JP2007259615A - Charger or discharger for capacitor storage power supply - Google Patents

Charger or discharger for capacitor storage power supply Download PDF

Info

Publication number
JP2007259615A
JP2007259615A JP2006082096A JP2006082096A JP2007259615A JP 2007259615 A JP2007259615 A JP 2007259615A JP 2006082096 A JP2006082096 A JP 2006082096A JP 2006082096 A JP2006082096 A JP 2006082096A JP 2007259615 A JP2007259615 A JP 2007259615A
Authority
JP
Japan
Prior art keywords
charging
circuit
signal
current
storage power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006082096A
Other languages
Japanese (ja)
Other versions
JP3886142B1 (en
Inventor
Masaaki Shimizu
正明 清水
Shinichi Yamamoto
真一 山本
Katsushi Mitsui
克司 三井
Atsushi Shimizu
敦 清水
Hiroshi Tsuji
博司 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power System Co Ltd
Original Assignee
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power System Co Ltd filed Critical Power System Co Ltd
Priority to JP2006082096A priority Critical patent/JP3886142B1/en
Priority to EP07102294A priority patent/EP1821386A2/en
Priority to US11/707,097 priority patent/US7622898B2/en
Application granted granted Critical
Publication of JP3886142B1 publication Critical patent/JP3886142B1/en
Publication of JP2007259615A publication Critical patent/JP2007259615A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress useless power loss due to leakage current during stoppage of charge or discharge. <P>SOLUTION: In the charger or discharger for a capacitor storage power supply comprising a main switch circuit SW1 turning on/off according to an on/off control signal and a choke coil L, and arranged to perform charge or discharge for the capacitor storage power supply 7 which stores power in an electric double layer capacitor, signal interruption circuits TS1-TS3 are inserted in series into a signal line connected with a circuit performing charge or discharge for the capacitor storage power supply 7 and detecting a current or a voltage at the time of charge or discharge, and the signal line is interrupted by the signal interruption circuit by judging stoppage state of charge or discharge. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、オン/オフ制御信号に従いオン/オフするメインスイッチ回路とチョークコイルを有し電気二重層キャパシタに蓄電するキャパシタ蓄電電源に対し充電又は放電を行うように構成したキャパシタ蓄電電源用充電又は放電装置に関する。   The present invention is directed to charging or discharging a capacitor storage power source that is configured to charge or discharge a capacitor storage power source that has a main switch circuit that is turned on / off according to an on / off control signal and a choke coil and that is stored in an electric double layer capacitor. The present invention relates to a discharge device.

複数の電気二重層キャパシタを直列接続して構成する高電圧大容量の蓄電電源装置において、蓄電電源の端子電圧は、キャパシタの蓄電量の平方根に比例して変動する。そこで、このような蓄電電源の充電又は放電装置では、変動の大きい端子電圧に効率よく追従させるためにPWM(Pulse Width Modulation :パルス幅変調)制御を用い、パルス幅を変化させて所望の充放電制御(例えば定電流制御CC、定電力制御CP、定電圧制御CVの切り換え)を実現している。   In a high-voltage and large-capacity storage power supply apparatus configured by connecting a plurality of electric double layer capacitors in series, the terminal voltage of the storage power supply varies in proportion to the square root of the storage amount of the capacitor. Therefore, in such a storage power supply charging or discharging device, PWM (Pulse Width Modulation) control is used to efficiently follow a terminal voltage having a large fluctuation, and a desired charging / discharging is performed by changing the pulse width. Control (for example, switching between constant current control CC, constant power control CP, and constant voltage control CV) is realized.

また、メインスイッチ回路をオンオフしてチョークコイルにエネルギーを蓄積して整流ダイオードを通して蓄積したエネルギーを放出するスイッチング電源装置において、低電圧の直流出力を得る場合に整流ダイオードによる損失の割合が大きくなることから、メインスイッチ回路のオン/オフと逆位相でオフ/オンさせる同期整流回路(スイッチ回路)を整流ダイオードに代えて用いることにより、損失の低減を図っている。PWM制御を行うキャパシタ蓄電電源の充電又は放電装置においても、同期整流回路を用いることで充放電効率の向上を図ることができる。
(例えば、非特許文献1、特許文献1参照)。
岡村廸夫著「電気二重層キャパシタと蓄電システム」日刊工業新聞社、2005年9月30日第3版第1刷発行、第135〜第137頁 特開平7−87668号公報
Also, in a switching power supply device that turns on and off the main switch circuit to store energy in the choke coil and release the energy stored through the rectifier diode, the ratio of loss due to the rectifier diode increases when a low-voltage DC output is obtained. Therefore, the loss is reduced by using a synchronous rectification circuit (switch circuit) that turns off / on in a phase opposite to that of the main switch circuit instead of the rectifier diode. Also in the charging / discharging device of the capacitor storage power source that performs PWM control, it is possible to improve the charging / discharging efficiency by using the synchronous rectification circuit.
(For example, refer nonpatent literature 1 and patent literature 1).
Okamura Ikuo, “Electric Double Layer Capacitor and Power Storage System”, Nikkan Kogyo Shimbun, September 30, 2005, 3rd edition, first edition, pages 135-137 JP-A-7-87668

しかし、キャパシタ蓄電電源においては、急速な充電が可能であることと裏腹に、放電でも大きな電流が流れ急速に蓄積されたエネルギーが放出されてしまうので、充電又は放電を行う充電又は放電装置において、無駄にエネルギーが消費してしまう漏れ電流の対策は重要である。すなわち、キャパシタ蓄電電源の充電のために、或いは負荷への必要な放電のために大きな電流を流すときは本来の目的そのものであり何ら問題はないが、充電又は放電の停止時に漏れ電流の流れる回路からその回路のインピーダンスに応じて無視できないエネルギーが放出され、充放電効率を上げてもキャパシタ蓄電電源の総合的な利用効率が悪くなってしまうという問題が生じる。   However, in the capacitor power storage power source, in contrast to being capable of rapid charging, a large current flows even during discharge, and rapidly accumulated energy is released, so in a charging or discharging device that performs charging or discharging, It is important to take measures against leakage current that wastes energy. That is, when a large current flows for charging a capacitor storage power supply or for a necessary discharge to a load, there is no problem with the original purpose itself, but a circuit in which a leakage current flows when charging or discharging stops Therefore, energy that cannot be ignored is released according to the impedance of the circuit, and there is a problem that even if the charge / discharge efficiency is increased, the overall utilization efficiency of the capacitor power storage power source is deteriorated.

本発明は、上記課題を解決するものであって、充電又は放電の停止時における漏れ電流による無駄な電力損失を抑えるようにすることである。   The present invention solves the above-described problem, and is intended to suppress useless power loss due to leakage current when charging or discharging is stopped.

