JP2007259648A - Charger for capacitor storage power supply - Google Patents

Charger for capacitor storage power supply Download PDF

Info

Publication number
JP2007259648A
JP2007259648A JP2006083402A JP2006083402A JP2007259648A JP 2007259648 A JP2007259648 A JP 2007259648A JP 2006083402 A JP2006083402 A JP 2006083402A JP 2006083402 A JP2006083402 A JP 2006083402A JP 2007259648 A JP2007259648 A JP 2007259648A
Authority
JP
Japan
Prior art keywords
current
charging
circuit
voltage
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006083402A
Other languages
Japanese (ja)
Other versions
JP3922650B1 (en
Inventor
Masaaki Shimizu
正明 清水
Katsushi Mitsui
克司 三井
Masahiko Shimizu
雅彦 清水
Shinichi Yamamoto
真一 山本
Atsushi Shimizu
敦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power System Co Ltd
Original Assignee
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power System Co Ltd filed Critical Power System Co Ltd
Priority to JP2006083402A priority Critical patent/JP3922650B1/en
Priority to EP07102294A priority patent/EP1821386A2/en
Priority to US11/707,097 priority patent/US7622898B2/en
Application granted granted Critical
Publication of JP3922650B1 publication Critical patent/JP3922650B1/en
Publication of JP2007259648A publication Critical patent/JP2007259648A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E10/58

Abstract

<P>PROBLEM TO BE SOLVED: To perform charging efficiently without feeding a current too much and without causing deficiency of power through simple circuitry. <P>SOLUTION: The charger for a capacitor storage power supply comprises a constant current control circuit 1 outputting a charging current I and an error amplification signal for controlling the charging current I based on a current reference value Vrefi, a power control circuit 2 outputting a charging power P and an error amplification signal for controlling the charging current I based on a power reference value Vrefp, a constant voltage control circuit 3 outputting a charging voltage Vc and an error amplification signal for controlling the charging current I based on a voltage reference value Vrefv, OR circuits D11-D31 outputting any one of error amplification signals while switching, and a control circuit 62 for generating a pulse width modulation signal based on an error amplification signal outputted from the OR circuit and controlling the charging current I by turning switch circuits SW1 and SW2 on/off wherein charging is performed for a capacitor storage power supply 7 for charging an electric double layer capacitor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気二重層キャパシタに蓄電するキャパシタ蓄電電源に対して充電を行うキャパシタ蓄電電源用充電装置に関する。   The present invention relates to a capacitor storage power supply charging device that charges a capacitor storage power supply that stores power in an electric double layer capacitor.

複数の電気二重層キャパシタを直列接続して構成する高電圧大容量の蓄電電源装置においては、充放電量に応じて端子電圧が大きく変動する。このようなキャパシタ蓄電電源では、二次電池のような定電圧充電を行うと効率が悪く、また、充電初期には大きな充電電流が流れ耐電流の問題が生じるため、定電流充電を行うことにより効率のよい充電を実現している。また、電気二重層キャパシタからなる蓄電電源では、直列接続したキャパシタ間のバラツキによる問題を解決するため、基準値を設定して各電気二重層キャパシタの端子電圧(充電電圧)が基準値を越えると充電電流をバイパスして各電気二重層キャパシタの端子電圧を制限する並列モニタが接続される。   In a high-voltage, large-capacity storage power supply device configured by connecting a plurality of electric double layer capacitors in series, the terminal voltage varies greatly depending on the amount of charge / discharge. In such a capacitor storage power source, when performing constant voltage charging like a secondary battery, the efficiency is low, and a large charging current flows at the initial stage of charging, resulting in a problem of current resistance. Efficient charging is realized. In addition, in a power storage power source composed of an electric double layer capacitor, in order to solve the problem due to variation between capacitors connected in series, if a reference value is set and the terminal voltage (charging voltage) of each electric double layer capacitor exceeds the reference value A parallel monitor that bypasses the charging current and limits the terminal voltage of each electric double layer capacitor is connected.

並列モニタは、このように充電電流をバイパスすることにより、充電電圧を所定値(耐電圧の範囲内である、満充電電圧)に制限し、各電気二重層キャパシタにおける充電電圧のバラツキを低減するものであるが、各電気二重層キャパシタの充電電圧の上昇とともに並列モニタが順次バイパス動作していくと、その動作時間とバイパス動作している並列モニタの数に比例して並列モニタでの電力損失が大きくなる。したがって、並列モニタに大電流で長時間のバイパス動作をさせることは回避させることが必要である。また、充電装置には、定電流充電により蓄電電源装置全体の充電電圧が上昇し所定値を越えると、無駄な電力損失を低減するため、例えば充電電圧の増加とともに充電電流を減少させて一定の電力となるように定電力充電へ切り換える電力リミッタ機能を持たせることも必要となる(例えば、非特許文献1、特許文献1参照)。
岡村廸夫著「電気二重層キャパシタと蓄電システム」日刊工業新聞社、2005年9月30日第3版第1刷発行、第138〜第139頁 特許第3306325号公報
The parallel monitor thus bypasses the charging current, thereby limiting the charging voltage to a predetermined value (full charging voltage within the withstand voltage range), and reducing the variation in charging voltage in each electric double layer capacitor. However, if the parallel monitors are sequentially bypassed as the charging voltage of each electric double layer capacitor increases, the power loss in the parallel monitors is proportional to the operating time and the number of bypassed parallel monitors. Becomes larger. Therefore, it is necessary to prevent the parallel monitor from performing a long-time bypass operation with a large current. In addition, when the charging voltage of the entire storage power supply device rises and exceeds a predetermined value due to constant current charging, the charging device reduces the useless power loss. It is also necessary to provide a power limiter function for switching to constant power charging so as to be electric power (see, for example, Non-Patent Document 1 and Patent Document 1).
Okamura Ikuo, “Electric Double Layer Capacitor and Power Storage System”, Nikkan Kogyo Shimbun, September 30, 2005, 3rd edition, first print, pages 138-139 Japanese Patent No. 3306325

キャパシタに対し、0Vから満充電の例えば3Vまで、一定の電流で充電を行うと、キャパシタに入っていく電力(電圧と電流の積)は、はじめはごく小さく、終わりに近づくと電圧に比例して大きくなる。家庭用のコンセントのように使える電力の最大が例えば1.5kWに決まっている場合、一定電流で充電すると電圧の低い間は電力に余裕があるが、キャパシタの容量によっては電圧が高くなると電力が足りなくなってしまう。そこで、低電力型の充電を行うようにすると、電圧の低いところでは充電電流が大きく、満充電に近づくにしたがって電流が小さくなるが、電圧がゼロに近い領域では極めて大きな電流になって、電流が流れすぎてしまう。   When a capacitor is charged with a constant current from 0V to fully charged, for example 3V, the power entering the capacitor (the product of voltage and current) is very small at the beginning and is proportional to the voltage as it approaches the end. Become bigger. If the maximum power that can be used, such as a household outlet, is determined to be 1.5 kW, for example, charging with a constant current will give you more power while the voltage is low, but depending on the capacity of the capacitor, the power will increase when the voltage increases. It ’s not enough. Therefore, when charging is performed at a low power type, the charging current is large at a low voltage, and the current is small as it approaches full charge. Will flow too much.

また、並列モニタのバイパス動作に伴う電力損失を低減させるため、並列モニタの耐電流上限値を小さくしようとすると、充電電流をそれに応じて小さくしなければならなくなり、充電時間が長くなる。充電電圧のバラツキを常に小さくしようとすると、電気二重層キャパシタの初期化動作を頻繁に行わなければならないなどの問題が生じる。そのため、定電流充電と定電力充電との動作切り換えの調整、回路構成や制御が煩雑になり装置全体としてもコストアップを招く。   Further, in order to reduce the power loss associated with the bypass operation of the parallel monitor, if it is attempted to reduce the current monitor upper limit value of the parallel monitor, the charging current must be reduced accordingly and the charging time becomes longer. If the variation in the charging voltage is constantly reduced, there arises a problem that the initialization operation of the electric double layer capacitor must be frequently performed. Therefore, adjustment of operation switching between constant current charging and constant power charging, a circuit configuration and control are complicated, and the entire apparatus is increased in cost.

本発明は、上記課題を解決するものであって、簡単な回路構成により電流を流しすぎることなく、電力が足りなくなることなく、効率のよい充電を行え、さらには、電力損失を低減し、充電効率の向上を図り、高速充電を可能にするものである。   The present invention solves the above-mentioned problems, and it is possible to perform efficient charging without causing excessive current to flow and insufficient power with a simple circuit configuration, and further, reducing power loss and charging. It improves efficiency and enables high-speed charging.

そのために本発明は、電気二重層キャパシタに蓄電するキャパシタ蓄電電源に対して充電を行うキャパシタ蓄電電源用充電装置において、充電電源から前記キャパシタ蓄電電源に供給する充電電流をオン/オフするスイッチ回路と、前記充電電流を検出する電流検出回路と、前記キャパシタ蓄電電源の電圧を検出する電圧検出回路と、前記電流検出回路により検出された電流値と電流基準値に基づき前記充電電流を制御する誤差増幅信号を出力する定電流制御回路と、前記電流検出回路により検出された電流値と前記電圧検出回路により検出された電圧値と電力基準値に基づき前記充電電流を制御する誤差増幅信号を出力する電力制御回路と、前記電圧検出回路により検出された電圧値と電圧基準値に基づき前記充電電流を制御する誤差増幅信号を出力する定電圧制御回路と、前記定電流制御回路、前記電力制御回路、前記定電圧制御回路より出力される各誤差増幅信号のいずれかを切り換えて出力する論理和回路と、前記論理和回路より出力される誤差増幅信号に基づきパルス幅変調信号を生成して前記スイッチ回路をオン/オフし前記充電電流を制御する制御回路とを備えたことを特徴とする。   Therefore, the present invention provides a capacitor storage power supply charging device that charges a capacitor storage power supply that stores power in an electric double layer capacitor, and a switch circuit that turns on / off a charging current supplied from the charge power supply to the capacitor storage power supply. A current detection circuit for detecting the charging current; a voltage detection circuit for detecting a voltage of the capacitor storage power supply; and an error amplification for controlling the charging current based on a current value and a current reference value detected by the current detection circuit A constant current control circuit that outputs a signal; and a power that outputs an error amplification signal that controls the charging current based on a current value detected by the current detection circuit, a voltage value detected by the voltage detection circuit, and a power reference value A control circuit; and an error amplifier for controlling the charging current based on a voltage value detected by the voltage detection circuit and a voltage reference value A constant voltage control circuit that outputs a signal, a logical sum circuit that switches and outputs one of the error amplification signals output from the constant current control circuit, the power control circuit, and the constant voltage control circuit, and the logical sum And a control circuit that generates a pulse width modulation signal based on an error amplification signal output from the circuit to turn on / off the switch circuit and control the charging current.

