられ、軸受部材7との間に第1のシール空間S1を形成する第1のシール部8と、軸部12と第1のシール部8との間に介在させた第1の弾性体13を有する。軸部材2は、この実施形態では、さらに第1のシール部8と軸方向に離隔して軸部12に設けられ、軸受部材7との間に第2のシール空間S2を形成する第2のシール部9、および軸部12と第2のシール部9との間に介在させた第2の弾性体14を有する。なお、以下の説明では、便宜上、流体軸受装置1から軸部材2(軸部12)のハブ3側に突出する側を上側、軸部材2の突出側と反対の側を下側としているが、これにより、モータや流体軸受装置の設置方向や使用態様等が特定されるわけではない。
軸受部材7は、ハウジング部10と、ハウジング部10の内周に一体又は別体に配設されるスリーブ部11とで構成される。
ハウジング部10は両端開口の筒状をなし、例えば真ちゅう等の金属で、あるいはLCP、PPS、PEEK等の結晶性樹脂をベースとする樹脂組成物の射出成形で形成される。もちろん、ハウジング部10の内部に充填される潤滑油に対して十分な耐浸透性(耐油性)を有するのであれば、PPSU、PES、PEI等の非晶性樹脂をベースとする樹脂組成物を射出成形することでハウジング部10を形成することもできる。この実施形態では、ハウジング部10の内周面10aは径一定の円筒面形状をなし、その軸方向中間位置にスリーブ部11を固定している。
スリーブ部11は、例えば金属製の非孔質体あるいは焼結金属からなる多孔質体で円筒状に形成される。この実施形態では、スリーブ部11は、銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング部10の内周面10aに、例えば接着(ルーズ接着を含む)、圧入(圧入接着を含む)、溶着(超音波溶着を含む)等、適宜の手段で固定される。もちろん、スリーブ部11を樹脂やセラミック等、金属以外の材料で形成することも可能である。
スリーブ部11の内周面11aの全面又は一部領域には、ラジアル動圧発生部として複数の動圧溝を配列した領域が形成される。この実施形態では、例えば図3(a)に示すように、複数の動圧溝11a1、11a2をヘリングボーン形状に配列した領域が軸方向に離隔して2箇所形成される。これら動圧溝11a1、11a2の形成領域はそれぞれラジアル軸受面として軸部12の外周面12aと対向し、軸部材2の回転時には、外周面12aとの間に後述する第1、第2ラジアル軸受部R1、R2のラジアル軸受隙間をそれぞれ形成する(図2を参照)。
スリーブ部11の上端面11bの全面又は一部領域には、スラスト動圧発生部として、例えば図3(b)に示すように、複数の動圧溝11b1をスパイラル形状に配列した領域が形成される。この動圧溝11b1形成領域はスラスト軸受面として、第1のシール部8の下端面8aと対向し、軸部材2の回転時には、下端面8aとの間に後述する第1スラスト軸受部T1のスラスト軸受隙間を形成する(図2を参照)。
スリーブ部11の下端面11cの全面又は一部領域には、スラスト動圧発生部として、例えば図3(c)に示すように、複数の動圧溝11c1をスパイラル状に配列した領域が形成される。この動圧溝11c1形成領域はスラスト軸受面として、第2のシール部9の上端面9aと対向し、軸部材2の回転時には、上端面9aとの間に後述する第2スラスト軸受部T2のスラスト軸受隙間を形成する(図2を参照)。
軸部材2を構成する軸部12は、例えばステンレス鋼等の金属材料で形成され、スリーブ部11の内周に挿入される。軸部12は全体として概ね同径の軸状をなし、その外周面12aの軸方向中間部(動圧溝11a1、11a2形成領域と対向しない箇所)には、他所よりも僅かに小径に形成した逃げ部12bが形成される。外周面12aのうち、逃げ部12bの軸方向両側の領域はスリーブ部11の動圧溝11a1、11a2形成領域との間にラジアル軸受隙間を形成する面(ラジアル軸受面)となるため、例えば研削等で特に高精度に仕上げるのが好ましい。また、この実施形態では、軸部12の外周面12aのうち、第1のシール部8および第2のシール部9の固定領域には環状溝形状をなす凹部12cがそれぞれ形成される。なお、軸部12の加工方法は特に問わず、削り出し等の機械加工の他、鍛造等の塑性加工によっても形成可能である。軸部12を金属製の一体加工品とすることもでき、例えば金属と樹脂とからなるハイブリッド軸(鞘部が金属で、芯部が樹脂など)とすることもできる。