そのために本発明は、オン/オフ制御信号に従いオン/オフするメインスイッチ回路とチョークコイルを有し電気二重層キャパシタに蓄電するキャパシタ蓄電電源に対し充電又は放電を行うように構成したキャパシタ蓄電電源用充電又は放電装置において、前記キャパシタ蓄電電源の充電又は放電を行う回路に接続され前記充電又は放電時の電流や電圧を検出する信号線に信号遮断回路を直列に挿入して接続し、前記充電又は放電の停止状態を判定して前記信号遮断回路により前記信号線を遮断するように構成したことを特徴とする。   For this purpose, the present invention is for a capacitor storage power supply configured to charge or discharge a capacitor storage power supply that has a choke coil and a main switch circuit that is turned on / off according to an on / off control signal. In the charging or discharging device, a signal cut-off circuit is inserted in series and connected to a signal line that detects a current or voltage at the time of charging or discharging and is connected to a circuit that charges or discharges the capacitor storage power source, It is characterized in that the signal line is cut off by the signal cut-off circuit by determining the discharge stop state.

前記充電又は放電の停止状態は、前記メインスイッチ回路とチョークコイルに対し、前記キャパシタ蓄電電源の接続側と反対側の前記充電又は放電を行う回路の電圧より判定することを特徴とし、前記充電又は放電時の電流を検出する検出素子を共通線に対し反対側の線に接続し、前記信号線のうち前記共通線に対し反対側の線との信号線に前記信号遮断回路を直列に挿入して接続したことを特徴とし、前記充電又は放電の停止状態は、充電又は放電の停止信号より判定することを特徴とし、前記信号遮断回路は、半導体スイッチであることを特徴とする。   The charging or discharging stop state is determined from a voltage of a circuit that performs the charging or discharging on the side opposite to the connection side of the capacitor storage power source with respect to the main switch circuit and the choke coil, A detection element for detecting a current during discharge is connected to a line opposite to the common line, and the signal cut-off circuit is inserted in series with the signal line of the signal line opposite to the common line. The charging or discharging stop state is determined from a charging or discharging stop signal, and the signal cutoff circuit is a semiconductor switch.

本発明によれば、充電又は放電の停止状態を判定して信号遮断回路により充電又は放電時の電流や電圧を検出する信号線を遮断するので、蓄電したキャパシタ蓄電電源から信号線を通して無駄な漏れ電流による電力損失をなくすことができ、キャパシタ蓄電電源の充放電効率を高めることができる。しかも、充電又は放電の停止状態の判定を充電又は放電を行う充電電源の切断状態やメインスイッチ回路のオフ状態を電圧が印加されているか否かの判定により、簡単な回路構成で実現することができる。   According to the present invention, since the signal line for detecting the current or voltage at the time of charging or discharging is cut off by the signal cut-off circuit by judging the stop state of charging or discharging, useless leakage from the stored capacitor storage power supply through the signal line. The power loss due to the current can be eliminated, and the charge / discharge efficiency of the capacitor storage power supply can be increased. In addition, the determination of whether the charging or discharging is stopped can be realized with a simple circuit configuration by determining whether or not a voltage is applied to the disconnection state of the charging power source that performs charging or discharging or the off state of the main switch circuit. it can.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係るキャパシタ蓄電電源用充電装置の実施の形態を示す図、図2は本発明に係るキャパシタ蓄電電源用充電装置の信号処理回路の実施の形態を示す図である。放電装置は、充電装置における充電電源がキャパシタ蓄電電源、キャパシタ蓄電電源が負荷にそれぞれ置き換わるだけで実質的に同じ構成になるので、充電装置により説明する。図中、1は定電流信号発生回路、2は定電力信号発生回路、3は定電圧信号発生回路、5は充電電源、6は充電装置、7はキャパシタ蓄電電源、60は漏れ電流遮断回路、61は制御回路、62はPWM信号発生回路、63は増幅器、64は反転増幅器、71は電気二重層キャパシタ、AS11、AS12、AS21、AS22はアナログスイッチ、C1、C2はコンデンサ、D11、D21、D31はダイオード、Lはコイル、Rは電流検出用抵抗、SW1はメインスイッチ回路、SW2は同期整流回路、TS1〜TS3は信号遮断スイッチ、Vrefi1 、Vrefi2 は電流基準値設定回路、Vrefpは電力基準値設定回路、Vrefv1 、Vrefv2 は充電電圧基準値設定回路、Iは充電電流、Vcは充電電圧、Viは入力電圧を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a charging device for a capacitor storage power source according to the present invention, and FIG. 2 is a diagram showing an embodiment of a signal processing circuit of the charging device for a capacitor storage power source according to the present invention. The discharging device will be described with reference to the charging device because the charging power source in the charging device has substantially the same configuration only by replacing the capacitor power storage power source and the capacitor power storage power source with the load. In the figure, 1 is a constant current signal generating circuit, 2 is a constant power signal generating circuit, 3 is a constant voltage signal generating circuit, 5 is a charging power supply, 6 is a charging device, 7 is a capacitor storage power supply, 60 is a leakage current cutoff circuit, 61 is a control circuit, 62 is a PWM signal generation circuit, 63 is an amplifier, 64 is an inverting amplifier, 71 is an electric double layer capacitor, AS11, AS12, AS21 and AS22 are analog switches, C1 and C2 are capacitors, D11, D21 and D31 Is a diode, L is a coil, R is a current detection resistor, SW1 is a main switch circuit, SW2 is a synchronous rectifier circuit, TS1 to TS3 are signal cutoff switches, Vrefi1 and Vrefi2 are current reference value setting circuits, and Vrefp is a power reference value setting. Circuits Vrefv1 and Vrefv2 are charging voltage reference value setting circuits, I is a charging current, Vc is a charging voltage, and Vi is an input voltage.

図1に示す本実施形態に係るキャパシタ蓄電電源用充電装置は、充電電源5から充電装置6を通して複数の電気二重層キャパシタ71を直列接続したキャパシタ蓄電電源7を充電し蓄電するものである。充電装置6は、充電電源5とキャパシタ蓄電電源7との間に充電制御用のチョークコイルLと同期整流回路SW2を直列に接続し、これらの直列接続点に並列にメインスイッチ回路SW1を接続するとともに、入力側及び出力側に並列に平滑用にコンデンサC1、C2を接続して、メインスイッチ回路SW1のオン/オフ制御デューティにより昇圧する昇圧タイプのスイッチングコンバータを構成し、充電電流Iを検出するため電流検出用抵抗Rを直列に挿入接続している。   The capacitor storage power supply charging device according to this embodiment shown in FIG. 1 charges and stores a capacitor storage power supply 7 in which a plurality of electric double layer capacitors 71 are connected in series from the charging power supply 5 through the charging device 6. The charging device 6 connects a choke coil L for charge control and a synchronous rectifier circuit SW2 in series between the charging power source 5 and the capacitor storage power source 7, and connects the main switch circuit SW1 in parallel to these series connection points. In addition, a capacitor C1 and C2 for smoothing are connected in parallel on the input side and the output side to constitute a boost type switching converter that boosts the voltage by the on / off control duty of the main switch circuit SW1, and the charging current I is detected. Therefore, the current detection resistor R is inserted and connected in series.