前記論理和回路は、ダイオード論理和回路であることを特徴とし、前記定電流制御回路は、前記電流基準値を複数の基準値で切り換え可能にし、さらに、前記定電流制御回路は、他のキャパシタ蓄電電源用充電装置をマスタ装置として、前記マスタ装置の電流検出回路により検出された電流値を前記基準値として入力し、前記キャパシタ蓄電電源は、直列接続された複数の電気二重層キャパシタのそれぞれに充電時に満充電電圧で充電電流をバイパスする並列モニタを有し、前記定電流制御回路は、前記並列モニタのバイパス動作を検出して前記電流基準値を切り換えることを特徴とし、前記電力制御回路は、前記電流値と前記電圧値とを乗算した値と電力基準値とを比較して誤差増幅信号を出力し、前記電力制御回路は、前記電力基準値から電圧値を減算した値と前記電流値とを比較して誤差増幅信号を出力し、前記定電圧制御回路は、前記電圧基準値を複数の基準値で切り換え可能にしたことを特徴とする。   The OR circuit is a diode OR circuit, the constant current control circuit allows the current reference value to be switched between a plurality of reference values, and the constant current control circuit includes another capacitor. The charging device for the storage power supply is used as a master device, and the current value detected by the current detection circuit of the master device is input as the reference value. The capacitor storage power supply is connected to each of the plurality of electric double layer capacitors connected in series. A parallel monitor that bypasses a charging current with a full charge voltage during charging, wherein the constant current control circuit detects a bypass operation of the parallel monitor and switches the current reference value. The current value and the voltage value are multiplied by a power reference value and an error amplification signal is output, and the power control circuit determines whether the power reference value is And outputs an error amplification signal is compared with the value obtained by subtracting the voltage value the current value, the constant voltage control circuit is characterized in that the switchable said voltage reference value at a plurality of reference values.

本発明によれば、論理和回路を通して定電流制御回路、電力制御回路、定電圧制御回路より出力される各誤差増幅信号のいずれかを切り換えて出力し、パルス幅変調信号を生成して前記スイッチ回路をオン/オフし前記充電電流を制御するので、簡単な構成によりパルス幅を変動の大きいキャパシタ電圧に効率よく追従させて効率よく充電を行うことができ、定電流充電から定電力充電、定電圧充電への切り換えを円滑に行うことができる。また、複数の基準値で切り換えできるようにすることにより、定電流充電、定電力充電、定電圧充電の切り換えポイントを柔軟に変えることができ、さらに、マスタ装置とスレーブ装置としてスレーブ装置の基準値にマスタ装置の充電電流の検出信号を導入できるようにすることにより、充電電流を増やすことができるので、より急速な充電が可能になる。   According to the present invention, any one of the error amplification signals output from the constant current control circuit, the power control circuit, and the constant voltage control circuit through the OR circuit is switched and output to generate a pulse width modulation signal, and the switch Since the charging current is controlled by turning on / off the circuit, the charging can be efficiently performed by efficiently following the capacitor voltage having a large fluctuation in the pulse width with a simple configuration. Switching to voltage charging can be performed smoothly. In addition, the switching point between constant current charging, constant power charging, and constant voltage charging can be changed flexibly by enabling switching with a plurality of reference values, and further, the reference value of the slave device as a master device and a slave device. Since the detection signal of the charging current of the master device can be introduced into the charging device, the charging current can be increased, so that more rapid charging is possible.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係るキャパシタ蓄電電源用充電装置の主回路の実施の形態を示す図、図2は本発明に係るキャパシタ蓄電電源用充電装置の信号処理回路の実施の形態を示す図である。図中、1は定電流信号発生回路、2は定電力信号発生回路、3は定電圧信号発生回路、5は充電電源、6は充電装置、7はキャパシタ蓄電電源、61は信号処理回路、62はPWM信号発生回路、63は増幅器、64は反転増幅器、71は電気二重層キャパシタ、AS11、AS12、AS21、AS22はアナログスイッチ、C1、C2はコンデンサ、D11、D21、D31はダイオード、Lはコイル、Rは電流検出用抵抗、SW1はメインスイッチ回路、SW2は同期整流回路、Vrefi1 、Vrefi2 は電流基準値設定回路、Vrefpは電力基準値設定回路、Vrefv1 、Vrefv2 は充電電圧基準値設定回路、Iは充電電流、Vcは充電電圧、Viは入力電圧を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a main circuit of a charging device for a capacitor storage power source according to the present invention, and FIG. 2 is a diagram showing an embodiment of a signal processing circuit of the charging device for a capacitor storage power source according to the present invention. . In the figure, 1 is a constant current signal generating circuit, 2 is a constant power signal generating circuit, 3 is a constant voltage signal generating circuit, 5 is a charging power source, 6 is a charging device, 7 is a capacitor storage power source, 61 is a signal processing circuit, 62 Is a PWM signal generation circuit, 63 is an amplifier, 64 is an inverting amplifier, 71 is an electric double layer capacitor, AS11, AS12, AS21 and AS22 are analog switches, C1 and C2 are capacitors, D11, D21 and D31 are diodes, and L is a coil , R is a current detection resistor, SW1 is a main switch circuit, SW2 is a synchronous rectifier circuit, Vrefi1 and Vrefi2 are current reference value setting circuits, Vrefp is a power reference value setting circuit, Vrefv1 and Vrefv2 are charging voltage reference value setting circuits, I Is a charging current, Vc is a charging voltage, and Vi is an input voltage.

図1に示す本実施形態に係るキャパシタ蓄電電源用充電装置は、充電電源5から充電装置6を通して複数の電気二重層キャパシタ71を直列接続したキャパシタ蓄電電源7を充電し蓄電するものである。キャパシタ蓄電電源7を構成する複数の電気二重層キャパシタのそれぞれは、例えば充電電圧が所定の基準電圧まで増加すると充電電流をバイパスする、所謂並列モニタが並列接続されたものもある。そして、充電装置6は、充電電源5とキャパシタ蓄電電源7との間に充電制御用のチョークコイルLと同期整流回路SW2を直列に接続し、これらの直列接続点に並列にメインスイッチ回路SW1を接続するとともに、入力側及び出力側に並列に平滑用にコンデンサC1、C2を接続して昇圧タイプのスイッチングコンバータを構成し、そして、充電電流Iを検出するため電流検出用抵抗Rを直列に挿入接続している。   The capacitor storage power supply charging device according to this embodiment shown in FIG. 1 charges and stores a capacitor storage power supply 7 in which a plurality of electric double layer capacitors 71 are connected in series from the charging power supply 5 through the charging device 6. Each of the plurality of electric double layer capacitors constituting the capacitor storage power source 7 may be connected in parallel with a so-called parallel monitor that bypasses the charging current when the charging voltage increases to a predetermined reference voltage, for example. The charging device 6 connects the choke coil L for charge control and the synchronous rectifier circuit SW2 in series between the charging power source 5 and the capacitor storage power source 7, and the main switch circuit SW1 is connected in parallel to these series connection points. In addition to connecting the capacitors C1 and C2 for smoothing in parallel on the input and output sides, a step-up type switching converter is constructed, and a current detection resistor R is inserted in series to detect the charging current I. Connected.

信号処理回路61は、オン/オフ制御信号によりメインスイッチ回路SW1をオン/オフし同期整流回路SW2をその逆相でオフ/オンして充電電流を制御するものである。そのために、充電電流I、充電電圧Vc、入力電圧Viを検出してそれらを制御対象として各種設定された基準値と比較しそれらの誤差増幅信号に基づき、定電流充電、定電力充電、定電圧充電などの各充電モードに応じてパルス幅変調されたオン/オフ制御信号を生成し出力する。具体的には、例えば図2に示すように定電流信号発生回路1、定電力信号発生回路2、定電圧信号発生回路3、PWM信号発生回路62を有する。そして、各誤差増幅信号を発生する回路(1〜3)において、電流基準値設定回路Vrefi1 又はVrefi2 、定電力基準値設定回路Vrefp、定電圧基準値設定回路Vrefv1 又はVrefv2 により設定された各種基準値と充電電流I、充電電圧Vcの検出信号、これらを演算した制御対象信号とを比較して誤差増幅信号を出力し、いずれか1つの誤差増幅信号をダイオードD11、D21、D31からなるオア論理回路により切り換え選択してPWM信号発生回路62に入力し、PWM信号発生回路62からパルス幅変調されたオン/オフ制御信号(PWM信号)を生成して増幅器63を通してメインスイッチ回路SW1に、反転増幅器64を通して同期整流回路SW2にそれぞれオン/オフする信号を出力する。   The signal processing circuit 61 controls the charging current by turning on / off the main switch circuit SW1 and turning off / on the synchronous rectifier circuit SW2 in the opposite phase by the on / off control signal. For this purpose, the charging current I, the charging voltage Vc, and the input voltage Vi are detected, compared with various reference values set as control targets, and based on their error amplification signals, constant current charging, constant power charging, constant voltage An on / off control signal modulated in pulse width according to each charging mode such as charging is generated and output. Specifically, for example, as shown in FIG. 2, it has a constant current signal generation circuit 1, a constant power signal generation circuit 2, a constant voltage signal generation circuit 3, and a PWM signal generation circuit 62. In the circuits (1 to 3) for generating each error amplification signal, various reference values set by the current reference value setting circuit Vrefi1 or Vrefi2, the constant power reference value setting circuit Vrefp, or the constant voltage reference value setting circuit Vrefv1 or Vrefv2. And the detection signal of the charging current I and the charging voltage Vc, and the control target signal obtained by calculating these are output, and an error amplification signal is output, and one of the error amplification signals is an OR logic circuit comprising diodes D11, D21, and D31 Is switched and selected and input to the PWM signal generation circuit 62, and a pulse width modulated on / off control signal (PWM signal) is generated from the PWM signal generation circuit 62 to the main switch circuit SW 1 through the amplifier 63 and the inverting amplifier 64. To turn on / off signals to the synchronous rectifier circuit SW2.