第1のシール部8および第2のシール部9は共に環状をなすもので、例えば何れも真ちゅう(黄銅)等の軟質金属材料やその他の金属材料で形成される。第1のシール部8は、その下端面8aをスリーブ部11の上端面11bと対向させた状態で軸部12の外周に固定される。同様に、第2のシール部9は、その上端面9aをスリーブ部11の下端面11cと対向させた状態で軸部12の外周に固定される。
また、この実施形態では、第1のシール部8の外周面8bに、上方(スリーブ部11から第1のシール部8に向けて離隔する方向)に向けて漸次縮径するテーパ面8b1が形成される。従って、第1のシール部8を軸部12に固定した状態では、テーパ面8b1を含む外周面8bと、外周面8bに対向するハウジング部10の上端内周面10a1との間に、半径方向寸法が下方に向けて漸次縮小するテーパ状の第1シール空間S1が形成される。
同様に、第2のシール部9の外周面9bにも、下方(スリーブ部11から第2のシール部9に向けて離隔する方法)に向けて漸次縮径する環状のテーパ面9b1が形成される。そのため、第2のシール部9を軸部12に固定した状態では、テーパ面9b1を含む外周面9bと、外周面9bに対向するハウジング部10の下端内周面10a2との間に、半径方向寸法が上方に向けて漸次縮小するテーパ状の第2シール空間S2が形成される。
上記第1のシール部8と軸部12との間には、第1のシール部8よりも高い線膨張係数を有する第1の弾性体13が設けられる。同様に、第2のシール部9と軸部12との間には、第2のシール部9よりも高い線膨張係数を有する第2の弾性体14が設けられる。この実施形態では、何れの弾性体13、14も樹脂で環状に形成される。また、軸部12をインサート部品とする樹脂の射出成形で両弾性体13、14が軸部12の軸方向所定位置(各シール部8、9の固定位置)と一体に形成される。この際、例えば図2や図4に示すように、各弾性体13、14の形成箇所に環状溝等の凹部12cを形成しておくことで、各弾性体13、14の軸部12に対する固定力を高めることも可能である。
この場合、第1のシール部8を、例えば図4に示すように、軸部12の軸方向所定位置に設けられた第1の弾性体13との間で締め代を持たせて締結することで、第1のシール部8が軸部12に対して固定される。同様に、上記第2のシール部9を、軸部12に設けられた第2の弾性体14との間で締め代を持たせて締結することで、第2のシール部9が軸部12に対して固定される。
この際、例えば図4に示すように、第1の弾性体13の外径D2から第1のシール部8の内径D1を減じた値が締め代の半径方向寸法となる。また、第1のシール部8の内径D1を固定すべき軸部12の、一端部12dから第1の弾性体13の固定箇所までの間の最外径D3より大きくしておくことで、シール部8を軸部12に対してすきまばめの状態で、軸部12に設けられた第1の弾性体13まで導入することができる。これにより、第1のシール部8を軸部12に直接圧入固定する場合と比べて、固定時に生じる摩耗粉の発生を大幅に抑制することができ、固定工程の後の洗浄工程を簡略化あるいは省略することができる。
上述のようにして、第1のシール部8を第1の弾性体13を介して軸部12に固定する。同様に、第2のシール部9を第2の弾性体14を介して軸部12に固定する。この際、予め一方のシール部、ここでは第2のシール部9が固定された軸部12に対して上述の固定を行うことで、後述するスラスト軸受隙間の総和が設定される。すなわち、第1のシール部8の下端面8aと第2のシール部9の上端面9aとの軸方向対向間隔から、両面8a、9a間に配置されるスリーブ部11の軸方向寸法を減じた値が、第1、第2スラスト軸受部T1、T2のスラスト軸受隙間の総和として設定される。