信号処理回路61は、オン/オフ制御信号によりメインスイッチ回路SW1をオン/オフし同期整流回路SW2をその逆相でオフ/オンして充電電流を制御するものである。そのために、充電電流I、充電電圧Vcを検出してそれらを制御対象として各種設定された基準値と比較しそれらの誤差増幅信号に基づき、定電流充電、定電力充電、定電圧充電などの各充電モードに応じてパルス幅変調されたオン/オフ制御信号を生成し出力する。具体的には、例えば図2に示すように定電流信号発生回路1、定電力信号発生回路2、定電圧信号発生回路3、PWM信号発生回路62を有する。そして、各誤差増幅信号を発生する回路(1〜3)において、電流基準値設定回路Vrefi1 又はVrefi2 、定電力基準値設定回路Vrefp、定電圧基準値設定回路Vrefv1 又はVrefv2 により設定された各種基準値と充電電流I、充電電圧Vcの検出信号、これらを演算した制御対象の信号(例えばIとVcの乗算結果である充電電力P)とを比較して誤差増幅信号を出力する。ダイオードD11、D21、D31は、オア論理回路を構成するものであり、誤差増幅信号のいずれか1つを切り換え選択してPWM信号発生回路62に入力し、PWM信号発生回路62からパルス幅変調されたオン/オフ制御信号(PWM信号)を生成する。このPWM信号を、増幅器63を通してメインスイッチ回路SW1に、反転増幅器64を通して同期整流回路SW2にそれぞれオン/オフする信号として出力する。   The signal processing circuit 61 controls the charging current by turning on / off the main switch circuit SW1 and turning off / on the synchronous rectifier circuit SW2 in the opposite phase by the on / off control signal. Therefore, the charging current I and the charging voltage Vc are detected, compared with various reference values set as control targets, and based on their error amplification signals, constant current charging, constant power charging, constant voltage charging, etc. An on / off control signal modulated in pulse width according to the charging mode is generated and output. Specifically, for example, as shown in FIG. 2, it has a constant current signal generation circuit 1, a constant power signal generation circuit 2, a constant voltage signal generation circuit 3, and a PWM signal generation circuit 62. In the circuits (1 to 3) for generating each error amplification signal, various reference values set by the current reference value setting circuit Vrefi1 or Vrefi2, the constant power reference value setting circuit Vrefp, the constant voltage reference value setting circuit Vrefv1 or Vrefv2. Is compared with the detection signal of the charging current I and the charging voltage Vc, and the signal to be controlled (for example, the charging power P obtained by multiplying I and Vc), and an error amplification signal is output. The diodes D11, D21, and D31 constitute an OR logic circuit. One of the error amplification signals is switched and selected and input to the PWM signal generation circuit 62, and pulse width modulation is performed from the PWM signal generation circuit 62. An on / off control signal (PWM signal) is generated. This PWM signal is output as a signal to be turned on / off through the amplifier 63 to the main switch circuit SW1 and through the inverting amplifier 64 to the synchronous rectifier circuit SW2.

満充電電圧まで充電され停止状態にあるキャパシタ蓄電電源7においては、漏れ電流の流れる回路があれば、蓄電された電力が時間とともにどんどん放電され熱となって無駄な損失が生じてしまう。例えば満充電電圧が60Vのキャパシタモジュールに30Wクラスの充電装置を接続した場合でも、実際には40mA程度の漏れ電流が発生しており、せっかく定電流充電や同期整流回路で充放電効率を向上させても、充電して蓄電した電力を無駄にしてしまうことになりかねない。このような漏れ電流を遮断するには、単純に考えると、キャパシタからの電流をその大元の図示「ア」で遮断すればよいように思われる。しかし、実際に、キャパシタは二次電池に比べて出力密度が高く、つまり充放電速度が速いので、流れる電流が大きく、よほど順電流の大きいスイッチを用いないと、スイッチが壊れてしまうという問題が生じる。他方、充電装置において、漏れ電流を解析してみると、信号処理回路61に接続される信号線を通して最も多くの電流が漏れていることが判明した。これが図2に示すような定電流信号発生回路1、定電力信号発生回路2、定電圧信号発生回路3において使われる充電電流Iを検出するための信号線であり、充電電圧を検出するための信号線である。   In the capacitor storage power supply 7 which is charged to the full charge voltage and is in a stopped state, if there is a circuit through which a leakage current flows, the stored power is discharged gradually over time, resulting in heat and unnecessary loss. For example, even when a 30W class charging device is connected to a capacitor module with a full charge voltage of 60V, a leakage current of about 40mA is actually generated, and the charge / discharge efficiency is improved by constant current charging or synchronous rectification circuit. However, the electric power charged and stored can be wasted. In order to cut off such a leakage current, simply thinking, it seems to be sufficient to cut off the current from the capacitor at its original “A”. However, in reality, the capacitor has a higher output density than the secondary battery, that is, the charge / discharge speed is fast, so that the current that flows is large, and if a switch with a very large forward current is not used, the switch breaks. Arise. On the other hand, when the leakage current was analyzed in the charging device, it was found that the largest amount of current leaked through the signal line connected to the signal processing circuit 61. This is a signal line for detecting the charging current I used in the constant current signal generating circuit 1, the constant power signal generating circuit 2, and the constant voltage signal generating circuit 3 as shown in FIG. It is a signal line.

漏れ電流遮断回路60は、入力電圧Viを検出することにより、充電動作状態か充電停止状態かを判定し、充電停止状態であると判定した場合に信号遮断回路を動作させ、充電電流や充電電圧を検出している信号処理回路61の信号線を遮断する。つまり、充電を行う充電電源が切断されているか否か、充電停止状態を入力電圧Viが印加されているか所定の電圧があるか否かにより判定し、充電電源が切断されている充電停止状態のとき、信号処理回路61の信号線を遮断するのである。信号線は、信号処理回路61よりキャパシタ蓄電電源7の充電を行う回路に接続され、例えば出力端子側に接続してキャパシタ蓄電電源7の充電電圧Vcを検出する信号線、電流検出用抵抗Rの両端に接続して充電電流Iを検出する信号線であり、それら信号線に信号遮断スイッチTS1〜TS3をその信号を遮断する信号遮断回路として直列に挿入して接続している。信号遮断スイッチTS1〜TS3は、例えばFETやNPN(PNP)トランジスタなどの半導体素子である。   The leakage current interruption circuit 60 detects the input voltage Vi to determine whether it is in a charging operation state or a charging stop state. When it is determined that the charging is in a stopping state, the leakage current interruption circuit 60 operates the signal interruption circuit. The signal line of the signal processing circuit 61 that detects the signal is cut off. That is, it is determined whether or not the charging power source for charging is disconnected, and whether or not the charging is stopped is determined by whether or not the input voltage Vi is applied or whether there is a predetermined voltage. At this time, the signal line of the signal processing circuit 61 is cut off. The signal line is connected from the signal processing circuit 61 to a circuit that charges the capacitor storage power source 7. For example, the signal line is connected to the output terminal side to detect the charging voltage Vc of the capacitor storage power source 7. These are signal lines that are connected to both ends to detect the charging current I, and signal cut-off switches TS1 to TS3 are inserted in series as signal cut-off circuits for cutting off the signals. The signal cutoff switches TS1 to TS3 are semiconductor elements such as FETs and NPN (PNP) transistors, for example.