図2に示す実施形態において、それぞれ定電流信号発生回路1は、アナログスイッチAS11、AS12により複数の電流基準値設定回路Vrefi1 又はVrefi2 のいずれかと切り換え接続して選択、変更でき、定電圧信号発生回路3は、アナログスイッチAS31、AS32により複数の定電圧基準値設定回路Vrefv1 又はVrefv2 のいずれかと切り換え接続して基準値が選択、変更できるようにしている。   In the embodiment shown in FIG. 2, each of the constant current signal generation circuits 1 can be selected and changed by switching connection to one of a plurality of current reference value setting circuits Vrefi1 or Vrefi2 by analog switches AS11 and AS12. 3, the analog switches AS31 and AS32 are connected to one of a plurality of constant voltage reference value setting circuits Vrefv1 or Vrefv2 so that the reference value can be selected and changed.

ここで、電流基準値Vrefi1 、Vrefi2 の切り換えは、電気二重層キャパシタ71に並列モニタが並列接続され、電気二重層キャパシタ71の耐電流上限値に対して並列モニタの耐電流上限値を小さくしている場合に、並列モニタがバイパス動作したことを条件(満充電信号:F信号)に行われる。この場合には、並列モニタがバイパス動作するまでは選択信号refi1によりアナログスイッチAS11をオン、選択信号refi2によりアナログスイッチAS12をオフにして、電気二重層キャパシタ71の耐電流上限値に対応した大きな充電電流で急速に充電し、並列モニタのバイパス動作を検出すると、選択信号refi1によりアナログスイッチAS11をオフ、選択信号refi2によりアナログスイッチAS12をオンに切り換えることにより、並列モニタの耐電流上限値以下の小さな充電電流に切り換える。このような電流基準値の切り換えを行うことにより、並列モニタを小容量化し、満充電になってからのバイパス動作による電力の損失を少なくすることができる。   Here, the current reference values Vrefi1 and Vrefi2 are switched by connecting the parallel monitor to the electric double layer capacitor 71 in parallel, and reducing the current monitor upper limit value of the parallel monitor relative to the current limit value of the electric double layer capacitor 71. In the case where the parallel monitor is bypassed, the condition (full charge signal: F signal) is performed. In this case, the analog switch AS11 is turned on by the selection signal refi1 and the analog switch AS12 is turned off by the selection signal refi2 until the parallel monitor performs a bypass operation, and a large charge corresponding to the current withstand current upper limit value of the electric double layer capacitor 71 is obtained. When the parallel monitor is quickly charged and the bypass operation of the parallel monitor is detected, the analog switch AS11 is turned off by the selection signal refi1 and the analog switch AS12 is turned on by the selection signal refi2, thereby reducing the parallel monitor's current withstand current upper limit value or less. Switch to charge current. By switching the current reference value in this way, the capacity of the parallel monitor can be reduced, and the loss of power due to the bypass operation after full charge can be reduced.

また、複数の充電装置を使って並列運転させる場合、各充電装置の充電電流を同一にするときにマスター充電装置から充電電流の検出値をスレーブ充電装置の電流基準値とする。この場合には、1つのマスター充電装置において、選択信号refi1によりアナログスイッチAS11をオン、選択信号refi2によりアナログスイッチAS12をオフにし、その他のスレーブ充電装置において、選択信号refi1によりアナログスイッチAS11をオフ、選択信号refi2によりアナログスイッチAS12をオンにして、電流基準値設定回路Vrefi2 としてマスター充電装置から取り出される充電電流の検出値を接続する。このように複数の充電装置を使い、それぞれ独立で動作させるのではなく、それらのうちの1つをマスター充電装置とし、その他をスレーブ充電装置としてマスター充電装置の出力する充電電流をそのまま電流基準値として使用することにより同期制御ができ、全体として充電電流を増やすことができ、より急速な充電が可能となる。   Further, when a plurality of charging devices are operated in parallel, when the charging current of each charging device is made the same, the detected value of the charging current from the master charging device is set as the current reference value of the slave charging device. In this case, in one master charging device, the analog switch AS11 is turned on by the selection signal refi1, the analog switch AS12 is turned off by the selection signal refi2, and in the other slave charging devices, the analog switch AS11 is turned off by the selection signal refi1, The analog switch AS12 is turned on by the selection signal refi2, and the detected value of the charging current taken out from the master charging device is connected as the current reference value setting circuit Vrefi2. In this way, a plurality of charging devices are used and are not operated independently, but one of them is set as a master charging device and the other as a slave charging device, and the charging current output from the master charging device is used as it is as a current reference value. As a result, the synchronous control can be performed, the charging current can be increased as a whole, and more rapid charging is possible.

定電圧基準値設定回路Vrefv1 、Vrefv2 の切り換えは、例えば定格電圧切り換えスイッチの出力信号など外部信号(refv1、refv2)により行う。電気二重層キャパシタ71は、定格電圧が5Vのものにおいて電圧を0.2V下げて使用すると寿命が1.5倍になるという経験則がある。したがって、例えば通常の使用モードを選択信号refv1によりアナログスイッチAS31をオンにして定電圧基準値Vrefv1 を選択し、長寿の使用モードを選択信号refv2によりアナログスイッチAS32をオンにして定電圧基準値Vrefv2 を選択する。   The constant voltage reference value setting circuits Vrefv1 and Vrefv2 are switched by an external signal (refv1, refv2) such as an output signal of a rated voltage switch. The electric double layer capacitor 71 has an empirical rule that, when the rated voltage is 5V and the voltage is lowered by 0.2V, the life is 1.5 times longer. Therefore, for example, in the normal use mode, the analog switch AS31 is turned on by the selection signal refv1 to select the constant voltage reference value Vrefv1, and in the longevity use mode, the analog switch AS32 is turned on by the selection signal refv2 to set the constant voltage reference value Vrefv2. select.

図3は定電圧信号発生回路及び定電力信号発生回路の実施の形態を示す図、図4は定電流ー定電力ー定電圧の制御モードの遷移を説明する図、図5は並列モニタのバイパス動作による切り換え信号発生回路の実施の形態を示す図である。図中、11、21は演算増幅器、72は並列モニタ、73はオアゲート、AS12はアナログスイッチ、C21、C22、Cr1、Cr2はコンデンサ、R11、R21、Rr1、Rr2は抵抗、Rrv11、Rrv12、Rrv2は可変抵抗を示す。   FIG. 3 is a diagram illustrating an embodiment of a constant voltage signal generation circuit and a constant power signal generation circuit, FIG. 4 is a diagram illustrating transition of a control mode of constant current-constant power-constant voltage, and FIG. It is a figure which shows embodiment of the switching signal generation circuit by operation | movement. In the figure, 11 and 21 are operational amplifiers, 72 is a parallel monitor, 73 is an OR gate, AS12 is an analog switch, C21, C22, Cr1, and Cr2 are capacitors, R11, R21, Rr1, and Rr2 are resistors, and Rrv11, Rrv12, and Rrv2 are Indicates a variable resistor.

図3において、定電流信号発生回路1は、演算増幅器11の反転入力端子−に充電電流Iの検出信号を入力し、非反転入力端子+に電流基準値Vrefiを入力して、反転入力端子−と出力端子との間にコンデンサC11と抵抗R11との直列回路を接続することにより誤差増幅回路を構成している。同様に、定電力信号発生回路2は、演算増幅器21の反転入力端子−に充電電力Pの検出信号(電流×電圧の演算信号)を入力し、非反転入力端子+に電力基準値Vrefpを入力して、反転入力端子−と出力端子との間にコンデンサC21と抵抗R21との直列回路を接続することにより誤差増幅回路を構成している。なお、定電圧信号発生回路3については、定電流信号発生回路1と同様の構成を採用することができるので、省略している。   In FIG. 3, the constant current signal generating circuit 1 inputs a detection signal of the charging current I to the inverting input terminal − of the operational amplifier 11, inputs the current reference value Vrefi to the non-inverting input terminal +, and And an output terminal, a series circuit of a capacitor C11 and a resistor R11 is connected to form an error amplifier circuit. Similarly, the constant power signal generation circuit 2 inputs the detection signal (current × voltage calculation signal) of the charging power P to the inverting input terminal − of the operational amplifier 21 and the power reference value Vrefp to the non-inverting input terminal +. An error amplifier circuit is configured by connecting a series circuit of a capacitor C21 and a resistor R21 between the inverting input terminal − and the output terminal. The constant voltage signal generation circuit 3 is omitted because it can adopt the same configuration as the constant current signal generation circuit 1.