上述のようにしてアセンブリを行った後、各シール部8、9の外周面8b、9bの側に形成されるシール空間S1、S2の何れか一方の開口側から軸受内部空間に潤滑油を注油する。これにより、各ラジアル軸受隙間やスラスト軸受隙間を含む軸受内部空間を潤滑油で充満した流体軸受装置1が完成する。この際、第1および第2シール空間S1、S2の容積の総和は、少なくとも流体軸受装置1の内部空間に充満した潤滑油の温度変化に伴う体積変化量よりも大きい。そのため、潤滑油の油面は、常に両シール空間S1、S2内に維持される。
また、上記構成の流体軸受装置1であれば、例えば製品輸送時など、高温時あるいは低温時、シール空間S1、S2以外の箇所から油漏れが生じるのを可及的に防ぐことができる。以下、第1のシール部8および弾性体13の熱変形挙動を例に取って説明する。
上述のように、軸部12と第1のシール部8との間に介在させた第1の弾性体13は、第1のシール部8よりも高い線膨張係数を有する。そのため、例えば高温時、互いに拘束がないと仮定した状態では、第1の弾性体13は第1のシール部8に比べて外径側に大きく膨張する。図5(a)でいえば、第1のシール部8の内周面8cが、図中二点鎖線Aの位置まで変位(膨張)するのに対し、第1の弾性体13の外周面13aは図中一点鎖線Bの位置まで変位(膨張)可能である。そのため、シール部8を弾性体13の外径側に固定した状態では、図5(b)に示すように、高温時、弾性体13はシール部8の内周面8cの位置までしか外径側に膨張できず、外径側へ膨張できなかった分が内径側(軸部12の側)のすき間の発生を防止する方向に作用する。例えば図5(b)でいえば、第1の弾性体13の内周面13bは、自由熱膨張時の半径方向位置(図中一点鎖線Cの位置)よりも内径側、すなわち軸部12の側にシフトする。従って、第1のシール部8が軸部12に比べて外径側に大きく膨張する場合であっても、両部8、12間に介在させた第1の弾性体13がシール部8により外径方向への膨張を拘束されることで、弾性体13と軸部12との間にすき間が発生する事態を極力避けることができる。
また、この実施形態のように、第1の弾性体13を軸部12よりも線膨張係数の高い材料で形成することで、例えば図示は省略するが、低温時、第1の弾性体13は軸部12の外周面12aの位置までしか内径側に収縮できず、これにより内径側へ収縮できなかった分が外径側(シール部8の側)のすき間の発生を防止する方向に作用する。従って、弾性体13がシール部8に比べて内径側に大きく収縮する場合であっても、弾性体13が軸部12により内径方向への収縮を拘束されることで、弾性体13とシール部8との間にすき間が発生する事態を極力避けることができる。
また、この実施形態では、軸部12と一体に設けられた第1の弾性体13と、これを固定すべき第1のシール部8との間に所定の締め代D2−D1(図4を参照)を持たせて、かかる弾性体13とシール部8を締結固定している。かかる構成によれば、例えば高温時、第1の弾性体13の外周面13aが第1のシール部8の内周面8cに比べて外径側に大きく膨張(変位)しようとすることで、締結時の締め代D2−D1に加えて両面8a、13a間の膨張差に基づく締め代が付与される。従って、互いに締結固定される第1のシール部8と第1の弾性体13との間で高い固定力を得ることができる。あるいは、シール部8と弾性体13との間の締め代を、高温時の減少分を考慮して設定しなくて済むため、両部8、13間の締め代D2−D1を予め小さく設定することもできる。
また、この実施形態では、第1の弾性体13を、軸部12をインサート部品とする射出成形で形成したので、弾性体13の成形と、軸部12への固定を一工程で行うことができ、作業工程の簡略化を図ることができる。また、この実施形態では、凹部12cとして円環状の溝を軸部12の全周に亘って設けた場合を例示したが、凹部12cを一部円周領域に設ける等、弾性体13の固定面の外径寸法を周方向で異ならせることで、かかる弾性体13(シール部8)の抜止めとしてだけでなく回り止めとしても作用する。以上、第1の弾性体13および第1のシール部8について述べた作用効果は、第2の弾性体14に第2のシール部9を締結する場合に対しても同様に生じ得る。
