JPH099518A - Charging device - Google Patents

Charging device

Info

Publication number
JPH099518A
JPH099518A JP7154320A JP15432095A JPH099518A JP H099518 A JPH099518 A JP H099518A JP 7154320 A JP7154320 A JP 7154320A JP 15432095 A JP15432095 A JP 15432095A JP H099518 A JPH099518 A JP H099518A
Authority
JP
Japan
Prior art keywords
battery
charging
current
voltage
microcomputer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7154320A
Other languages
Japanese (ja)
Other versions
JP3239689B2 (en
Inventor
Takuya Nishide
卓也 西出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15432095A priority Critical patent/JP3239689B2/en
Publication of JPH099518A publication Critical patent/JPH099518A/en
Application granted granted Critical
Publication of JP3239689B2 publication Critical patent/JP3239689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To control a charging current for a battery at a low cost and precisely by controlling an output of a DC-DC converter by the charging current detected. CONSTITUTION: A charging current for a battery 29 can be controlled freely by a pulse width at port PWM of a microcomputer 31. It is also possible to measure an output of an amplifier 16 of a current detecting circuit 1B at port AD1 of an A/D converter 32, to change a pulse at the port PWM of the microcomputer 31 by the value of the output and to correct the charging current thereby. Even when the voltage of the battery 29 is close to 0V, accordingly, a specified minute preliminary charging current can be used for charging without a power loss, by controlling the PWM pulse of the microcomputer 31 so that an ON time of FET 10 in a DC-DC converter circuit be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はバッテリーの充電を精度
良く、無駄なく、かつ安全に行う充電装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device for charging a battery accurately, without waste and safely.

【0002】[0002]

【従来の技術】近年、小型のパソコンや家庭用ビデオカ
メラ等は小型化が進みバッテリーを電源とすることによ
り、どこへでも持ち運びが可能となり普及しつつある。
2. Description of the Related Art In recent years, small personal computers, home video cameras and the like have become smaller and are becoming popular because they can be carried anywhere by using a battery as a power source.

【0003】今後、ますますバッテリー駆動の電子機器
が増え、そして経済的にも省資源の面からも有利な充電
可能なバッテリーが使われるようになってきた。
In the future, the number of battery-powered electronic devices will increase, and rechargeable batteries, which are economically and resource-saving, have come to be used.

【0004】しかし、充電可能なバッテリーはその寿命
を長くするためと、十分な充電を行いそのバッテリー能
力容量を引き出すためにはバッテリーの充電に最適な充
電機能が要求される。その機能は次のようなものであ
る。
However, a rechargeable battery is required to have an optimal charging function for charging the battery in order to prolong its life and in order to fully charge the battery and bring out its battery capacity. Its function is as follows.

【0005】a.ロスなく安全に充電ができる。 b.最適な充電状態で充電できる。A. You can safely charge without loss. b. Can be charged in the optimal charging state.

【0006】c.短時間で完全充電ができる。 以下に図2により従来の充電装置について説明する。C. Can be fully charged in a short time. A conventional charging device will be described below with reference to FIG.

【0007】同図において、入力電源端子1,2から電
源の供給を受け充電電圧制御回路1C又は2Cと定電流
回路1A又は2Aと電流検出回路1B又は2Bとマイク
ロコンピュータ31によりバッテリー29又は79を充
電する。
In FIG. 1, the battery 29 or 79 is supplied by the charging voltage control circuit 1C or 2C, the constant current circuit 1A or 2A, the current detection circuit 1B or 2B, and the microcomputer 31 by receiving power from the input power terminals 1 and 2. To charge.