上記の各基準値設定回路は、周知の様々な回路で構成することができるが、電流基準値では、図示のように安定化されたバイアス電源+Vを固定抵抗Rr1と可変抵抗Rrv1との分圧回路で分圧し、その分圧接続点から電流基準値Vrefiを取り出し、可変抵抗Rrv1により所定の電圧に調整する。なお、コンデンサCr1はノイズ対策用として可変抵抗Rrv1に並列接続している。さらに、アナログスイッチAS12を介して可変抵抗Rrv1と並列に可変抵抗Rrv2を接続し、アナログスイッチAS12を選択信号refi2によりオン/オフすることにより、電流基準値を切り換えるようにしている。ここで、アナログスイッチAS12をオフにすると、図2に示す実施形態のアナログスイッチAS11をオン、アナログスイッチAS12をオフにし、アナログスイッチAS12をオンにすると、図2に示す実施形態のアナログスイッチAS11をオフ、アナログスイッチAS12をオンにした回路に対応させることができる。勿論、図2に示す実施形態のVrefi1、Vrefi2のそれぞれを図3に示す実施形態の固定抵抗Rr1と可変抵抗Rrv1との分圧回路でそれぞれ構成してもよい。   Each of the reference value setting circuits described above can be constituted by various known circuits. However, with a current reference value, the bias power source + V stabilized as shown in FIG. 2 is divided between the fixed resistor Rr1 and the variable resistor Rrv1. The voltage is divided by the circuit, the current reference value Vrefi is taken out from the voltage dividing connection point, and adjusted to a predetermined voltage by the variable resistor Rrv1. The capacitor Cr1 is connected in parallel to the variable resistor Rrv1 as a noise countermeasure. Further, the variable resistor Rrv2 is connected in parallel with the variable resistor Rrv1 via the analog switch AS12, and the current reference value is switched by turning on / off the analog switch AS12 by the selection signal refi2. Here, when the analog switch AS12 is turned off, the analog switch AS11 of the embodiment shown in FIG. 2 is turned on, the analog switch AS12 is turned off, and when the analog switch AS12 is turned on, the analog switch AS11 of the embodiment shown in FIG. It is possible to correspond to a circuit in which the analog switch AS12 is turned on. Of course, each of Vrefi1 and Vrefi2 of the embodiment shown in FIG. 2 may be configured by a voltage dividing circuit of the fixed resistor Rr1 and variable resistor Rrv1 of the embodiment shown in FIG.

図3において、定電流信号発生回路1は、充電装置に直列に挿入接続した電流検出用抵抗Rの端子間の電圧降下を充電電流Iの検出信号として取り出してこれを制御対象として入力し、コンパレータの基準値として電流基準値設定回路で設定されている電流基準値Vrefiと比較して、その誤差増幅信号を出力する誤差増幅回路で構成される。したがって、定電流信号発生回路1から出力される誤差増幅信号は、入力される制御対象の充電電流Iが電流基準値Vrefiより小さければ出力値は大きくなり、充電電流Iが電流基準値Vrefiより大きければ出力値は小さくなる。PWM信号発生回路62では、この誤差増幅信号を入力すると、充電電流Iが電流基準値Vrefiより小さいときは充電電流Iを大きくし、逆に充電電流Iが電流基準値Vrefiより大きいときは充電電流Iが小さくするように入力する誤差増幅信号の大きさに応じてパルス幅(デューティ比)を制御するので、結果として、電流基準値Vrefiに基づき充電電流Iが一定になるように充電電流を制御する、定電流充電の制御モードCCが実行される。   In FIG. 3, a constant current signal generation circuit 1 takes out a voltage drop between terminals of a current detection resistor R inserted and connected in series with a charging device as a detection signal of a charging current I, and inputs this as a control object, Compared with the current reference value Vrefi set by the current reference value setting circuit as a reference value, the error amplification circuit outputs the error amplification signal. Therefore, the error amplification signal output from the constant current signal generation circuit 1 has a larger output value if the input charging current I to be controlled is smaller than the current reference value Vrefi, and the charging current I is larger than the current reference value Vrefi. The output value becomes smaller. When this error amplification signal is input, the PWM signal generation circuit 62 increases the charging current I when the charging current I is smaller than the current reference value Vrefi, and conversely when the charging current I is larger than the current reference value Vrefi. Since the pulse width (duty ratio) is controlled according to the magnitude of the input error amplification signal so that I is small, as a result, the charging current is controlled so that the charging current I becomes constant based on the current reference value Vrefi. The constant current charging control mode CC is executed.

同様に、定電力信号発生回路2は、充電電力Pを制御対象として入力し、コンパレータの基準値として電力基準値設定回路で設定されている電力基準値Vrefpと比較して、その誤差増幅信号を出力する誤差増幅回路で構成される。したがって、定電力信号発生回路2から出力される誤差増幅信号は、入力される制御対象の充電電力Pが電力基準値Vrefpより小さければ出力値は大きくなり、充電電力Pが電力基準値Vrefpより大きければ出力値は小さくなる。PWM信号発生回路62では、この誤差増幅信号を入力すると、充電電力Pが電力基準値Vrefpより小さいときは充電電流Iを大きくし、逆に充電電力Pが電力基準値Vrefpより大きいときは充電電流Iが小さくするように入力する誤差増幅信号の大きさに応じてパルス幅(デューティ比)を制御するので、結果として、電力基準値Vrefpに基づき充電電力Pが一定になるように充電電流Iを制御する、定電力充電の制御モードCPが実行される。   Similarly, the constant power signal generation circuit 2 inputs the charging power P as a control target, compares it with the power reference value Vrefp set by the power reference value setting circuit as a reference value of the comparator, and calculates the error amplification signal. It consists of an error amplification circuit that outputs. Therefore, the error amplification signal output from the constant power signal generation circuit 2 has a larger output value if the input charging power P to be controlled is smaller than the power reference value Vrefp, and the charging power P is larger than the power reference value Vrefp. The output value becomes smaller. When this error amplification signal is input, the PWM signal generation circuit 62 increases the charging current I when the charging power P is smaller than the power reference value Vrefp, and conversely when the charging power P is larger than the power reference value Vrefp. Since the pulse width (duty ratio) is controlled in accordance with the magnitude of the input error amplification signal so that I becomes small, as a result, the charging current I is set so that the charging power P becomes constant based on the power reference value Vrefp. The control mode CP of constant power charging to be controlled is executed.

ダイオードD11、D21、D31は、誤差増幅信号を出力する定電流信号発生回路1、定電力信号発生回路2、定電圧信号発生回路3のそれぞれから逆方向の極性でPWM信号発生回路62の入力に接続されているので、定電流信号発生回路1、定電力信号発生回路2、定電圧信号発生回路3の出力するそれぞれの誤差増幅信号のうち最も小さい誤差増幅信号をPWM信号発生回路62の入力とするオア論理回路を構成している。   The diodes D11, D21, and D31 are respectively input to the PWM signal generation circuit 62 from the constant current signal generation circuit 1, the constant power signal generation circuit 2, and the constant voltage signal generation circuit 3 that output error amplification signals with opposite polarities. Since they are connected, the smallest error amplification signal among the error amplification signals output from the constant current signal generation circuit 1, constant power signal generation circuit 2, and constant voltage signal generation circuit 3 is input to the PWM signal generation circuit 62. OR logic circuit is configured.

オア論理回路により行われる充電モードの切り換え制御をさらに説明すると、まず、充電を開始する初期の段階では、ダイオードD11がオン、ダイオードD21、D31がオフの状態で定電流充電の制御モードCCが実行される。すなわち、初期の段階でキャパシタ蓄電電源7の充電電圧Vcが小さく、定電流信号発生回路1の出力する誤差増幅信号に基づきPWM信号発生回路62が定電流充電の制御モードCCを実行しているときには、定電力信号発生回路2、定電圧信号発生回路3においてはいずれも制御対象が比較する基準値より小さいため、大きい値の誤差増幅信号を出力しても、充電電流Iもキャパシタ蓄電電源7の充電電圧Vcも大きくならず誤差増幅信号が上限値にはりついた状態になるから、ダイオードD21、D31が逆方向にバイアスされオフとなる。   The charging mode switching control performed by the OR logic circuit will be further described. First, in the initial stage of starting charging, the constant current charging control mode CC is executed while the diode D11 is on and the diodes D21 and D31 are off. Is done. That is, when the charging voltage Vc of the capacitor storage power supply 7 is small in the initial stage and the PWM signal generating circuit 62 is executing the constant current charging control mode CC based on the error amplification signal output from the constant current signal generating circuit 1. Since the constant power signal generation circuit 2 and the constant voltage signal generation circuit 3 are both smaller than the reference value to be compared, even if a large value error amplification signal is output, the charging current I is Since the charging voltage Vc is not increased and the error amplification signal is stuck to the upper limit value, the diodes D21 and D31 are biased in the reverse direction and turned off.

次に、定電流充電を続けることによりキャパシタ蓄電電源7の充電電圧Vcが増加し、充電電力Pが増加してゆき定電力信号発生回路2における電力基準値Vrefpより充電電力Pが大きくなると、定電力信号発生回路2から出力される誤差増幅信号が定電流信号発生回路1から出力される誤差増幅信号より小さくなる。ここから、定電流信号発生回路1の出力に接続されたダイオードD11がオフになって、定電力信号発生回路2の出力に接続されたダイオードD21がオンに切り換わり、キャパシタ蓄電電源7の充電電力Pが電力基準値Vrefpを越えないように充電電流Iを制御する、定電力充電の制御モードCPが実行される。   Next, when the constant voltage charging is continued, the charging voltage Vc of the capacitor storage power source 7 increases, the charging power P increases, and the charging power P becomes larger than the power reference value Vrefp in the constant power signal generating circuit 2. The error amplification signal output from the power signal generation circuit 2 is smaller than the error amplification signal output from the constant current signal generation circuit 1. From this point, the diode D11 connected to the output of the constant current signal generation circuit 1 is turned off, the diode D21 connected to the output of the constant power signal generation circuit 2 is turned on, and the charging power of the capacitor storage power source 7 is switched on. A constant power charging control mode CP is executed in which the charging current I is controlled so that P does not exceed the power reference value Vrefp.