上記構成の流体軸受装置1において、軸部材2の回転時、スリーブ部11の内周面11aの動圧溝11a1、11a2形成領域は、軸部材2の外周面2aとラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝11a1、11a2の軸方向中心側に押し込まれ、その圧力が上昇する。このような動圧溝11a1、11a2の動圧作用によって、軸部材2をラジアル方向に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とがそれぞれ構成される(図2を参照)。
これと同時に、スリーブ部11の上端面11bに形成された動圧溝11b1形成領域とこれに対向する第1のシール部8の下端面8aとの間のスラスト軸受隙間、およびスリーブ部11の下端面11cに形成された動圧溝11c1形成領域とこれに対向する第2のシール部9の上端面9aとの間のスラスト軸受隙間に、動圧溝11b1、11c1の動圧作用により潤滑油の油膜がそれぞれ形成される。そして、これら油膜の圧力によって、軸部材2をスラスト方向に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とがそれぞれ構成される。
以上、本発明の一実施形態を説明したが、本発明は、この実施形態に限定されることなく、上記以外の構成を採ることも可能である。
例えば、上記実施形態では、第1のシール部8を金属材料で、第1の弾性体13を樹脂で形成した場合を例示したが、本発明は、第1の弾性体13の線膨張係数が第1のシール部8のそれを上回る限り、例えば両部8、13を異種金属あるいは樹脂同士で形成する等、他の材料の組合せを採ることも可能である。また、両部8、13を何れも樹脂で形成する場合には、繊維状充填材や粒状系充填材など、樹脂に配合する充填材の種類、配合量等(組成)を調整することで、両部8、13間で線膨張係数に違いを持たせることも可能である。
また、上記実施形態では、第1のシール部8を単一の材料で形成した場合を説明したが、これに限ることなく、例えば複数の材料からなる構成を採ることも可能である。
図6はその一例を示すもので、同図に示す第1のシール部8は、芯部24と、芯部24の周囲を被覆する被覆部25とで構成され、かつ芯部24と軸部12との間には第1の弾性体23を介設されている。同図では、芯部24の外周面24bおよび下端面24cが被覆部25で被覆され、スリーブ部11の上端面11bとの間にスラスト軸受隙間を形成する下端面18aやシール面となる外周面18b(テーパ面18b1)が被覆部25で形成されている。また、芯部24の内周面24aが第1の弾性体23で形成されている。そのため、例えば第1の弾性体23と被覆部25とを同一の材料とすれば、例えば芯部24をインサート部品とする射出成形で、シール部8と弾性体23とを一体に成形することができる。図6には、例えば作業工程の簡略化を図る目的で、軸部12および芯部24をインサート部品とする樹脂の射出成形で、弾性体23とシール部18、および軸部12とを一体に成形した場合を例示している。
また、図6では、被覆部25の肉厚に比べて第1の弾性体23の肉厚を大きくした場合を例示しているが、これには以下のメリットがある。
すなわち、弾性体13の外径側への膨張量はその外径寸法に依存するため、例えば弾性体13の外径寸法が大きいほど、高温膨張時、第1のシール部8の拘束により内径側に押し出される量が増加する(図5を参照)。また、外径寸法が同じであっても弾性体13の内径寸法が小さければ、結果的に内周面13bの内径側へのシフト量(半径幅寸法)が増加する。そのため、高温時、軸部12との間でのすき間の発生を確実に防ぐためには、あるいは軸部12とシール部8との間の固定力を高めるためには、弾性体13をできるだけ厚くするのがよい。
しかしながら、単に弾性体13の厚みを増したのでは、その分シール部8が外径側に配設されることになり、流体軸受装置1の径方向寸法が増加する。径方向寸法をそのままにしようとすると、シール部8の径方向寸法を小さくせざるを得ないが、例えば上記実施形態に示すように、シール部8の下端面8aが対向するスリーブ部11の上端面11bとの間にスラスト軸受隙間を形成するような場合には、スラスト軸受面積の減少につながるため好ましくない。
