JP2010158129A - Charging method and charging device of secondary battery - Google Patents

Charging method and charging device of secondary battery Download PDF

Info

Publication number
JP2010158129A
JP2010158129A JP2008335601A JP2008335601A JP2010158129A JP 2010158129 A JP2010158129 A JP 2010158129A JP 2008335601 A JP2008335601 A JP 2008335601A JP 2008335601 A JP2008335601 A JP 2008335601A JP 2010158129 A JP2010158129 A JP 2010158129A
Authority
JP
Japan
Prior art keywords
charging
voltage
battery
secondary battery
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008335601A
Other languages
Japanese (ja)
Other versions
JP4864963B2 (en
Inventor
Takaaki Saigo
郷 ▲隆▼晄 西
Fumio Tsujikawa
文雄 辻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Starlite Co Ltd
Original Assignee
Starlite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starlite Co Ltd filed Critical Starlite Co Ltd
Priority to JP2008335601A priority Critical patent/JP4864963B2/en
Publication of JP2010158129A publication Critical patent/JP2010158129A/en
Application granted granted Critical
Publication of JP4864963B2 publication Critical patent/JP4864963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging method of a secondary battery which can expand an objective range of quick charging and short-time charging by constant-current charging, can accelerate charging speed, and can prevent abrupt change of charging properties in the middle of charging, and to provide a device for charging the battery. <P>SOLUTION: The charging method of the secondary battery is such that a pulse-state voltage (particularly, a pulse-state voltage of a positive-potential voltage waveform) is periodically superimposed on a charging voltage of the constant-current charging, and applied to the secondary battery. The charging device of the secondary battery is such that a charging circuit having a circuit means of the constant-current charging includes a control means which controls the generation of the pulse-state voltage caused by the accumulation and the discharging of exciting energy to a coil of the charging circuit, by feeding a direct current to the coil; and the pulse-state voltage which is generated due to the feed control of the direct current by the control means is periodically superimposed on the charging voltage of the constant-current charging, and applied to the secondary battery. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、定電流充電による規則的な電荷の電池内化学系への流れ(供給)が、パルス状電圧の周期的な重畳による充電電圧の影響を受けて、それによって、通常の定電流充電とは著しく相違する充電特性(例えば、急速充電・短時間充電での充電途中の突発的な急上昇の防止等)が発現して、円滑な充電の進行と充電の高速化(特に、急速充電・短時間充電の高速化)等が可能になる二次電池の充電方法及びそれの充電装置に関する。 According to the present invention, the flow (supply) of regular charges to the in-battery chemical system by constant current charging is affected by the charging voltage due to the periodic superposition of pulsed voltages, and thereby the normal constant current charging is performed. Charging characteristics (for example, prevention of sudden jumps during charging during quick charging and short-time charging, etc.) are manifested and smooth charging progress and faster charging (especially rapid charging / The present invention relates to a method for charging a secondary battery and a charging device for the same, which enables high-speed short-time charging.

二次電池は、少なくとも、正極・負極の電極及びイオン伝導性電解質を構成要素とし、電池の電気化学反応を介して化学的エネルギーと電気的エネルギーとの相互変換によって再充放電が可能な機構にされて、各種の産業用装置機器類(例えば、電子機器・コンピュター装置・精密機器・運輸器具等)の電源に供される。
なお、「二次電池」は、広義には、単一の二次電池及び組み電池(複数の二次電池の集合体)を含む広義の語義で使用され、狭義には、単一の二次電池を意味する語義で使用される。本特許請求の範囲及び本明細書においては、「二次電池」を広義の語義で使用し、狭義の語義の単一の二次電池若しくは組み電池の語義で使用する場合は、その旨に言及する。また、以下において、「二次電池」は、「電池」と略称し、特に必要な場合には、「二次電池」を使用する。
電池の「正極」及び「負極」は、本明細書及び本特許請求の範囲において、「正極」を放電時に電池から外部回路に電流が流出する側の電極の語義で使用し、「負極」を外部回路から電流が電池に流入する側の電極の語義で使用する。
「充電効率」は、本明細書において、アンペア/時間の効率の語義で使用する。
「充電特性」は、本明細書において、充電に際して電池内反応系の働きによって電池に現れる物理化学的・電気的な特性で、観測可能若しくは測定可能な特性(例えば、電池電圧、電池温度、電池電圧)の語義で使用する。
電池は、搭載対象となる装置機器類の多様化・高性能化・小型化(すなわち、電池搭載空間の減少)等によって、電池自体の高容量化・小型化・高性能化と、充電での時間短縮・発熱低下・安全正確な制御・装置の小型化等が希求されている。
実用電池は、鉛電池、ニッケル・カドミニウム電池、ニッケル・水素電池、リチウム電池の使用が大部分を占めて、それ以外にも、ニッケル・金属水素化物電池、二酸化マンガン・リチウム電池、ニッケル・亜鉛電池、銀・亜鉛電池等が実用に供されている。
A secondary battery has at least a positive / negative electrode and an ion-conducting electrolyte as components, and has a mechanism that can be recharged / discharged by mutual conversion between chemical energy and electrical energy through the electrochemical reaction of the battery. Then, it is used as a power source for various industrial equipment (for example, electronic equipment, computer equipment, precision equipment, transportation equipment, etc.).
The “secondary battery” is used in a broad sense including a single secondary battery and an assembled battery (an assembly of a plurality of secondary batteries) in a broad sense, and a single secondary battery in a narrow sense. Used in the meaning of a battery. In the claims and the present specification, the term “secondary battery” is used in a broad sense, and when used in the meaning of a single secondary battery or assembled battery in a narrow sense, it is referred to that effect. To do. In the following, “secondary battery” is abbreviated as “battery”, and “secondary battery” is used when particularly necessary.
In the present specification and claims, the term “positive electrode” and “negative electrode” of a battery are used in the meaning of the electrode on the side where current flows from the battery to an external circuit during discharge, and “negative electrode” It is used in the meaning of the electrode on the side where current flows into the battery from the external circuit.
“Charging efficiency” is used herein in the meaning of ampere / hour efficiency.
In this specification, “charging characteristics” are physicochemical and electrical characteristics that appear in a battery due to the action of a reaction system in the battery during charging, and are observable or measurable characteristics (for example, battery voltage, battery temperature, battery Used in the meaning of voltage.
Batteries have increased capacity, downsizing, higher performance, and charging due to diversification, higher performance, and downsizing (ie, reduction in battery mounting space) of the equipment to be mounted. There is a demand for shortening of time, reduction of heat generation, safe and accurate control, and downsizing of devices.
Practical batteries are mostly lead batteries, nickel / cadmium batteries, nickel / hydrogen batteries, and lithium batteries. Besides these, nickel / metal hydride batteries, manganese dioxide / lithium batteries, nickel / zinc batteries Silver / zinc batteries are in practical use.

電池の充電は、外部電源からの電気供給により活物質を複雑な化学反応系により放電可能状態に戻すプロセスであって、その内容は、活物質(作用物質とも称される)による電極表面及びその近傍での複雑な電気化学反応、反応関与物質の電極表面への吸着・脱着、電界質でのイオン移動、反応系での発熱及び吸熱、及びガス発生・吸収等の多様な物理化学的現象が複雑に影響し合っている。
電池の充電は、電池に対する外部電源からの電流供給と電流の供給終了(一般的には、充電終了と称される)とからなる。充電終了は、理論的には、完全充電(充電容量が100%充電された状態)の状態を意味する。なお、慣用語の「満充電」は、「完全充電」の同義語として使用されている。
ただし、実用充電では、充電容量が100%未満の状態で、充電終了とする場合も多々存在する。
電池への充電は、直流若しくは間欠電流(交流とそれ以外の間欠電流)を供給する方法が提案されて、実用充電では、制御・充電量確認等が容易となる直流による充電が汎用的である。急速充電(1h以内の充電)では、直流により充電が一般的である。交流及び間欠電流による充電は、通電をオン/オフで行って、通電のオフ時間により電池に生ずる効果を得るのを主目的とする充電であって、デントライト発生を防止する充電等の限られた目的の充電に限定される(例えば、特許文献1〜4を参照)。
間欠電流をオン/オフのオンでピーク電圧値を高くしてその間の通電量を大きくし、その後のオフの時間を長くして電池の破損を防止する充電方法では、電池電圧の異常な上昇及び電池劣化が生じている(特許文献6を参照)。
Charging of a battery is a process of returning an active material to a dischargeable state by a complex chemical reaction system by supplying electricity from an external power source, and the contents thereof include the electrode surface by the active material (also called an active material) and the There are various physicochemical phenomena such as complex electrochemical reactions in the vicinity, adsorption / desorption of reaction-related substances on the electrode surface, ion transfer in the electrolyte, heat generation and heat absorption in the reaction system, and gas generation / absorption. They are intricately affecting each other.
Charging a battery consists of supplying a current from an external power source to the battery and ending the supply of current (generally called charging end). The end of charge theoretically means a state of complete charge (a state where the charge capacity is 100% charged). The term “full charge” is used as a synonym for “full charge”.
However, in practical charging, there are many cases where charging ends when the charging capacity is less than 100%.
As a method for charging a battery, a method of supplying direct current or intermittent current (alternating current and other intermittent current) has been proposed, and in practical charging, charging by direct current that makes it easy to check and check the amount of charge is common. . In quick charging (charging within 1 hour), charging is generally performed by direct current. Charging by alternating current and intermittent current is charging with the main purpose of performing energization on / off and obtaining the effect generated in the battery by the energization off time, and is limited to charging that prevents the generation of dent light. (See, for example, Patent Documents 1 to 4).
In the charging method in which intermittent current is turned on / off and the peak voltage value is increased to increase the amount of current flowing between them and the subsequent off time is extended to prevent battery damage, the battery voltage is increased abnormally and Battery deterioration has occurred (see Patent Document 6).

直流による充電は、一定電流値(A、mA)の直流電流を流す方法(「定電流充電」が使用されている)と一定電圧値(V)の直流電流を流す方法(「定電圧充電」が慣用的に使用されている)が基本的な充電方法で、特に、定電流充電が汎用性を有する充電方法である。なお、「定電流充電」は、成書(充電の技術書)及び辞書において、同一の語義で使用される技術用語である。
定電流充電の汎用性は、異なる形式の電池の充電に対する対応が容易で、制御及び充電量確認が容易で、充電装置の簡単化・小型化が容易になる等の工業上の便宜による。
Charging by direct current includes a method of flowing a direct current of a constant current value (A, mA) (“constant current charging” is used) and a method of flowing a direct current of a constant voltage value (V) (“constant voltage charging”). Is a conventional charging method, and in particular, constant current charging is a charging method having versatility. Note that “constant current charging” is a technical term used in the same meaning in a book (charging technical book) and a dictionary.
The versatility of constant current charging is due to industrial conveniences such as easy handling of charging of different types of batteries, easy control and charge amount confirmation, and simplification and miniaturization of the charging device.

図12は定電流充電の充電特性を模式的に示す説明図である(例えば、非特許文献1のp413等を参照)。
定電流充電は、直流電流を一定電流値に維持して電池に供給する。一定電流値の維持は、供給する直流電流の電圧を充電進行に応じて上昇する電池電圧との電圧差を維持するように上昇させる制御を行う。そのために、一定電流維持のための充電電圧が、電池の許容上限電圧を超えると、その時点で、定電流充電を終了することになる。
なお、定電流充電は、充電時間による分類では、急速充電(1h以内の充電)、短時間充電(3〜8h以内の充電)及び普通充電(8〜18hの充電)に区別され(例えば、非特許文献3のp188の表5.9を参照)、実用充電では、急速充電及び短時間充電(特に、急速充電)の要請が高い。
FIG. 12 is an explanatory diagram schematically showing charging characteristics of constant current charging (see, for example, p413 of Non-Patent Document 1).
In constant current charging, a direct current is maintained at a constant current value and supplied to the battery. To maintain the constant current value, control is performed to increase the voltage of the supplied direct current so as to maintain the voltage difference from the battery voltage that increases as the charging progresses. Therefore, when the charging voltage for maintaining a constant current exceeds the allowable upper limit voltage of the battery, the constant current charging is terminated at that time.
Constant current charging is classified according to charging time into quick charging (charging within 1h), short-time charging (charging within 3-8h) and normal charging (charging within 8-18h) (for example, non-charging) (See Table 5.9 on page 188 of Patent Document 3) In practical charging, there is a high demand for quick charging and short-time charging (particularly, rapid charging).

定電流充電は、汎用的ではあるが、電池の形式の相違によって充電特性が著しく相違し、設定した一定電流値により充電終了まで充電できない場合が生じる。その場合には、充電途中での設定電流値の変更による定電流充電の維持(例えば、2段階電流充電)及び充電途中での定電流充電から定電圧充電への変更(例えば、定電流定電圧充電)等が行われている。 Although constant current charging is general-purpose, there are cases in which charging characteristics are significantly different depending on the type of battery, and charging cannot be performed until the end of charging due to a set constant current value. In that case, maintaining constant current charging by changing the set current value during charging (for example, two-step current charging) and changing from constant current charging to constant voltage charging during charging (for example, constant current constant voltage) Charging) and the like.

図13は定電圧充電の充電特性を模式的に示す説明図である(例えば、非特許文献1のp414等を参照)。定電圧充電は、制御により一定値の充電電圧(V)に設定・維持するので、充電により上昇する電池電圧と設定充電電圧値との電圧差が減少して充電電流値が減衰する。定電圧充電は、充電電圧を制御により一定値に維持するので、事故防止等のために上限電圧維持が厳格に規制され
る電池(例えば、鉛電池、亜鉛・二酸化マンガン電池、リチウム電池等)の充電には、上限電圧維持が容易になるので適している。
FIG. 13 is an explanatory view schematically showing charging characteristics of constant voltage charging (see, for example, p414 in Non-Patent Document 1). Since constant voltage charging is set and maintained at a constant charging voltage (V) by control, the voltage difference between the battery voltage rising due to charging and the set charging voltage value decreases, and the charging current value attenuates. In constant voltage charging, the charging voltage is maintained at a constant value by control, so that the upper limit voltage maintenance is strictly regulated to prevent accidents (for example, lead batteries, zinc / manganese dioxide batteries, lithium batteries, etc.) It is suitable for charging because it is easy to maintain the upper limit voltage.