図2において、定電流信号発生回路1は、充電装置に直列に挿入接続した電流検出用抵抗Rの端子間の電圧降下を充電電流Iの検出信号として取り出してこれを制御対象として入力し、コンパレータの基準値として電流基準値設定回路で設定されている電流基準値Vrefiと比較して、その誤差増幅信号を出力する誤差増幅回路で構成される。したがって、定電流信号発生回路1から出力される誤差増幅信号は、入力される制御対象の充電電流Iが電流基準値Vrefiより小さければ出力値は大きくなり、充電電流Iが電流基準値Vrefiより大きければ出力値は小さくなる。PWM信号発生回路62では、この誤差増幅信号を入力すると、充電電流Iが電流基準値Vrefiより小さいときは充電電流Iを大きくし、逆に充電電流Iが電流基準値Vrefiより大きいときは充電電流Iが小さくするように入力する誤差増幅信号の大きさに応じてパルス幅(デューティ比)を制御するので、結果として、電流基準値Vrefiに基づき充電電流Iが一定になるように充電電流を制御する、定電流充電の制御モードCCが実行される。   In FIG. 2, a constant current signal generating circuit 1 takes out a voltage drop between terminals of a current detection resistor R inserted and connected in series with a charging device as a detection signal of a charging current I, and inputs this as a control object, Compared with the current reference value Vrefi set by the current reference value setting circuit as a reference value, the error amplification circuit outputs the error amplification signal. Therefore, the error amplification signal output from the constant current signal generation circuit 1 has a larger output value if the input charging current I to be controlled is smaller than the current reference value Vrefi, and the charging current I is larger than the current reference value Vrefi. The output value becomes smaller. When this error amplification signal is input, the PWM signal generation circuit 62 increases the charging current I when the charging current I is smaller than the current reference value Vrefi, and conversely when the charging current I is larger than the current reference value Vrefi. Since the pulse width (duty ratio) is controlled according to the magnitude of the input error amplification signal so that I is small, as a result, the charging current is controlled so that the charging current I becomes constant based on the current reference value Vrefi. The constant current charging control mode CC is executed.

同様に、定電力信号発生回路2は、充電電力Pを制御対象として入力し、コンパレータの基準値として電力基準値設定回路で設定されている電力基準値Vrefpと比較して、その誤差増幅信号を出力する誤差増幅回路で構成される。したがって、定電力信号発生回路2から出力される誤差増幅信号は、入力される制御対象の充電電力Pが電力基準値Vrefpより小さければ出力値は大きくなり、充電電力Pが電力基準値Vrefpより大きければ出力値は小さくなる。PWM信号発生回路62では、この誤差増幅信号を入力すると、充電電力Pが電力基準値Vrefpより小さいときは充電電流Iを大きくし、逆に充電電力Pが電力基準値Vrefpより大きいときは充電電流Iが小さくするように入力する誤差増幅信号の大きさに応じてパルス幅(デューティ比)を制御するので、結果として、電力基準値Vrefpに基づき充電電力Pが一定になるように充電電流Iを制御する、定電力充電の制御モードCPが実行される。   Similarly, the constant power signal generation circuit 2 inputs the charging power P as a control target, compares it with the power reference value Vrefp set by the power reference value setting circuit as a reference value of the comparator, and calculates the error amplification signal. It consists of an error amplification circuit that outputs. Therefore, the error amplification signal output from the constant power signal generation circuit 2 has a larger output value if the input charging power P to be controlled is smaller than the power reference value Vrefp, and the charging power P is larger than the power reference value Vrefp. The output value becomes smaller. When this error amplification signal is input, the PWM signal generation circuit 62 increases the charging current I when the charging power P is smaller than the power reference value Vrefp, and conversely when the charging power P is larger than the power reference value Vrefp. Since the pulse width (duty ratio) is controlled in accordance with the magnitude of the input error amplification signal so that I becomes small, as a result, the charging current I is set so that the charging power P becomes constant based on the power reference value Vrefp. The control mode CP of constant power charging to be controlled is executed.

ダイオードD11、D21、D31は、誤差増幅信号を出力する定電流信号発生回路1、定電力信号発生回路2、定電圧信号発生回路3のそれぞれから逆方向の極性でPWM信号発生回路62の入力に接続されているので、定電流信号発生回路1、定電力信号発生回路2、定電圧信号発生回路3の出力するそれぞれの誤差増幅信号のうち最も小さい誤差増幅信号をPWM信号発生回路62の入力とするオア論理回路を構成している。   The diodes D11, D21, and D31 are respectively input to the PWM signal generation circuit 62 from the constant current signal generation circuit 1, the constant power signal generation circuit 2, and the constant voltage signal generation circuit 3 that output error amplification signals with opposite polarities. Since they are connected, the smallest error amplification signal among the error amplification signals output from the constant current signal generation circuit 1, constant power signal generation circuit 2, and constant voltage signal generation circuit 3 is input to the PWM signal generation circuit 62. OR logic circuit is configured.

オア論理回路により行われる充電モードの切り換え制御をさらに説明すると、まず、充電を開始する初期の段階では、ダイオードD11がオン、ダイオードD21、D31がオフの状態で定電流充電の制御モードCCが実行される。すなわち、初期の段階でキャパシタ蓄電電源7の充電電圧Vcが小さく、定電流信号発生回路1の出力する誤差増幅信号に基づきPWM信号発生回路62が定電流充電の制御モードCCを実行しているときには、定電力信号発生回路2、定電圧信号発生回路3においてはいずれも制御対象が比較する基準値より小さいため、大きい値の誤差増幅信号を出力しても、充電電流Iもキャパシタ蓄電電源7の充電電圧Vcも大きくならず誤差増幅信号が上限値にはりついた状態になるから、ダイオードD21、D31が逆方向にバイアスされオフとなる。   The charging mode switching control performed by the OR logic circuit will be further described. First, in the initial stage of starting charging, the constant current charging control mode CC is executed while the diode D11 is on and the diodes D21 and D31 are off. Is done. That is, when the charging voltage Vc of the capacitor storage power supply 7 is small in the initial stage and the PWM signal generating circuit 62 is executing the constant current charging control mode CC based on the error amplification signal output from the constant current signal generating circuit 1. Since the constant power signal generation circuit 2 and the constant voltage signal generation circuit 3 are both smaller than the reference value to be compared, even if a large value error amplification signal is output, the charging current I is Since the charging voltage Vc is not increased and the error amplification signal is stuck to the upper limit value, the diodes D21 and D31 are biased in the reverse direction and turned off.