これに対して、図6に示すように、弾性体23と被覆部25とを同一材料で、かつ芯部24をインサート部品とする射出成形で弾性体23と芯部24、および被覆部25とを一体に成形すれば、シール部18の外径寸法を変えなくても、芯部24の径方向寸法を減じてその分弾性体23の径方向厚みを増大させることが可能となる。従って、限られた製品サイズの中で弾性体23の径方向厚みを極力大きく取って、高温時、軸部12との間でのすき間の発生を確実に防ぐことができる。あるいは、軸部12とシール部18との間の固定力を高めることができる。また、下端面18aを形成する被覆部25を弾性体23と一体に成形することで、スラスト軸受隙間に面する領域全体(シール部18と弾性体23との一体品の下端面全体)を同一材料で成形でき、スラスト軸受面積を確保することができる。
また、上述のように、シール部18を芯部24とそれを被覆する被覆部25とで構成する場合には、高い面精度が必要とされる外周面18b(テーパ面18b1)や下端面18aを被覆部25で形成することができるので、例えば芯部24をインサート部品とする射出成形で被覆部25を一体に形成する場合には、芯部24の外周面24bや下端面24cをそれほど精度良く仕上げずに済む。内周面24aを弾性体23で被覆する場合も同様である。
また、上記実施形態では、第1の弾性体13(23)を軸部12あるいはシール部18(芯部24)と一体に形成した場合を説明したが、例えばこれら三部材を何れも別体に形成し、かかる後にアセンブリする手段を採ることもできる。
また、上記実施形態では、第1のシール部8を、軸部12に設けた第1の弾性体13に所定の締め代で締結固定した場合を説明したが、本発明は、軸部12とシール部8との間に、シール部8よりも高い線膨張係数を有する弾性体13が介在した状態で互いに固定される限り、接着など他の固定手段を採用することも可能である。あるいは、シール部8より高い線膨張係数を有し、かつシール部8や軸部12に対する接着性に優れた樹脂を両部8、12間に供給することで、弾性体13をシール部8と軸部12との間に介設すると同時に、かかる弾性体13を介してシール部8と軸部12とを固定することができる。
以上の構成は、第1のシール部8および第1の弾性体13だけでなく、第2のシール部9および第2の弾性体14についても採用可能である。もちろん、図2に示す形態であれば、第2のシール部9を軸部材2と同一材料で一体に形成しておき、かかる一体品に第1の弾性体13、そして第1のシール部8を順に固定するようにしても構わない。もちろんこの場合も、第1のシール部8および第1の弾性体13については上記構成が採用可能である。また、本発明は、1個のシール部8のみを設けた軸部材2を備えた流体軸受装置に対しても適用可能である。
また、上記実施形態では、軸受部材7を別体としてのハウジング部10およびスリーブ部11とで構成した場合を説明したが、軸受部材7を金属又は樹脂の一体品とすることも可能である。あるいは一方の金属製部品をインサート部品として他方の部品と共に樹脂でインサート成形することも可能である。図7は、その一例を示すもので、同図に示す流体軸受装置31は、軸受部材37を樹脂の一体成形品とする点で、図2に示す流体軸受装置1と構成を異にする。この場合、図3(a)に示す動圧溝11a1、11a2形成領域が、軸受部材37の小径面37aに設けられる。また、図3(b)に示す動圧溝11b1形成領域が、第1のシール部8とスラスト方向に対向する軸受部材37の内側上端面37bに設けられ、図3(c)に示す動圧溝11c1形成領域が、第2のシール部9とスラスト方向に対向する軸受部材37の内側下端面37cにそれぞれ設けられる。また、両端面37b、37cを介して小径面37aの軸方向両側に設けられる大径面37d1、37d2は、ラジアル方向に対向する第1、第2シール部8、9のテーパ面8b1、9b1との間にそれぞれシール空間S3、S4を形成する。