定電圧充電は、充電初期には電池電圧が著しく低くなって大電流が流れるので、充電初期の大電流を制限する制限回路が必須になって、それが、充電電圧の制御を妨害することになるので、充電電圧の適正な制御が困難になる。
しかも、定電圧充電では、充電終了時の電池電圧を予め正確に予測して充電電圧を設定する必要がある。しかし、充電中の電池電圧は、充電時の電池周辺の温度変化及び電池の発熱により不規則的に大きく変化するので充電終了時の電池電圧を予め正確に予測するのが著しく難しく、定電圧充電を正確に行うのが困難である(例えば、非特許文献5のP150等を参照)。
In constant voltage charging, since the battery voltage becomes extremely low and a large current flows at the beginning of charging, a limiting circuit that restricts the large current at the beginning of charging becomes essential, which interferes with the control of the charging voltage. Therefore, proper control of the charging voltage becomes difficult.
Moreover, in the constant voltage charging, it is necessary to accurately predict the battery voltage at the end of charging in advance and set the charging voltage. However, since the battery voltage during charging varies irregularly due to temperature changes around the battery during charging and battery heat generation, it is extremely difficult to accurately predict the battery voltage at the end of charging in advance. Is difficult to perform accurately (see, for example, P150 of Non-Patent Document 5).

図14は、密閉型鉛電池を3種の設定電圧(2.70V、2.55V、2.35V)により定電圧充電で急速充電した場合の充電特性を模式的に示す説明図である(例えば、非特許文献1のp441等を参照)。
図14において、符号A、B、Cのいずれの充電においても、充電初期の2〜3分で大電流が流れて、充電前半の30分以内でほぼ充電量100%に達している。
従って、定電圧充電の急速充電では、充電初期の2〜3分に流れる大電流により充電量がほぼ100%に達するので、充電初期の大電流を可能にする高充電電圧の設定が許容される電池に限られる。一方、定電流充電は、電池形式の相違によって、充電特性が著しく相違する。
FIG. 14 is an explanatory diagram schematically showing charging characteristics when a sealed lead-acid battery is rapidly charged with constant voltage charging at three set voltages (2.70 V, 2.55 V, and 2.35 V) (for example, non-patent) (Refer to p441 in Reference 1).
In FIG. 14, in any of the charging of symbols A, B, and C, a large current flows in 2 to 3 minutes in the initial stage of charging, and almost reaches a charge amount of 100% within 30 minutes of the first half of charging.
Therefore, in fast charging with constant voltage charging, the amount of charge reaches almost 100% due to a large current flowing in the initial 2-3 minutes, so a high charging voltage setting that allows a large current in the initial charging is allowed. Limited to batteries. On the other hand, the charging characteristics of constant current charging are significantly different depending on the battery type.

図15は、異なる形式の電池を定電流充電(20℃)した場合の電池電圧vs充電容量%を関係を示す説明図であって、同一の充電率(0.1×C)及び近似の充電率の定電流充電(20℃)であっても、電池の形式が相違すると、充電時の電池内反応系の内容が著しく相違し、それによって、電池電圧vs充電容量%が著しく相違するデータが示されている(非特許文献1のP355を参照)。同様の図は非特許文献2、3にも示されている。 FIG. 15 is an explanatory diagram showing the relationship between the battery voltage vs. charge capacity% when different types of batteries are charged with constant current (20 ° C.), and shows the same charge rate (0.1 × C) and approximate charge rate. Even with constant-current charging (20 ° C), if the battery type is different, the contents of the reaction system in the battery during charging are significantly different, thereby showing data in which the battery voltage vs. charge capacity% is significantly different. (See P355 of Non-Patent Document 1). Similar figures are also shown in Non-Patent Documents 2 and 3.

図15の充電特性は、普通充電(8〜18hの充電)での一般的な充電率(多くは、0.1×C)による定電流充電(20℃)のデータである。なお、充電率の「C」は、容量を意味している。なお、「充電率」は、「時間率」とも称されて、共に成書及び辞書にも使用される通用語である。本特許請求の範囲及び本明細書は、「充電率」を使用する。
図15において、横軸の「容量」は、電池が含有する電気量を意味し、クーロン(C)若しくはアンペア時(Ah、mAh)の単位で表示される。
The charging characteristics of FIG. 15 are data of constant current charging (20 ° C.) with a general charging rate (mostly 0.1 × C) in normal charging (charging for 8 to 18 hours). The charging rate “C” means capacity. “Charge rate” is also called “time rate”, and is a common term used for books and dictionaries. The claims and the specification use “charge rate”.
In FIG. 15, “capacity” on the horizontal axis means the amount of electricity contained in the battery, and is displayed in units of coulomb (C) or ampere-hours (Ah, mAh).

なお、充電時の実際の容量は、理論的な容量に比較して相当に減少する。そのために、実用電池では、容量を定格容量若しくは公称容量で表示する場合が多い(例えば、非特許文献3等を参照)。
図15の横軸の「50容量%」は、完全充電時(すなわち、100容量%)を基としている、「50容量%」は、完全充電時の容量の50%が充電された状態を示している。
Note that the actual capacity at the time of charging is considerably reduced compared to the theoretical capacity. Therefore, in practical batteries, the capacity is often displayed as a rated capacity or a nominal capacity (see, for example, Non-Patent Document 3).
“50% by volume” on the horizontal axis in FIG. 15 is based on full charge (ie, 100% by volume). “50% by volume” indicates that 50% of the full charge is charged. ing.

普通充電(8〜18hの充電)には、約0.1〜0.3Cの充電率が一般的に採用されて、急速充電(1h以内の充電)は、普通充電の10倍(例えば、1〜3C)の充電率が一般的に採用され、短時間充電(3〜8hの充電)では、0.2〜0.4Cが採用されている(例えば、非特許文献3のp188を参照)。
図15の化学記号(例えば、Ni―Cd)は、電池の形式を化学記号で示していて、例えば、「Ni―Cd」は密閉型ニッケル・カドミニウム電池を示している。なお、密閉型は、電極からの発生ガスを反対の電極で吸収する作動方式の電池である。
図15の密閉型ニッケル・カドミニウム電池は、0.1Cの充電率の定電流充電において電池電圧が最も穏やかに変化し、電池温度も充電終期近辺で上昇する。 密閉型ニッケル・カドミニウム電池及び密閉型ニッケル・水素電池は、充電終期の正極からの発生ガスを陰極で吸収する作動方式(以下において、陰極吸収方式と略称することがある)の電池である。
陰極吸収方式の電池は、短時間充電若しくは急速充電において普通充電に比べて著しく相違する充電特性を示すことが知られている。
For normal charging (8-18h charging), a charging rate of about 0.1-0.3C is generally adopted, and quick charging (charging within 1h) is 10 times the normal charging (for example, 1-3C) In general, 0.2 to 0.4 C is employed for short-time charging (charging for 3 to 8 hours) (see, for example, p188 of Non-Patent Document 3).
The chemical symbol (for example, Ni—Cd) in FIG. 15 indicates the type of the battery with a chemical symbol. For example, “Ni—Cd” indicates a sealed nickel-cadmium battery. The sealed type is an operation type battery that absorbs gas generated from an electrode with an opposite electrode.
In the sealed nickel-cadmium battery of FIG. 15, the battery voltage changes most gently during constant current charging at a charging rate of 0.1 C, and the battery temperature also rises near the end of charging. The sealed nickel / cadmium battery and the sealed nickel / hydrogen battery are batteries of an operation system (hereinafter, abbreviated as a cathode absorption system in some cases) that absorbs gas generated from the positive electrode at the end of charging at the cathode.
Cathode absorption type batteries are known to exhibit remarkably different charging characteristics compared to normal charging in short-time charging or rapid charging.

図16は、密閉型ニッケル・カドミニウム電池を異なる充電率により定電流充電した場合の充電特性を示す説明図である(非特許文献1のp484を参照)。
密閉型ニッケル・カドミニウム電池は、0.1(C/10)Cの普通充電の充電率による充電では、電池温度が充電終期付近から急激に上昇し、電池電圧が充電全体で緩やかに上昇する。
他方、0.3(C/3)Cの充電率(短時間充電)では、電池温度及び電池内圧力が、完全充電のほぼ半分の充電量付近で急激に過充電領域にまで上昇する。陰極吸収方式の電池の0.1(C/10)Cの充電率(普通充電)による充電での充電終期で発生する電池温度の急激な上昇は、それに対応する電池の発熱量から、正極から発生するガスの陰極による吸収反応(発熱反応になる)のエンタルピー変化によると考えるのが一般的である。
ただし、0.3Cの短時間充電の充電率による充電において、完全充電のおおよそ半分の充電量での電池温度の急激な上昇を生じさせる電池内の化学反応系の挙動は、明らかにされていない。
FIG. 16 is an explanatory diagram showing charging characteristics when a sealed nickel-cadmium battery is charged with constant current at different charging rates (see p484 of Non-Patent Document 1).
In a sealed nickel-cadmium battery, when charging at a normal charging rate of 0.1 (C / 10) C, the battery temperature rises rapidly from near the end of charging, and the battery voltage rises gradually throughout the charging.
On the other hand, at a charge rate (short-time charge) of 0.3 (C / 3) C, the battery temperature and the internal pressure of the battery rapidly rise to the overcharge region in the vicinity of approximately half the charge amount of full charge. The sudden rise in battery temperature that occurs at the end of charging at a charging rate of 0.1 (C / 10) C (normal charging) of a cathode absorption type battery is generated from the positive electrode due to the corresponding calorific value of the battery. In general, it is considered to be due to a change in enthalpy of an absorption reaction (which becomes an exothermic reaction) by a gas cathode.
However, the behavior of the chemical reaction system in the battery that causes a rapid increase in battery temperature at approximately half the charge of full charge in charging at a charging rate of 0.3 C short-time charging has not been clarified.

そのために、急速充電用の密閉型ニッケル・カドミニウム電池では、充電特性の急激な上昇による電池の破損・破壊を防止するために、電池構造の改善と電池内圧力・電池温度・電池電圧等の変化検出の精度を向上させてCPUの制御部を複雑な回路構成にして充電終了を高精度に判断する機構が必要になる。
電池構造の改善は、例えば、ガスを吸収する陰極面積の増大等による陰極でのガス吸収量の増大による電池内圧力の上昇抑制及び内部構造を過充電に耐える構造にする等である。
密閉型ニッケル・カドミニウム電池は、一般的は、30℃を超えると電池性能・電池寿命が低下し、過度な過充電により電池性能が低下する。また、電池温度が高くなり過ぎると充電電流値が増大して熱逸状態になって電池が損傷する。
図17は、密閉型ニッケル・カドミニウム電池の充放電での電池周囲温度と電池寿命との関係を示す説明図であって(非特許文献2のP218を参照)、密閉型ニッケル・カドミニウム電池が30℃近辺の温度に曝されても電池寿命が減少し、曝される温度が高くなると、電池寿命減少が著しくなることを示している。 しかし、充放電(特に、充電)での電池周囲温度の上昇を防止する有効な案は、提案されていない。
For this reason, in sealed nickel / cadmium batteries for rapid charging, battery structure improvements and changes in battery pressure, battery temperature, battery voltage, etc. are required to prevent damage and destruction of the battery due to sudden increases in charging characteristics. A mechanism for improving the detection accuracy and making the control unit of the CPU a complicated circuit configuration and determining the end of charging with high accuracy is required.
Improvement of the battery structure is, for example, suppression of an increase in the internal pressure of the battery due to an increase in the amount of gas absorption at the cathode due to an increase in the area of the cathode that absorbs the gas, and a structure in which the internal structure can withstand overcharge.
Generally, a sealed nickel / cadmium battery has a battery performance / battery life that is lowered when the temperature exceeds 30 ° C., and battery performance is deteriorated due to excessive overcharge. Further, if the battery temperature becomes too high, the charging current value increases and a heat dissipation state occurs, resulting in damage to the battery.
FIG. 17 is an explanatory diagram showing the relationship between the battery ambient temperature and the battery life during charging / discharging of a sealed nickel-cadmium battery (see P218 of Non-Patent Document 2), and 30 sealed nickel-cadmium batteries are used. It is shown that the battery life is reduced even when exposed to temperatures in the vicinity of ° C., and that the battery life is significantly reduced when the exposed temperature is increased. However, no effective proposal for preventing an increase in battery ambient temperature during charging / discharging (particularly charging) has not been proposed.

図15の密閉型ニッケル・水素電池は、密閉型ニッケル・カドミニウム電池と同様の作動原理の電池で、定電流充電による急速充電が可能である。しかし、ニッケル・水素電池においても、急速充電によって電池電圧・電池温度・電池内圧力の著しい変化が生じる。それに対する回避手段は、陰極面積の増大等による陰極でのガス吸収面積の増大、電池構造の耐温度性の向上及び充電終了の精度向上等である。
図15に示す形式の電池の多くは、電池電圧・電池温度・電池内圧力が急激に上昇して許容上限値を超えるので、急速充電及び短時間充電による実用充電が実質的に不可能とされる電池の形式が多種存在する。
The sealed nickel-hydrogen battery in FIG. 15 is a battery having the same operating principle as the sealed nickel-cadmium battery, and can be rapidly charged by constant current charging. However, even in nickel-hydrogen batteries, rapid changes in battery voltage, battery temperature, and battery pressure occur due to rapid charging. Means for avoiding this include an increase in the gas absorption area at the cathode due to an increase in the cathode area, an improvement in the temperature resistance of the battery structure, and an improvement in the accuracy of the end of charging.
Many of the types of batteries shown in Fig. 15 suddenly increase the battery voltage, battery temperature, and pressure inside the battery and exceed the allowable upper limit. There are many types of batteries.