【0008】充電電圧制御回路1Cは入力電源端子1と
トランジスタ20のエミッタと接続し、そのトランジス
タ20のコレクタからバッテリー29のプラス端子28
を介して充電する。そして、バッテリー29の電圧を抵
抗26と抵抗27で分圧した電圧は基準電源25と増幅
器23で比較し、その出力をトランジスタ21と抵抗2
2を介してトランジスタ20に加えバッテリー29への
充電電圧を制御する。
The charging voltage control circuit 1C is connected to the input power supply terminal 1 and the emitter of the transistor 20, and from the collector of the transistor 20 to the plus terminal 28 of the battery 29.
To charge via. Then, the voltage obtained by dividing the voltage of the battery 29 by the resistors 26 and 27 is compared by the reference power supply 25 and the amplifier 23, and the output is compared with the transistor 21 and the resistor 2.
The charge voltage to the battery 29 in addition to the transistor 20 is controlled via 2.

【0009】又、マイクロコンピュータ31のポートP
1によりトランジスタ24をON/OFFしトランジス
タ21をON/OFFすることでバッテリー29への充
電をON/OFF制御する。即ち、充電電圧制御回路1
Cとマイクロコンピュータ31でバッテリー29への充
電電圧制御および遮断する手段を構成することになる。
Also, the port P of the microcomputer 31
By turning on / off the transistor 24 and turning on / off the transistor 21 by 1, the charging of the battery 29 is controlled to be turned on / off. That is, the charging voltage control circuit 1
C and the microcomputer 31 constitute a means for controlling and shutting off the charging voltage of the battery 29.

【0010】更に、バッテリー29の電圧を抵抗26と
抵抗27で分圧した電圧はマイクロコンピュータ31に
内蔵又は外部のA/Dコンバータ32のポートAD3に
入力し、バッテリー29の充電状態を監視するためのも
のである。
Further, the voltage obtained by dividing the voltage of the battery 29 by the resistors 26 and 27 is input to the port AD3 of the A / D converter 32 which is built in or external to the microcomputer 31 to monitor the charge state of the battery 29. belongs to.

【0011】次に、定電流回路1Aはバッテリー29が
過放電により電圧が規定電圧以下の時、バッテリー29
を劣化させないために小さい電流で予備充電し、回復さ
せたり、充電が完了した後、自己放電に対し補充電する
ものである。
Next, the constant current circuit 1A operates when the voltage of the battery 29 is below a specified voltage due to over discharge.
In order to prevent deterioration, the battery is precharged with a small current to recover it, or after charging is completed, it is supplemented with self-discharge.

【0012】定電流回路1Aは、電流検出抵抗34から
制御用トランジスタ36を介してバッテリー29を充電
する。定電流動作は電流検出抵抗34に発生する電圧を
抵抗33と抵抗35で分圧し、抵抗33の電圧でトラン
ジスタ37をドライブし、トランジスタ37のエミッタ
−コレクタ間の電圧で抵抗34と制御用トランジスタ3
6のベース間電圧を一定に制御し定電流を得る。
The constant current circuit 1A charges the battery 29 from the current detection resistor 34 via the control transistor 36. In the constant current operation, the voltage generated in the current detection resistor 34 is divided by the resistors 33 and 35, the transistor 37 is driven by the voltage of the resistor 33, and the resistor 34 and the control transistor 3 are controlled by the voltage between the emitter and collector of the transistor 37.
A constant current is obtained by controlling the voltage between bases of 6 to be constant.

【0013】電流検出回路1Bはバッテリー29に充電
された電流を抵抗19で電圧に変え、その電圧を増幅器
16と帰還抵抗17,18で増幅しマイクロコンピュー
タ31に内蔵又は外部のA/Dコンバータ32のポート
AD1に入力し計測する。即ち、電流検出回路1Bはバ
ッテリー29への充電電流を検知する手段となる。
The current detection circuit 1B converts the current charged in the battery 29 into a voltage by the resistor 19 and amplifies the voltage by the amplifier 16 and the feedback resistors 17 and 18, and the A / D converter 32 built in or external to the microcomputer 31. Input to port AD1 of and measure. That is, the current detection circuit 1B serves as means for detecting the charging current to the battery 29.