次に、定電流充電を続けることによりキャパシタ蓄電電源7の充電電圧Vcが増加し、充電電力Pが増加してゆき定電力信号発生回路2における電力基準値Vrefpより充電電力Pが大きくなると、定電力信号発生回路2から出力される誤差増幅信号が定電流信号発生回路1から出力される誤差増幅信号より小さくなる。ここから、定電流信号発生回路1の出力に接続されたダイオードD11がオフになって、定電力信号発生回路2の出力に接続されたダイオードD21がオンに切り換わり、キャパシタ蓄電電源7の充電電力Pが電力基準値Vrefpを越えないように充電電流Iを制御する、定電力充電の制御モードCPが実行される。   Next, when the constant voltage charging is continued, the charging voltage Vc of the capacitor storage power source 7 increases, the charging power P increases, and the charging power P becomes larger than the power reference value Vrefp in the constant power signal generating circuit 2. The error amplification signal output from the power signal generation circuit 2 is smaller than the error amplification signal output from the constant current signal generation circuit 1. From this point, the diode D11 connected to the output of the constant current signal generation circuit 1 is turned off, the diode D21 connected to the output of the constant power signal generation circuit 2 is turned on, and the charging power of the capacitor storage power source 7 is switched on. A constant power charging control mode CP is executed in which the charging current I is controlled so that P does not exceed the power reference value Vrefp.

さらに、定電力充電を継続することによりキャパシタ蓄電電源7の充電電圧Vcが増加してゆき、定電圧信号発生回路3における電圧基準値Vrefvc より大きくなると、定電圧信号発生回路3から出力される誤差増幅信号が定電力信号発生回路2から出力される誤差増幅信号より小さくなり、電流逓減信号発生回路2の出力に接続されたダイオードD21がオフになって、定電圧信号発生回路3の出力に接続されたダイオードD31がオンに切り換わり、充電電圧Vcを電圧基準値Vrefvc より小さくするように充電電流を制御する、定電圧充電の制御モードCVが実行される。   Furthermore, when the constant power charging is continued, the charging voltage Vc of the capacitor storage power supply 7 increases and becomes larger than the voltage reference value Vrefvc in the constant voltage signal generating circuit 3, and an error output from the constant voltage signal generating circuit 3 The amplified signal becomes smaller than the error amplified signal output from the constant power signal generating circuit 2, and the diode D21 connected to the output of the current diminishing signal generating circuit 2 is turned off and connected to the output of the constant voltage signal generating circuit 3. The controlled diode C31 is turned on, and the constant voltage charging control mode CV is executed in which the charging current is controlled so as to make the charging voltage Vc smaller than the voltage reference value Vrefvc.

このように本実施形態の充電装置6によれば、充電電流Iを検出して電流基準値設定回路で設定された所定の電流基準値Vrefiと比較し、充電電流Iを一定にし(定電流充電:CC)、所定電圧までキャパシタ蓄電電源7が充電されると、充電電力Pを演算して電力基準値設定回路で設定された所定の電力基準値Vrefpと比較し、充電電力Pを一定にし(定電流充電:CP)、キャパシタ蓄電電源7が満充電電圧まで充電されると、充電電圧Vcを電圧基準値設定回路で設定された所定の電圧基準値Vrefvc と比較し、充電電圧Vcを一定になるように(定電圧充電:CV)各制御モード間の切り換えを行ってメインスイッチ回路SW1及び同期整流回路SW2をPWM(Pulse Width Modulation :パルス幅変調)制御する。   Thus, according to the charging device 6 of the present embodiment, the charging current I is detected and compared with the predetermined current reference value Vrefi set by the current reference value setting circuit, and the charging current I is made constant (constant current charging). : CC), when the capacitor storage power source 7 is charged to a predetermined voltage, the charging power P is calculated and compared with a predetermined power reference value Vrefp set by the power reference value setting circuit, and the charging power P is made constant ( When the capacitor storage power supply 7 is charged to the full charge voltage, the charge voltage Vc is compared with a predetermined voltage reference value Vrefvc set by the voltage reference value setting circuit, and the charge voltage Vc is kept constant. As described above (constant voltage charging: CV), switching between the control modes is performed to control the main switch circuit SW1 and the synchronous rectifier circuit SW2 by PWM (Pulse Width Modulation).

さらに、図2に示す実施形態において、それぞれ定電流信号発生回路1は、アナログスイッチAS11、AS12により複数の電流基準値設定回路Vrefi1 又はVrefi2 のいずれかと切り換え接続して選択、変更でき、定電圧信号発生回路3は、アナログスイッチAS31、AS32により複数の定電圧基準値設定回路Vrefv1 又はVrefv2 のいずれかと切り換え接続して基準値が選択、変更できるようにしている。   Further, in the embodiment shown in FIG. 2, each of the constant current signal generation circuits 1 can be selected and changed by switching and connecting to one of a plurality of current reference value setting circuits Vrefi1 or Vrefi2 by analog switches AS11 and AS12. The generation circuit 3 is switched and connected to one of a plurality of constant voltage reference value setting circuits Vrefv1 or Vrefv2 by analog switches AS31 and AS32 so that the reference value can be selected and changed.

ここで、電流基準値Vrefi1 、Vrefi2 の切り換えは、電気二重層キャパシタ71に並列モニタが並列接続され、電気二重層キャパシタ71の耐電流上限値に対して並列モニタの耐電流上限値を小さくしている場合に、並列モニタがバイパス動作したことを条件(満充電信号:F信号)に行われる。この場合には、並列モニタがバイパス動作するまでは選択信号refi1によりアナログスイッチAS11をオン、選択信号refi2によりアナログスイッチAS12をオフにして、電気二重層キャパシタ71の耐電流上限値に対応した大きな充電電流で急速に充電し、並列モニタのバイパス動作を検出すると、選択信号refi1によりアナログスイッチAS11をオフ、選択信号refi2によりアナログスイッチAS12をオンに切り換えることにより、並列モニタの耐電流上限値以下の小さな充電電流に切り換える。このような電流基準値の切り換えを行うことにより、並列モニタを小容量化し、満充電になってからのバイパス動作による電力の損失を少なくすることができる。   Here, the current reference values Vrefi1 and Vrefi2 are switched by connecting the parallel monitor to the electric double layer capacitor 71 in parallel, and reducing the current monitor upper limit value of the parallel monitor relative to the current limit value of the electric double layer capacitor 71. In the case where the parallel monitor is bypassed, the condition (full charge signal: F signal) is performed. In this case, the analog switch AS11 is turned on by the selection signal refi1 and the analog switch AS12 is turned off by the selection signal refi2 until the parallel monitor performs a bypass operation, and a large charge corresponding to the current withstand current upper limit value of the electric double layer capacitor 71 is obtained. When the parallel monitor is quickly charged and the bypass operation of the parallel monitor is detected, the analog switch AS11 is turned off by the selection signal refi1 and the analog switch AS12 is turned on by the selection signal refi2, thereby reducing the parallel monitor's current withstand current upper limit value or less. Switch to charge current. By switching the current reference value in this way, the capacity of the parallel monitor can be reduced, and the loss of power due to the bypass operation after full charge can be reduced.