さらに、定電力充電を継続することによりキャパシタ蓄電電源7の充電電圧Vcが増加してゆき、定電圧信号発生回路3における電圧基準値Vrefvより大きくなると、定電圧信号発生回路3から出力される誤差増幅信号が定電力信号発生回路2から出力される誤差増幅信号より小さくなり、電流逓減信号発生回路2の出力に接続されたダイオードD21がオフになって、定電圧信号発生回路3の出力に接続されたダイオードD31がオンに切り換わり、充電電圧Vcを電圧基準値Vrefvより小さくするように充電電流を制御する、定電圧充電の制御モードCVが実行される。   Furthermore, if the constant power charging is continued, the charging voltage Vc of the capacitor storage power supply 7 increases and becomes larger than the voltage reference value Vrefv in the constant voltage signal generating circuit 3, an error output from the constant voltage signal generating circuit 3. The amplified signal becomes smaller than the error amplified signal output from the constant power signal generating circuit 2, and the diode D21 connected to the output of the current diminishing signal generating circuit 2 is turned off and connected to the output of the constant voltage signal generating circuit 3. The switched diode D31 is turned on, and the constant voltage charging control mode CV is executed in which the charging current is controlled so that the charging voltage Vc is smaller than the voltage reference value Vrefv.

このように本実施形態の充電装置6によれば、図4に示すように充電電流Iを検出して電流基準値設定回路で設定された所定の電流基準値Vrefiと比較し、充電電流Iを一定にし(定電流充電:CC)、所定電圧までキャパシタ蓄電電源7が充電されると、充電電力Pを演算して電力基準値設定回路で設定された所定の電力基準値Vrefpと比較し、充電電力Pを一定にし(定電流充電:CP)、キャパシタ蓄電電源7が満充電電圧まで充電されると、充電電圧Vcを電圧基準値設定回路で設定された所定の電圧基準値Vrefvと比較し、充電電圧Vcを一定になるように(定電圧充電:CV)各制御モード間の切り換えを行ってメインスイッチ回路SW1及び同期整流回路SW2をPWM(Pulse Width Modulation :パルス幅変調)制御する。この定電流ー定電力ー定電圧充電の制御モードで遷移する様子を示したのが図4(a)である。   As described above, according to the charging device 6 of the present embodiment, the charging current I is detected and compared with the predetermined current reference value Vrefi set by the current reference value setting circuit as shown in FIG. When the capacitor storage power supply 7 is charged to a predetermined voltage (constant current charging: CC), the charging power P is calculated and compared with a predetermined power reference value Vrefp set by the power reference value setting circuit. When the electric power P is kept constant (constant current charging: CP) and the capacitor storage power supply 7 is charged to the fully charged voltage, the charging voltage Vc is compared with a predetermined voltage reference value Vrefv set by the voltage reference value setting circuit, The main switch circuit SW1 and the synchronous rectifier circuit SW2 are controlled by PWM (Pulse Width Modulation: pulse width modulation) by switching between the control modes so that the charging voltage Vc becomes constant (constant voltage charging: CV). FIG. 4 (a) shows the state of transition in this constant current-constant power-constant voltage charging control mode.

さらに、定電流信号発生回路1において、電流基準値Vrefi1 として電気二重層キャパシタ71の耐電流上限値に近い大きな充電電流で充電を行い、並列モニタのバイパス動作の検出信号Fにより充電電流を並列モニタの耐電流上限値以下の電流基準値Vrefi2 に切り換えるタイプの例を示したのが図4(b)である。この場合、図5に示すようにオアゲート73を通して各電気二重層キャパシタ71の並列モニタ72のバイパス動作の検出信号Fを取り出すことにより、いずれか1つの並列モニタがバイパス動作すると電流基準値Vrefi2 に切り換えるようにすることができる。さらに、定電圧信号発生回路3において、電気二重層キャパシタの寿命を考慮して電圧基準値Vrefvを切り換えることによりキャパシタ蓄電電源の定格電圧(Vfu)を変更するタイプの例を示したのが図4(c)である。   Further, in the constant current signal generating circuit 1, charging is performed with a large charging current close to the current withstand upper limit value of the electric double layer capacitor 71 as the current reference value Vrefi1, and the charging current is monitored in parallel by the detection signal F of the bypass operation of the parallel monitor. FIG. 4B shows an example of a type that switches to a current reference value Vrefi2 that is equal to or less than the current withstand current upper limit value. In this case, as shown in FIG. 5, the detection signal F of the bypass operation of the parallel monitor 72 of each electric double layer capacitor 71 is taken out through the OR gate 73, and when any one of the parallel monitors is bypassed, the current reference value Vrefi2 is switched. Can be. Further, in the constant voltage signal generating circuit 3, an example of a type in which the rated voltage (Vfu) of the capacitor storage power supply is changed by switching the voltage reference value Vrefv in consideration of the life of the electric double layer capacitor is shown in FIG. (C).

図6はマスター充電装置とスレーブ充電装置として並列運転する同期制御方式の実施の形態を示す図であり、マスター/スレーブの設定信号によりアナログスイッチAS1a〜AS3a、AS1b〜AS3bを選択的にオン/オフしてマスター充電装置或いはスレーブ充電装置に設定し並列運転するように構成した実施の形態である。図6に示す実施の形態においては、マスターの設定信号により充電装置AのアナログスイッチAS1a、AS3aをオンにすると、充電装置Aがマスター充電装置となり、定電流信号発生回路1aで電圧基準値Vrefia を入力して充電電流Iaを制御するとともに、その充電電流Iaの検出信号をスレーブ充電装置の基準値として使用するため、アナログスイッチAS3aを通して共通の基準値ライン(破線)に出力する。これに対し、充電装置BのアナログスイッチAS2bをスレーブの設定信号によりオンにすると、充電装置Bがスレーブ充電装置となり、定電流信号発生回路1bでアナログスイッチAS2bを通して共通の基準値ライン(破線)からマスター充電装置の充電電流Iaを基準値として入力して充電電流Ibを制御する。   FIG. 6 is a diagram showing an embodiment of a synchronous control system in which a master charging device and a slave charging device are operated in parallel. The analog switches AS1a to AS3a and AS1b to AS3b are selectively turned on / off by a master / slave setting signal. Then, the embodiment is configured to be set in the master charging device or the slave charging device and operated in parallel. In the embodiment shown in FIG. 6, when the analog switches AS1a and AS3a of the charging device A are turned on by the master setting signal, the charging device A becomes the master charging device and the constant current signal generation circuit 1a sets the voltage reference value Vrefia. The charging current Ia is input and controlled, and the detection signal of the charging current Ia is used as a reference value for the slave charging device, so that it is output to a common reference value line (broken line) through the analog switch AS3a. On the other hand, when the analog switch AS2b of the charging device B is turned on by the slave setting signal, the charging device B becomes a slave charging device, and the constant current signal generating circuit 1b is connected to the common reference value line (broken line) through the analog switch AS2b. The charging current Ib of the master charging device is input as a reference value to control the charging current Ib.

図7は定電力信号発生回路の他の実施の形態を示す図であり、22は乗算回路、23は演算増幅器、R22、R23は抵抗、Voff-set はオフセット値設定回路を示す。定電力信号発生回路2は、図7(a)に示すように乗算回路22により充電電流Iとキャパシタ蓄電電源の充電電圧Vcとを乗算して充電電力Pを求め、これを電力基準値Vrefip として誤差増幅信号を出力する構成が一般的である。しかし、大容量のキャパシタ蓄電電源では、数十〜数百A、数百〜数kVにもなり、しかも、電圧は0V近傍から満充電電圧まで広いレンジで変化するため、このような乗算器は、コストが高く、かつ調整を要するなどの問題がある。その結果、部品のコスト高にともない装置のコストも高いものになってしまう。そこで、定電力信号発生回路の実施の形態として図7(b)に示すように充電電圧の増加に逆比例して充電電流を逓減させる簡易型の構成としてもよい。   FIG. 7 is a diagram showing another embodiment of the constant power signal generating circuit, wherein 22 is a multiplication circuit, 23 is an operational amplifier, R22 and R23 are resistors, and Voff-set is an offset value setting circuit. As shown in FIG. 7A, the constant power signal generation circuit 2 multiplies the charging current I by the charging voltage Vc of the capacitor storage power source by the multiplication circuit 22 to obtain the charging power P, which is used as the power reference value Vrefip. A configuration that outputs an error amplification signal is common. However, in a large-capacity capacitor storage power supply, it can be several tens to several hundreds A, several hundreds to several kV, and the voltage varies in a wide range from near 0 V to a full charge voltage. There are problems such as high cost and adjustment. As a result, the cost of the apparatus increases as the cost of the parts increases. Therefore, as an embodiment of the constant power signal generation circuit, as shown in FIG. 7B, a simple configuration in which the charging current is gradually decreased in inverse proportion to the increase of the charging voltage may be employed.

図7(b)に示す簡易型の定電力信号発生回路2は、電流逓減信号発生回路であり、キャパシタ蓄電電源7の充電電圧Vcの増加に逆比例して充電電流Iを小さくする電流基準値Vref(v-i)を発生させ、この電流基準値Vref(v-i)と制御対象の充電電流Iを比較して、その誤差増幅信号を出力するものである。電流基準値Vref(v-i)は、演算増幅器23において、その反転入力端子−に抵抗R22を介してキャパシタ蓄電電源7の充電電圧Vcの検出信号を入力し、非反転入力端子+にオフセット値Voff-set を入力して、反転入力端子−と出力端子との間に抵抗R23を接続して構成される減算回路より図7(c)に示す出力を発生させている。この減算回路によればVoff-set +(Voff-set −Vc)R23/R22(ここで、R23=R22とすると、2Voff-set −Vc)の電流基準値Vref(v-i)が取り出され、Voff-set を図2(b)のVstと一致する値に設定すると、キャパシタ蓄電電源7の充電電圧VcがVoff-set まで増加したとき、定電流信号発生回路1と電流逓減信号発生回路2の基準値が同値となるので、ここから電流逓減の制御モードに切り換わる設定となる。また、この減算回路において、R23とR22の比を変えることにより、図7(d)のV−I、(V−I)′のように電流基準値Vref(v-i)の勾配を変えるようにしてもよいし、さらに、図7(d)に示すように並列モニタのバイパス動作信号F、F′により定電流充電から定電力充電(電流逓減充電)への切り換え、定電力充電(電流逓減充電)から小電流の定電流充電への切り換えを行うようにしてもよい。   A simplified constant power signal generation circuit 2 shown in FIG. 7B is a current diminishing signal generation circuit, and is a current reference value that decreases the charging current I in inverse proportion to the increase in the charging voltage Vc of the capacitor storage power source 7. Vref (vi) is generated, the current reference value Vref (vi) is compared with the charging current I to be controlled, and an error amplification signal is output. The current reference value Vref (vi) is obtained by inputting a detection signal of the charging voltage Vc of the capacitor storage power supply 7 to the inverting input terminal − of the operational amplifier 23 via the resistor R22 and supplying the offset value Voff− to the non-inverting input terminal +. An output shown in FIG. 7C is generated from a subtracting circuit configured by inputting set and connecting a resistor R23 between the inverting input terminal − and the output terminal. According to this subtraction circuit, a current reference value Vref (vi) of Voff-set + (Voff-set−Vc) R23 / R22 (where R23 = R22 is 2Voff-set−Vc) is taken out and Voff− When set is set to a value that matches Vst in FIG. 2B, when the charging voltage Vc of the capacitor storage power supply 7 increases to Voff-set, the reference values of the constant current signal generation circuit 1 and the current diminishing signal generation circuit 2 are set. Since the values are equal to each other, the setting is switched from here to the current decreasing control mode. Further, in this subtraction circuit, by changing the ratio of R23 and R22, the gradient of the current reference value Vref (vi) is changed as shown in VI and (VI) ′ of FIG. Further, as shown in FIG. 7 (d), switching from constant current charging to constant power charging (current decreasing charging), constant power charging (current decreasing charging) by the bypass operation signals F and F 'of the parallel monitor. May be switched to constant current charging with a small current.