特開平06−36803号公報Japanese Patent Laid-Open No. 06-36803 特許第4039771号公報Japanese Patent No. 4039571 特許第4016200号公報Japanese Patent No. 4016200 特許第3700288号公報Japanese Patent No. 3700288 特許第3438340号公報Japanese Patent No. 3438340 特許第4079590号公報Japanese Patent No. 4079590

ダブィッド・リンデン&#8943;編・高村勉&#8943;監修訳:〔最新二次電池ハンドブック〕朝倉書店 1996年12月20日 初版第版1刷発行By David Linden &#8943; edited by Tsutomu Takamura &#8943; supervised translation: [Latest secondary battery handbook] Asakura Shoten December 20, 1996 First edition 1st edition issued 丸善株式会社編:〔電池便覧第3版〕丸善株式会社 平成12年2月20日 発行Maruzen Co., Ltd .: [Battery Handbook 3rd Edition] Maruzen Co., Ltd. issued on February 20, 2000 日本二次電池株式会社:編〔最新実用二次電池―第2版―その選び方と使い方〕日刊工業新聞社 2001年5月31日 第2版2刷発行Nihon Batteries Co., Ltd .: Hen [Latest Practical Secondary Batteries-Second Edition-How to Select and Use] Nikkan Kogyo Shimbun May 31, 2001 Second Edition, 2nd edition トランジスタ技術編集部:編〔二次電池応用ハンドブック〕 CQ出版株式会社 2005年4月1日 第2版発行Transistor Technology Editor: Edition [Secondary Battery Application Handbook] CQ Publishing Co., Ltd. April 1, 2005 Second Edition issued 西村 昭義:著〔改訂版 電池の本〕 CQ出版株式会社 1996年7月15日 改訂1版発行Akiyoshi Nishimura: Work [Revised Battery Book] CQ Publishing Co., Ltd. July 15, 1996 Revised 1 edition issued

定電流充電(特に、急速充電・短時間充電)には、下記(A)〜(G)等の様々な問題点が存在する。
(A)定電流充電では、普通充電(8〜18hの充電)においても充電特性が充電途中で急激に変化する形式の電池が多く存在し(図17を参照)、そのために、急速充電・短時間充電を工業的に行うことができない形式の電池が多く存在する。
(B)定電流充電による急速充電及び短時間充電では、電池温度が完全充電量のおおよそ半分量の段階で急激に上昇し、電池温度が繰り返し充電の度に30℃近辺の温度領域を超えて電池寿命が減少する(図17を参照)。
(C)定電流充電による急速充電及び短時間充電では、充電途中での電池温度・電池内圧力等の急激な上昇に耐える構造にするために、電池(特に、陰極吸収方式等の電池)及び電極の強度を大きくする等の改造を必要とする。
(D)定電流充電による急速充電及び短時間充電では、電池電圧・電池温度・電池内圧力の急激な上昇による暴走を回避するために充電終了に結び付く充電特性の僅かな変化を正確に捕捉して充電終了することが不可欠になる。特に、陰極吸収方式等の電池では、急激な暴走に対する耐性が低いので、充電終了時点の判断の精密性が要求される。
そのために、急速充電及び短時間充電を行う充電装置は、充電終了を精密に観測・予測・判断する複雑で特別な制御回路が必須になって、充電装置の小型化が困難になって、充電装置の価格が上昇する。
(E)電池を搭載する装置機器類が、用途の多様化・ICの急激な進歩等により構造の複雑化・小型化が急激に進行し、電池搭載空間が著しく減少傾向にあって、電池温度の少しの上昇で蓄熱効果によって電池及びその周囲温度が急激な上昇する。
(F)電池の形式によって、普通充電(8〜18hの充電)であっても、充電特性が著しく相違するので(図17を参照)、充電終了の時点を精密に予測・判断するのが簡単な機構の手段により実現するのが困難になるので、急速充電及び短時間充電の実施が困難な形式の電池が多々存在する。
(G)従来にあっては、定電流充電(特に、急速充電及び短時間充電)での充電途中で発生する電池電圧・電池温度・電池内圧力の急激な上昇を回避する手段が提案されていない。
かかる状況において、定電流充電による充電での電荷供給時の変化と電池内化学系の反応と充電特性との相関が詳細に実験主体に検討されて、充電での電荷供給の変化によっては、定電流充電の問題点を解決できることが本発明で見出された。
Various problems such as the following (A) to (G) exist in constant current charging (particularly, rapid charging and short-time charging).
(A) In constant current charging, there are many types of batteries whose charging characteristics change suddenly during charging even during normal charging (charging for 8 to 18 hours) (see FIG. 17). There are many types of batteries that cannot be charged on an industrial scale.
(B) In rapid charging and short-time charging by constant current charging, the battery temperature rapidly rises at the stage of approximately half the amount of full charge, and the battery temperature exceeds the temperature range around 30 ° C for each repeated charge. Battery life is reduced (see Figure 17).
(C) In fast charging and short-time charging by constant current charging, in order to have a structure that can withstand a sudden increase in battery temperature, battery internal pressure, etc. during charging, a battery (particularly a battery of a cathode absorption system, etc.) and Modifications such as increasing the strength of the electrode are required.
(D) In rapid charging and short-time charging by constant current charging, the slight change in charging characteristics that leads to the end of charging is accurately captured in order to avoid runaway due to sudden rises in battery voltage, battery temperature, and battery pressure. It is essential to end charging. In particular, a battery of a cathode absorption type or the like has low resistance to a sudden runaway, and therefore, a precision of determination at the end of charging is required.
For this reason, a charging device that performs quick charging and short-time charging requires a complicated and special control circuit that precisely observes, predicts, and determines the end of charging, making it difficult to reduce the size of the charging device. The price of the equipment increases.
(E) Device equipment equipped with batteries is rapidly becoming more complex and miniaturized due to diversification of applications and rapid progress of ICs. The battery and its ambient temperature rise rapidly due to the heat storage effect.
(F) Depending on the battery type, even if it is a normal charge (8-18h charge), the charge characteristics are significantly different (see Fig. 17), so it is easy to accurately predict and judge the end of charge. Therefore, there are many types of batteries in which it is difficult to implement quick charging and short-time charging.
(G) Conventionally, means for avoiding a sudden increase in battery voltage, battery temperature, and battery pressure generated during charging in constant current charging (especially rapid charging and short-time charging) has been proposed. Absent.
Under such circumstances, the correlation between the change in charge supply during charging by constant current charging and the reaction of the chemical system in the battery and the charging characteristics has been studied in detail, and depending on the change in charge supply during charging, the correlation is constant. It has been found in the present invention that the problem of current charging can be solved.

次に、請求項1〜6の充電方法及び請求項7及び8の充電装置の発明の目的について記述する。ただし、請求項2〜6の充電方法は、請求項1の充電方法の技術思想に包含される態様としての技術思想であるので、請求項1の充電方法と同等の目的を有して、かつ、請求項2〜6の個々の目的を併有することになる。
請求項1に記載の本発明は、代表的には、下記(1)〜(9)を目的とする。
(1)パルス状電圧を充電電圧に周期的に重畳して、通常の定電流充電のとは著しく相違する充電特性(例えば、急速充電・短時間充電での充電途中の突発的な急上昇が生じない充電特性等)になる充電方法を提供すること、を目的とする。
(2)パルス状電圧を定電流充電の充電電圧に周期的に重畳して、定電流充電の利点を維持して、かつ、定電流充電に生ずる欠点(特に、不可避的に生ずる欠点)が防止・回避できる充電方法を提供すること、を目的とする。
(3)定電流充電を利用する急速充電若しくは短時間充電において、電池温度、電池電圧若しくは電池内圧力の急激な変化を抑制する充電方法を提供すること、をも目的とする。
(4)定電流充電を利用する(すなわち、定電流充電の電荷供給方式を維持する)急速充電若しくは短時間充電において、充電時間の短縮を可能にする充電方法を提供すること、を目的とする。
(5)定電流充電を利用する急速充電若しくは短時間充電において、従来の定電流充電では不可避的であった充電途中での電池温度の急上昇を防止・回避する充電方法を提供すること、をも目的とする。
(6)定電流充電を利用する急速充電若しくは短時間充電において、従来の定電流充電では不可避的であった電池電圧の異常な上昇及び電池劣化を防止・回避する充電方法を提供すること、をも目的とする。
(7)定電流充電を利用する急速充電若しくは短時間充電において、従来の定電流充電では不可避的であった電池・電極の改造及び充電終了の正確な判断のための複雑な制御回路の設置を不要化すること、をも目的とする。
(8)急速充電及び短時間充電が可能な電池の形式の範囲を拡大すること、をも目的とする。
(9)急速充電及び短時間充電が可能な電池の小型化を容易にし、かつ、電池価格の上昇を抑制すること、をも目的とする。
Next, an object of the charging method according to claims 1 to 6 and the charging device according to claims 7 and 8 will be described. However, since the charging method of claims 2 to 6 is a technical idea as an aspect included in the technical idea of the charging method of claim 1, it has the same purpose as the charging method of claim 1, and The individual objects of claims 2 to 6 are combined.
The present invention described in claim 1 typically has the following (1) to (9).
(1) Charging characteristics that are significantly different from normal constant current charging by periodically superimposing a pulse voltage on the charging voltage (for example, sudden sudden rises during charging during fast charging and short-time charging occur) It is an object to provide a charging method that has no charging characteristics.
(2) The pulse voltage is periodically superimposed on the charging voltage for constant current charging to maintain the advantages of constant current charging and prevent the disadvantages (especially the inevitable disadvantages) that occur in constant current charging. -To provide a charging method that can be avoided.
(3) Another object of the present invention is to provide a charging method that suppresses a rapid change in battery temperature, battery voltage, or battery pressure in rapid charging or short-time charging using constant current charging.
(4) An object of the present invention is to provide a charging method capable of shortening the charging time in rapid charging or short-time charging using constant current charging (that is, maintaining the charge supply method of constant current charging). .
(5) To provide a charging method that prevents or avoids a sudden rise in battery temperature during charging, which is unavoidable with conventional constant current charging, in rapid charging or short-time charging using constant current charging. Objective.
(6) To provide a charging method that prevents or avoids an abnormal rise in battery voltage and battery deterioration, which are inevitable with conventional constant current charging, in rapid charging or short-time charging using constant current charging. Also aimed.
(7) For quick charging or short-time charging using constant current charging, install a complicated control circuit to accurately determine battery / electrode modification and charging termination, which was inevitable with conventional constant current charging. The purpose is to make it unnecessary.
(8) The purpose is to expand the range of battery types that can be charged quickly and quickly.
(9) It is also intended to facilitate the miniaturization of a battery capable of rapid charging and short-time charging, and to suppress an increase in battery price.

請求項2の本発明は、パルス状電圧がコイルに蓄積された励磁エネルギー放出の発生することで得られる効果の享受をも目的とする。
請求項3の本発明は、パルス状電圧を発生するコイルが直列共振回路を構成することで得られる効果の享受をも目的とする。
請求項4の本発明は、パルス状電圧を発生するコイルを含む直列共振回路のコンデンサが二次電池の電極であることで得られる効果の享受をも目的とする。
請求項5の本発明は、合成されたパルス状電圧を充電回路に発生させることで得られる効果の享受をも目的とする。
請求項6の本発明は、パルス状電圧が周期的に重畳される定電流充電の充電電圧の定電流を充電回路に発生させることで得られる効果の享受をも目的とする。
Another object of the present invention of claim 2 is to enjoy the effect obtained by the generation of excitation energy emission in which a pulse voltage is accumulated in a coil.
Another object of the present invention of claim 3 is to enjoy the effect obtained when the coil that generates the pulse voltage forms a series resonance circuit.
Another object of the present invention of claim 4 is to enjoy the effect obtained when the capacitor of the series resonant circuit including the coil that generates the pulse voltage is the electrode of the secondary battery.
Another object of the present invention of claim 5 is to enjoy the effect obtained by causing the charging circuit to generate the synthesized pulse voltage.
Another object of the present invention of claim 6 is to enjoy an effect obtained by causing a charging circuit to generate a constant current of a charging voltage of constant current charging in which a pulse voltage is periodically superimposed.

請求項7の本発明は、請求項1〜3の本発明の充電方法の実施を容易にする充電装置を提供することを目的とする。
請求項8の本発明は、請求項4の本発明の充電方法の実施を容易にする充電装置を提供すること、を目的とする。
An object of the present invention of claim 7 is to provide a charging device that facilitates the implementation of the charging method of the present invention of claims 1 to 3.
An object of the present invention of claim 8 is to provide a charging device that facilitates the implementation of the charging method of the present invention of claim 4.

請求項1の充電方法は、パルス状電圧が、定電流充電の充電電圧に周期的に重畳されて二次電池に印加されていること、を特徴とする。
請求項2の充電方法は、請求項1の充電方法のパルス状電圧が、コイルに蓄積された励磁エネルギーの放出により発生すること、を特徴とする
請求項3の充電方法は、請求項1の充電方法のパルス状電圧が、直列共振回路のコイルに蓄積される励磁エネルギーの放出により発生すること、を特徴とする。
請求項4の充電方法は、請求項3の充電方法のパルス状電圧が、充電対象の二次電池の電極をコンデンサとする直列共振回路のコイルに蓄積される励磁エネルギーの放出により発生すること、を特徴とする。
請求項5に記載の本発明は、請求項1の充電方法のパルス状電圧が、電圧波形のアナログ情報をデジタル情報化して、デジタル情報によって充電回路で発生すること、を特徴とする。
請求項6に記載の充電方法は、充電回路にその充電電流の検出手段を設けて、該検出手段で検出される充電電流の情報と予め内蔵するパルス状電圧の情報とから波形発生器によりパルス状電圧が充電電圧に周期的に重畳された定電流を生成して二次電池に供給すること、を特徴とする。
The charging method according to claim 1 is characterized in that the pulsed voltage is periodically superimposed on the charging voltage for constant current charging and applied to the secondary battery.
The charging method of claim 2 is characterized in that the pulsed voltage of the charging method of claim 1 is generated by the release of excitation energy accumulated in the coil. The pulsed voltage of the charging method is generated by the release of excitation energy accumulated in the coil of the series resonance circuit.
In the charging method of claim 4, the pulse voltage of the charging method of claim 3 is generated by the release of excitation energy accumulated in a coil of a series resonance circuit having a capacitor as an electrode of a secondary battery to be charged, It is characterized by.
The present invention according to claim 5 is characterized in that the pulsed voltage of the charging method according to claim 1 is generated in the charging circuit by converting the analog information of the voltage waveform into digital information and using the digital information.
6. The charging method according to claim 6, wherein the charging circuit is provided with a detecting means for the charging current, and a pulse is generated by the waveform generator from information on the charging current detected by the detecting means and information on the pre-stored pulse voltage. A constant current in which a state voltage is periodically superimposed on a charging voltage is generated and supplied to a secondary battery.