また、複数の充電装置を使って並列運転させる場合、各充電装置の充電電流を同一にするときにマスター充電装置から充電電流の検出値をスレーブ充電装置の電流基準値とする。この場合には、1つのマスター充電装置において、選択信号refi1によりアナログスイッチAS11をオン、選択信号refi2によりアナログスイッチAS12をオフにし、その他のスレーブ充電装置において、選択信号refi1によりアナログスイッチAS11をオフ、選択信号refi2によりアナログスイッチAS12をオンにして、電流基準値設定回路Vrefi2 としてマスター充電装置から取り出される充電電流の検出値を接続する。このように複数の充電装置を使い、それぞれ独立で動作させるのではなく、それらのうちの1つをマスター充電装置とし、その他をスレーブ充電装置としてマスター充電装置の出力する充電電流をそのまま電流基準値として使用することにより同期制御ができ、全体として充電電流を増やすことができ、より急速な充電が可能となる。   Further, when a plurality of charging devices are operated in parallel, when the charging current of each charging device is made the same, the detected value of the charging current from the master charging device is set as the current reference value of the slave charging device. In this case, in one master charging device, the analog switch AS11 is turned on by the selection signal refi1, the analog switch AS12 is turned off by the selection signal refi2, and in the other slave charging devices, the analog switch AS11 is turned off by the selection signal refi1, The analog switch AS12 is turned on by the selection signal refi2, and the detected value of the charging current taken out from the master charging device is connected as the current reference value setting circuit Vrefi2. In this way, a plurality of charging devices are used and are not operated independently, but one of them is set as a master charging device and the other as a slave charging device, and the charging current output from the master charging device is used as it is as a current reference value. As a result, the synchronous control can be performed, the charging current can be increased as a whole, and more rapid charging is possible.

定電圧基準値設定回路Vrefv1 、Vrefv2 の切り換えは、例えば定格電圧切り換えスイッチの出力信号など外部信号(refv1、refv2)により行う。電気二重層キャパシタ71は、定格電圧が5Vのものにおいて電圧を0.2V下げて使用すると寿命が1.5倍になるという経験則がある。したがって、例えば通常の使用モードを選択信号refv1によりアナログスイッチAS31をオンにして定電圧基準値Vrefv1 を選択し、長寿の使用モードを選択信号refv2によりアナログスイッチAS32をオンにして定電圧基準値Vrefv2 を選択する。   The constant voltage reference value setting circuits Vrefv1 and Vrefv2 are switched by an external signal (refv1, refv2) such as an output signal of a rated voltage switch. The electric double layer capacitor 71 has an empirical rule that, when the rated voltage is 5V and the voltage is lowered by 0.2V, the life is 1.5 times longer. Therefore, for example, in the normal use mode, the analog switch AS31 is turned on by the selection signal refv1 to select the constant voltage reference value Vrefv1, and in the longevity use mode, the analog switch AS32 is turned on by the selection signal refv2 to set the constant voltage reference value Vrefv2. select.

図3は本発明に係るキャパシタ蓄電電源用放電装置の実施の形態を示す図であり、60′は漏れ電流遮断回路、61′は信号処理回路、C1′、C2′はコンデンサ、L′はコイル、R′は電流検出抵抗、SW1′、SW2′はスイッチ回路、TS1′〜TS3′は信号遮断スイッチを示す。   FIG. 3 is a diagram showing an embodiment of a capacitor storage power source discharge device according to the present invention, in which 60 ′ is a leakage current cutoff circuit, 61 ′ is a signal processing circuit, C1 ′ and C2 ′ are capacitors, and L ′ is a coil. , R ′ are current detection resistors, SW1 ′ and SW2 ′ are switch circuits, and TS1 ′ to TS3 ′ are signal cutoff switches.

図3に示す放電装置は、キャパシタ蓄電電源7と負荷9との間に放電制御用のスイッチ回路SW1′とチョークコイルL′を直列に接続し、これらの直列接続点に並列に同期整流回路SW2′を接続するとともに、入力側及び出力側に並列にコンデンサC1′、C2′を接続して、PWM信号によりスイッチ回路SW1′をオン/オフすると共に、それと逆位相で同期整流回路SW2′をオフ/オンして放電電流(負荷電流)を負荷に供給する降圧タイプのスイッチングコンバータを備え、放電電流Idを検出するため電流検出用抵抗R′を直列に挿入接続している。   In the discharge device shown in FIG. 3, a switch circuit SW1 ′ for discharge control and a choke coil L ′ are connected in series between a capacitor storage power source 7 and a load 9, and a synchronous rectifier circuit SW2 is connected in parallel to these series connection points. ′, And capacitors C1 ′ and C2 ′ are connected in parallel to the input side and the output side, and the switch circuit SW1 ′ is turned on / off by the PWM signal, and the synchronous rectifier circuit SW2 ′ is turned off in the opposite phase to that. A step-down switching converter that turns on and supplies a discharge current (load current) to the load is provided, and a current detection resistor R ′ is inserted and connected in series to detect the discharge current Id.

漏れ電流遮断回路60′は、負荷電圧Vlを検出することにより、放電動作状態か放電停止状態かを判定し、放電停止状態であると判定した場合に信号遮断回路を動作させ、放電電流やキャパシタ電圧、負荷電圧を検出している信号処理回路61′の信号を遮断する。つまり、放電を行うメインスイッチ回路のオフ状態、放電停止状態を負荷電圧Vlが出力されているか、所定の電圧があるか否かにより判定し、負荷電圧Vlが出力されず放電停止状態のとき、信号処理回路61′の信号線を遮断するのである。信号線は、信号処理回路61′よりキャパシタ蓄電電源7の放電を行う回路に接続され、例えば入力端子側に接続してキャパシタ蓄電電源7の充電電圧Vcを検出する信号線、出力端子側に接続して負荷電圧Vlを検出する信号線、電流検出用抵抗R′の両端に接続して放電電流Idを検出する信号線であり、それら信号線に信号遮断スイッチTS1′〜TS3′をその信号を遮断する信号遮断回路として直列に挿入して接続している。   The leakage current cut-off circuit 60 'detects the load voltage Vl to determine whether it is in a discharge operation state or a discharge stop state. The signal of the signal processing circuit 61 'that detects the voltage and load voltage is cut off. That is, it is determined whether the main switch circuit that performs discharge is in an off state or a discharge stop state based on whether the load voltage Vl is output or whether there is a predetermined voltage, and when the load voltage Vl is not output and the discharge is stopped, The signal line of the signal processing circuit 61 'is cut off. The signal line is connected to a circuit that discharges the capacitor storage power source 7 from the signal processing circuit 61 ′. For example, the signal line is connected to the input terminal side and connected to the output terminal side to detect the charging voltage Vc of the capacitor storage power source 7. A signal line for detecting the load voltage Vl and a signal line for detecting the discharge current Id connected to both ends of the current detection resistor R ′, and the signal cut-off switches TS1 ′ to TS3 ′ are connected to the signal lines. It is inserted and connected in series as a signal cut-off circuit to cut off.