【0014】バッテリー79側の充電電圧制御回路2C
と定電流回路2Aと電流検出回路2Bからなる充電回路
も上記と同一動作である。
Charging voltage control circuit 2C on the battery 79 side
The charging circuit including the constant current circuit 2A and the current detection circuit 2B also operates in the same manner as above.

【0015】以上のように構成された充電装置につい
て、以下その動作について詳しく説明する。
The operation of the charging device configured as described above will be described in detail below.

【0016】図2において、入力電源端子1,2から電
源の供給を受けトランジスタ20に流れる電流をON/
OFFし、バッテリー29のプラス端子28を介して充
電する。トランジスタ20のON/OFF制御はマイク
ロコンピュータ31のポートP1出力のハイ/ローによ
りトランジスタ24をON/OFFし行う。そして、バ
ッテリー29への充電はバッテリー29の電圧状態によ
って制御する。
In FIG. 2, power is supplied from the input power terminals 1 and 2, and the current flowing through the transistor 20 is turned on / off.
It is turned off, and the battery 29 is charged via the positive terminal 28. The ON / OFF control of the transistor 20 is performed by turning on / off the transistor 24 by the high / low output of the port P1 of the microcomputer 31. The charging of the battery 29 is controlled according to the voltage state of the battery 29.

【0017】まずバッテリー29の電圧は抵抗26と抵
抗27で分圧しマイクロコンピュータ31に内蔵又は外
部のA/Dコンバータ32のポートAD3に入力し、バ
ッテリー29の充電電圧を監視する。
First, the voltage of the battery 29 is divided by the resistors 26 and 27 and input to the port AD3 of the A / D converter 32 built in or external to the microcomputer 31 to monitor the charging voltage of the battery 29.

【0018】ここで、バッテリー29の電圧が規定電圧
以上の場合はトランジスタ20を介してバッテリー容量
に相当する電流(約1〜2A:入力電源で制限する)で
充電を行う。そして充電が進むとバッテリー29の電圧
が充電電圧制御回路1Cで決まる電圧:V1で制限され
充電電流が減少する。基準電源25の電圧をVCとする
と V1=(R26+R27)/R27×VC〈R26,R27は抵抗
26、抵抗27の抵抗値〉 充電電流の減少は電流検出回路1Cの出力をマイクロコ
ンピュータ31に内蔵又は外部のA/Dコンバータ32
のポートAD1に入力し計測する。そしてマイクロコン
ピュータ31は規定の充電電流(約0.1A)以下にな
った時、バッテリー29が満充電になったと判断し、ポ
ートP1をハイにしてトランジスタ24をONさせトラ
ンジスタ21,20をOFFし充電を完了する。
Here, when the voltage of the battery 29 is equal to or higher than the specified voltage, charging is performed through the transistor 20 with a current corresponding to the battery capacity (about 1 to 2 A: limited by the input power source). Then, as the charging proceeds, the voltage of the battery 29 is limited by the voltage V1 determined by the charging voltage control circuit 1C and the charging current decreases. When the voltage of the reference power supply 25 is V C , V1 = (R 26 + R 27 ) / R 27 × V C <R 26 and R 27 are resistance values of the resistors 26 and 27> The decrease of the charging current is caused by the current detection circuit 1C. A / D converter 32 whose output is built in or external to the microcomputer 31
Input to port AD1 of and measure. Then, the microcomputer 31 determines that the battery 29 is fully charged when the charging current is less than the specified charging current (about 0.1 A), sets the port P1 to high, turns on the transistor 24, and turns off the transistors 21 and 20. Complete charging.

【0019】又、バッテリー29が過放電等により電圧
が規定電圧以下の時、マイクロコンピュータ31のポー
トP2をローにして定電流回路1Aを動作させバッテリ
ー29を劣化させないように小さい電流(約0.1〜
0.2A固定)で予備充電し、回復させる。
When the voltage of the battery 29 is below the specified voltage due to over-discharging or the like, the port P2 of the microcomputer 31 is set to low to operate the constant current circuit 1A and a small current (about 0. 1 to
Pre-charge with 0.2A fixed) to recover.