また、以上の実施形態では、動圧溝11a1などの動圧発生部を、スリーブ部11の内周面11aや上端面11b、下端面11cの側、あるいは軸受部材37の小径面37aや内側上端面37b、内側下端面37cの側に形成した場合を説明したが、この形態に限られる必要はない。例えばこれら動圧発生部を、これらと対向する軸部12の外周面12aや第1のシール部8の下端面8a、第2のシール部9の上端面9aの側に形成することもできる。以下に示す形態の動圧発生部についても同様に、軸受部材7、37の側に限らず、これらに対向する軸部12や各シール部8、9の側に形成することができる。
また、以上の実施形態では、ラジアル軸受部R1、R2やスラスト軸受部T1、T2として、へリングボーン形状やスパイラル形状の動圧溝により潤滑流体の動圧作用を発生させる構成を例示しているが、本発明はこれに限定されるものではない。
例えば、ラジアル軸受部R1、R2として、図示は省略するが、軸方向の溝を円周方向の複数箇所に配列した、いわゆるステップ状の動圧発生部、あるいは、円周方向に複数の円弧面を配列し、対向する軸部12の外周面12aとの間に、くさび状の径方向隙間(軸受隙間)を形成した、いわゆる多円弧軸受を採用してもよい。
あるいは、スリーブ部11の内周面11aを、動圧発生部としての動圧溝や円弧面等を設けない真円内周面とし、この内周面と対向する軸部12の真円状外周面12aとで、いわゆる真円軸受を構成することができる。
また、スラスト軸受部T1、T2の一方又は双方は、同じく図示は省略するが、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、あるいは波型軸受(ステップ型が波型になったもの)等で構成することもできる。
また、以上の実施形態では、軸部材2が回転して、それを軸受部材7(軸受部材37)で支持する構成を説明したが、これとは逆に、軸受部材7(軸受部材37)の側が回転して、それを軸部材2の側で支持する構成に対しても本発明を適用することが可能である。
また、以上の実施形態では、流体軸受装置1の内部に充満し、ラジアル軸受隙間やスラスト軸受隙間に流体の潤滑膜を形成するための流体として潤滑油を例示したが、これ以外にも各軸受隙間に流体膜を形成可能な流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤、あるいは潤滑グリース等を使用することもできる。
本発明の一実施形態に係る流体軸受装置を組込んだスピンドルモータの断面図である。 流体軸受装置の断面図である。 (a)はスリーブ部の縦断面図、(b)および(c)はスリーブ部をそれぞれ矢印a、bの方向から見た端面図である。 シール部の固定工程の一例を概念的に示す要部拡大図である。 (a)、(b)共にシール部および弾性体の熱膨張挙動を概念的に示す断面図である。 シール部および弾性体の他構成を示す要部拡大図である。 流体軸受装置の他構成を示す縦断面図である。
符号の説明
1、31 流体軸受装置
2 軸部材
7、37 軸受部材
8、9、18 シール部
8b1、9b1、18b1 テーパ面
8c、9c、18c 内周面
10 ハウジング部
11 スリーブ部
12 軸部
13、14、23 弾性体
24 芯部
25 被覆部
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S1、S2、S3、S4 シール空間

Claims (5)

  1. 軸受部材と、軸受部材に対して相対回転する軸部材と、軸受部材と軸部材との間に形成される軸受隙間と、軸受隙間を満たす潤滑流体とを備え、軸部材は、軸部と、軸部の外周に設けられ、軸受部材との間にシール空間を形成するシール部とを有する流体軸受装置において、
    シール部と軸部との間に、シール部よりも高い線膨張係数を有する弾性体を介在させたことを特徴とする流体軸受装置。
  2. 軸部をインサート部品とする射出成形で弾性体を軸部と一体に形成した請求項1記載の流体軸受装置。
  3. シール部を芯部と被覆部とで構成し、芯部と軸部との間に弾性体を配した請求項1記載の流体軸受装置。