図1及び図3の実施の形態は、それぞれ充電装置を放電装置とし、放電装置を充電装置とすることができるが、信号処理回路は、充電か放電からより異なることはいうまでもない。すなわち、充電装置の場合には図1の実施の形態に示すように所定の充電仕様にしたがって充電電流の制御(CC、CP、CVモードの充電制御)がなされ、放電装置の場合には、負荷の給電仕様にしたがって放電電流を制御される。また、図1及び図8の実施の形態において、同期整流回路SW2、SW2′はダイオード(フライホィールダイオード)に変えてもよい。また、図1に示す実施形態のように充電又は放電時の電流を検出する検出素子(電流検出用抵抗R)を共通線に接続しても、図5に示す実施形態のように充電又は放電時の電流を検出する検出素子(電流検出用抵抗R′)を共通線に対し反対側の線に接続してもよい。このようにすると、漏れ電流遮断回路を共通線に対し考慮することがなくなり、回路の設計を簡素化することができる。   1 and 3, the charging device can be a discharging device and the discharging device can be a charging device, but it goes without saying that the signal processing circuit is different from charging or discharging. That is, in the case of the charging device, the charging current is controlled (CC, CP, CV mode charging control) according to the predetermined charging specifications as shown in the embodiment of FIG. The discharge current is controlled according to the power supply specifications. In the embodiments of FIGS. 1 and 8, the synchronous rectifier circuits SW2 and SW2 ′ may be replaced with diodes (flywheel diodes). Further, even if a detection element (current detection resistor R) for detecting a current during charging or discharging is connected to a common line as in the embodiment shown in FIG. 1, charging or discharging is performed as in the embodiment shown in FIG. A detection element (current detection resistor R ′) for detecting the current at the time may be connected to a line opposite to the common line. In this way, the leakage current cutoff circuit is not considered for the common line, and the circuit design can be simplified.

充電又は放電の停止状態は、図1に示す実施形態においては、スイッチ回路SW1がオフの状態にあり、図3に示す実施形態においては、スイッチ回路SW1′がオフの状態にある。したがって、メインスイッチ回路SW1、SW1′とチョークコイルL、L′に対し、キャパシタ蓄電電源7の接続側と反対側の充電又は放電を行う回路の電圧より判定することができる。つまり、この電圧がゼロであれば、スイッチ回路SW1′がオフの状態にあり、キャパシタ蓄電電源の電圧に関係なく充電又は放電の停止状態を判定することができる。   In the embodiment shown in FIG. 1, the charging or discharging is stopped in the state in which the switch circuit SW1 is off, and in the embodiment shown in FIG. 3, the switch circuit SW1 ′ is in the off state. Therefore, the determination can be made from the voltage of the circuit that charges or discharges the main switch circuits SW1 and SW1 ′ and the choke coils L and L ′ on the side opposite to the connection side of the capacitor storage power source 7. That is, if this voltage is zero, the switch circuit SW1 ′ is in an off state, and it is possible to determine whether the charging or discharging is stopped regardless of the voltage of the capacitor storage power source.

なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態においては、メインスイッチ回路とチョークコイルに対し、キャパシタ蓄電電源の接続側と反対側の充電又は放電を行う回路の電圧より充電又は放電の停止状態の判定を行うようにしたが、充電又は放電の停止スイッチや停止を制御する停止信号より判定を行うようにしてもよい。また、充電又は放電電流を検出して一定値以下か否かにより、充電又は放電電流が一定値以下の場合には充電又は放電の停止状態の判定を行って漏れ電流遮断回路により信号を遮断するように構成してもよい。さらに、信号線に半導体スイッチ素子からなる信号遮断スイッチTS1〜TS3をその信号を遮断する信号遮断回路として直列に挿入して接続したが、設定値以上の電圧で動作するリレー等の接点により信号線の接続/遮断を行うように構成してもよい。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above embodiment, the charging or discharging stop state is determined from the voltage of the circuit that performs charging or discharging on the side opposite to the connection side of the capacitor storage power source for the main switch circuit and the choke coil. Alternatively, the determination may be made based on a stop switch for charging or discharging or a stop signal for controlling the stop. Also, depending on whether the charge or discharge current is detected and below a certain value, if the charge or discharge current is below a certain value, the charging or discharging stop state is determined and the signal is cut off by the leakage current interruption circuit You may comprise as follows. Further, the signal cut-off switches TS1 to TS3 made of semiconductor switch elements are inserted and connected in series as signal cut-off circuits for cutting off the signal to the signal line, but the signal line is connected by a contact such as a relay operating at a voltage higher than the set value. You may comprise so that connection / blocking may be performed.

本発明に係るキャパシタ蓄電電源用充電装置の主回路の実施の形態を示す図である。It is a figure which shows embodiment of the main circuit of the charging device for capacitor electrical storage power supplies which concerns on this invention. 本発明に係るキャパシタ蓄電電源用充電装置の信号処理回路の実施の形態を示す図である。It is a figure which shows embodiment of the signal processing circuit of the charging device for capacitor electrical storage power supplies which concerns on this invention. 本発明に係るキャパシタ蓄電電源用充電装置の主回路の他の実施の形態を示す図である。It is a figure which shows other embodiment of the main circuit of the charging device for capacitor electrical storage power supplies which concerns on this invention.

符号の説明Explanation of symbols

1…定電流信号発生回路、2…定電力信号発生回路、3…定電圧信号発生回路、5…充電電源、6…充電装置、7…キャパシタ蓄電電源、60…漏れ電流遮断回路、61…制御回路、62…PWM信号発生回路、63…増幅器、64…反転増幅器、71…電気二重層キャパシタ、AS11、AS12、AS21、AS22…アナログスイッチ、C1、C2…コンデンサ、D11、D21、D31…ダイオード、L…コイル、R…電流検出用抵抗、SW1…メインスイッチ回路、SW2…同期整流回路、TS1〜TS3…信号遮断スイッチ、Vrefi1 、Vrefi2 …電流基準値設定回路、Vrefp…電力基準値設定回路、Vrefv1 、Vrefv2 …充電電圧基準値設定回路、I…充電電流、Vc…充電電圧、Vi…入力電圧   DESCRIPTION OF SYMBOLS 1 ... Constant current signal generation circuit, 2 ... Constant power signal generation circuit, 3 ... Constant voltage signal generation circuit, 5 ... Charge power supply, 6 ... Charging apparatus, 7 ... Capacitor storage power supply, 60 ... Leakage current interruption circuit, 61 ... Control Circuit, 62 ... PWM signal generating circuit, 63 ... Amplifier, 64 ... Inverting amplifier, 71 ... Electric double layer capacitor, AS11, AS12, AS21, AS22 ... Analog switch, C1, C2 ... Capacitor, D11, D21, D31 ... Diode, L ... Coil, R ... Current detection resistor, SW1 ... Main switch circuit, SW2 ... Synchronous rectifier circuit, TS1-TS3 ... Signal cutoff switch, Vrefi1, Vrefi2 ... Current reference value setting circuit, Vrefp ... Power reference value setting circuit, Vrefv1 , Vrefv2 ... charging voltage reference value setting circuit, I ... charging current, Vc ... charging voltage, Vi ... input voltage

Claims (5)