【0020】又、充電が完了した後は、自己放電に対し
補充電を行うために時間を決めて定電流回路1Aを動作
させるものである。
After the charging is completed, the constant current circuit 1A is operated at a predetermined time for supplementary charging for self-discharge.

【0021】定電流:i1は、以下の式で決まる。 (i1×R34)/(R33+R35)×R33=0.7V〈ト
ランジスタ37のVbe〉 i1=0.7×(R33+R35)/(R34×R33
〈R33,R34,R35は抵抗33,34,35の抵抗値〉
Constant current: i1 is determined by the following equation. (I1 × R 34 ) / (R 33 + R 35 ) × R 33 = 0.7V <Vbe of transistor 37> i1 = 0.7 × (R 33 + R 35 ) / (R 34 × R 33 ).
<R 33 , R 34 , R 35 are resistance values of the resistors 33 , 34 , 35 >

【0022】[0022]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、上記定電流回路1Aでバッテリー29が
0Vに近い時、入力電源端子1の電圧が15Vとすると
トランジスタ36の電力ロスは、約0.1A×15V=
1.5Wとなり、大きく放熱板も必要となる。
However, in the above-mentioned conventional configuration, when the voltage of the input power supply terminal 1 is 15V when the battery 29 is close to 0V in the constant current circuit 1A, the power loss of the transistor 36 is about 0V. .1A × 15V =
It becomes 1.5 W, and a large heat sink is also required.

【0023】又、過放電時のバッテリー電圧状態によっ
て定電流回路1Aの電流値を変えたり、補充電時の電流
を変えることができない点や、更に、一方のバッテリー
が満充電に近付き入力電源の電流に余裕が出た時、それ
に応じて他方のバッテリーに必要な充電電流を流すこと
ができないという問題点を有していた。
Further, the current value of the constant current circuit 1A cannot be changed depending on the battery voltage state at the time of over-discharging, and the current at the time of supplementary charging cannot be changed. Furthermore, one battery approaches full charge and the input power source There was a problem in that when the current became available, the charging current required for the other battery could not be supplied accordingly.

【0024】本発明は上記従来の問題点を解決するもの
で、安いコストでしかも精度良くかつ簡単にバッテリー
の充電電流を制御可能とする充電装置を提供することを
目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a charging device that can control the charging current of a battery at low cost, with high accuracy and easily.

【0025】[0025]

【課題を解決するための手段】この目的を達成するため
に本発明の充電装置は、2個以上のバッテリーを充電す
る装置において、バッテリーへの充電電圧を制御又は遮
断する手段と、バッテリーへの充電電流を検知する手段
と、各バッテリーへの充電電流を切替える手段と、上記
検知した充電電流で、DC−DCコンバータの出力を制
御する手段とで構成するものである。
In order to achieve this object, the charging device of the present invention is a device for charging two or more batteries, and a device for controlling or interrupting the charging voltage to the batteries and a battery charging device. It comprises a means for detecting the charging current, a means for switching the charging current to each battery, and a means for controlling the output of the DC-DC converter by the detected charging current.

【0026】[0026]

【作用】本発明は上記の構成によって、安いコストでし
かも精度良くかつ簡単にバッテリーへの充電電流を制御
する充電装置を提供することができる。
With the above-described structure, the present invention can provide a charging device that controls the charging current to the battery at low cost, with high accuracy and easily.

【0027】[0027]

【実施例】以下本発明の充電装置の一実施例について図
1により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the charging device of the present invention will be described below with reference to FIG.

【0028】なお、従来技術と同一部分は同一番号を使
用し説明を省略して説明すると、同図において、基本的
には図2の従来技術のものと、電流検出回路1B,2B
と充電電圧制御回路1C,2Cは同じで、定電流回路1
A,2Aを無くしたものであり、ここでは特徴とするD
C−DCコンバータ回路と電流制御回路の動作について
説明する。
The same parts as those in the prior art are designated by the same reference numerals, and the description thereof will be omitted. In the figure, basically, the same parts as those in the prior art of FIG.
The charging voltage control circuits 1C and 2C are the same, and the constant current circuit 1
A and 2A have been eliminated, and here is the characteristic D
The operations of the C-DC converter circuit and the current control circuit will be described.