請求項7の充電装置は、定電流充電の回路手段を有する充電回路が、充電回路のコイルへの励磁エネルギー蓄積とその放出によるパルス状電圧発生をコイルへの直流電流の供給を制御する制御手段を備えて、
制御手段による直流電流の供給制御により発生するパルス状電圧が、定電流充電の充電電圧に周期的に重畳させて二次電池に印加する構成にされていること、を特徴とする。
請求項8の充電装置は、請求項7の充電装置のパルス状電圧を発生するコイルが、直列共振回路のコイルになること、を特徴とする。
The charging device according to claim 7, wherein the charging circuit having a constant current charging circuit means controls the supply of a direct current to the coil by accumulating excitation energy in the coil of the charging circuit and generating a pulsed voltage due to its discharge. With
The pulsed voltage generated by the DC current supply control by the control means is configured to be periodically superimposed on the charging voltage for constant current charging and applied to the secondary battery.
The charging device according to claim 8 is characterized in that the coil generating the pulse voltage of the charging device according to claim 7 is a coil of a series resonance circuit.

次に、請求項1〜6による充電方法と請求項7及び8による充電装置の効果について記述する。ただし、請求項2〜6の充電方法は、請求項1の充電方法の技術思想に包含される態様としての技術思想であるので、請求項1の充電方法と同
等の効果を有して、かつ、個々の特有の効果を有する。
(A)請求項1に記載の充電方法によれば、代表的には、下記(1)〜(9)の効果が得られる。
(1)定電流充電を利用する充電でありながら、定電流充電とは著しく相違する充電特性(例えば、急速充電・短時間充電での充電途中の突発的な急上昇の防止・消滅等)が表れる。
(2)急速充電及び短時間充電において、通常の定電流充電の場合よりも充電時間が短縮される。
(3)急速充電及び短時間充電において、従来の定電流充電では不可避であった充電途中での電池温度の急上昇の発生が防止・回避される。
(4)急速充電及び短時間充電において、充電途中での電池電圧の異常な上昇及び電池劣化が防止・回避される。
(5)急速充電及び短時間充電において、従来では必須となる電池・電極の改造及び充電終了の正確な判断のための複雑な制御回路の設置が不要になる。
(6)通常の定電流充電のための有効な公知技術(例えば、充電終了技術)が使用可能になる。
(7)従来では、急速充電及び短時間充電が困難とされた形式の電池にも急速充電及び短時間充電の採用の機会が広がる。
(8)パルス状電圧の設定変更による発明の効果の向上が可能になる。
(9)搭載空間減少化の傾向に合させて電池及び充電装置を小型化することができる。
Next, effects of the charging method according to claims 1 to 6 and the charging device according to claims 7 and 8 will be described. However, since the charging method of claims 2 to 6 is a technical idea as an aspect included in the technical idea of the charging method of claim 1, it has the same effect as the charging method of claim 1, and , Have individual distinctive effects.
(A) According to the charging method described in claim 1, the following effects (1) to (9) are typically obtained.
(1) Although charging using constant current charging, charging characteristics that are significantly different from constant current charging (for example, prevention and disappearance of sudden sudden rise during charging in quick charge and short time charge) .
(2) Charge time is shortened in quick charge and short charge compared to normal constant current charge.
(3) In rapid charging and short-time charging, the sudden rise in battery temperature during charging, which was inevitable with conventional constant current charging, is prevented and avoided.
(4) Abnormal rise in battery voltage and battery deterioration during charging can be prevented and avoided during fast charging and short-time charging.
(5) For quick charging and short-time charging, it is not necessary to install a complicated control circuit for accurate determination of battery / electrode modification and charging completion, which is essential in the past.
(6) An effective known technique (for example, a charge termination technique) for normal constant current charging can be used.
(7) Conventionally, the opportunity of adopting rapid charging and short-time charging also extends to a battery of a type in which rapid charging and short-time charging are difficult.
(8) The effect of the invention can be improved by changing the setting of the pulse voltage.
(9) It is possible to reduce the size of the battery and the charging device in accordance with the trend of reducing the mounting space.

(B)請求項2の充電方法によれば、パルス状電圧の発生がコイルの励磁エネルギー放出によるので、請求項1と同等の効果を有して、かつ、例えば、下記(i)〜(iv)等の効果が得られる。
(i)コイルの励磁エネルギー蓄積の制御によりパルス状電圧発生が制御できるので、直流電流の供給時間の制御によってパルス状電圧を精密に制御可能になる。
(ii)コイルの励磁エネルギー蓄積が、直流電流の供給時間で決まり、かつ、その供給時間が1/数百(秒)の短時間で完了するので、励磁エネルギー蓄積の高速かつ容易になる。
(iii)充電回路のシステムが著しく簡単化できる。
(iv)励磁エネルギー放出によるパルス状電圧は、充電時の電池内反応系に与える影響が大きいことが本発明で見いだされている。
(C)請求項3の充電方法によれば、パルス状電圧の発生に直列共振回路のコイルを使用するので、請求項1と同等の効果を有して、かつ、請求項2の充電方法による特有の効果に加えて、例えば、直列共振回路で共振電圧を発生させて、励磁エネルギー放出に発生する急激に立ち上がる電圧と共振電圧とが連続するパルス状電圧にすることができる。
また、共振電圧を含むパルス状電圧が、本発明の充電方法の効果を享受するのに有効であることが、本発明で見いだされている。
(D)請求項4の充電方法によれば、直列共振回路のコンデンサとして充電対象の二次電池の電極が使用されるので、請求項1と同等の効果を有して、かつ、請求項2及び3の特有の効果に加えて、例えば、充電の進行に応じて変化する二次電池との共振電圧を含むパルス状電圧にしてそれを充電電圧に重畳して、パルス状電圧の効果をより向上させる。
(E)請求項5の充電方法によれば、デジタル情報によって充電回路で発生させたパルス状電圧であっても、正確に元のパルス状電圧の波形を再現できるので、高確率で、請求項1と同等の効果を得ることが可能になる。
(F)請求項6の充電方法によれば、検出情報とデジタル情報化技術によってパルス状電圧を重畳した充電電流それ自体が再現されるので、ある程度の確率で、請求項1と同等の効果を得ることが可能になる。
(B) According to the charging method of claim 2, since the generation of the pulsed voltage is due to the excitation energy release of the coil, it has the same effect as that of claim 1 and includes, for example, the following (i) to (iv) ) Etc. are obtained.
(I) Since the pulsed voltage generation can be controlled by controlling the excitation energy accumulation of the coil, the pulsed voltage can be precisely controlled by controlling the DC current supply time.
(Ii) Accumulation of the excitation energy of the coil is determined by the supply time of the direct current, and the supply time is completed in a short time of 1 / several hundreds (seconds).
(Iii) The charging circuit system can be greatly simplified.
(Iv) It has been found in the present invention that the pulsed voltage due to the excitation energy release has a great influence on the reaction system in the battery during charging.
(C) According to the charging method of claim 3, since the coil of the series resonance circuit is used to generate the pulse voltage, the charging method of claim 2 has the same effect as in claim 1. In addition to the specific effects, for example, a resonance voltage can be generated by a series resonance circuit, and a pulse voltage in which a rapidly rising voltage generated in excitation energy release and the resonance voltage are continuous can be obtained.
Further, it has been found in the present invention that a pulsed voltage including a resonance voltage is effective for enjoying the effect of the charging method of the present invention.
(D) According to the charging method of claim 4, since the electrode of the secondary battery to be charged is used as the capacitor of the series resonance circuit, the effect equivalent to that of claim 1 is obtained, and claim 2 In addition to the unique effects of (1) and (3), for example, a pulsed voltage including a resonance voltage with the secondary battery that changes as the charging progresses is superimposed on the charging voltage to further increase the effect of the pulsed voltage. Improve.
(E) According to the charging method of claim 5, even if it is a pulsed voltage generated in the charging circuit by digital information, the waveform of the original pulsed voltage can be accurately reproduced. An effect equivalent to 1 can be obtained.
(F) According to the charging method of claim 6, since the charging current itself superimposed with the pulsed voltage is reproduced by the detection information and the digital information technology, the same effect as in claim 1 can be achieved with a certain probability. It becomes possible to obtain.

(G)請求項7の充電装置によれば、請求項1〜3の充電方法の容易かつ正確な実施が可能になる。
(H)請求項8の充電装置によれば、請求項4の充電方法の容易かつ正確な実施が可能になる。
(G) According to the charging device of claim 7, the charging method of claims 1 to 3 can be carried out easily and accurately.
(H) According to the charging device of claim 8, the charging method of claim 4 can be carried out easily and accurately.

請求項1〜6の充電方法及び請求項7〜8の充電装置の実施の最良形態を以下に具体的に説明する。
なお、請求項2〜6の充電方法は、請求項1の充電方法の技術思想に包含される態様としての技術思想であるので、請求項1と共通する事項は、請求項1の説明で言及する。
<請求項1の充電方法>:
Embodiments of the charging method according to claims 1 to 6 and the charging device according to claims 7 to 8 will be specifically described below.
Since the charging method of claims 2 to 6 is a technical idea as an aspect included in the technical idea of the charging method of claim 1, matters common to claim 1 are referred to in the description of claim 1. To do.
<Charging method of claim 1>:

請求項1の充電方法は、パルス状電圧が定電流充電の充電電圧に周期的に重畳されて二次電池に印加されていることを特徴とし、パルス状電圧の充電電圧への重畳により定電流充電の内容を好適な方向に制御可能にする。 The charging method according to claim 1, wherein the pulsed voltage is periodically superimposed on the charging voltage of the constant current charging and applied to the secondary battery, and the constant current is superimposed on the charging voltage of the pulsed voltage. The content of charging can be controlled in a suitable direction.

<パルス状電圧>:
定電流充電の充電電圧にパルス状電圧が周期的に重畳されている状態にして電荷が電池に供給されて、請求項1〜7の充電方法について特異的な発明の効果が享受される。パルス状電圧は、その電圧波形に制約がないが、電圧波形が正の電位領域で連続的に動く軌跡であることによって発明の効果享受に有効である。パルス状電圧が正の電位領域で連続的に動くとは、第一に、電圧が常時に正の電位領域に存在し、第二に、電圧が変化し、第三に、電圧変化が連続的であることである。
また、「パルス状電圧」の用語は、パルス状電圧の発生から終了までの全体の意味で使用している。
図1〜図6は、請求項1〜6のパルス状電圧の電圧波形の好適な実施形態の例示である。
図1は、コイルの励磁エネルギー放出により発生するパルス状電圧の電圧波形の説明図で、請求項2の充電方法により発生する。図1のパルス状電圧は、定電流充電の充電電圧(横方向の矢印で示す符号Vdで示すレベル)から少し立ち下がってから急激に立ち上がってピーク電圧Vtに達してから充電電圧のレベルに戻っている。図1の下方のOVの符号を付した横線はゼロボルトのレベルを示している。なお、電圧波形が、最初に電圧Vdのレベルから少し立ち下がってから立ち上がるのは、パルス状電圧の発生方法に起因する。
図2のパルス状電圧は、励磁エネルギー放出で高く立ち上がる高電圧と共振電圧とが連続するパルス状電圧の電圧波形の説明図で、請求項3及び4の充電方法により発生することが可能である。
図2のパルス状電圧は、高電圧の電圧波形が最初に発生し、その高電圧との共振で共振電圧が発生して、高電圧と共振電圧とが連続し、共振電圧が減衰的に小さくなる電圧波形になっている。図2のパルス状電圧は、共振条件に該当して、比較的に大きな共振電圧が発生する場合である。
図3のパルス状電圧は、励磁エネルギー放出で立ち上がる高電圧と弱い共振電圧とが連続する電圧波形の説明図である。図3のパルス状電圧は、コイルと回路の寄生容量との間で発生する弱い共振電圧が発生する場合である。
図4のパルス状電圧は、励磁エネルギー放出で立ち上がる高電圧と弱い共振電圧とが連続する電圧波形の説明図である。図4は、弱い共振電圧が発生している場合である。
図5のパルス状電圧は、最初に立ち上がる電圧が弱く、連続する共振電圧も弱い場合であって、このような場合であっても、請求項1〜6の充電方法の発明の効果の享受に有効である。
図6のパルス状電圧は、連続電圧波形からなる場合で、請求項5の充電方法では容易に発生可能である。
<パルス状電圧のデューティ比>:
<Pulse voltage>:
Charge is supplied to the battery in a state where the pulse voltage is periodically superimposed on the charging voltage of constant current charging, and the effects of the invention specific to the charging method of claims 1 to 7 are enjoyed. The pulse voltage is not limited in its voltage waveform, but is effective in enjoying the effects of the invention because it is a locus in which the voltage waveform continuously moves in a positive potential region. The pulse voltage continuously moves in the positive potential region. First, the voltage always exists in the positive potential region, second, the voltage changes, and third, the voltage change continuously. It is to be.
Further, the term “pulse voltage” is used in the whole meaning from the generation to the end of the pulse voltage.
1 to 6 are exemplifications of preferred embodiments of the voltage waveform of the pulse voltage of claims 1 to 6.
FIG. 1 is an explanatory diagram of a voltage waveform of a pulsed voltage generated by releasing excitation energy of a coil, and is generated by the charging method according to claim 2. The pulse voltage in FIG. 1 falls slightly from the charging voltage for constant current charging (the level indicated by the symbol Vd indicated by the horizontal arrow), rises rapidly, reaches the peak voltage Vt, and then returns to the charging voltage level. ing. The horizontal line labeled OV at the bottom of FIG. 1 indicates the zero volt level. Note that the voltage waveform first rising slightly after falling from the level of the voltage Vd is due to the generation method of the pulse voltage.
The pulse voltage in FIG. 2 is an explanatory diagram of the voltage waveform of the pulse voltage in which a high voltage that rises high by excitation energy release and a resonance voltage continues, and can be generated by the charging method according to claims 3 and 4. .
In the pulse voltage shown in FIG. 2, a high voltage waveform is generated first, a resonance voltage is generated by resonance with the high voltage, the high voltage and the resonance voltage are continuous, and the resonance voltage is attenuated small. The voltage waveform is as follows. The pulse voltage in FIG. 2 corresponds to the resonance condition and a relatively large resonance voltage is generated.
The pulse voltage in FIG. 3 is an explanatory diagram of a voltage waveform in which a high voltage that rises upon excitation energy release and a weak resonance voltage are continuous. The pulse voltage in FIG. 3 is a case where a weak resonance voltage is generated between the coil and the parasitic capacitance of the circuit.
The pulse voltage in FIG. 4 is an explanatory diagram of a voltage waveform in which a high voltage that rises due to excitation energy release and a weak resonance voltage are continuous. FIG. 4 shows a case where a weak resonance voltage is generated.
The pulse voltage of FIG. 5 is a case where the voltage rising first is weak and the continuous resonance voltage is also weak. Even in such a case, the effect of the invention of the charging method of claims 1 to 6 can be enjoyed. It is valid.
The pulse voltage shown in FIG. 6 has a continuous voltage waveform and can be easily generated by the charging method according to claim 5.
<Duty ratio of pulse voltage>:

パルス状電圧のデューティ比が、パルス状電圧の発生から終了(消滅)までの時間(図9のTb)と パルス状電圧の重畳周期の時間(図9のTd)との比率(Tb/Td)とすると、デューティ比(Tb/Td)は、Tb をTdよりも小さくして、本発明の充電方法の効果の増大が可能である。デューティ比(Tb/Td)は、例えば、1/50〜1/3000(好ましくは、1/80〜1/2500、特に好ましくは、1/100〜1/2000)であれば、本発明の充電方法の効果の享受が容易になる。
デューティ比(Tb/Td)が、1/50より大きくなると前述の電池に発現する効果が低下し、1/3000より小さくなっても前述の電池に発現する効果が低下する。
<パルス状電圧の発生及び周期的な重畳>:
The duty ratio of the pulse voltage is the ratio (Tb / Td) between the time from the generation of the pulse voltage to the end (extinction) (Tb in FIG. 9) and the time of the pulse voltage overlap period (Td in FIG. 9) Then, the duty ratio (Tb / Td) is such that Tb is smaller than Td, and the effect of the charging method of the present invention can be increased. When the duty ratio (Tb / Td) is, for example, 1/50 to 1/3000 (preferably 1/80 to 1/2500, particularly preferably 1/100 to 1/2000), the charging of the present invention is performed. Enjoying the effect of the method becomes easier.
When the duty ratio (Tb / Td) is larger than 1/50, the effect appearing in the above-described battery is reduced, and even if the duty ratio (Tb / Td) is smaller than 1/3000, the effect appearing in the above-described battery is lowered.
<Generation of pulse voltage and periodic superposition>:

パルス状電圧は、定電流充電の充電電圧への周期的な重畳によって、本発明の充電方法による効果が享受可能であれば、前述した発生方法以外の任意の方法によることが可能である。
パルス状電圧の「周期的に重畳する」の「周期的」とは、規則的な周期(例えば、一定周期)で代表的ではあるが、規則的でない周期が含まれていてもよいことを意味している。パルス状電圧を重畳する充電電圧は、定電流充電の充電電圧であれば、急速充電・短時間充電・普通充電のいずれの充電率の充電での充電電圧であってもよい。
定電流充電は、定電流充電方式と称される一定電流値の直流電流を電池に供給する方式である。
定電流充電での一定電流値にする制御方式は任意であって、公知の制御方式であっても良く、新たに創作する制御方式であっても良い。
<請求項1〜6の充電方法の特徴>:
The pulse voltage can be generated by any method other than the above-described generation method as long as the effect of the charging method of the present invention can be enjoyed by periodic superposition of the constant current charging on the charging voltage.
“Periodic” of “periodically superimposing” the pulse voltage means that it is representative of a regular cycle (for example, a constant cycle), but may include a non-regular cycle. is doing. The charging voltage on which the pulse voltage is superimposed may be a charging voltage at a charging rate of fast charging, short-time charging, or normal charging as long as it is a constant current charging voltage.
Constant current charging is a method of supplying a direct current having a constant current value, called a constant current charging method, to a battery.
The control method for making a constant current value in constant current charging is arbitrary, and may be a known control method or a newly created control method.
<Characteristics of the charging method of claims 1 to 6>:

請求項1〜6の充電方法の特徴は、実験主体の検討での観察・測定・確認によれば、例えば、下記(1)〜(6)等である。
(1)定電流充電(一定電流値の直流電流による充電)には、生じない充電効率・充電特性が生ずる。
(2)従来の交流・間欠電流による充電では、電池の上限電圧を超える充電電圧による充電では直ちに事故が発生した。しかし、請求項1〜6の充電方法では、パルス状電圧のピーク電圧が電池の上限電圧を超えても、事故の発生に直ちに繋がらない。
(3)従来の交流・間欠電流による充電では、充電途中の不可避的に発生する電池電圧の上昇を解決するのが困難であった。
(4)従来の交流・間欠電流による充電では、電流をオン/オフで流して、かつ、長いオフ時間を採用することでデントライト発生を防止できた。しかし、請求項1〜6の充電方法では、パルス状電圧の周期的な重畳によってデントライト発生防止の効果が得られた。
(5)定電流充電(特に、定電流充電による急速充電若しくは短時間充電)では、条件を変えても、充電途中での突発的な電池温度の上昇防止が困難であった。しかし、請求項1〜6の充電方法では、防止可能になる。
(6)請求項1〜6の充電方法では、従来の急速充電の場合よりも、大きい充電率での充電及びは短時間での充電が可能になる。
<請求項2の充電方法>:
The characteristics of the charging method of claims 1 to 6 are, for example, the following (1) to (6) according to observation, measurement, and confirmation in the examination of the experiment subject.
(1) Charging efficiency and charging characteristics that do not occur in constant current charging (charging with DC current of a constant current value) occur.
(2) With conventional AC / intermittent charging, an accident occurred immediately when charging with a charging voltage exceeding the upper limit voltage of the battery. However, in the charging methods of claims 1 to 6, even if the peak voltage of the pulse voltage exceeds the upper limit voltage of the battery, it does not immediately lead to the occurrence of an accident.
(3) In conventional charging with alternating current and intermittent current, it was difficult to solve the unavoidable rise in battery voltage during charging.
(4) In conventional charging with alternating current and intermittent current, the dent light can be prevented from being generated by passing the current on / off and adopting a long off time. However, in the charging methods according to claims 1 to 6, the effect of preventing the generation of dent light was obtained by the periodic superposition of the pulse voltage.
(5) In constant current charging (especially rapid charging or short-time charging by constant current charging), it was difficult to prevent sudden increase in battery temperature during charging even if the conditions were changed. However, the charging methods of claims 1 to 6 can be prevented.
(6) In the charging method according to claims 1 to 6, charging at a higher charging rate and charging in a shorter time are possible than in the case of conventional quick charging.
<Charging method of claim 2>:

請求項2の充電方法は、請求項1の充電方法のパルス状電圧が、コイルに蓄積された励磁エネルギーの放出により発生すること、を特徴とする発明である。図7は、請求項2の充電方法の実施の形態としての充電回路の一例を示す説明
図である。図7において、定電流充電の充電回路は、回路手段として、特に、コイルを設けて、電源からの直流電流を充電パルス制御・出力制御回路のオン/オフ制御が可能な高速スイッチ(例えば、MOSFET)の短時間(実質的に、瞬時)オンでコイルに電源の直流電流を供給する。高速スイッチのオフでコイルに蓄積した励磁エネルギーを放出させてパルス状電圧を発生させて、定充電回路から供給される定電流(すなわち、一定値の直流電流)の充電電圧に重畳して電池に充電する。
電池保護・充電制御回路は、定電流充電の充電回路に使用される公知の制御回路をであることが可能である。ダイオードは、パルス状電圧を通過させるのに適する応答速度が速いダイオード(例えば、ファストリカバリダイオード及びショットキーバリヤダイオード等)が適している。
充電パルス制御・出力制御回路は、スイッチによるコイルに供給する直流電流のオン/オフの時間制御によって励磁エネルギーの蓄積を制御し、放出により発生するパルス状電圧までも制御する。また、パルス状電圧を重畳する周期の時間制御も制御する。
<請求項3及び4の充電方法>:
The charging method of claim 2 is an invention characterized in that the pulsed voltage of the charging method of claim 1 is generated by the release of excitation energy accumulated in the coil. FIG. 7 is an explanatory diagram showing an example of a charging circuit as an embodiment of the charging method according to claim 2. In FIG. 7, the charging circuit for constant current charging is a high-speed switch (for example, a MOSFET), which is provided with a coil as a circuit means so that a DC current from a power source can be turned on / off in a charging pulse control / output control circuit. ) A direct current of the power source is supplied to the coil when it is turned on for a short time (substantially, instantaneously). When the high-speed switch is turned off, the excitation energy accumulated in the coil is released to generate a pulsed voltage, which is superimposed on the charging voltage of the constant current (that is, constant DC current) supplied from the constant charging circuit to the battery. Charge.
The battery protection / charge control circuit can be a known control circuit used in a constant current charging circuit. As the diode, a diode (for example, a fast recovery diode and a Schottky barrier diode) having a high response speed suitable for passing a pulsed voltage is suitable.
The charge pulse control / output control circuit controls the accumulation of excitation energy by ON / OFF time control of the DC current supplied to the coil by the switch, and also controls the pulse voltage generated by the discharge. It also controls time control of the period in which the pulse voltage is superimposed.
<Charging method according to claims 3 and 4>:

請求項3及び4の充電方法は、コイルを使用して請求項2の充電方法のコイルとして直列共振回路のコイルが使用される場合である。
図8は、請求項3及び4の充電方法の実施の形態としての充電回路の一例を示
す説明図である。図8において、充電回路は、直列共振回路を通じて定電流充
電の定電流を流す閉ループAと、直列共振回路のコイルに励磁エネルギー蓄積のための直流電流を流す閉ループBとから構成される点は、図7と同様である。
図9は、図8の充電回路により発生するパルス状電圧が重畳された充電電圧の電圧波形の説明図である。なお、図9の電圧波形は、電池14の正の電極側と接地との間にシンクロスコープ等の信号波形測定装置を接続して観測・測定している。
以下において、図8の充電回路及び図9の電圧波形の説明図に基いて、充電
回路の機能とパルス状電圧の発生との関係を説明する。
The charging method according to claims 3 and 4 is a case where a coil of a series resonance circuit is used as the coil of the charging method according to claim 2 using a coil.
FIG. 8 is an explanatory diagram showing an example of a charging circuit as an embodiment of the charging method according to claims 3 and 4. In FIG. 8, the charging circuit is configured by a closed loop A in which a constant current for constant current charging is passed through a series resonant circuit, and a closed loop B in which a direct current for accumulating excitation energy is passed through a coil of the series resonant circuit, This is the same as FIG.
FIG. 9 is an explanatory diagram of the voltage waveform of the charging voltage on which the pulse voltage generated by the charging circuit of FIG. 8 is superimposed. The voltage waveform in FIG. 9 is observed and measured by connecting a signal waveform measuring device such as a synchroscope between the positive electrode side of the battery 14 and the ground.
In the following, the relationship between the function of the charging circuit and generation of the pulse voltage will be described based on the charging circuit of FIG. 8 and the voltage waveform explanatory diagram of FIG.

なお、図8の充電回路において、直列共振回路20は、コイル12と逆流防止
用の高速型ダイオード13と電池14(正負電極を直列共振回路のキャパシタ
(コンデンサ)として利用)との直列接続から構成され、充電時には、電池1
4との間で共振電圧が発生して、電極情報を含むパルス状電圧が重畳される構
成にされている。
スイッチ16は、高速(例えば、100〜0.00001μS(好ましくは10〜0.0001
μS))でのオン/オフ制御が可能なスイッチ(例えば、MOSFET)であれば使用可能である。また、パルス状電圧の発生から終了までの時間(図9のTb)を、定電流回路15の制御の応答時間よりも早くすることで、パルス状電圧を重畳した充電電圧が電池14に印加するに際して、パルス状電圧に対する定電流回路15の制御による影響を緩和させることが望ましい。緩和によって、電池14に対するパルス状電圧が与える効果(電気学的反応に対する制御効果)が大きくなるからである。なお、影響の緩和とは、定電流回路15の制御によりパルス状電圧の立ち上った電圧の抑制を意味している。
In the charging circuit of FIG. 8, the series resonance circuit 20 is configured by a series connection of a coil 12, a high-speed diode 13 for preventing backflow, and a battery 14 (using positive and negative electrodes as a capacitor of the series resonance circuit). When charging, the battery 1
4, a resonance voltage is generated, and a pulse voltage including electrode information is superimposed.
The switch 16 has a high speed (for example, 100 to 0.00001 μS (preferably 10 to 0.0001).
Any switch (eg, MOSFET) that can be turned on / off in μS)) can be used. Further, the charging voltage superimposed with the pulse voltage is applied to the battery 14 by making the time from the generation of the pulse voltage to the end (Tb in FIG. 9) faster than the control response time of the constant current circuit 15. At this time, it is desirable to reduce the influence of the control of the constant current circuit 15 on the pulse voltage. This is because the effect of the pulse voltage on the battery 14 (control effect on the electrical reaction) is increased by the relaxation. The mitigation of the effect means suppression of a voltage that has risen by a pulsed voltage under the control of the constant current circuit 15.