  4. 弾性体との間の締め代でシール部を軸部に固定した請求項2又は3記載の流体軸受装置。
  5. 軸部およびシール部をインサート部品とする射出成形で弾性体を軸部およびシール部と一体に形成した請求項1又は3記載の流体軸受装置。
JP2006086088A 2006-03-27 2006-03-27 流体軸受装置 Withdrawn JP2007263165A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086088A JP2007263165A (ja) 2006-03-27 2006-03-27 流体軸受装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086088A JP2007263165A (ja) 2006-03-27 2006-03-27 流体軸受装置

Publications (1)

Publication Number Publication Date
JP2007263165A true JP2007263165A (ja) 2007-10-11

Family

ID=38636368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086088A Withdrawn JP2007263165A (ja) 2006-03-27 2006-03-27 流体軸受装置

Country Status (1)

Country Link
JP (1) JP2007263165A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360066A (zh) * 2019-07-11 2019-10-22 上海电气风电集团有限公司 滑动主轴承传动链及包括其的风力涡轮机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360066A (zh) * 2019-07-11 2019-10-22 上海电气风电集团有限公司 滑动主轴承传动链及包括其的风力涡轮机

Similar Documents

Publication Publication Date Title
KR101519426B1 (ko) 유체 동압 베어링 장치
JP5306747B2 (ja) 流体軸受装置
WO2006115104A1 (ja) 動圧軸受装置
JP2007263228A (ja) 動圧軸受装置
JP2007024267A (ja) 流体軸受装置およびこれを備えたモータ
JP2008267531A (ja) 動圧軸受装置の製造方法
US20100166346A1 (en) Dynamic bearing device
JP4559336B2 (ja) 流体軸受装置およびその製造方法
JP2009168147A (ja) 動圧軸受装置およびその製造方法
JP2007263165A (ja) 流体軸受装置
JP2005098315A (ja) 動圧軸受装置
JP2010043666A (ja) 動圧軸受装置
JP2007082339A (ja) 流体軸受装置およびその製造方法
JP4739114B2 (ja) 動圧軸受装置
JP2010096202A (ja) 流体軸受装置およびその製造方法
JP7199263B2 (ja) 流体動圧軸受装置
JP4685675B2 (ja) 動圧軸受装置
JP2009103179A (ja) 流体軸受装置
US8104964B2 (en) Fluid dynamic bearing unit
JP4615328B2 (ja) 動圧軸受装置
JP2007218397A (ja) 流体軸受装置
JP4509650B2 (ja) 動圧軸受装置
JP2007225060A (ja) 流体軸受装置
JP5214401B2 (ja) 流体軸受装置
JP2007113778A (ja) 流体軸受装置およびこれを備えたモータ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602