【0029】同図において、DC−DCコンバータ回路
はDC−DCコンバータ制御回路9とFET10とダイ
オード11とコイル12とコンデンサ13から成り、電
圧降下型である。DC−DCコンバータ制御回路9はF
ET10のON/OFFのパルス幅を制御する増幅器8
を持ち出力電流を制御する。又、DC−DCコンバータ
制御回路9には基準電源Vst(例えば電圧:2.5
V)を持ち、入力電源端子2(アース)間に抵抗ブリッ
ジ:抵抗6、抵抗7、抵抗4、抵抗5とスイッチ3を介
して電流検出抵抗19及び69を構成し、抵抗ブリッジ
に増幅器8の入力を接続する。
In the figure, the DC-DC converter circuit comprises a DC-DC converter control circuit 9, an FET 10, a diode 11, a coil 12 and a capacitor 13, and is of a voltage drop type. The DC-DC converter control circuit 9 is F
Amplifier 8 for controlling ON / OFF pulse width of ET10
Control the output current. Further, the DC-DC converter control circuit 9 has a reference power source Vst (for example, voltage: 2.5).
V), and a resistor bridge: a resistor 6, a resistor 7, a resistor 4, a resistor 5 and a switch 3 between the input power supply terminal 2 (ground) to form current detection resistors 19 and 69, and the amplifier 8 is connected to the resistor bridge. Connect the inputs.

【0030】更に、抵抗ブリッジの抵抗6,7の交点
に、マイクロコンピュータ31のポートPWMから出力
したい電流に対応するパルス幅制御された信号を出しそ
の信号を抵抗35とコンデンサ38で平滑し抵抗34を
介して接続する。
Further, a pulse-width-controlled signal corresponding to the current desired to be output from the port PWM of the microcomputer 31 is output at the intersection of the resistors 6 and 7 of the resistor bridge, and the signal is smoothed by the resistor 35 and the capacitor 38 to produce the resistor 34. Connect through.

【0031】DC−DCコンバータ回路の出力は切替え
スイッチ手段となる切替スイッチ用のトランジスタ14
とトランジスタ15を通してバッテリー29かバッテリ
ー79に充電される。
The output of the DC-DC converter circuit is a switching switch transistor 14 serving as a switching switch means.
The battery 29 or the battery 79 is charged through the transistor 15.

【0032】次に、DC−DCコンバータ回路とDC−
DCコンバータの出力制御手段となるマイクロコンピュ
ータ31によるバッテリー29への充電電流の制御につ
いて説明する。
Next, the DC-DC converter circuit and the DC-
The control of the charging current to the battery 29 by the microcomputer 31 serving as the output control means of the DC converter will be described.