充電回路10は、電源11の電源電流が直接に直列共振回路20のコイル12に流れるので、瞬時の短時間でもコイル12に励磁エネルギーが蓄積可能になる。
スイッチ16は、オン/オフ制御によってパルス状電圧の発生から終了まで
の時間の制御をするので、オン/オフ制御の時間を定電流回路15の制御の応答時間よりも小さくすることが望ましい。
ダイオード13は、変化するパルス状電圧を通過させるのに適する応答速度が速いダイオード(例えば、ファストリカバリダイオード及びショットキーバリヤダイオード等)が適している。
定電流回路15は、定電流(一定値の直流電流)が制御可能であれば、公知の定電流回路、創作した定電流回路若しくは新たな定電流供給方法(図10を参照)であってもよい。図10は、新たな定電流供給方法の一例の説明図である。
In the charging circuit 10, since the power source current of the power source 11 flows directly to the coil 12 of the series resonance circuit 20, the excitation energy can be accumulated in the coil 12 even in a short time.
Since the switch 16 controls the time from the generation to the end of the pulse voltage by the on / off control, it is desirable to make the on / off control time shorter than the control response time of the constant current circuit 15.
The diode 13 is suitably a diode (for example, a fast recovery diode or a Schottky barrier diode) having a high response speed suitable for passing a changing pulse voltage.
The constant current circuit 15 may be a known constant current circuit, a created constant current circuit, or a new constant current supply method (see FIG. 10) as long as a constant current (a constant direct current) can be controlled. Good. FIG. 10 is an explanatory diagram of an example of a new constant current supply method.

充電回路10は、スイッチ16がオフでは、閉ループA(図8の矢印Aで示す流れ)に定電流が定電流回路15から供給されて、直列共振回路20で電池14を充電する。この定電流充電の時間は、図9の電圧波形では、符号Taで示す時間及びその波形になる。
符号Taの時間が終わると、充電回路10のスイッチ16がオフからオンに切替わって、電源11の直流電流が閉ループBに流れて直列共振回路20のコイル12に励磁エネルギーが蓄積される。スイッチ16のオン時間は、極く短時間(例えば、100〜0.00001μS)である。このスイッチ16のオン時間は、図9の電圧波形では、符号Tcで示す時間及びその波形になる。T3とT4の間の時間は、電源11とコイル12との間の閉ループBに電源電流が流れるために、定電流充電の定電流が、コイル12と電池14との間には流れない状態になるからである。
次に、スイッチ16が、極く短時間のオンからオフに切替わった直後(実質的に、瞬時)には、コイル12に蓄積された励磁エネルギーが放出されて、パルス状電圧の最初の立ち上がり電圧が発生する。図9の電圧波形では、T4の時点で、パルス状電圧の最初の立ち上がり電圧が発生し、同時に、定電流充電の定電流が流れる。そして、スイッチ16のオフ時間が続くので、発生したパルス状電圧が定電流の充電電圧に重畳される。
そして、励磁エネルギー放出で発生する最初の立ち上がり電圧が、共振の条件を満たす場合には、共振電圧が発生して、最初の立ち上がり電圧と共振電圧とが連続する電圧波形を有するパルス状電圧になる。図9の電圧波形では、符号T4の時点でパルス状電圧が発生し、符号T1の時点でパルス状電圧が終了する。パルス状電圧は、符号Tbの時間を有する電圧波形になる。
パルス状電圧が、符号T1の時点でパルス状電圧が終了すると、符号Taの時間にわたって定電流充電が行われる。そして、これらの繰り返しで充電が行われる。
When the switch 16 is off, the charging circuit 10 is supplied with a constant current from the constant current circuit 15 in the closed loop A (flow indicated by an arrow A in FIG. 8) and charges the battery 14 with the series resonance circuit 20. The constant current charging time is the time indicated by the symbol Ta and its waveform in the voltage waveform of FIG.
When the time indicated by the symbol Ta ends, the switch 16 of the charging circuit 10 is switched from OFF to ON, the DC current of the power supply 11 flows in the closed loop B, and the excitation energy is accumulated in the coil 12 of the series resonance circuit 20. The on time of the switch 16 is extremely short (for example, 100 to 0.00001 μS). The on time of the switch 16 is the time indicated by the symbol Tc and its waveform in the voltage waveform of FIG. During the time period between T3 and T4, since the power source current flows in the closed loop B between the power source 11 and the coil 12, the constant current for constant current charging does not flow between the coil 12 and the battery 14. Because it becomes.
Next, immediately after the switch 16 is switched from on to off for a very short time (substantially instantaneously), the excitation energy accumulated in the coil 12 is released and the first rise of the pulse voltage is started. Voltage is generated. In the voltage waveform of FIG. 9, the first rising voltage of the pulse voltage is generated at time T4, and at the same time, a constant current for constant current charging flows. Then, since the off time of the switch 16 continues, the generated pulse voltage is superimposed on the constant current charging voltage.
When the first rising voltage generated by the excitation energy release satisfies the resonance condition, the resonance voltage is generated and becomes a pulsed voltage having a voltage waveform in which the first rising voltage and the resonance voltage are continuous. . In the voltage waveform of FIG. 9, a pulsed voltage is generated at time T4, and the pulsed voltage ends at time T1. The pulse voltage has a voltage waveform having a time of Tb.
When the pulse voltage ends at the time point T1, the constant current charging is performed over the time indicated by the symbol Ta. And charging is performed by repeating these.

請求項3及び4の充電方法については、いくつかの特徴が観測・測定・確認されている。例えば、下記(1)〜(7)等の特徴である。
(1)パルス状電圧は、コイル12の影響を受けて、電圧と電流の最大値との間には「ずれ」が生ずるので、電池に対する負担を軽減して電流量を最大にして電池14に供給することが可能になる。
(2)充電時の電極状態が共振波形に反映する場合には、発明の効果(例えば、充電効率、充電特性及び充電速度)の向上が観察されている。
(3)信号波形測定装置による観察では、パルス状電圧により電池14に対する電荷の供給量が増えている。
(4)定電流回路15の制御の応答時間とパルス状電圧の存続時間とに時間差がある場合には、パルス状電圧での電池14への給電荷量が増大することが観察されている。
(5)コイル12に供給する直流電流専用の直流電源を設けることが可能である。専用の直流電源であれば、電源電圧を高くして、励磁エネルギー蓄積のレベルを上げて、第二の本発明の効果をより向上させることが可能になる。
(6)コイルまたは/及びコンデンサの条件を変えて、共振電圧を生じ易くすることが可能である。
(7)浮遊容量との共振電圧を含むパルス状電圧であっても、発明の効果の享受が可能である。
<請求項5の充電方法>:
Regarding the charging method according to claims 3 and 4, several characteristics are observed, measured and confirmed. For example, it is the following features (1) to (7).
(1) Since the pulse voltage is affected by the coil 12 and a “deviation” occurs between the voltage and the maximum value of the current, the burden on the battery is reduced to maximize the amount of current in the battery 14. It becomes possible to supply.
(2) When the electrode state during charging is reflected in the resonance waveform, the effect of the invention (for example, charging efficiency, charging characteristics and charging speed) has been observed.
(3) In the observation by the signal waveform measuring apparatus, the amount of charge supplied to the battery 14 is increased by the pulse voltage.
(4) When there is a time difference between the control response time of the constant current circuit 15 and the duration of the pulse voltage, it has been observed that the amount of charge supplied to the battery 14 at the pulse voltage increases.
(5) It is possible to provide a direct current power source dedicated to direct current supplied to the coil 12. If it is a dedicated DC power supply, it is possible to increase the power supply voltage and increase the level of excitation energy accumulation, thereby further improving the effect of the second aspect of the present invention.
(6) It is possible to easily generate a resonance voltage by changing the conditions of the coil or / and the capacitor.
(7) Even if it is a pulse voltage including a resonance voltage with the stray capacitance, the effect of the invention can be enjoyed.
<Charging method of claim 5>:

請求項5の充電方法は、電圧波形のアナログ情報をデジタル情報化して、デジタル情報による制御でパルス状電圧を充電回路で発生させる場合である。
例えば、スイッチング制御回路、波形発生器及びDSPを使用することが可能で、それら以外の方法であることも可能である。
<スイッチング制御回路によるパルス状電圧の発生>:
スイッチング制御回路を用いる方法は、例えば、パルス状電圧の電圧波形の基本情報を内蔵する発信器の波形情報をカウンタに送って、そこで、波形の選別等を行って、選別された波形情報がスイッチング時間生成用コード変換器に送られて、変換情報(デジタル情報)がドライバに送られて、ドライバによって、例えば、図7若しくは図8のスイッチが操作されてパルス状電圧が充電回路に発生させる。図10は、スイッチング制御回路を用いてパルス状電圧を発生させる回路図である。
<波形発生器によるパルス状電圧の発生>:
波形発生器は、波形の構成要素となる任意の波形エレメント作成と、波形エレメント作成からの任意の波形までも作成可能な装置である。複数の装置メーカ(例えば、横河電機株式会社)で市販の波形発生器の使用が可能である。波形発生器によるパルス状電圧の発生では、予めアナログのパルス状電圧の電圧波形を用意して、それを波形発生器によりデジタル情報に変換して、変換情報によりドライバによって充電回路のスイッチを操作してパルス状電圧を充電回路に発生させる。
<DSPによるパルス状電圧の発生>:
DSP(Digital Signal
Procesor)は、デジタルデータに対してデジタル演算等のデジタル演算処理を高速及び高精度で施して、異なる造形データを生成するための専用のプロセッサあって、複数の装置メーカで市販されている。DSPを利用する場合にも、予めアナログのパルス状電圧の電圧波形を用意して、デジタル情報に変換して、変換情報によりドライバによって充電回路のスイッチを操作してパルス状電圧を充電回路に発生させる。
<請求項6の充電方法>:
The charging method according to claim 5 is a case where the analog information of the voltage waveform is converted into digital information and a pulse voltage is generated in the charging circuit by control based on the digital information.
For example, a switching control circuit, a waveform generator, and a DSP can be used, and other methods can be used.
<Generation of pulse voltage by switching control circuit>:
The method using the switching control circuit, for example, sends the waveform information of the transmitter containing the basic information of the voltage waveform of the pulsed voltage to the counter, where the waveform is sorted and the selected waveform information is switched. It is sent to the time generating code converter, and the conversion information (digital information) is sent to the driver, and the driver operates, for example, the switch in FIG. 7 or FIG. 8 to generate a pulse voltage in the charging circuit. FIG. 10 is a circuit diagram for generating a pulse voltage using the switching control circuit.
<Generation of pulse voltage by waveform generator>:
The waveform generator is a device that can create an arbitrary waveform element that is a component of the waveform and an arbitrary waveform from the waveform element creation. Commercially available waveform generators can be used by a plurality of device manufacturers (for example, Yokogawa Electric Corporation). In the generation of pulse voltage by the waveform generator, an analog pulse voltage voltage waveform is prepared in advance, converted into digital information by the waveform generator, and the driver of the charging circuit is operated by the driver using the converted information. To generate a pulse voltage in the charging circuit.
<Generation of pulse voltage by DSP>:
DSP (Digital Signal
Procesor) is a dedicated processor for performing digital arithmetic processing such as digital arithmetic on digital data with high speed and high accuracy to generate different modeling data, and is commercially available from a plurality of apparatus manufacturers. Even when using DSP, a voltage waveform of analog pulse voltage is prepared in advance and converted to digital information, and a pulse voltage is generated in the charging circuit by operating the switch of the charging circuit by the driver according to the conversion information. Let
<Charging method of claim 6>:

請求項6の充電方法は、例えば、波形発生器若しくはDSPの機能によりパルス状電圧が充電電圧に周期的に重畳された定電流の全体を充電回路に出力する方法である。
図11は、請求項6の充電方法の説明図であって、充電回路の充電電流の検出手段を設けて、検出センサにより充電回路の充電電流(定電流)の情報を検出して、予め内蔵するパルス状電圧の情報とから波形発生器若しくはDSPによりパルス状電圧のデジタル情報を作成して、増幅器で性能を増強して充電回路に出力して電池の充電に供される。
<請求項7の充電装置>:
The charging method according to claim 6 is, for example, a method of outputting the entire constant current in which the pulse voltage is periodically superimposed on the charging voltage to the charging circuit by the function of the waveform generator or the DSP.
FIG. 11 is an explanatory diagram of the charging method of claim 6, comprising a charging current detection means for the charging circuit, and detecting the charging current (constant current) information of the charging circuit by the detection sensor, The digital information of the pulsed voltage is created from the information of the pulsed voltage to be generated by a waveform generator or DSP, and the performance is enhanced by the amplifier, which is output to the charging circuit for charging the battery.
<Charging device of claim 7>:

請求項7の充電装置は、請求項2の技術思想を充電装置の視点から把握した発明である。
図7は、請求項7の充電装置の内容を示す説明図でもある。請求項7の充電装置は、充電回路が、定電流充電の回路手段と、コイルに供給する直流電流の制御手段とから構成されて、供給する直流電流の制御によって、コイルへの励磁エネルギー蓄積とその放出によるパルス状電圧発生が制御されることを特徴としている。
従って、回路構成の簡略化、エネルギー蓄積制御の容易化・正確化とパルス状電圧発生の制御の容易化・正確化とが可能になっている。また、図7の充電方法で生じる発明の効果は、請求項7の充電装置についても発明の効果として享受される。
<請求項8の充電装置>:
図8は、請求項8の充電装置の内容を示す説明図でもある。請求項8の充電装置は、定電流充電の回路手段が直列共振回路含む構成にされて、パルス状電圧が直列共振回路のコイルで発生する構成にされ、それによって、パルス状電圧が共振電圧を含むことが可能な構成にされている。
そして、請求項8の充電装置によって、本来的な欠点を克服する定電流充電が簡単な構造であって、簡単で正確な制御による急速充電も可能な充電装置が得られている。また、図8の充電方法で生じる発明の効果は、請求項8の充電装置についても発明の効果として享受される。
<本発明の充電法の対象>:
The charging device of claim 7 is an invention in which the technical idea of claim 2 is grasped from the viewpoint of the charging device.
FIG. 7 is also an explanatory view showing the contents of the charging device of claim 7. In the charging device according to claim 7, the charging circuit includes constant current charging circuit means and direct current control means supplied to the coil, and excitation energy accumulation in the coil is controlled by controlling the supplied direct current. It is characterized in that generation of a pulsed voltage due to the emission is controlled.
Therefore, the circuit configuration can be simplified, the energy storage control can be easily and accurately controlled, and the pulse voltage generation control can be easily and accurately controlled. Further, the effect of the invention that is produced by the charging method of FIG. 7 is also enjoyed as the effect of the invention for the charging device of claim 7.
<Charging device of claim 8>:
FIG. 8 is also an explanatory view showing the contents of the charging device of claim 8. The charging device according to claim 8 is configured such that the circuit means for constant current charging includes a series resonant circuit, and the pulsed voltage is generated in a coil of the series resonant circuit, whereby the pulsed voltage generates the resonant voltage. It can be included.
In addition, the charging device according to claim 8 has a structure in which constant current charging that overcomes the inherent drawbacks is simple, and a charging device that can also perform quick charging with simple and accurate control is obtained. Further, the effect of the invention produced by the charging method of FIG. 8 is enjoyed as the effect of the invention also for the charging device of claim 8.
<Subject of the charging method of the present invention>:

本発明による充電方法及び充電装置での充電対象となる電池は、普通充電・急速充電・短時間充電のいずれの充電方法による場合であってもよく、電池の形式においても制約がなく、従来において、急速充電・短時間充電の実行が不可能であった電池であっても、請求項1〜8の本発明が実施可能であれば、急速充電・短時間充電が可能な電池となり得る。
また、電池は、実用・非実用に関係なく本発明での充電対象となる。さらに、電池の汎用性・非汎用性に関係なく本発明での充電対象となる。汎用性のある電池としては、例えば、ニッケル・カドミニウム電池(特に、密閉型)、ニッケル・水素電池(特に、密閉型)、リチウムイオン電池、ニッケル・亜鉛、酸化銀・亜鉛電池及びレドックスフロー電池であって、いずれも、本発明の充電対象となる。
The battery to be charged by the charging method and the charging device according to the present invention may be any of ordinary charging, quick charging, and short-time charging methods, and there is no restriction on the type of battery, and in the past Even if the battery cannot perform the quick charge / short-time charge, it can be a battery capable of rapid charge / short-time charge if the present invention of claims 1 to 8 can be implemented.
In addition, the battery is an object to be charged in the present invention regardless of practical use or non-practical use. Furthermore, it becomes the charge object in this invention irrespective of the versatility and non-generality of a battery. General-purpose batteries include, for example, nickel / cadmium batteries (especially sealed), nickel / hydrogen batteries (especially sealed), lithium ion batteries, nickel / zinc, silver oxide / zinc batteries, and redox flow batteries. In any case, the charging is subject to the present invention.

なお、本発明においては、本発明の目的に沿うものであって、本発明の効果を特に害さない限りにおいては、改変あるいは部分的な変更及び付加は任意であって、いずれも本発明の範囲である。次に、本発明を実施例に基づいて具体的に説明するが、実施例は例示であって本発明を拘束するものではない。 In the present invention, it is in accordance with the object of the present invention, and any modification or partial change and addition is optional as long as the effects of the present invention are not particularly impaired. It is. EXAMPLES Next, although this invention is demonstrated concretely based on an Example, an Example is an illustration and does not restrain this invention.

ニッケル水素電池を定電流放電して実験用の電池に供した。実施例1及び2は、定電流充電の直流電流にパルス状電圧を周期的に重畳した充電電流を電池に流して、パルス状電圧が定電流充電の直流電流により進行する電池内反応系に対する作用効果を電池内反応系の変化の投影である充電特性から観察した。
また、比較例1及び2は、実施例1及び2での定電流充電の直流電流のみを電池に流して、実施例1及び2でのパルス状電圧による作用効果を確認した。
なお、実施例1及び比較例1は、定電流充電の直流電流を極く短時間の急速時間で完全充電付近の充電率になる条件にした。実施例2及び比較例2は、定電流充電の直流電流を急速時間の範囲で完全充電付近の充電率になる条件にした。
<実施例1>
The nickel metal hydride battery was discharged at a constant current and used for an experimental battery. In Examples 1 and 2, a charging current in which a pulsed voltage is periodically superimposed on a DC current of constant current charging is passed through the battery, and the action on the in-battery reaction system in which the pulsed voltage proceeds by the DC current of constant current charging. The effect was observed from the charging characteristics, which is a projection of changes in the reaction system in the battery.
In Comparative Examples 1 and 2, only the DC current of constant current charging in Examples 1 and 2 was allowed to flow through the battery, and the effect of the pulse voltage in Examples 1 and 2 was confirmed.
In Example 1 and Comparative Example 1, the direct current for constant current charging was set to a condition in which a charging rate near full charging was achieved in a very short rapid time. In Example 2 and Comparative Example 2, the direct current for constant current charging was set to a condition where the charging rate was in the vicinity of complete charging within a rapid time range.
<Example 1>

ニッケル水素電池(GPI製GP110AAAHC、容量1100
mAh)を直列に4本接続したものを用いて図6に示す充電回路で充電し、その充電特性を測定した。ここで使用した電池は、充電開 始前に1Aの定電流放電を行い、電池電圧
を1Vとして充電を開始 し、充電終了は、−△V5mVを検出した時点とした。
充電電源には12V電源を用い、充電電流が3.7Aとなるよ う定電流回路で制御した。また、 回路中のインダクタは100マイ クロヘンリーのものを使用し、スイッチングは39kH周期で、デューティ比は1/256とした。また、充電後の電池は、1Aの
定電流放電を行い、その放電時間を測定し放電量を算出して充電率 を求めた。
その結果を示す表1によれば、約10分で電池温度が17.1℃上昇した。 しかし、比較例1の場合には、実施例1と同じ定電流充電の直流電流のみを 実施例1と条件で流して、電池温度が30℃上昇した(表3を参照)。
Nickel metal hydride battery (GP110AAAHC made by GPI, capacity 1100
6 were connected in series with a charging circuit shown in FIG. 6, and the charging characteristics were measured. The battery used here was discharged at a constant current of 1A before the start of charging, the battery voltage was set to 1V, and the charging was started. The end of charging was the time when -ΔV5mV was detected.
A 12V power source was used as the charging power source, and the constant current circuit was controlled so that the charging current was 3.7A. The inductor used in the circuit was 100 microhenry, switching was 39 kHz cycle, and the duty ratio was 1/256. Further, the battery after charging was discharged at a constant current of 1 A, the discharge time was measured, the amount of discharge was calculated, and the charging rate was obtained.
According to Table 1 showing the results, the battery temperature increased by 17.1 ° C. in about 10 minutes. However, in the case of Comparative Example 1, only the direct current with the same constant current charge as in Example 1 was passed under the same conditions as in Example 1, and the battery temperature increased by 30 ° C. (see Table 3).

<実施例2> <Example 2>

定電流回路を制御して定電流充電の直流電流を1Aにした。パルス状電圧を実施例1と同じ条件で、定電流充電の直流電流に重畳して充電電流にした。充電時間は、一般的な急速充電の範囲にして充電特性を求めた。その結果を示す表2によれば、一般的な急速充電の時間では、電池温度が10.5℃上昇した。しかし、比較例2の場合には、実施例2と同じ定電流充電の直流電流のみを実施例2と条件で流して、電池温度が10.5℃上昇した(表4を参照)。 The constant current circuit was controlled to make the constant current charging DC current 1A. Under the same conditions as in Example 1, the pulse voltage was superimposed on the constant current charging DC current to form a charging current. Charging characteristics were determined within the general quick charging range. According to Table 2 showing the results, the battery temperature increased by 10.5 ° C. during the general quick charge time. However, in the case of Comparative Example 2, only the same constant current charging direct current as in Example 2 was passed under the same conditions as in Example 2 and the battery temperature increased by 10.5 ° C. (see Table 4).

<比較例1> <Comparative Example 1>

実施例1と同じ図6に示す充電回路を用い、定電流回路により直流電流が実施例1と同様に3.7Aになる様に制御した。スイッチング制御回路を用いないで、定電流回路からの直流電流3.7Aを電池に流して充電した。その結果を表3に示す。 The same charging circuit shown in FIG. 6 as in Example 1 was used, and the constant current circuit was used to control the direct current to 3.7 A as in Example 1. Without using the switching control circuit, the battery was charged with a direct current of 3.7 A from the constant current circuit. The results are shown in Table 3.

<比較例2> <Comparative Example 2>

実施例1及び2と同じ図6に示す充電回路を用い、定電流回路による直流電流が実施例2と同様に1Aになる様に制御した。スイッチング制御回路を用いないで、定電流回路による直流電流1Aを電池に流して充電した。その結果を表4に示す。 The same charging circuit shown in FIG. 6 as in Examples 1 and 2 was used, and the direct current from the constant current circuit was controlled to 1 A as in Example 2. Without using a switching control circuit, the battery was charged by passing a direct current 1A from a constant current circuit through the battery. The results are shown in Table 4.

本発明による充電方法及び充電装置は、定電流充電主体の充電方式でありながら従来の定電流充電ではない生じ得ない充電特性及び充電速度等での充電を可能にするので、電池の工業的利便性の向上を可能にする。   The charging method and the charging device according to the present invention enable charging at a charging characteristic and a charging speed that cannot be generated by the conventional constant current charging, although the charging method is based on constant current charging. Improves sex.

パルス状電圧の電圧波形の実施形態例の説明図である。It is explanatory drawing of the embodiment of the voltage waveform of a pulse-form voltage. パルス状電圧の電圧波形の他の実施形態例の説明図である。It is explanatory drawing of the other embodiment of the voltage waveform of a pulse-form voltage. パルス状電圧の電圧波形の他の実施形態例の説明図である。It is explanatory drawing of the other embodiment of the voltage waveform of a pulse-form voltage. パルス状電圧の電圧波形の他の実施形態例の説明図である。It is explanatory drawing of the other embodiment of the voltage waveform of a pulse-form voltage. パルス状電圧の電圧波形の他の実施形態例の説明図である。It is explanatory drawing of the other embodiment of the voltage waveform of a pulse-form voltage. パルス状電圧の電圧波形の他の実施形態例の説明図である。It is explanatory drawing of the other embodiment of the voltage waveform of a pulse-form voltage. 請求項2の充電方法の充電回路の説明図である。FIG. 3 is an explanatory diagram of a charging circuit of the charging method according to claim 2. 請求項4の充電方法の充電回路の説明図である。FIG. 6 is an explanatory diagram of a charging circuit of the charging method according to claim 4. 、請求項4のパルス状電圧が重畳された充電電圧の電圧波形の説明図である。FIG. 5 is an explanatory diagram of a voltage waveform of a charging voltage on which the pulse voltage of claim 4 is superimposed. スイッチング制御回路によるパルス状電圧発生のための回路図である。FIG. 3 is a circuit diagram for generating a pulse voltage by a switching control circuit. 請求項6の充電方法の説明図である。7 is an explanatory diagram of a charging method according to claim 6. FIG. 定電流充電の充電特性を模式的に示す説明図である。It is explanatory drawing which shows the charge characteristic of constant current charge typically. 定電圧充電の充電特性を模式的に示す説明図である。It is explanatory drawing which shows the charge characteristic of constant voltage charge typically. 密閉型鉛電池を定電圧充電により急速充電する場合の充電特性を模式的に示す説明図である。It is explanatory drawing which shows typically the charge characteristic in the case of carrying out rapid charge of a sealed lead battery by constant voltage charge. 異なる形式の電池の定電流充電(20℃)による充電特性を示す説明図である。It is explanatory drawing which shows the charge characteristic by constant current charge (20 degreeC) of the battery of a different type. 密閉型ニッケル・カドミニウム電池を異なる充電率により定電流充電した場合の充電特性を示す説明図である。It is explanatory drawing which shows the charge characteristic at the time of carrying out constant current charge of the sealed nickel cadmium battery by different charging rates. 密閉型ニッケル・カドミニウム電池の充放電での電池周囲温度と電池寿命との関係を示す説明図である。It is explanatory drawing which shows the relationship between the battery ambient temperature and battery life in charging / discharging of a sealed nickel cadmium battery.