オン/オフ制御信号に従いオン/オフするメインスイッチ回路とチョークコイルを有し電気二重層キャパシタに蓄電するキャパシタ蓄電電源に対し充電又は放電を行うように構成したキャパシタ蓄電電源用充電又は放電装置において、
前記キャパシタ蓄電電源の充電又は放電を行う回路に接続され前記充電又は放電時の電流や電圧を検出する信号線に信号遮断回路を直列に挿入して接続し、前記充電又は放電の停止状態を判定して前記信号遮断回路により前記信号線を遮断するように構成したことを特徴とするキャパシタ蓄電電源用充電又は放電装置。
In a capacitor storage power supply charging or discharging device configured to charge or discharge a capacitor storage power supply that has a choke coil and a main switch circuit that is turned on / off according to an on / off control signal,
Connected to a circuit that charges or discharges the capacitor storage power source and connects a signal cut-off circuit in series to a signal line that detects current or voltage at the time of charging or discharging, and determines whether charging or discharging is stopped Then, the charging / discharging device for a capacitor storage power source is configured to block the signal line by the signal blocking circuit.
前記充電又は放電の停止状態は、前記メインスイッチ回路とチョークコイルに対し、前記キャパシタ蓄電電源の接続側と反対側の前記充電又は放電を行う回路の電圧より判定することを特徴とする請求項1記載のキャパシタ蓄電電源用充電又は放電装置。 The charge or discharge stop state is determined from a voltage of a circuit that performs the charge or discharge on the side opposite to the connection side of the capacitor storage power source with respect to the main switch circuit and the choke coil. The charging or discharging device for capacitor power storage according to any one of the above. 前記充電又は放電時の電流を検出する検出素子を共通線に対し反対側の線に接続し、前記信号線のうち前記共通線に対し反対側の線との信号線に前記信号遮断回路を直列に挿入して接続したことを特徴とする請求項2記載のキャパシタ蓄電電源用充電又は放電装置。 A detection element for detecting a current during charging or discharging is connected to a line opposite to the common line, and the signal cutoff circuit is connected in series to a signal line of the signal line opposite to the common line. The charging / discharging device for a capacitor storage power source according to claim 2, wherein the charging / discharging device is inserted into the capacitor and connected. 前記充電又は放電の停止状態は、充電又は放電の停止信号より判定することを特徴とする請求項1記載のキャパシタ蓄電電源用充電又は放電装置。 The charging or discharging device for a capacitor storage power source according to claim 1, wherein the stop state of the charging or discharging is determined from a charging or discharging stop signal. 前記信号遮断回路は、半導体スイッチであることを特徴とする請求項1記載のキャパシタ蓄電電源用充電又は放電装置。 2. The charging / discharging device for a capacitor storage power source according to claim 1, wherein the signal cutoff circuit is a semiconductor switch.
JP2006082096A 2006-02-17 2006-03-24 Charging or discharging device for capacitor storage power supply Active JP3886142B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006082096A JP3886142B1 (en) 2006-03-24 2006-03-24 Charging or discharging device for capacitor storage power supply
EP07102294A EP1821386A2 (en) 2006-02-17 2007-02-13 Charging apparatus for capacitor storage type power source and discharging apparatus for capacitor storage type power source
US11/707,097 US7622898B2 (en) 2006-02-17 2007-02-16 Charging or discharging apparatus for electrically charging or discharging a capacitor storage type power source adapted to store electric energy in electric double layer capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082096A JP3886142B1 (en) 2006-03-24 2006-03-24 Charging or discharging device for capacitor storage power supply

Publications (2)

Publication Number Publication Date
JP3886142B1 JP3886142B1 (en) 2007-02-28
JP2007259615A true JP2007259615A (en) 2007-10-04

Family

ID=37852287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082096A Active JP3886142B1 (en) 2006-02-17 2006-03-24 Charging or discharging device for capacitor storage power supply

Country Status (1)

Country Link
JP (1) JP3886142B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200458A (en) * 2009-02-24 2010-09-09 Sumitomo Heavy Ind Ltd Hybrid construction machine
JP2012075260A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Charge control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7782018B2 (en) * 2007-09-10 2010-08-24 Maxim Integrated Products, Inc. Adaptive current limiting for any power source with output equivalent series resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471335A (en) * 1990-07-11 1992-03-05 Hitachi Ltd Secondary battery driver
JPH08308121A (en) * 1995-05-12 1996-11-22 Sony Corp Battery pack, its operation mode controlling method, and electronic equipment
JPH099518A (en) * 1995-06-21 1997-01-10 Matsushita Electric Ind Co Ltd Charging device
JP3292431B2 (en) * 1994-07-13 2002-06-17 太陽誘電株式会社 Method for preventing overdischarge of secondary battery and battery pack
JP3508579B2 (en) * 1998-10-27 2004-03-22 日本電気株式会社 Charging circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471335A (en) * 1990-07-11 1992-03-05 Hitachi Ltd Secondary battery driver
JP3292431B2 (en) * 1994-07-13 2002-06-17 太陽誘電株式会社 Method for preventing overdischarge of secondary battery and battery pack
JPH08308121A (en) * 1995-05-12 1996-11-22 Sony Corp Battery pack, its operation mode controlling method, and electronic equipment
JPH099518A (en) * 1995-06-21 1997-01-10 Matsushita Electric Ind Co Ltd Charging device
JP3508579B2 (en) * 1998-10-27 2004-03-22 日本電気株式会社 Charging circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200458A (en) * 2009-02-24 2010-09-09 Sumitomo Heavy Ind Ltd Hybrid construction machine
JP2012075260A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Charge control device

Also Published As

Publication number Publication date
JP3886142B1 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
JP6242008B2 (en) Uninterruptible power system
US10811898B2 (en) Uninterruptible power supply device
JP3922650B1 (en) Charging device for capacitor storage power supply
JP3945658B1 (en) Charging device for capacitor storage power supply
JP2007221933A (en) Charger for capacitor storage power supply
EP2101389A1 (en) Monitoring and control circuit for adjusting current
US9831782B2 (en) Switched mode power supply with secondary-side power regulation
JP5978489B2 (en) DC power supply unit and DC power supply system
US20150244207A1 (en) Dc/dc converter, method of controlling the dc/dc converter and data storage apparatus
JP2007135373A (en) Converter system and its output control method
JP2007288979A (en) Dc power supply apparatus
JP4049333B1 (en) Charge control device
JP2014160377A (en) Programmable controller
JP3856462B1 (en) Discharge device for capacitor power supply
JP3886142B1 (en) Charging or discharging device for capacitor storage power supply
US10075054B1 (en) Power supply capable of maintaining its output voltage
JP2007159234A (en) Uninterruptible power supply device
US11496048B2 (en) Power supply with duty cycle limiting circuit, duty cycle limiting circuit, and method of operating the same
JP2005224087A (en) Lighting fixture for power supply unit and vehicle
JP2009100532A (en) Charger for capacitor storage power supplies
JP3871220B1 (en) Charging device for capacitor storage power supply
JP6493172B2 (en) Battery connection method
JP5638894B2 (en) Power converter and DC power supply system
JP2005354756A (en) Uninterruptible power supply apparatus
JP2007295656A (en) Bank-switching capacitor power source device and charging method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Ref document number: 3886142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250