【0033】トランジスタ14からバッテリー29への
充電電流をi19、電流検出抵抗19の抵抗値をR19、抵
抗6と抵抗7の交点電圧をV+、抵抗4と抵抗5の交点
電圧をV-、マイクロコンピュータ31のポートPWM
から出力したい電流に対応するパルス幅制御された信号
を抵抗35とコンデンサ38で平滑し抵抗34を介して
抵抗7に流れる電流をip、抵抗4と抵抗5と抵抗6と
抵抗7の各抵抗値をRとすると(スイッチ3はa側、又
電流検出抵抗19に流れる抵抗26,27からの電流は
バッテリー29への充電電流に比べ小さいので無視す
る)、 V+=Vst×1/2+R×ip-=(Vst−i19×R19)×1/2+i19×R9-=Vst×1/2+i19×R9×1/2 ここで、DC−DCコンバータ回路とトランジスタ14
からバッテリー29への充電電流i9を検知する回路は
閉ループとなっているので、 V+=V- が成り立つ。よって Vst×1/2+R×ip=Vst×1/2+i19×R
19×1/2 R×ip=i19×R19×1/2 i19=2R/R19×ip 又、電流ipはマイクロコンピュータ31のポートPW
Mのパルス幅に比例するので、バッテリー29への充電
電流i19はマイクロコンピュータ31のポートPWMの
パルス幅で自由に制御可能である。かつ電流検出回路1
Bの増幅器16の出力をA/Dコンバータ32のポート
AD1で測定し、その値によりマイクロコンピュータ3
1のポートPWMのパルスを変え充電電流を補正するこ
とも可能である。
The charging current from the transistor 14 to the battery 29 is i 19 , the resistance value of the current detecting resistor 19 is R 19 , the crossing point voltage between the resistors 6 and 7 is V + , and the crossing point voltage between the resistors 4 and 5 is V −. , Port PWM of the microcomputer 31
Pulse width controlled signal corresponding to the current to be output from the resistor 35 and the capacitor 38 are smoothed, and the current flowing through the resistor 34 to the resistor 7 is i p , and the resistors 4, 5 and 6 and 7 are the respective resistors. If the value is R (the switch 3 is on the a side, and the currents from the resistors 26 and 27 flowing through the current detection resistor 19 are smaller than the charging current to the battery 29, they are ignored), and V + = Vst × 1/2 + R × i p V = (Vst−i 19 × R 19 ) × 1/2 + i 19 × R 9 V = Vst × 1/2 + i 19 × R 9 × 1/2 Here, the DC-DC converter circuit and the transistor 14
Since the circuit for detecting the charging current i 9 from the battery 29 to the battery 29 is a closed loop, V + = V is established. Therefore Vst × 1/2 + R × i p = Vst × 1/2 + i 19 × R
19 × 1/2 R × i p = i 19 × R 19 × 1/2 i 19 = 2R / R 19 × i p The current i p port PW of the microcomputer 31
Since it is proportional to the pulse width of M, the charging current i 19 to the battery 29 can be freely controlled by the pulse width of the port PWM of the microcomputer 31. And current detection circuit 1
The output of the B amplifier 16 is measured at the port AD1 of the A / D converter 32, and the measured value is used to determine whether the microcomputer 3
It is also possible to correct the charging current by changing the pulse of the port 1 PWM.

【0034】よって、バッテリー29の電圧が0Vに近
い時でもDC−DCコンバータ回路でFET10のON
期間を短くするように、マイクロコンピュータ31のP
WMパルスを制御することにより規定の微少な予備充電
電流を電力ロス無く充電可能である。かつ電流検出回路
1Bの増幅器16の出力をA/Dコンバータ32のポー
トAD1で測定しその値によりマイクロコンピュータ3
1のポートPWMのパルスを変え充電電流を補正するこ
とも可能である。
Therefore, even when the voltage of the battery 29 is close to 0V, the FET 10 is turned on by the DC-DC converter circuit.
In order to shorten the period, P of the microcomputer 31
By controlling the WM pulse, it is possible to charge a prescribed minute preliminary charging current without power loss. Moreover, the output of the amplifier 16 of the current detection circuit 1B is measured at the port AD1 of the A / D converter 32, and the value is measured by the microcomputer 3
It is also possible to correct the charging current by changing the pulse of the port 1 PWM.

【0035】そして、過放電時のバッテリー電圧が大き
く低下していない場合は多めの予備充電電流を流し速く
充電を完了することが可能となる。
When the battery voltage at the time of over-discharging has not dropped significantly, a large amount of preliminary charging current can be supplied to quickly complete the charging.