充電時において、それぞれの電気二重層キャパシタの充電電圧が不均等に充電されていっても、並列モニタを有する場合には、所定の基準電圧まで充電された電気二重層キャパシタの並列モニタから順次バイパス動作することにより、充電電流をバイパスして充電電圧を所定の基準電圧に制限する。したがって、最終的には電気二重層キャパシタの満充電電圧を所定の基準電圧として設定すると、各電気二重層キャパシタを満充電電圧に均等に充電することができる。   When charging, even if the charging voltage of each electric double layer capacitor is charged unevenly, if there is a parallel monitor, it bypasses sequentially from the parallel monitor of the electric double layer capacitor charged to a predetermined reference voltage By operating, the charging current is bypassed and the charging voltage is limited to a predetermined reference voltage. Therefore, finally, when the full charge voltage of the electric double layer capacitor is set as a predetermined reference voltage, each electric double layer capacitor can be evenly charged to the full charge voltage.

所定の基準電圧まで充電された電気二重層キャパシタの並列モニタが充電電流をバイパスするとき、その並列モニタでは、所定の基準電圧と充電電流、つまり、バイパス時の電圧と電流との積からなる電力が熱消費される。このことにより、並列モニタの動作時間が長いほど、またその数が多いほどキャパシタ蓄電電源7として電力損失、熱損失が大きくなる。その結果、並列モニタは、放熱効率を上げるため容量を大きくし構造的にも大型にしなければならなくなり、電力の無駄とともにスペースの無駄も大きくキャパシタ蓄電電源7の小型化が実現しにくくなる。そのため、本実施形態に係る充電装置6のように、複数の電気二重層キャパシタのいずれかの並列モニタがバイパス動作する初期段階をキャパシタ蓄電電源7の充電電圧で判断し、充電電圧の増加に逆比例して充電電流を逓減させたり、また、図4(b)、図7(d)に示すように並列モニタのバイパス動作に応じて充電電流を並列モニタの耐電流上限値以下に制限するような制御を行うことにより、小容量化、小型化を可能になる。   When a parallel monitor of an electric double layer capacitor charged to a predetermined reference voltage bypasses the charging current, the parallel monitor uses a power that is the product of the predetermined reference voltage and the charging current, that is, the voltage and current at the time of bypass. Is consumed. As a result, the longer the operation time of the parallel monitor and the greater the number, the greater the power loss and heat loss of the capacitor storage power supply 7. As a result, the parallel monitor has to be increased in capacity and structurally large in order to increase heat dissipation efficiency, and waste of power and waste of space are large, and it is difficult to realize downsizing of the capacitor storage power source 7. Therefore, as in the charging device 6 according to the present embodiment, the initial stage in which the parallel monitor of any of the plurality of electric double layer capacitors performs a bypass operation is determined based on the charging voltage of the capacitor storage power supply 7, and the increase in the charging voltage is reversed. The charging current is decreased in proportion, or the charging current is limited to the upper limit of the withstand current of the parallel monitor according to the bypass operation of the parallel monitor as shown in FIGS. 4 (b) and 7 (d). By performing an appropriate control, the capacity and size can be reduced.

図8は本発明に係るキャパシタ蓄電電源用充電装置の主回路の他の実施の形態を示す図であり、61′は信号処理回路、C1′、C2′はコンデンサ、L′はコイル、R′は電流検出抵抗、SW1′、SW2′はスイッチ回路を示す。   FIG. 8 is a diagram showing another embodiment of the main circuit of the charging device for capacitor storage power source according to the present invention, wherein 61 ′ is a signal processing circuit, C1 ′ and C2 ′ are capacitors, L ′ is a coil, R ′ Denotes a current detection resistor, and SW1 'and SW2' denote switch circuits.

図8に示す充電装置は、充電電源5とキャパシタ蓄電電源7との間に充電制御用のスイッチ回路SW1′とチョークコイルL′を直列に接続し、これらの直列接続点に並列に同期整流回路SW2′を接続するとともに、入力側及び出力側に並列にコンデンサC1′、C2′を接続して、PWM信号によりスイッチ回路SW1′をオン/オフすると共に、それと逆位相で同期整流回路SW2′をオフ/オンして充電電流をキャパシタ蓄電電源7に供給する降圧タイプのスイッチングコンバータを備えたものである。なお、図1及び図8の実施の形態において、同期整流回路SW2、SW2′はダイオード(フライホィールダイオード)に変えてもよい。   In the charging device shown in FIG. 8, a switching circuit SW1 ′ for charging control and a choke coil L ′ are connected in series between a charging power source 5 and a capacitor storage power source 7, and a synchronous rectifier circuit is connected in parallel to these series connection points. SW2 'is connected and capacitors C1' and C2 'are connected in parallel on the input side and output side, and the switch circuit SW1' is turned on / off by the PWM signal, and the synchronous rectifier circuit SW2 'is turned on in the opposite phase. A step-down switching converter is provided that supplies the charging current to the capacitor storage power source 7 by turning it off / on. In the embodiment shown in FIGS. 1 and 8, the synchronous rectification circuits SW2 and SW2 ′ may be replaced with diodes (flywheel diodes).

図9はオン/オフ制御信号の出力回路における同期整流回路の動作を制限する回路の実施の形態を示す図、図10はオン/オフ制御信号の出力回路における同時オンを防止する回路の実施の形態を示す図である。図中、63、65、66は増幅器、64は反転増幅器、Cp1〜Cp4はコンデンサ、Dp1〜Dp3はダイオード、Qp1、Qp2はトランジスタ、Rp1〜Rp8は抵抗を示す。   FIG. 9 is a diagram showing an embodiment of a circuit for limiting the operation of the synchronous rectifier circuit in the output circuit for the on / off control signal, and FIG. 10 is an implementation of the circuit for preventing simultaneous on in the output circuit for the on / off control signal. It is a figure which shows a form. In the figure, 63, 65 and 66 are amplifiers, 64 is an inverting amplifier, Cp1 to Cp4 are capacitors, Dp1 to Dp3 are diodes, Qp1 and Qp2 are transistors, and Rp1 to Rp8 are resistors.

メインスイッチ回路SW1のオン/オフ制御において、そのデューティ比が小さくなったときは、充電電流が小さくなるように絞られているときである。図9に示す実施の形態では、同期整流回路SW2に対しチョークコイルLに蓄積したエネルギーを放出させる極性にダイオードを並列接続し、デューティ比が小さいときメインスイッチ回路SW1のオン/オフにかかわらず、同期整流回路SW2をオフのまま維持することにより、軽負荷時に同期整流回路を通して充電電流が逆流するのを阻止するようにしている。ここでは、ダイオードDp1と抵抗Rp1とコンデンサCp1とを直列に接続し、コンデンサCp1に抵抗Rp2を並列に接続してオン/オフ制御信号の整流平滑回路を構成している。そして、この整流平滑した出力をトランジスタQp1のベース−エミッタ間に加えてパルスデューティ比、つまりオンのパルス幅が所定値より大きいときにはトランジスタQp1がオンに、パルス幅が所定値以下になると、ベースバイアスが小さくなってトランジスタQp1がオフになるようにし、さらにトランジスタQp1のコレクタ出力によりトランジスタQp2のベースバイアスを制御して、同期整流回路SW2をオン/オフする反転増幅器64の出力を短絡する信号保持回路を備えている。本実施形態によれば、電流を小さいときのみ同期整流回路SW2をオフのロック状態にしてダイオードを通してチョークコイルLに蓄積したエネルギーを放出させ、大きい電流は同期整流回路SW2をオンにして流れるようにするので、ダイオードでの損失を小さくすることができる。   In the on / off control of the main switch circuit SW1, the duty ratio is reduced when the charging current is narrowed down. In the embodiment shown in FIG. 9, a diode is connected in parallel with a polarity that releases energy stored in the choke coil L with respect to the synchronous rectifier circuit SW2, and when the duty ratio is small, regardless of whether the main switch circuit SW1 is on or off, By maintaining the synchronous rectifier circuit SW2 in an off state, the charging current is prevented from flowing back through the synchronous rectifier circuit at a light load. Here, a diode Dp1, a resistor Rp1, and a capacitor Cp1 are connected in series, and a resistor Rp2 is connected in parallel to the capacitor Cp1, thereby forming an on / off control signal rectifying and smoothing circuit. Then, this rectified and smoothed output is applied between the base and emitter of the transistor Qp1, and when the pulse duty ratio, that is, the ON pulse width is larger than a predetermined value, the transistor Qp1 is turned ON. Is reduced so that the transistor Qp1 is turned off, and the base bias of the transistor Qp2 is controlled by the collector output of the transistor Qp1 to short-circuit the output of the inverting amplifier 64 that turns on and off the synchronous rectifier circuit SW2. It has. According to the present embodiment, only when the current is small, the synchronous rectifier circuit SW2 is turned off to release the energy accumulated in the choke coil L through the diode, and the large current flows with the synchronous rectifier circuit SW2 turned on. Therefore, the loss in the diode can be reduced.