符号の説明Explanation of symbols

10 充電回路
11 直流電源
12 コイル
13 高速型ダイオード
14 電池
15 定電流回路
16 スイッチ
20 直列共振回路
DESCRIPTION OF SYMBOLS 10 Charging circuit 11 DC power supply 12 Coil 13 High-speed type diode 14 Battery 15 Constant current circuit 16 Switch 20 Series resonance circuit

Claims (13)

パルス状電圧が、定電流充電の充電電圧に周期的に重畳されて二次電池に印加されていること、を特徴とする二次電池の充電方法。 A method for charging a secondary battery, characterized in that a pulsed voltage is periodically superimposed on a charging voltage for constant current charging and applied to the secondary battery. コイルに蓄積された励磁エネルギーの放出により発生するパルス状電圧が、定電流充電の充電電圧に周期的に重畳されて二次電池に印加されていること、を特徴とする二次電池の充電方法。 A charging method for a secondary battery, characterized in that a pulsed voltage generated by releasing the excitation energy accumulated in the coil is periodically superimposed on the charging voltage for constant current charging and applied to the secondary battery. . 直列共振回路のコイルに蓄積された励磁エネルギー放出により発生するパルス状電圧が、定電流充電の充電電圧に周期的に重畳されて二次電池に印加されていること、を特徴とする二次電池の充電方法。 A secondary battery characterized in that a pulsed voltage generated by releasing excitation energy accumulated in a coil of a series resonance circuit is periodically superimposed on a charging voltage of constant current charging and applied to the secondary battery. Charging method. 充電対象の二次電池の電極をコンデンサとする直列共振回路のコイルに蓄積された励磁エネルギー放出により発生するパルス状電圧が、定電流充電の充電電圧に周期的に重畳されて二次電池に印加されていること、を特徴とする二次電池の充電方法。 The pulsed voltage generated by the release of excitation energy stored in the coil of the series resonance circuit using the electrode of the secondary battery to be charged as a capacitor is periodically superimposed on the charging voltage for constant current charging and applied to the secondary battery. A method for charging a secondary battery. 電圧波形のアナログ情報をデジタル情報化し、そのデジタル情報によって充電回路で発生させたパルス状電圧が、定電流充電の充電電圧に周期的に重畳されて二次電池に印加されていること、を特徴とする二次電池の充電方法。 The analog information of the voltage waveform is converted into digital information, and the pulse voltage generated by the charging circuit based on the digital information is periodically superimposed on the charging voltage for constant current charging and applied to the secondary battery. Rechargeable battery charging method. 充電回路に充電電流の検出手段を設けて、該検出手段で検出される充電電流の情報と予め内蔵するパルス状電圧の情報とから波形発生器によりパルス状電圧が充電電圧に周期的に重畳された定電流を生成して二次電池に供給すること、を特徴とする二次電池の充電方法。 A charging current detecting means is provided in the charging circuit, and the pulsed voltage is periodically superimposed on the charging voltage by a waveform generator from information on the charging current detected by the detecting means and information on the pulsed voltage built in in advance. A method for charging a secondary battery, comprising generating a constant current and supplying the constant current to the secondary battery. 定電流充電の回路手段を有する充電回路が、該充電回路のコイルへの励磁エネルギー蓄積とその放出によるパルス状電圧発生をコイルへの直流電流の供給で制御する制御手段を備えて、
該制御手段による該直流電流の供給制御により発生するパルス状電圧が、定電流充電の充電電圧に周期的に重畳させて二次電池に印加する構成にされていること、を特徴とする二次電池の充電装置。
A charging circuit having circuit means for constant current charging comprises control means for controlling the accumulation of excitation energy in the coil of the charging circuit and generation of a pulsed voltage due to its discharge by supplying a direct current to the coil,
A secondary voltage characterized in that a pulse voltage generated by supply control of the direct current by the control means is applied to a secondary battery by periodically superimposing it on a charging voltage of constant current charging. Battery charger.
直列共振回路を通じて定電流充電する回路手段を有する充電回路が、該直列共振回路のコイルへの励磁エネルギー蓄積とその放出によるパルス状電圧発生をコイルへの直流電流の供給で制御する制御手段を備えて、
該制御手段による該コイルへの直流電流の供給の制御によって発生するパルス状電圧が、定電流充電の充電電圧に周期的に重畳させて二次電池に印加する構成にされていること、を特徴とする二次電池の充電装置。
A charging circuit having circuit means for charging at a constant current through a series resonance circuit includes control means for controlling the accumulation of excitation energy in the coil of the series resonance circuit and generation of a pulsed voltage due to the discharge by supplying a direct current to the coil. And
A pulse voltage generated by controlling the supply of direct current to the coil by the control means is configured to be periodically superimposed on a charging voltage of constant current charging and applied to the secondary battery. Secondary battery charger.
前記直列共振回路が、コンデンサとして充電対象の二次電池の電極が用いられている こと、を特徴とする請求項8に記載の二次電池の充電装置。 9. The secondary battery charging device according to claim 8, wherein the series resonant circuit uses a secondary battery electrode to be charged as a capacitor. 前記パルス状電圧が、正の電位の電圧波形の軌跡を有して、少なくとも、重畳対象の充電電圧よりも高い電圧に立ち上がる電圧波形を備えること、を特徴とする請求項1〜6のいずれかに記載の二次電池の充電方法。 7. The pulse-like voltage has a locus of a voltage waveform of a positive potential, and has at least a voltage waveform that rises to a voltage higher than the charging voltage to be superimposed. Charge method of the secondary battery as described in 2. 前記充電対象の二次電池が、急速充電若しくは短時間充電が可能な二次電池であること、を特徴とする請求項1〜6のいずれかに記載の二次電池の充電方法。 7. The method for charging a secondary battery according to claim 1, wherein the secondary battery to be charged is a secondary battery capable of rapid charging or short-time charging. 前記充電対象の二次電池が、ニッケル・カドミウム電池、ニッケル・水素電池、リチウムイオン電池、ニッケル・鉄及びレドックスフロー電池であること、を特徴とする請求項1〜6のいずれかに記載の二次電池の充電方法。 7. The secondary battery according to claim 1, wherein the secondary battery to be charged is a nickel / cadmium battery, a nickel / hydrogen battery, a lithium ion battery, nickel / iron, or a redox flow battery. How to charge the next battery. 前記充電対象の二次電池が、単一の二次電池、複数の単一二次電池の組み合わせから組電池であること、を特徴とする請求項1〜6のいずれかに記載の二次電池の充電方法。
The secondary battery according to any one of claims 1 to 6, wherein the secondary battery to be charged is a single secondary battery or a combination battery of a plurality of single secondary batteries. Charging method.
JP2008335601A 2008-12-28 2008-12-28 Secondary battery charging method and charging device Active JP4864963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335601A JP4864963B2 (en) 2008-12-28 2008-12-28 Secondary battery charging method and charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335601A JP4864963B2 (en) 2008-12-28 2008-12-28 Secondary battery charging method and charging device

Publications (2)

Publication Number Publication Date
JP2010158129A true JP2010158129A (en) 2010-07-15
JP4864963B2 JP4864963B2 (en) 2012-02-01

Family

ID=42575589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335601A Active JP4864963B2 (en) 2008-12-28 2008-12-28 Secondary battery charging method and charging device

Country Status (1)

Country Link
JP (1) JP4864963B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213796A (en) * 2012-04-04 2013-10-17 Tamagawa Seiki Co Ltd Resolver excitation device and method
KR20140040054A (en) * 2012-09-25 2014-04-02 큐노보 인코포레이티드 Method and circuitry to adaptively charge a battery/cell
JP2015516531A (en) * 2012-02-29 2015-06-11 アイエヌアイ パワー システムズ インコーポレイテッド Efficient fuel consumption method and apparatus
USD733052S1 (en) 2012-12-20 2015-06-30 Ini Power Systems, Inc. Flexible fuel generator
US9175601B2 (en) 2012-01-04 2015-11-03 Ini Power Systems, Inc. Flex fuel field generator
US9188033B2 (en) 2012-01-04 2015-11-17 Ini Power Systems, Inc. Flexible fuel generator and methods of use thereof
US9909534B2 (en) 2014-09-22 2018-03-06 Ini Power Systems, Inc. Carbureted engine having an adjustable fuel to air ratio
US10030609B2 (en) 2015-11-05 2018-07-24 Ini Power Systems, Inc. Thermal choke, autostart generator system, and method of use thereof
USD827572S1 (en) 2015-03-31 2018-09-04 Ini Power Systems, Inc. Flexible fuel generator
CN111864313A (en) * 2020-07-22 2020-10-30 欣旺达电动汽车电池有限公司 Self-heating method and device for power battery and readable storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981244A (en) * 1982-11-02 1984-05-10 Nippon Air Brake Co Ltd Sensing valve for parking brake operating force
JP2000040537A (en) * 1998-07-24 2000-02-08 Tec:Kk Recycling method for lead-acid battery
WO2000042673A1 (en) * 1999-01-14 2000-07-20 Fujitsu Limited Method for charging secondary cell and charger
JP2004527998A (en) * 2001-05-28 2004-09-09 10チャージ エレクトロテクニカイ フェレストウー エシュ ケレシュケデルミ ケイエフテイ Method and apparatus for charging a rechargeable battery with a non-liquid electrolyte
JP2005515743A (en) * 2002-01-16 2005-05-26 ソ,チ−ジェ Battery charge stabilization circuit
WO2005083830A1 (en) * 2004-02-27 2005-09-09 Intellectual Property Bank Corp. Method of removing lead sulfate film of lead acid battery electrode and pulse generator for removing lead sulfate film
JP2007259648A (en) * 2006-03-24 2007-10-04 Power System:Kk Charger for capacitor storage power supply
WO2009013804A1 (en) * 2007-07-23 2009-01-29 Pulse Tech Japan Corporation Method of reducing fuel consumption of internal combustion engine and pulse generator used for the method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981244A (en) * 1982-11-02 1984-05-10 Nippon Air Brake Co Ltd Sensing valve for parking brake operating force
JP2000040537A (en) * 1998-07-24 2000-02-08 Tec:Kk Recycling method for lead-acid battery
WO2000042673A1 (en) * 1999-01-14 2000-07-20 Fujitsu Limited Method for charging secondary cell and charger
JP2004527998A (en) * 2001-05-28 2004-09-09 10チャージ エレクトロテクニカイ フェレストウー エシュ ケレシュケデルミ ケイエフテイ Method and apparatus for charging a rechargeable battery with a non-liquid electrolyte
JP2005515743A (en) * 2002-01-16 2005-05-26 ソ,チ−ジェ Battery charge stabilization circuit
WO2005083830A1 (en) * 2004-02-27 2005-09-09 Intellectual Property Bank Corp. Method of removing lead sulfate film of lead acid battery electrode and pulse generator for removing lead sulfate film
JP2007259648A (en) * 2006-03-24 2007-10-04 Power System:Kk Charger for capacitor storage power supply
WO2009013804A1 (en) * 2007-07-23 2009-01-29 Pulse Tech Japan Corporation Method of reducing fuel consumption of internal combustion engine and pulse generator used for the method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995248B2 (en) 2012-01-04 2018-06-12 Ini Power Systems, Inc. Flex fuel field generator
US9175601B2 (en) 2012-01-04 2015-11-03 Ini Power Systems, Inc. Flex fuel field generator
US9188033B2 (en) 2012-01-04 2015-11-17 Ini Power Systems, Inc. Flexible fuel generator and methods of use thereof
US9450450B2 (en) 2012-02-29 2016-09-20 Ini Power Systems, Inc. Method and apparatus for efficient fuel consumption
JP2015516531A (en) * 2012-02-29 2015-06-11 アイエヌアイ パワー システムズ インコーポレイテッド Efficient fuel consumption method and apparatus
JP2013213796A (en) * 2012-04-04 2013-10-17 Tamagawa Seiki Co Ltd Resolver excitation device and method
KR102118218B1 (en) 2012-09-25 2020-06-02 큐노보 인코포레이티드 Method and circuitry to adaptively charge a battery/cell
KR20140040054A (en) * 2012-09-25 2014-04-02 큐노보 인코포레이티드 Method and circuitry to adaptively charge a battery/cell
USD794562S1 (en) 2012-12-20 2017-08-15 Ini Power Systems, Inc. Flexible fuel generator
USD733052S1 (en) 2012-12-20 2015-06-30 Ini Power Systems, Inc. Flexible fuel generator
US9909534B2 (en) 2014-09-22 2018-03-06 Ini Power Systems, Inc. Carbureted engine having an adjustable fuel to air ratio
USD827572S1 (en) 2015-03-31 2018-09-04 Ini Power Systems, Inc. Flexible fuel generator
US10030609B2 (en) 2015-11-05 2018-07-24 Ini Power Systems, Inc. Thermal choke, autostart generator system, and method of use thereof
US11274634B2 (en) 2015-11-05 2022-03-15 Ini Power Systems, Inc. Thermal choke, autostart generator system, and method of use thereof
US11655779B2 (en) 2015-11-05 2023-05-23 The Dewey Electronics Corporation Thermal choke, autostart generator system, and method of use thereof
CN111864313A (en) * 2020-07-22 2020-10-30 欣旺达电动汽车电池有限公司 Self-heating method and device for power battery and readable storage medium
CN111864313B (en) * 2020-07-22 2022-07-12 欣旺达电动汽车电池有限公司 Self-heating method and device for power battery and readable storage medium

Also Published As

Publication number Publication date
JP4864963B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4864963B2 (en) Secondary battery charging method and charging device
JP6037369B2 (en) Secondary battery SOC estimation device
JP4782663B2 (en) Charging system, charging device, and battery pack
US8350531B2 (en) Secondary battery charge control method and charge control circuit
JP4486046B2 (en) Battery pack monitoring apparatus and method
JP5561916B2 (en) Battery status monitoring device
US10406938B2 (en) Method for minimizing cell aging of a battery and/or battery comprising an apparatus for minimizing cell aging of the battery
JP2011154016A (en) Battery management system and driving method thereof
JP2008300038A (en) Battery pack, apparatus, and charge control method
JP2012253975A (en) Charging/discharging control method for alkali storage battery, and charging/discharging system
KR101442188B1 (en) Apparatus and Method for warning against overheat of battery pack
JP2005160233A (en) Battery pack and cell battery pack
JP2007159248A (en) Controller for secondary battery and input control method of secondary battery
JP5153380B2 (en) Charge / discharge method of secondary battery.
US20140015456A1 (en) Vehicle power supply device
FR2949908A1 (en) Electrochemical battery e.g. nickel-cadmium battery, monitoring method for portable computer, involves directly detecting abnormality within battery as path of harmful chemical reaction within battery or physical degradation of battery
JP2004301782A (en) Fully charging state detecting device, its method, charging state detecting device and its method, and deterioration detecting device and its method
JP2011040237A (en) Charging apparatus for lead-storage battery
CN107615563A (en) The state determining apparatus of subsidiary engine battery and the condition judgement method of subsidiary engine battery
JP2007012546A (en) Method of charging lead accumulator and charger for lead accumulator
JP6344709B2 (en) Battery pack and electric device including the battery pack
JP2007047117A (en) Remaining charge computing apparatus
JP2010261807A (en) Storage battery deterioration determination method and charge/discharge control device
JP2006262614A (en) Charger and charging method
JP2007330051A (en) Charging method of nickel hydrogen battery and charging device for executing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4864963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250