【0036】又、バッテリー29が満充電に近付き充電
電流が減り、入力電源の電流に余裕が出た時、電流検出
回路1Bの増幅器16の出力をA/Dコンバータ32の
ポートAD1でバッテリー29の充電電流i19を測定
し、予め入力電源の最大電流i mをマイクロコンピュー
タ31に入力しておけば“im−i19”の電流をバッテ
リー79の充電に振り向けることができる。そのために
スイッチ3をb側にし、トランジスタ70をOFFしト
ランジスタ15をONするようにポートP4,P3をハ
イ、ローを設定し、そしてマイクロコンピュータ31の
ポートPWMから“im−i19”の電流に相当するパル
スを出力することにより逐次、バッテリー29の充電電
流i19が低下する状態を検出し、バッテリー79に充電
電流を増やして流すことが可能となる。
In addition, the battery 29 approaches full charge and is charged.
Current detection when the current decreases and there is a margin in the current of the input power supply
The output of the amplifier 16 of the circuit 1B is supplied to the A / D converter 32.
Charging current i of battery 29 at port AD119Measure
The maximum current i of the input power source mMicro computer
If you enter it inm−i19The current of
This can be used for charging the Lee 79. for that reason
Set switch 3 to b and turn off transistor 70.
Ports P4 and P3 are turned on to turn on transistor 15.
A, low, and the microcomputer 31
From port PWM to "im−i19Corresponding to the current of
The battery 29 is sequentially charged by outputting
Flow i19Detects that the battery is low and charges the battery 79
It becomes possible to increase the current and to flow.

【0037】[0037]

【発明の効果】以上のように本発明によれば、上記した
構成によってDC−DCコンバータ回路でバッテリー電
圧が0Vに近い時でも、マイクロコンピュータのPWM
パルスで規定の微少な予備充電電流を電力ロス無く充電
可能である。
As described above, according to the present invention, with the above-described structure, the PWM of the microcomputer is controlled even when the battery voltage is close to 0V in the DC-DC converter circuit.
It is possible to charge the specified minute pre-charge current by pulse without power loss.

【0038】そして、過放電時のバッテリー電圧が大き
く低下していない場合は多めの予備充電電流を流し速く
充電を完了することが可能となる。
When the battery voltage at the time of over-discharging does not drop significantly, a large amount of preliminary charging current can be supplied to quickly complete the charging.

【0039】又、一方のバッテリーが満充電に近付き充
電電流が減り、入力電源の電流に余裕が出た時、それに
応じて他方のバッテリーに充電電流を流すことが可能で
あり、安いコストでしかも精度良くかつ簡単にバッテリ
ーの充電電流を制御可能とする優れた充電装置を実現す
るものである。
Also, when one battery approaches full charge and the charging current decreases and there is a margin in the current of the input power source, the charging current can be made to flow to the other battery accordingly, and at a low cost. The object is to realize an excellent charging device capable of accurately and easily controlling the charging current of a battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例における充電装置の回路
FIG. 1 is a circuit diagram of a charging device according to a first embodiment of the present invention.

【図2】従来の充電装置の回路図FIG. 2 is a circuit diagram of a conventional charging device.

【符号の説明】[Explanation of symbols]