また、メインスイッチ回路SW1と同期整流回路SW2が同時にオンすることがないようにするため、例えば図10(a)に示すようにオン/オフ制御信号の出力回路にそれぞれオンの立ち上がりを遅延させる遅延回路を設けるようにしてもよい。図10(a)において、抵抗Rp6とコンデンサCp3がメインスイッチ回路SW1の駆動パルス立ち上がり時(オン時)のディレイΔtを実現し、同様に、抵抗Rp8とコンデンサCp4が同期整流回路SW2の駆動パルス立ち上がり時(オン時)のディレイΔtを実現する回路であり、抵抗Rp6と並列に接続されているメインスイッチ回路SW1の駆動パルス信号の出力方向と逆極性のダイオードDp2及び抵抗Rp8と並列に接続されている同期整流回路SW2の駆動パルス信号の出力方向と逆極性のダイオードDp3は、それぞれパルスの立ち下がりエッジでのディレイΔtを生じないようにするための回路である。また、反転増幅回路の出力に接続されている抵抗Rp7とコンデンサCp2との並列回路は、ノイズ除去を目的とするものである。これらの回路を接続することにより、PWM信号を入力して増幅器63、65を通してメインスイッチ回路SW1に出力されるパルス信号、反転増幅器64、66を通して同期整流回路SW2に出力されるパルス信号は、図10(b)に示すように立ち上がりエッジのみがディレイされて、メインスイッチ回路SW1と同期整流回路SW2が同時にオンするのを防ぐことができる。なお、図10(b)において、t7、t8では、パルス幅が所定値より小さいため、図9に示したトランジスタQp2がオンになる状態を示している。   Further, in order to prevent the main switch circuit SW1 and the synchronous rectifier circuit SW2 from being turned on at the same time, for example, as shown in FIG. A circuit may be provided. In FIG. 10A, the resistor Rp6 and the capacitor Cp3 realize a delay Δt when the drive pulse of the main switch circuit SW1 rises (on), and similarly, the resistor Rp8 and the capacitor Cp4 rises of the drive pulse of the synchronous rectifier circuit SW2. This is a circuit that realizes a delay Δt at the time (ON time), and is connected in parallel with a diode Dp2 and a resistor Rp8 having a polarity opposite to the output direction of the drive pulse signal of the main switch circuit SW1 connected in parallel with the resistor Rp6. The diode Dp3 having a polarity opposite to the output direction of the drive pulse signal of the synchronous rectifier circuit SW2 is a circuit for preventing a delay Δt from occurring at the falling edge of each pulse. The parallel circuit of the resistor Rp7 and the capacitor Cp2 connected to the output of the inverting amplifier circuit is intended to remove noise. By connecting these circuits, a PWM signal is inputted and a pulse signal outputted to the main switch circuit SW1 through the amplifiers 63 and 65, and a pulse signal outputted to the synchronous rectification circuit SW2 through the inverting amplifiers 64 and 66 are shown in FIG. As shown in FIG. 10B, only the rising edge is delayed, and the main switch circuit SW1 and the synchronous rectifier circuit SW2 can be prevented from being turned on simultaneously. In FIG. 10B, at t7 and t8, since the pulse width is smaller than the predetermined value, the transistor Qp2 shown in FIG. 9 is turned on.

本発明に係るキャパシタ蓄電電源用充電装置の主回路の実施の形態を示す図である。It is a figure which shows embodiment of the main circuit of the charging device for capacitor electrical storage power supplies which concerns on this invention. 本発明に係るキャパシタ蓄電電源用充電装置の信号処理回路の実施の形態を示す図である。It is a figure which shows embodiment of the signal processing circuit of the charging device for capacitor electrical storage power supplies which concerns on this invention. 定電圧信号発生回路及び定電力信号発生回路の実施の形態を示す図である。It is a figure which shows embodiment of a constant voltage signal generation circuit and a constant power signal generation circuit. 定電流ー定電力ー定電圧の制御モードの遷移を説明する図である。It is a figure explaining the transition of the control mode of constant current-constant power-constant voltage. 並列モニタのバイパス動作による切り換え信号発生回路の実施の形態を示す図である。It is a figure which shows embodiment of the switching signal generation circuit by the bypass operation of a parallel monitor. マスター充電装置とスレーブ充電装置として並列運転する同期制御方式の実施の形態を示す図である。It is a figure which shows embodiment of the synchronous control system operated in parallel as a master charging device and a slave charging device. 定電力信号発生回路の他の実施の形態を示す図である。It is a figure which shows other embodiment of a constant power signal generation circuit. 本発明に係るキャパシタ蓄電電源用充電装置の主回路の他の実施の形態を示す図である。It is a figure which shows other embodiment of the main circuit of the charging device for capacitor electrical storage power supplies which concerns on this invention. オン/オフ制御信号の出力回路における同期整流回路の動作を制限する回路の実施の形態を示す図である。It is a figure which shows embodiment of the circuit which restrict | limits operation | movement of the synchronous rectifier circuit in the output circuit of an on / off control signal. オン/オフ制御信号の出力回路における同時オンを防止する回路の実施の形態を示す図である。It is a figure which shows embodiment of the circuit which prevents simultaneous ON in the output circuit of an on / off control signal.

符号の説明Explanation of symbols

1…定電流信号発生回路、2…定電力信号発生回路、3…定電圧信号発生回路、5…充電電源、6…充電装置、7…キャパシタ蓄電電源、61…信号処理回路、62…PWM信号発生回路、63…増幅器、64…反転増幅器、71…電気二重層キャパシタ、AS11、AS12、AS21、AS22…アナログスイッチ、C1、C2…コンデンサ、D11、D21、D31…ダイオード、L…コイル、R…電流検出用抵抗、SW1…メインスイッチ回路、SW2…同期整流回路、Vrefi1 、Vrefi2 …電流基準値設定回路、Vrefp…電力基準値設定回路、Vrefv1 、Vrefv2 …充電電圧基準値設定回路、I…充電電流、Vc…充電電圧、Vi…入力電圧   DESCRIPTION OF SYMBOLS 1 ... Constant current signal generation circuit, 2 ... Constant power signal generation circuit, 3 ... Constant voltage signal generation circuit, 5 ... Charge power supply, 6 ... Charging apparatus, 7 ... Capacitor electrical storage power supply, 61 ... Signal processing circuit, 62 ... PWM signal Generator circuit 63 ... Amplifier 64 ... Inverting amplifier 71Electric double layer capacitor AS11, AS12, AS21, AS22 ... Analog switch C1, C2 ... Capacitor D11, D21, D31 ... Diode, L ... Coil, R ... Current detection resistor, SW1 ... main switch circuit, SW2 ... synchronous rectifier circuit, Vrefi1, Vrefi2 ... current reference value setting circuit, Vrefp ... power reference value setting circuit, Vrefv1, Vrefv2 ... charging voltage reference value setting circuit, I ... charging current , Vc: charging voltage, Vi: input voltage

Claims (8)

電気二重層キャパシタに蓄電するキャパシタ蓄電電源に対して充電を行うキャパシタ蓄電電源用充電装置において、
充電電源から前記キャパシタ蓄電電源に供給する充電電流をオン/オフするスイッチ回路と、
前記充電電流を検出する電流検出回路と、
前記キャパシタ蓄電電源の電圧を検出する電圧検出回路と、
前記電流検出回路により検出された電流値と電流基準値に基づき前記充電電流を制御する誤差増幅信号を出力する定電流制御回路と、
前記電流検出回路により検出された電流値と前記電圧検出回路により検出された電圧値と電力基準値に基づき前記充電電流を制御する誤差増幅信号を出力する電力制御回路と、
前記電圧検出回路により検出された電圧値と電圧基準値に基づき前記充電電流を制御する誤差増幅信号を出力する定電圧制御回路と、
前記定電流制御回路、前記電力制御回路、前記定電圧制御回路より出力される各誤差増幅信号のいずれかを切り換えて出力する論理和回路と、
前記論理和回路より出力される誤差増幅信号に基づきパルス幅変調信号を生成して前記スイッチ回路をオン/オフし前記充電電流を制御する制御回路と
を備えたことを特徴とするキャパシタ蓄電電源用充電装置。
In a charging device for a capacitor storage power source that charges a capacitor storage power source that stores power in an electric double layer capacitor,
A switch circuit for turning on / off a charging current supplied from the charging power source to the capacitor storage power source;
A current detection circuit for detecting the charging current;
A voltage detection circuit for detecting a voltage of the capacitor storage power supply;
A constant current control circuit that outputs an error amplification signal for controlling the charging current based on a current value detected by the current detection circuit and a current reference value;
A power control circuit that outputs an error amplification signal for controlling the charging current based on a current value detected by the current detection circuit, a voltage value detected by the voltage detection circuit, and a power reference value;
A constant voltage control circuit that outputs an error amplification signal for controlling the charging current based on a voltage value and a voltage reference value detected by the voltage detection circuit;
An OR circuit that switches and outputs any one of the error amplification signals output from the constant current control circuit, the power control circuit, and the constant voltage control circuit;
And a control circuit for generating a pulse width modulation signal based on an error amplification signal output from the OR circuit and turning the switch circuit on and off to control the charging current. Charging device.
前記論理和回路は、ダイオード論理和回路であることを特徴とする請求項1記載のキャパシタ蓄電電源用充電装置。 2. The charging device for a capacitor storage power source according to claim 1, wherein the OR circuit is a diode OR circuit. 前記定電流制御回路は、前記電流基準値を複数の基準値で切り換え可能にしたことを特徴とする請求項1記載のキャパシタ蓄電電源用充電装置。 2. The charging device for a capacitor storage power source according to claim 1, wherein the constant current control circuit is capable of switching the current reference value between a plurality of reference values. 前記定電流制御回路は、他のキャパシタ蓄電電源用充電装置をマスタ装置として、前記マスタ装置の電流検出回路により検出された電流値を前記基準値として入力することを特徴とする請求項1又は3記載のキャパシタ蓄電電源用充電装置。 The said constant current control circuit inputs the electric current value detected by the electric current detection circuit of the said master apparatus as said reference value by using the charging device for another capacitor electrical storage power supply as a master apparatus. The charging apparatus for capacitor electrical storage power supply of description. 前記キャパシタ蓄電電源は、直列接続された複数の電気二重層キャパシタのそれぞれに充電時に満充電電圧で充電電流をバイパスする並列モニタを有し、前記定電流制御回路は、前記並列モニタのバイパス動作を検出して前記電流基準値を切り換えることを特徴とする請求項3又は4記載のキャパシタ蓄電電源用充電装置。 The capacitor storage power supply has a parallel monitor that bypasses a charging current at a full charge voltage when charging each of a plurality of electric double layer capacitors connected in series, and the constant current control circuit performs a bypass operation of the parallel monitor. 5. The charging device for a capacitor storage power source according to claim 3, wherein the current reference value is detected and switched. 前記電力制御回路は、前記電流値と前記電圧値とを乗算した値と電力基準値とを比較して誤差増幅信号を出力することを特徴とする請求項1記載のキャパシタ蓄電電源用充電装置。 2. The charging device for a capacitor storage power supply according to claim 1, wherein the power control circuit compares a value obtained by multiplying the current value and the voltage value with a power reference value and outputs an error amplification signal. 前記電力制御回路は、前記電力基準値から電圧値を減算した値と前記電流値とを比較して誤差増幅信号を出力することを特徴とする請求項1記載のキャパシタ蓄電電源用充電装置。 2. The charging device for a capacitor storage power supply according to claim 1, wherein the power control circuit compares the current value with a value obtained by subtracting a voltage value from the power reference value, and outputs an error amplification signal. 前記定電圧制御回路は、前記電圧基準値を複数の基準値で切り換え可能にしたことを特徴とする請求項1記載のキャパシタ蓄電電源用充電装置。 2. The charging device for a capacitor storage power source according to claim 1, wherein the constant voltage control circuit is capable of switching the voltage reference value with a plurality of reference values.
JP2006083402A 2006-02-17 2006-03-24 Charging device for capacitor storage power supply Active JP3922650B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006083402A JP3922650B1 (en) 2006-03-24 2006-03-24 Charging device for capacitor storage power supply
EP07102294A EP1821386A2 (en) 2006-02-17 2007-02-13 Charging apparatus for capacitor storage type power source and discharging apparatus for capacitor storage type power source
US11/707,097 US7622898B2 (en) 2006-02-17 2007-02-16 Charging or discharging apparatus for electrically charging or discharging a capacitor storage type power source adapted to store electric energy in electric double layer capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083402A JP3922650B1 (en) 2006-03-24 2006-03-24 Charging device for capacitor storage power supply

Publications (2)

Publication Number Publication Date
JP3922650B1 JP3922650B1 (en) 2007-05-30
JP2007259648A true JP2007259648A (en) 2007-10-04

Family

ID=38156678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083402A Active JP3922650B1 (en) 2006-02-17 2006-03-24 Charging device for capacitor storage power supply

Country Status (1)

Country Link
JP (1) JP3922650B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158129A (en) * 2008-12-28 2010-07-15 Starlite Co Ltd Charging method and charging device of secondary battery
JP2011176959A (en) * 2010-02-25 2011-09-08 Asti Corp Charging device and charging method
JP2012100374A (en) * 2010-10-29 2012-05-24 Meidensha Corp Current control device for charger
JP2013247746A (en) * 2012-05-24 2013-12-09 Semiconductor Components Industries Llc Charge control circuit and charging circuit
JP2014512801A (en) * 2011-04-29 2014-05-22 日本テキサス・インスツルメンツ株式会社 Method and apparatus for constant power / current control for switch mode power converters
JP2014192960A (en) * 2013-03-26 2014-10-06 Nichicon Corp Charging apparatus
JP2016032335A (en) * 2014-07-28 2016-03-07 パーパス株式会社 Battery charge circuit, power supply device, cogeneration system and battery charge method
WO2016190032A1 (en) * 2015-05-25 2016-12-01 日立オートモティブシステムズ株式会社 Power supply apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782018B2 (en) * 2007-09-10 2010-08-24 Maxim Integrated Products, Inc. Adaptive current limiting for any power source with output equivalent series resistance
CN111864835A (en) * 2020-07-15 2020-10-30 荆州市荆力工程设计咨询有限责任公司 Farad capacitor constant power charging system and control method thereof
CN111934395B (en) * 2020-09-15 2021-01-05 深圳英集芯科技有限公司 Switching control circuit, charging chip and electronic device
CN113162187B (en) * 2021-05-06 2023-01-31 杭州海康机器人股份有限公司 Charging control method, charger and storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889068A (en) * 1981-11-19 1983-05-27 Toshiba Corp Dc/ac converter for photocell
JPS596728A (en) * 1982-07-01 1984-01-13 三菱電機株式会社 Parallel operation control system for dc power sources
JPS6130925A (en) * 1984-07-19 1986-02-13 ヤマハ発動機株式会社 Charger using solar battery as power source
JPH0984371A (en) * 1995-09-14 1997-03-28 Daihen Corp Solar generator
JPH09179643A (en) * 1995-12-26 1997-07-11 Toshiba Corp Power converter for photovoltatic power generation
JPH1042484A (en) * 1996-07-17 1998-02-13 Canon Inc Charger
JP2000287382A (en) * 1999-03-30 2000-10-13 Matsushita Electric Works Ltd Battery charge-discharge device
JP2001218387A (en) * 2000-02-01 2001-08-10 Kansai Coke & Chem Co Ltd Electric double-layer capacitor accumulation power supply unit
JP2002135988A (en) * 2000-10-24 2002-05-10 Mitsubishi Electric Corp Storage battery system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889068A (en) * 1981-11-19 1983-05-27 Toshiba Corp Dc/ac converter for photocell
JPS596728A (en) * 1982-07-01 1984-01-13 三菱電機株式会社 Parallel operation control system for dc power sources
JPS6130925A (en) * 1984-07-19 1986-02-13 ヤマハ発動機株式会社 Charger using solar battery as power source
JPH0984371A (en) * 1995-09-14 1997-03-28 Daihen Corp Solar generator
JPH09179643A (en) * 1995-12-26 1997-07-11 Toshiba Corp Power converter for photovoltatic power generation
JPH1042484A (en) * 1996-07-17 1998-02-13 Canon Inc Charger
JP2000287382A (en) * 1999-03-30 2000-10-13 Matsushita Electric Works Ltd Battery charge-discharge device
JP2001218387A (en) * 2000-02-01 2001-08-10 Kansai Coke & Chem Co Ltd Electric double-layer capacitor accumulation power supply unit
JP2002135988A (en) * 2000-10-24 2002-05-10 Mitsubishi Electric Corp Storage battery system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158129A (en) * 2008-12-28 2010-07-15 Starlite Co Ltd Charging method and charging device of secondary battery
JP2011176959A (en) * 2010-02-25 2011-09-08 Asti Corp Charging device and charging method
JP2012100374A (en) * 2010-10-29 2012-05-24 Meidensha Corp Current control device for charger
JP2014512801A (en) * 2011-04-29 2014-05-22 日本テキサス・インスツルメンツ株式会社 Method and apparatus for constant power / current control for switch mode power converters
JP2013247746A (en) * 2012-05-24 2013-12-09 Semiconductor Components Industries Llc Charge control circuit and charging circuit
JP2014192960A (en) * 2013-03-26 2014-10-06 Nichicon Corp Charging apparatus
JP2016032335A (en) * 2014-07-28 2016-03-07 パーパス株式会社 Battery charge circuit, power supply device, cogeneration system and battery charge method
WO2016190032A1 (en) * 2015-05-25 2016-12-01 日立オートモティブシステムズ株式会社 Power supply apparatus
JP2016220454A (en) * 2015-05-25 2016-12-22 日立オートモティブシステムズ株式会社 Electric power supply
US10541549B2 (en) 2015-05-25 2020-01-21 Hitachi Automotive Systems, Ltd. Power supply apparatus

Also Published As

Publication number Publication date
JP3922650B1 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
JP3922650B1 (en) Charging device for capacitor storage power supply
JP3907123B1 (en) Charging device for capacitor storage power supply
JP3945658B1 (en) Charging device for capacitor storage power supply
JP2008228362A (en) Power supply unit
US20100102773A1 (en) Circuits and methods for power conversion
US7816896B2 (en) Circuits and methods for controlling a converter
JP3922649B1 (en) Charging device for capacitor storage power supply
JP4049333B1 (en) Charge control device
US9667144B2 (en) DC-DC converter with reverse current detecting circuit
JP5474988B2 (en) Fast recovery control circuit
JP2008072877A (en) Power supply system, and method of output voltage control
JP6262082B2 (en) DC-DC converter
JP2007244086A (en) Soft start circuit of switching power supply
JP2010004691A (en) Flashing power supply device
US7880457B2 (en) Dual-loop DC-to-DC converter apparatus
JP2008243728A (en) Power supply circuit device
KR101962176B1 (en) Single inductor multi output dc/dc converter
JP4832240B2 (en) Multi-output power supply
JP2009100532A (en) Charger for capacitor storage power supplies
JP2006230167A (en) Power supply unit
JP3871220B1 (en) Charging device for capacitor storage power supply
JP2011024345A (en) Switching regulator and electronic apparatus using the same
JP2007259615A (en) Charger or discharger for capacitor storage power supply
JP2008086133A (en) Multi-output power supply unit
JP2019068526A (en) Converter system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070216

R150 Certificate of patent or registration of utility model

Ref document number: 3922650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250