1,2 入力電源端子 3 スイッチ 4,5,6,7,17,18,22,26,27,6
7,68 抵抗 8,16,23,66,73 増幅器 9 DC−DCコンバータ制御回路 10 FET 11 ダイオード 12 コイル 13,38 コンデンサ 14,15,20,21,24,37,70,71,7
4,87 トランジスタ 19,69,34,84 電流検出抵抗 25,75 基準電源 28,78 プラス端子 29,79 バッテリー 30,80 マイナス端子 31 マイクロコンピュータ 32 A/Dコンバータ 33,35,83,85 抵抗 36,86 制御用トランジスタ 72,76,77 抵抗
1, 2 input power supply terminal 3 switch 4, 5, 6, 7, 17, 18, 22, 26, 27, 6
7,68 Resistance 8,16,23,66,73 Amplifier 9 DC-DC converter control circuit 10 FET 11 Diode 12 Coil 13,38 Capacitor 14,15,20,21,24,37,70,71,7
4,87 Transistor 19,69,34,84 Current detection resistance 25,75 Reference power supply 28,78 Positive terminal 29,79 Battery 30,80 Minus terminal 31 Microcomputer 32 A / D converter 33,35,83,85 Resistance 36 , 86 Control transistor 72,76,77 Resistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2個以上のバッテリーを充電する装置に
おいて、バッテリーへの充電電圧を制御又は遮断する手
段と、バッテリーへの充電電流を検知する手段と、各バ
ッテリーへの充電電流を切替える手段と、上記検知され
た充電電流によりDC−DCコンバータの出力を制御す
る手段とで構成される充電装置。
1. In an apparatus for charging two or more batteries, means for controlling or interrupting the charging voltage to the batteries, means for detecting the charging current to the batteries, and means for switching the charging current to each battery. , A means for controlling the output of the DC-DC converter by the detected charging current.
JP15432095A 1995-06-21 1995-06-21 Charging device Expired - Fee Related JP3239689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15432095A JP3239689B2 (en) 1995-06-21 1995-06-21 Charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15432095A JP3239689B2 (en) 1995-06-21 1995-06-21 Charging device

Publications (2)

Publication Number Publication Date
JPH099518A true JPH099518A (en) 1997-01-10
JP3239689B2 JP3239689B2 (en) 2001-12-17

Family

ID=15581563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15432095A Expired - Fee Related JP3239689B2 (en) 1995-06-21 1995-06-21 Charging device

Country Status (1)

Country Link
JP (1) JP3239689B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134804A (en) * 1998-10-27 2000-05-12 Nec Corp Charge/discharge switching circuit
JP2007259615A (en) * 2006-03-24 2007-10-04 Power System:Kk Charger or discharger for capacitor storage power supply
JP2008125280A (en) * 2006-11-14 2008-05-29 Seiko Epson Corp Charger, information processing terminal, and information processing system
EP1978621A1 (en) * 2007-04-05 2008-10-08 Ferm B.V. Universal charging device and method of charging a battery
JP2014007908A (en) * 2012-06-26 2014-01-16 Jfe Engineering Corp Rapid charging method and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000134804A (en) * 1998-10-27 2000-05-12 Nec Corp Charge/discharge switching circuit
JP2007259615A (en) * 2006-03-24 2007-10-04 Power System:Kk Charger or discharger for capacitor storage power supply
JP2008125280A (en) * 2006-11-14 2008-05-29 Seiko Epson Corp Charger, information processing terminal, and information processing system
EP1978621A1 (en) * 2007-04-05 2008-10-08 Ferm B.V. Universal charging device and method of charging a battery
JP2014007908A (en) * 2012-06-26 2014-01-16 Jfe Engineering Corp Rapid charging method and apparatus

Also Published As

Publication number Publication date
JP3239689B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
US5717309A (en) Dual battery charging device
TW200822484A (en) Method for battery pack protection
JPH0785893A (en) Method for charging battery
JPH08140281A (en) Charger
WO1998009361A1 (en) Power supply
JP3239689B2 (en) Charging device
JPH06133465A (en) Method and apparatus for charging secondary battery
JPH11187586A (en) Method and system for charging secondary battery
JPH06284594A (en) Chargeable power supply apparatus
JP3203533B2 (en) Battery pack charging device
JP3182248B2 (en) Battery pack and charger
JP2730500B2 (en) Charging device
JPH09200971A (en) Charging equipment
JP3235289B2 (en) battery charger
JP3585086B2 (en) Lithium ion secondary battery charger
JP3408062B2 (en) Method and device for charging secondary battery
JPH10304586A (en) Secondary battery charging device
JP2809391B2 (en) Constant current / constant voltage charger
JPH11234922A (en) Charging circuit
JP2003189497A (en) Charging circuit
JPH1028338A (en) Battery charger
JPH0326025B2 (en)
JP3508579B2 (en) Charging circuit
JP2602554Y2 (en) Signal output circuit
JP3707090B2 (en) Secondary battery unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees