JPH08140281A - Charger - Google Patents

Charger

Info

Publication number
JPH08140281A
JPH08140281A JP6275128A JP27512894A JPH08140281A JP H08140281 A JPH08140281 A JP H08140281A JP 6275128 A JP6275128 A JP 6275128A JP 27512894 A JP27512894 A JP 27512894A JP H08140281 A JPH08140281 A JP H08140281A
Authority
JP
Japan
Prior art keywords
charging
rechargeable battery
battery device
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6275128A
Other languages
Japanese (ja)
Inventor
Masayuki Komatsu
正之 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6275128A priority Critical patent/JPH08140281A/en
Publication of JPH08140281A publication Critical patent/JPH08140281A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To activate a chargeable battery device being overdischarged, and pull up the output voltage so as to enable quick charging by arranging the constitution such that the quick discharging is performed when the charging voltage of the chargeable battery device reaches the voltage capable of quick charging. CONSTITUTION: A charging control microcomputer 2 starts the charging, and turns off a quick charging ON/OFF switch circuit 1 so as to perform preliminary charging, and turns on a preliminary charging ON/OFF switch circuit 6. And, a charging control microcomputer 2 reads the output voltage of a charging battery device 4 through an AD converter 10, and if t is not less than the voltage with which the charging control microcomputer 2 can operate, the charging control microcomputer 2 turns off the preliminary charging ON/OFF switch circuit 6 and turns on the quick charging ON/OFF switch circuit 1 so as to perform quick charging until the output voltage of the chargeable battery device 4 becomes stable. Hereby, the chargeable battery device 4 overdischarged can be activated, and it can be quickly charged, with output increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はバッテリ充電装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery charger.

【0002】[0002]

【従来の技術】近年パーソナルコンピュータ、ワードプ
ロセッサ、ビデオカメラ、ファクシミリ、携帯電話など
の小型でバッテリを内蔵した持ち運び可能な電子機器が
普及している。これらの電子機器は商用電源を使える所
では、商用電源により電子機器本体を動作させる。商用
電源が使えないところでは、充電式バッテリの電源によ
り動作させる。そして、充電式バッテリの電圧が低下し
た場合は電子機器本体の動作を止め、機器内蔵の充電回
路で充電するか、または、バッテリを取り外し外部の充
電器で充電を行う。また、使用する充電式バッテリの標
準充電電流では充電に時間がかかるので、標準の充電電
流より数倍から数十倍の電流を流し短時間で急速充電す
る。
2. Description of the Related Art In recent years, portable electronic devices with a built-in battery, such as personal computers, word processors, video cameras, facsimiles, and mobile phones, have become widespread. Where these electronic devices can use a commercial power source, the electronic device main body is operated by the commercial power source. If commercial power is not available, use rechargeable battery power. When the voltage of the rechargeable battery drops, the operation of the electronic device main body is stopped and the charging circuit built in the device is charged, or the battery is removed and charging is performed by an external charger. Further, since it takes time to charge with the standard charging current of the rechargeable battery used, a current several to several tens of times higher than the standard charging current is flowed to perform rapid charging in a short time.

【0003】一般的に充電式バッテリは経年変化により
劣化したとき短絡破損することが多いこと、動作してい
なくとも若干の漏れ電流を流れるため長く放置しておく
と深放電となり出力電圧が低下すると言う性質がある。
このような充電式バッテリを急速充電する場合、出力電
圧が放電終止電圧より相当低いか短絡した充電式バッテ
リは、負荷が重く充電できないという問題がある。以下
に一例を示す。
Generally, a rechargeable battery often suffers a short circuit damage when it deteriorates due to aging, and even if it does not operate, a slight leakage current flows, so if it is left for a long time, a deep discharge occurs and the output voltage drops. There is a nature to say.
When such a rechargeable battery is rapidly charged, there is a problem in that the output voltage is considerably lower than the discharge end voltage or a short circuit occurs and the load is heavy and cannot be charged. An example is shown below.

【0004】図11に従来のバッテリ充電装置の構成例
を示す。図において、1は急速充電ON/OFFスィッ
チ回路、2は充電制御マイクロプロセッサ(以後充電制
御マイコンと略す)、10はA/Dコンバータ、3は充
電制御マイコン2とA/Dコンバータ10に電源を供給
する定電圧電源装置、12はセル、4はニッケルカドミ
ュウム蓄電池・ニッケル水素蓄電池など定電流充電を行
うタイプの複数のセル12を直列に接続した充電式バッ
テリ装置で、ここでは6個のセル12を直列に接続して
いる例について説明する。5は外部電源装置で、急速充
電時は定電流電源として働き、電子機器本体13を駆動
するときは定電圧電源として働く。
FIG. 11 shows an example of the configuration of a conventional battery charger. In the figure, 1 is a rapid charge ON / OFF switch circuit, 2 is a charge control microprocessor (hereinafter abbreviated as charge control microcomputer), 10 is an A / D converter, 3 is power supply to the charge control microcomputer 2 and A / D converter 10. A constant voltage power supply device for supplying 12, a cell 4, a rechargeable battery device in which a plurality of cells 12 of constant current charging type such as a nickel-cadmium storage battery and a nickel-hydrogen storage battery are connected in series. An example in which the cells 12 are connected in series will be described. An external power supply device 5 functions as a constant current power supply during rapid charging and as a constant voltage power supply when driving the electronic device body 13.

【0005】なお、急速充電時は例えば、1C〜2Cの
充電率に相当する電流で充電する。ここでCは充電率
で、例えば容量1200mAhの充電式バッテリ装置4
なら1Cは1200mAの電流で充電することを意味
し、2Cなら2400mA、1/2Cなら600mAで
充電することを意味する。9は電子機器の主電子回路部
(例えばコンピュータの場合はCPU回路やI/O周辺
回路等)、13は電子機器本体である。
At the time of rapid charging, for example, charging is performed with a current corresponding to a charging rate of 1C to 2C. Here, C is a charging rate, for example, a rechargeable battery device 4 having a capacity of 1200 mAh.
Then, 1C means charging with a current of 1200mA, 2C means charging with 2400mA, and 1 / 2C means charging with 600mA. Reference numeral 9 is a main electronic circuit portion of the electronic device (for example, a CPU circuit or I / O peripheral circuit in the case of a computer), and 13 is an electronic device main body.

【0006】次に、図12に従来のバッテリ充電装置の
充電制御マイコン2が実行する充電制御のフローチャー
トを示す。この図を用いて動作を説明する。図12にお
いてステップ1で、外部電源装置5の電源が入っている
ときに、電子機器本体13の電源スイッチ(図示せず)
をオフにすると、充電制御マイコン2がそれを検出して
充電スタートする。ステップ2で、充電制御マイコン2
が充電を行うよう急速充電ON/OFFスィッチ回路1
をオンとなるよう制御する。
Next, FIG. 12 shows a flow chart of charge control executed by the charge control microcomputer 2 of the conventional battery charger. The operation will be described with reference to this figure. In step 1 in FIG. 12, when the power of the external power supply device 5 is turned on, a power switch (not shown) of the electronic device main body 13
When is turned off, the charging control microcomputer 2 detects it and starts charging. In step 2, charge control microcomputer 2
Quick charge ON / OFF switch circuit 1 to charge
Control to turn on.

【0007】そして、充電開始してから充電式バッテリ
装置4の出力電圧が安定するまでの時間、例えば3分間
充電してからステップ3に進み、充電制御マイコン2は
充電式バッテリ装置4の出力電圧をA/Dコンバータ1
0を介して読み取り、充電式バッテリ装置4に短絡状態
のセル12を含むかを出力電圧(例えば8v以上か否
か)により判定する。一般に短絡したセル12は出力電
圧が0vで充電できないので、8v未満なら6個の内1
個以上は短絡しているセル12があると判定しステップ
7に進み、充電異常として充電を停止する。8v以上な
らステップ4に進み充電式バッテリ装置4は満充電にな
ったか判定する。満充電になったならステップ5に進
み、充電正常として充電を停止する。満充電でなければ
ステップ6に進み、急速充電を継続して行いステップ3
に戻る。
The time from the start of charging until the output voltage of the rechargeable battery device 4 stabilizes, for example, after charging for 3 minutes, the process proceeds to step 3, where the charge control microcomputer 2 outputs the output voltage of the rechargeable battery device 4. To A / D converter 1
It is read through 0, and it is determined whether the rechargeable battery device 4 includes the short-circuited cell 12 based on the output voltage (for example, 8 V or more). Generally, the short-circuited cell 12 cannot be charged at an output voltage of 0 v, so if the output voltage is less than 8 v, 1 out of 6
If more than one cell 12 is short-circuited, it is determined that there is a short-circuited cell 12, and the process proceeds to step 7, where charging is determined to be abnormal and charging is stopped. If it is 8 v or more, the process proceeds to step 4 and it is determined whether the rechargeable battery device 4 is fully charged. If the battery is fully charged, the process proceeds to step 5, where the charging is considered normal and the charging is stopped. If not fully charged, proceed to step 6 and continue rapid charging to step 3
Return to

【0008】なお、満充電の判定として、充電式バッテ
リの種類によるが、充電式バッテリ装置4の電圧が上昇
し規定の電圧に達したら充電を終える方法、電圧が上が
り続けたあと下がったときを充電終了とする−△V法、
および蓄電池温度の上昇を検出して充電を終える方法な
どがある。以上の動作は充電制御マイコン2が正常に動
作できる場合で、もし充電式バッテリ装置4に含まれる
セル12がすべて深放電または短絡状態とすると、充電
式バッテリ装置4の出力電圧が0vか0vに近い電圧に
なる。
Depending on the type of the rechargeable battery, the method of terminating the charging when the voltage of the rechargeable battery device 4 rises and reaches a specified voltage, or when the voltage continues to rise and then drops, is used as the determination of full charge. End charging- △ V method,
There is also a method of detecting an increase in storage battery temperature and ending charging. The above operation is the case where the charge control microcomputer 2 can operate normally, and if all the cells 12 included in the rechargeable battery device 4 are in a deep discharge or short-circuit state, the output voltage of the rechargeable battery device 4 becomes 0v or 0v. The voltage will be close.

【0009】そして、充電制御マイコン2が急速充電し
たとき、充電制御マイコン2は定電圧電源3を介して、
充電式バッテリ装置4と同じ外部電源装置5から電源を
取っているため、供給される電圧が充電式バッテリ装置
4の出力電圧と同じ電圧に下がる。そのため充電制御マ
イコン2は動作できなくなる。そして、ハードウェアが
自律的に急速充電ON/OFFスィッチ回路1をオフに
する。 その結果、急速充電電流が流れなくなって負荷
が軽くなり、充電制御マイコン2が動作できるようにな
る。また、充電制御マイコン2が急速充電にすると、供
給される電圧が充電式バッテリ装置4の出力電圧と同じ
電圧に下がり、充電制御マイコン2が動作できなくな
る、と言う動作を繰り返す。
Then, when the charging control microcomputer 2 is rapidly charged, the charging control microcomputer 2 passes through the constant voltage power source 3 and
Since the power is taken from the same external power supply device 5 as the rechargeable battery device 4, the supplied voltage drops to the same voltage as the output voltage of the rechargeable battery device 4. Therefore, the charge control microcomputer 2 cannot operate. Then, the hardware autonomously turns off the rapid charging ON / OFF switch circuit 1. As a result, the rapid charging current does not flow, the load is lightened, and the charging control microcomputer 2 can operate. In addition, when the charge control microcomputer 2 is rapidly charged, the supplied voltage drops to the same voltage as the output voltage of the rechargeable battery device 4, and the charge control microcomputer 2 becomes inoperable, which is repeated.

【0010】[0010]

【発明が解決しようとする課題】以上の従来例のように
深放電状態または短絡状態のセル12を含む充電式バッ
テリ装置4を急速充電すると、充電制御マイコン2が動
作不能・復旧を繰り返すため急速充電を断続的に行うこ
とになり、充電式バッテリ装置4に内蔵の正常なセル1
2があれば過充電されるという問題があった。充電式バ
ッテリ装置4を長く放置しておいたり、深放電したため
に出力電圧がさがり充電制御マイコン2が充電制御でき
ず、充電式バッテリ装置4を充電できないと言う問題が
あった。
When the rechargeable battery device 4 including the deep-discharged or short-circuited cells 12 is rapidly charged as in the above-described conventional example, the charge control microcomputer 2 repeats inoperability / recovery, resulting in rapid operation. Charging will be performed intermittently, and the normal cell 1 built in the rechargeable battery device 4 will be charged.
If there is 2, there was a problem of being overcharged. There is a problem that the rechargeable battery device 4 cannot be charged because the output voltage drops because the rechargeable battery device 4 is left for a long time or is deeply discharged, and the charge control microcomputer 2 cannot control the charging.

【0011】本発明は以上のような課題を解消するため
になされたもので、第一の目的は長く放置しておいた
り、深放電したために出力電圧が下がってしまった充電
式バッテリ装置4を活性化し、出力電圧を引き上げ急速
充電できるようにすることを目的とする。
The present invention has been made to solve the above problems, and a first object thereof is to provide a rechargeable battery device 4 whose output voltage is lowered due to being left for a long time or deeply discharged. The purpose is to activate and raise the output voltage to enable rapid charging.

【0012】第二の目的は急速充電するとき深放電また
は短絡した充電式バッテリ装置の重い負荷で、充電制御
マイコン2が制御不能、復旧を繰り返さないようにする
ことを目的とする。
A second object of the present invention is to prevent the charge control microcomputer 2 from being out of control and from being repeatedly restored due to a heavy load of a rechargeable battery device which is deeply discharged or short-circuited during rapid charging.

【0013】また、第三の目的は熱的ストレスを少なく
し、実装スペースの小さい部品を使用できる充電装置を
得ることを目的とする。
A third object of the present invention is to provide a charging device which can reduce thermal stress and can use parts having a small mounting space.

【0014】また、第四の目的は充電式バッテリ装置が
短絡したセルを内臓するか否かを早く検出することを目
的とする。
A fourth object is to detect early whether or not the rechargeable battery device incorporates a short-circuited cell.

【0015】[0015]

【課題を解決するための手段】第一の発明に係わる充電
装置は、自己放電電流より大きく、充電式バッテリ装置
の容量に応じた標準の充電電流より小さい電流で充電式
バッテリ装置を充電する予備充電手段と、充電式バッテ
リ装置の容量に応じた標準の充電電流より大きい電流で
充電式バッテリ装置を充電する急速充電手段と、あらか
じめ決めておいた所定の基準電圧と充電式バッテリ装置
の充電電圧とを比較する比較手段と、予備充電手段によ
って充電し、比較手段により基準電圧と充電式バッテリ
装置の充電電圧を比較し、この充電電圧が基準電圧より
高ければ、急速充電手段により急速充電するよう制御す
る充電制御手段と、を備えたものである。
According to a first aspect of the present invention, there is provided a charging device for charging a rechargeable battery device with a current larger than a self-discharge current and smaller than a standard charging current according to the capacity of the rechargeable battery device. Charging means, quick charging means for charging the rechargeable battery device with a current larger than the standard charging current according to the capacity of the rechargeable battery device, predetermined reference voltage and charging voltage of the rechargeable battery device And a precharging means for charging, and a comparing means for comparing the reference voltage with the charging voltage of the rechargeable battery device. If the charging voltage is higher than the reference voltage, the quick charging means performs rapid charging. Charging control means for controlling.

【0016】第二の発明に係わる充電装置は充電制御手
段が、予備充電手段によって充電し、所定の時間後に比
較手段により基準電圧と充電式バッテリ装置の充電電圧
を比較し、この充電電圧が基準電圧より低ければ、充電
を停止する手段を備えたものである。
In the charging device according to the second aspect of the invention, the charging control means charges the preliminary charging means, and after a predetermined time, the comparing means compares the reference voltage with the charging voltage of the rechargeable battery device. If the voltage is lower than the voltage, a means for stopping the charging is provided.

【0017】第三の発明に係わる充電装置は、充電式バ
ッテリ装置の容量に応じた標準の充電電流で充電する予
備充電手段と、充電式バッテリ装置の容量に応じた標準
の充電電流より大きい電流で充電式バッテリ装置を充電
する急速充電手段と、所定の時間充電し、正常な充電式
バッテリ装置なら達し、短絡したセルを含む充電式バッ
テリ装置なら達し得ない電圧を基準電圧とし、この基準
電圧と充電式バッテリ装置の充電電圧とを比較する比較
手段と、予備充電手段によって充電し、所定の時間後に
比較手段により基準電圧と充電式バッテリ装置の充電電
圧を比較し、この充電電圧が基準電圧より低いなら充電
を停止し、高いなら急速充電手段により充電するよう制
御する充電制御手段と、を備えたものである。
According to a third aspect of the present invention, there is provided a charging device in which precharging means for charging with a standard charging current according to the capacity of the rechargeable battery device and a current larger than the standard charging current according to the capacity of the rechargeable battery device. With a quick charging means for charging the rechargeable battery device with a predetermined time, a voltage that can be reached by a normal rechargeable battery device that cannot be reached by a rechargeable battery device including a short-circuited cell is used as a reference voltage, and this reference voltage is used. And the charging voltage of the rechargeable battery device are compared with each other, and after a predetermined time, the comparing device compares the reference voltage with the charging voltage of the rechargeable battery device, and the charging voltage is the reference voltage. If it is lower, charging is stopped, and if it is higher, charging control means for controlling to be charged by the quick charging means is provided.

【0018】第四の発明に係わる充電装置は予備充電手
段が抵抗素子を備えたものである。
In the charging device according to the fourth aspect of the present invention, the precharging means includes a resistance element.

【0019】第五の発明に係わる充電装置は予備充電手
段が、ゲートに一定電圧を加えた電界効果トランジスタ
を備えたものである。
In the charging device according to the fifth aspect of the present invention, the precharging means includes a field effect transistor having a gate to which a constant voltage is applied.

【0020】第六の発明に係わる充電装置は予備充電手
段が定電流回路を備えたものである。
In the charging device according to the sixth aspect of the invention, the precharging means has a constant current circuit.

【0021】第七の発明に係わる充電装置は予備充電手
段および充電制御手段が予備充電の電流または急速充電
の電流を流す電界効果トランジスタと、急速充電の電流
を流すよう電界効果トランジスタを制御する第一のスイ
ッチング素子と、予備充電の電流を流すよう電界効果ト
ランジスタを制御する第二のスイッチング素子と、を備
えたものである。
In the charging device according to the seventh aspect of the present invention, the pre-charging means and the charge control means control the field-effect transistor for supplying the pre-charging current or the rapid charging current and the field-effect transistor for causing the rapid charging current to flow. It is provided with one switching element and a second switching element for controlling the field effect transistor so as to flow a current for pre-charging.

【0022】第八の発明に係わる充電装置は、充電式バ
ッテリ装置の容量に応じた標準の充電電流より大きい電
流で充電式バッテリ装置を充電する急速充電手段と、急
速充電手段により充電するよう制御する充電制御手段
と、充電式バッテリ装置から充電制御手段に電源を供給
する電源供給手段と、を備えたものである。
A charging device according to an eighth aspect of the present invention controls a quick charging means for charging the rechargeable battery device with a current larger than a standard charging current according to the capacity of the rechargeable battery device and a quick charging means. And a power supply means for supplying power from the rechargeable battery device to the charge control means.

【0023】[0023]

【作用】第一の発明においては、予備充電手段が、自己
放電電流より大きく、充電式バッテリ装置の容量に応じ
た標準の充電電流より小さい電流で充電式バッテリ装置
を充電する。また、急速充電手段は充電式バッテリ装置
の容量に応じた標準の充電電流より大きい電流で充電式
バッテリ装置を充電する。比較手段はあらかじめ決めて
おいた所定の基準電圧と充電式バッテリ装置の充電電圧
とを比較する。そして、充電制御手段は、予備充電手段
によって充電し、比較手段により基準電圧と充電式バッ
テリ装置の充電電圧を比較し、この充電電圧が基準電圧
より高ければ、急速充電手段により急速充電するよう制
御する。
According to the first aspect of the invention, the precharging means charges the rechargeable battery device with a current that is larger than the self-discharge current and smaller than the standard charge current according to the capacity of the rechargeable battery device. Further, the quick charging means charges the rechargeable battery device with a current larger than the standard charging current according to the capacity of the rechargeable battery device. The comparing means compares a predetermined reference voltage determined in advance with the charging voltage of the rechargeable battery device. Then, the charging control means performs charging by the preliminary charging means, compares the reference voltage with the charging voltage of the rechargeable battery device by the comparing means, and if the charging voltage is higher than the reference voltage, controls the quick charging means to perform rapid charging. To do.

【0024】第二の発明においては、充電制御手段が、
予備充電手段によって充電し、所定の時間後に比較手段
により基準電圧と充電式バッテリ装置の充電電圧を比較
し、この充電電圧が基準電圧より低ければ、充電を停止
するよう制御する。
In the second invention, the charge control means is
The pre-charging means charges the battery, and after a predetermined time, the comparing means compares the reference voltage with the charging voltage of the rechargeable battery device. If the charging voltage is lower than the reference voltage, the charging is controlled to stop.

【0025】第三の発明においては、予備充電手段が充
電式バッテリ装置の容量に応じた標準の充電電流で充電
する。また、急速充電手段は充電式バッテリ装置の容量
に応じた標準の充電電流より大きい電流で充電式バッテ
リ装置を充電する。比較手段は、所定の時間充電し、正
常な充電式バッテリ装置なら達し、短絡したセルを含む
充電式バッテリ装置なら達し得ない電圧を基準電圧と
し、この基準電圧と充電式バッテリ装置の充電電圧とを
比較する。そして、充電制御手段は、予備充電手段によ
って充電し、所定の時間後に比較手段により基準電圧と
充電式バッテリ装置の充電電圧を比較し、この充電電圧
が基準電圧より低いなら充電を停止し、高いなら急速充
電手段により充電するよう制御する。
In the third aspect of the invention, the pre-charging means charges with a standard charging current according to the capacity of the rechargeable battery device. Further, the quick charging means charges the rechargeable battery device with a current larger than the standard charging current according to the capacity of the rechargeable battery device. The comparison means charges the battery for a predetermined time, reaches a normal rechargeable battery device, and does not reach a rechargeable battery device including a short-circuited cell as a reference voltage, and the reference voltage and the charging voltage of the rechargeable battery device are compared with each other. To compare. Then, the charging control means performs charging by the preliminary charging means, compares the reference voltage with the charging voltage of the rechargeable battery device by the comparing means after a predetermined time, and stops the charging if the charging voltage is lower than the reference voltage, and increases the charging voltage. Then, control is performed so that charging is performed by the quick charging means.

【0026】第四の発明においては、予備充電手段が抵
抗素子により充電電流を流す。
In the fourth aspect of the invention, the precharging means causes a charging current to flow through the resistance element.

【0027】第五の発明においては、予備充電手段がゲ
ートに一定電圧を加えた電界効果トランジスタにより充
電電流を流す。
In the fifth aspect of the invention, the pre-charging means causes the field effect transistor in which a constant voltage is applied to the gate to flow the charging current.

【0028】第六の発明においては、予備充電手段が定
電流回路により充電電流を流す。
In the sixth aspect of the invention, the precharging means causes the constant current circuit to flow the charging current.

【0029】第七の発明においては、電界効果トランジ
スタが予備充電の電流または急速充電の電流を流す。そ
して、第一のスイッチング素子が急速充電の電流を流す
よう電界効果トランジスタを制御し、第二のスイッチン
グ素子が予備充電の電流を流すよう電界効果トランジス
タを制御する。
In the seventh invention, the field effect transistor causes the current for pre-charging or the current for rapid charging to flow. Then, the first switching element controls the field-effect transistor so that a rapid charging current flows, and the second switching element controls the field-effect transistor so that a preliminary charging current flows.

【0030】第八の発明においては、急速充電手段が充
電式バッテリ装置の容量に応じた標準の充電電流より大
きい電流で充電式バッテリ装置を充電する。そして、充
電制御手段は急速充電手段により充電するよう制御す
る。また、電源供給手段は充電式バッテリ装置から充電
制御手段に電源を供給する。
In the eighth invention, the quick charging means charges the rechargeable battery device with a current larger than the standard charging current according to the capacity of the rechargeable battery device. Then, the charging control means controls to charge by the quick charging means. Further, the power supply means supplies power from the rechargeable battery device to the charge control means.

【0031】[0031]

【実施例】【Example】

実施例1.短絡または深放電の充電式バッテリ装置4を
いきなり急速充電すると、重い負荷のため電源が充電制
御マイコン2を駆動できなくなるので、本実施例では電
源の容量を増やさずに、不活性の充電式バッテリ装置4
を活性化できる程度の軽い負荷の電流で充電しておき、
充電電圧が上昇し、急速充電に切り換えても動作できる
電圧になったら急速充電しようとするものである。
Example 1. If the short-circuit or deep-discharge rechargeable battery device 4 is suddenly and rapidly charged, the power supply cannot drive the charge control microcomputer 2 due to a heavy load. Therefore, in this embodiment, the capacity of the power supply is not increased, and an inactive rechargeable battery is not used. Device 4
Is charged with a light load current that can activate the
When the charging voltage rises and the voltage becomes operable even if the mode is switched to the rapid charging, the rapid charging is attempted.

【0032】充電式バッテリ装置4に急速充電を行う前
の予備充電は、不活性の充電式バッテリ装置4を活性化
できる充電率、例えば自己放電率より大きく標準の充電
率(1/10Cを中心に1/15C〜1/7Cの範囲)
より小さい、1/30C〜1/20Cの充電率で決まる
電流で、容量1200mAhの充電式バッテリ装置4な
ら40mA〜60mAの充電電流で充電を行う。そし
て、予備充電の電流を少なくすることにより予備充電回
路に消費電力の少ない、小さい部品を使用し、小型の充
電装置を得ようとするものである。
The pre-charging before the rapid charging of the rechargeable battery device 4 is performed at a standard charging ratio (1 / 10C, which is higher than the charging ratio capable of activating the inactive rechargeable battery device 4, for example, the self-discharge ratio). In the range of 1 / 15C to 1 / 7C)
Charging is performed at a charging current of 40 mA to 60 mA for the rechargeable battery device 4 having a capacity of 1200 mAh with a smaller current determined by the charging rate of 1/30 C to 1/20 C. Then, by reducing the pre-charging current, small components with low power consumption are used in the pre-charging circuit to obtain a small charging device.

【0033】そして、予備充電中に充電制御マイコン2
が充電式バッテリ装置4の充電電圧が所定の電圧(例え
ば6v以上)に達しているかを判定し、所定の電圧に達
していれば(6v以上なら)急速充電を行うものであ
る。ただし、この所定の電圧は、充電式バッテリ装置4
の充電電圧がこの値に達していれば、急速充電に切り換
えても充電制御マイコン2が正常に動作できる電圧とす
るものである。以後、この所定の電圧を充電制御マイコ
ン2の動作可能電圧と称す。なお、この電圧は充電制御
マイコン2を構成する素子の動作電圧で決まるものであ
る。
Then, during the pre-charging, the charge control microcomputer 2
Determines whether the charging voltage of the rechargeable battery device 4 has reached a predetermined voltage (for example, 6v or higher), and if it has reached the predetermined voltage (6v or higher), rapid charging is performed. However, this predetermined voltage is the rechargeable battery device 4
If the charging voltage of 1 has reached this value, the charging control microcomputer 2 is set to a voltage at which the charging control microcomputer 2 can operate normally even if the charging is switched to rapid charging. Hereinafter, this predetermined voltage is referred to as an operable voltage of the charge control microcomputer 2. It should be noted that this voltage is determined by the operating voltage of the elements forming the charge control microcomputer 2.

【0034】本発明による実施例を図1に示す。図1は
従来例の図11と比較し、予備充電を行うための予備充
電ON/OFFスィッチ回路6と予備充電回路7が付加
されたものである。図において、6は予備充電ON/O
FFスィッチ回路、7は予備充電を行う予備充電回路、
他は従来例と同じで説明を省略する。なお、外部電源装
置5は、負荷が重い急速充電時は定電流源として働き、
急速充電電流と定電圧電源装置3の電源を供給する。負
荷が軽い予備充電時は定電圧源として働き、予備充電電
流と定電圧電源装置3の電源を供給する。定電圧電源装
置3は充電制御マイコン2およびA/Dコンバータ10
の電源を供給する。
An embodiment according to the present invention is shown in FIG. FIG. 1 is different from FIG. 11 of the conventional example in that a precharge ON / OFF switch circuit 6 and a precharge circuit 7 for performing precharge are added. In the figure, 6 is ON / O for preliminary charging
FF switch circuit, 7 is a pre-charging circuit for pre-charging,
Others are the same as the conventional example and the description thereof is omitted. The external power supply device 5 works as a constant current source during rapid charging with a heavy load,
The rapid charging current and the power of the constant voltage power supply device 3 are supplied. It functions as a constant voltage source during preliminary charging with a light load, and supplies the preliminary charging current and the constant voltage power supply 3 as a power source. The constant voltage power supply 3 includes a charge control microcomputer 2 and an A / D converter 10
Supply the power of.

【0035】これらの構成において、充電制御マイコン
2が実行する充電制御のフローチャートを図2に示す。
図2は従来例の図12と比較し、予備充電を行うステッ
プと充電式バッテリ装置4の出力電圧が6v以上か判定
するステップが付加されたものである。図において、充
電制御マイコン2はステップ1で充電スタートし、ステ
ップ2で充電制御マイコン2が予備充電を行うよう急速
充電ON/OFFスィッチ回路1をオフにし、予備充電
ON/OFFスィッチ回路6をオンに制御する。
FIG. 2 shows a flowchart of the charging control executed by the charging control microcomputer 2 in these configurations.
FIG. 2 is different from FIG. 12 of the conventional example in that a step of performing preliminary charging and a step of determining whether the output voltage of the rechargeable battery device 4 is 6 V or more are added. In the figure, the charge control microcomputer 2 starts charging in step 1, the charge control microcomputer 2 turns off the quick charge ON / OFF switch circuit 1 and turns on the preliminary charge ON / OFF switch circuit 6 so that the charge control microcomputer 2 performs precharge in step 2. To control.

【0036】そして、ステップ3で充電式バッテリ装置
4の出力電圧をA/Dコンバータ10を介して充電制御
マイコン2が読み取り、充電制御マイコン2の動作可能
電圧、例えば6v以上か判定し、6v未満ならステップ
2にもどり継続して予備充電を行う。6v以上ならステ
ップ4に進み充電制御マイコン2は予備充電ON/OF
Fスィッチ回路6をオフに、急速充電ON/OFFスィ
ッチ回路1をオンに制御し、充電式バッテリ装置4の出
力電圧が安定するまでの時間、例えば3分間急速充電す
る。そして、ステップ5に進み、充電式バッテリ装置4
の出力電圧を充電制御マイコン2がA/Dコンバータ1
0を介して読み取り、その出力電圧が充電式バッテリ装
置4に短絡状態のセル12を含んでいれば充電しても達
しえない電圧かを判定する。例えば、従来例のように直
列接続した6個のセル12なら出力電圧が8v以上かに
より短絡セルの有無を判定する。以下ステップ6、7、
8、および9はそれぞれ、従来例の図12のステップ
4、5、6および7と同じで説明を省略する。
Then, in step 3, the output voltage of the rechargeable battery device 4 is read by the charging control microcomputer 2 via the A / D converter 10, and it is judged whether the operating voltage of the charging control microcomputer 2 is, for example, 6 v or more. If so, go back to step 2 to continue precharging. If it is 6v or more, the process proceeds to step 4 and the charging control microcomputer 2 turns on the preliminary charging ON / OF.
The F switch circuit 6 is turned off and the rapid charge ON / OFF switch circuit 1 is controlled to be turned on, and rapid charging is performed until the output voltage of the rechargeable battery device 4 stabilizes, for example, 3 minutes. Then, the process proceeds to step 5, and the rechargeable battery device 4
The charging control microcomputer 2 controls the output voltage of the A / D converter 1
It is read through 0 and it is determined whether the output voltage is a voltage that cannot be reached by charging if the rechargeable battery device 4 includes the short-circuited cell 12. For example, in the case of six cells 12 connected in series as in the conventional example, the presence or absence of a short-circuited cell is determined depending on whether the output voltage is 8 v or higher. Steps 6 and 7 below
Steps 8 and 9 are the same as steps 4, 5, 6 and 7 of the conventional example shown in FIG.

【0037】以上のように充電式バッテリ装置4の出力
電圧が急速充電を行っても充電制御マイコン2が動作で
きる電圧かを、充電制御マイコン2が予備充電中に判定
し、充電制御マイコン2が動作できるなら急速充電を行
うので、従来例のように短絡した充電式バッテリ装置4
の重い負荷を急速充電することはない。
As described above, the charging control microcomputer 2 determines during the preliminary charging whether the output voltage of the rechargeable battery device 4 is a voltage at which the charging control microcomputer 2 can operate even when performing rapid charging. If it can be operated, rapid charging will be performed.
It does not quickly charge heavy loads.

【0038】また、充電制御マイコン2が充電式バッテ
リ装置4に急速充電を行う前に、負荷の軽い微小電流で
予備充電を行うので、深放電したために出力電圧が下が
ってしまった充電式バッテリ装置4を充電し、充電制御
マイコン2の動作可能電圧に充電電圧を引き上げること
ができる。ただし、短絡したセルは充電できないが、急
速充電で重い負荷をかけないように充電制御マイコン2
が制御するので、充電制御マイコン2が動作できなくな
ることはない。また、正常な充電式バッテリ装置4なら
予備充電からすぐに急速充電できる。さらに、微弱電流
で予備充電したので予備充電回路に消費電力の少ない小
型の部品が使用できる。
Further, since the charge control microcomputer 2 performs preliminary charging with a small current with a light load before the chargeable battery device 4 is rapidly charged, the output voltage drops due to deep discharge. 4 can be charged and the charging voltage can be raised to the operable voltage of the charging control microcomputer 2. However, the short-circuited cell cannot be charged, but the charge control microcomputer 2 should be used so that a heavy load is not applied by quick charging.
The charging control microcomputer 2 does not stop operating. In addition, the normal rechargeable battery device 4 can be rapidly charged immediately after preliminary charging. Furthermore, since the pre-charging is performed with a weak current, a small component with low power consumption can be used in the pre-charging circuit.

【0039】次に、予備充電回路7を抵抗器で構成した
例を示す。図3は図1の外部電源装置5から予備充電O
N/OFFスィッチ回路6および予備充電回路7経由充
電式バッテリ装置4に充電する経路を示したもので、こ
のうち予備充電回路7を抵抗器Rで構成した例を示し
た。外部電源装置5の出力電圧をV0 、充電式バッテリ
装置4の出力電圧をVb 、抵抗値をRとし、抵抗値R
に比べ外部電源装置5の内部抵抗と予備充電ON/OF
Fスィッチ回路6のオン抵抗が非常に小さいと仮定すれ
ば、充電式バッテリ装置4に流す充電電流は(Vo ーV
b )/Rとなる。
Next, an example in which the precharge circuit 7 is composed of a resistor will be shown. FIG. 3 shows that the external power supply device 5 of FIG.
A path for charging the rechargeable battery device 4 via the N / OFF switch circuit 6 and the preliminary charging circuit 7 is shown, and an example in which the preliminary charging circuit 7 is constituted by the resistor R is shown. The output voltage of the external power supply device 5 is V0, the output voltage of the rechargeable battery device 4 is Vb, the resistance value is R, and the resistance value R
Compared with the internal resistance of the external power supply device 5 and precharge ON / OF
Assuming that the ON resistance of the F switch circuit 6 is very small, the charging current flowing through the rechargeable battery device 4 is (Vo-V
b) / R.

【0040】そして、充電式バッテリ装置4の出力電圧
Vbが充電制御マイコン2動作可能電圧Vmのとき、充
電電流Ib は Ib =(Vo ーVm )/R で、この電流が予備充電電流Ib として深放電の充電式
バッテリ装置4を充電できる軽い負荷の電流、即ち、自
己放電率より大きく標準充電率(1/10Cを中心に1
/15C〜1/7Cの範囲)より小さい充電率、例えば
1/30C〜1/20Cの充電率で、容量1200mA
hの充電式バッテリ装置4なら40mA〜60mAの充
電電流となるように設定する。この場合、深放電または
短絡で充電式バッテリ装置4の出力電圧が0vのときが
最も重い負荷となり、予備充電電流は最大Vo /Rの電
流を流すことになる。この負荷が急速充電の負荷より軽
くなるよう予備充電電流値を定める。例えば1C〜2C
の充電率の急速充電電流とすれば、容量1200mAh
の充電式バッテリ装置4なら1200mA〜2400m
Aの充電電流より少ない値となるようVo 、Rを決め
る。
When the output voltage Vb of the rechargeable battery device 4 is the charge control microcomputer 2 operable voltage Vm, the charging current Ib is Ib = (Vo-Vm) / R, and this current is deep as the preliminary charging current Ib. The current of a light load that can charge the rechargeable battery device 4 for discharge, that is, the standard charge rate (1 / 10C as the center, which is greater than the self-discharge rate).
/ 15C to 1 / 7C range), a charging rate of 1 / 30C to 1 / 20C, a capacity of 1200mA
For the rechargeable battery device 4 of h, the charging current is set to 40 mA to 60 mA. In this case, the heavy load occurs when the output voltage of the rechargeable battery device 4 is 0v due to deep discharge or a short circuit, and the maximum precharge current is Vo / R. The pre-charge current value is set so that this load is lighter than the quick charge load. For example, 1C to 2C
Assuming that the rapid charging current of the charging rate of 1,200mAh capacity
Rechargeable battery device 4 is 1200 mA to 2400 m
Vo and R are determined so that they are smaller than the charging current of A.

【0041】以上のように、予備充電回路7を構成する
ので抵抗1つで済み、小型で実装スペース少なくでき
る。また、充電制御に充電制御マイコン2を使用した例
について示したがマイクロコンピュータでなく電子回路
で構成してもよい。また、充電制御マイコン2は充電式
バッテリ装置4の出力電圧をA/Dコンバータを介して
読み取って所定の電圧との比較を行なっているが、A/
Dコンバータを用いず、充電式バッテリ装置4の出力電
圧と所定の電圧との比較回路を設け、その出力を読み取
る方法でもよい。
As described above, since the pre-charging circuit 7 is configured, only one resistor is required, and the size is small and the mounting space can be reduced. Also, an example in which the charge control microcomputer 2 is used for charge control is shown, but an electronic circuit may be used instead of the microcomputer. Further, the charge control microcomputer 2 reads the output voltage of the rechargeable battery device 4 through the A / D converter and compares it with a predetermined voltage.
Instead of using the D converter, a method of providing a comparison circuit for the output voltage of the rechargeable battery device 4 and a predetermined voltage and reading the output may be used.

【0042】実施例2.本実施例は図4に示すように、
実施例1の予備充電回路7を抵抗器と半導体で構成した
ものである。図において、R1、R2は抵抗器、FET
1は電界効果トランジスタで、他は実施例1の図3と同
じで説明を省略する。図4において、予備充電回路7の
抵抗器R1、R2は電界効果トランジスタFET1のゲ
ートに一定電圧を加えるための分圧抵抗で、この分圧抵
抗によりゲートに一定電圧を加えると電界効果トランジ
スタFET1のドレイン・ソース間は抵抗として動作
し、予備充電電流を流すことができる。
Example 2. In this embodiment, as shown in FIG.
The pre-charging circuit 7 of the first embodiment is composed of a resistor and a semiconductor. In the figure, R1 and R2 are resistors and FETs
Reference numeral 1 is a field effect transistor, and the other parts are the same as those in FIG. In FIG. 4, resistors R1 and R2 of the pre-charging circuit 7 are voltage dividing resistors for applying a constant voltage to the gate of the field effect transistor FET1. The drain-source operates as a resistor and a pre-charge current can flow.

【0043】このときの電界効果トランジスタFET1
のドレイン・ソース間抵抗Rdsは電界効果トランジスタ
FET1の特性とゲート・ソース間に加わる電圧Vgsで
決まる。 充電電流は実施例1と同じように外部電源装
置5の出力電圧をV0 、充電式バッテリ装置4の出力電
圧をVb とし、ドレイン・ソース間の抵抗Rdsとすれば
充電式バッテリ装置4に流す充電電流は(Vo ーVb )
/Rdsとなる。すなわち、実施例1の抵抗器RをRdsに
置き換えたものである。
Field effect transistor FET1 at this time
The resistance Rds between the drain and the source is determined by the characteristics of the field effect transistor FET1 and the voltage Vgs applied between the gate and the source. As in the case of the first embodiment, the charging current is V0, the output voltage of the rechargeable battery device 4 is Vb, and the resistance Rds between the drain and the source is Rds. Current is (Vo-Vb)
/ Rds. That is, the resistor R of the first embodiment is replaced with Rds.

【0044】 そして、充電式バッテリ装置4の出力電
圧Vbが充電制御マイコン2動作可能電圧Vmのときの
電流(Vo ーVm )/Rdsが深放電の充電式バッテリ
装置4を充電できる軽い負荷の電流、即ち、自己放電率
より大きく標準充電率(1/10Cを中心に1/15C
〜1/7Cの範囲)より小さい充電率、例えば1/30
C〜1/20Cの充電率で決まる電流となるように設定
する。 この場合、深放電または短絡で充電式バッテリ
装置4の出力電圧が0vのときが最大の負荷で、予備充
電電流としては最大Vo /Rdsの電流を流すことになる
が、この電流値が急速充電電流より少ない値にする。そ
して、オン抵抗Rdsとなるゲート・ソース間電圧Vgsを
電界効果トランジスタFET1の特性から求め、ゲート
に加える電圧から分圧抵抗器R1、R2の値を決める。
When the output voltage Vb of the rechargeable battery device 4 is the charge control microcomputer 2 operable voltage Vm, the current (Vo-Vm) / Rds is a light load current that can charge the deep discharge rechargeable battery device 4. That is, the standard charge rate is larger than the self-discharge rate (1 / 10C centered at 1 / 15C
~ 1 / 7C range) smaller charging rate, eg 1/30
It is set so that the current is determined by the charging rate of C to 1 / 20C. In this case, when the output voltage of the rechargeable battery device 4 is 0v due to a deep discharge or a short circuit, the maximum load is to flow the maximum Vo / Rds as the preliminary charging current, but this current value is the rapid charging. Use a value less than the current. Then, the gate-source voltage Vgs that becomes the on-resistance Rds is obtained from the characteristics of the field effect transistor FET1, and the values of the voltage dividing resistors R1 and R2 are determined from the voltage applied to the gate.

【0045】実施例1で、例えば予備充電電流を50m
Aとし、電源電圧Voを15vとした場合は予備充電回路
7の抵抗器Rに2〜3Wの抵抗が必要で、面実装タイプ
の部品は使えず挿入タイプの部品を必要とした。本実施
例の2〜3Wの電界効果トランジスタは面実装タイプの
ものが使用でき、面実装ラインでの自動組立が可能とな
り製造が容易になる。また、抵抗器R1、R2は電界効
果トランジスタFET1のゲートに加える電圧を決定す
るための分圧抵抗であり、電界効果トランジスタのゲー
トは高インピーダンスなので、抵抗器R1、R2は1/
10W程度の小型の面実装抵抗器で構成できる。
In the first embodiment, for example, the preliminary charging current is set to 50 m.
When the power supply voltage Vo is set to 15 V and the power supply voltage Vo is set to 15 V, the resistor R of the pre-charging circuit 7 needs to have a resistance of 2 to 3 W, so that the surface mounting type component cannot be used and the insertion type component is required. The field effect transistor of 2 to 3 W of this embodiment can be of a surface mounting type, and can be automatically assembled on a surface mounting line, which facilitates manufacturing. Further, the resistors R1 and R2 are voltage dividing resistors for determining the voltage applied to the gate of the field effect transistor FET1. Since the gate of the field effect transistor has high impedance, the resistors R1 and R2 are 1 /
It can be composed of a small surface mount resistor of about 10 W.

【0046】実施例3.本実施例は図5に示すように、
実施例1の予備充電回路7を定電流回路で構成したもの
である。図5において、TR1はトランジスタ、R3、
R4は抵抗器、Dは定電圧ダイオードで、他は実施例1
の図3と同じで説明を省略する。 次に動作について説
明する。抵抗器R3と定電圧ダイオードDに電流が流れ
ると定電圧ダイオードDに一定電圧Vz の電圧降下が生
じ、トランジスタTR1のベースに電流が流れる。そし
て、定電圧ダイオードDに並列に接続されたTR1のベ
ース・エミッタと抵抗器R4に定電圧ダイオードDと同
じ電圧が加わる。
Example 3. In this embodiment, as shown in FIG.
The precharging circuit 7 of the first embodiment is composed of a constant current circuit. In FIG. 5, TR1 is a transistor, R3,
R4 is a resistor, D is a constant voltage diode, and others are the first embodiment.
The description is omitted because it is the same as FIG. Next, the operation will be described. When a current flows through the resistor R3 and the constant voltage diode D, a constant voltage Vz drops in the constant voltage diode D, and a current flows through the base of the transistor TR1. Then, the same voltage as that of the constant voltage diode D is applied to the base / emitter of TR1 and the resistor R4 which are connected in parallel to the constant voltage diode D.

【0047】また、一般にトランジスタのベース・エミ
ッタ間電圧Vbeは一定であるので抵抗R4には一定電圧
が加わる。従って、(抵抗に加わる電圧)/抵抗値が一
定の関係から、予備充電電流Ib は下式に示すように負
荷に関係なく一定である。 Ib =(Vz ーVbe)/R4 そして、この場合も実施例1と同様に予備充電電流Ib
は自己放電率より大きく標準充電率(1/10Cを中心
に1/15C〜1/7Cの範囲)より小さい充電率、例
えば1/30C〜1/20の充電率で、容量1200m
Ahの充電式バッテリ装置4なら40mA〜60mAの
電流となるよう設定する。
In addition, since the base-emitter voltage Vbe of the transistor is generally constant, a constant voltage is applied to the resistor R4. Therefore, from the relationship of (voltage applied to resistance) / resistance value being constant, the pre-charging current Ib is constant irrespective of the load as shown in the following equation. Ib = (Vz-Vbe) / R4 And, in this case as well, the preliminary charging current Ib is the same as in the first embodiment.
Is a charging rate larger than the self-discharge rate and smaller than the standard charging rate (range of 1 / 15C to 1 / 7C centering on 1 / 10C), for example, a charging rate of 1 / 30C to 1/20, and a capacity of 1200 m.
In the case of the Ah rechargeable battery device 4, the current is set to 40 mA to 60 mA.

【0048】以上のようにして充電式バッテリ装置4を
定電流で充電できる。なお、本実施例と実施例1、2の
最大電力損失を下記の条件で比較すると、 (1)外部電源装置5の出力電圧:V0 =15v (2)充電電流:Ib =50mA (3)充電制御マイコン2の動作可能電圧: Vm =6
v 本実施例の場合、予備充電時の最大電力損失は、充電式
バッテリ装置4の出力が0vのときで、 15v ×0.05A=0.75W である。
As described above, the rechargeable battery device 4 can be charged with a constant current. In addition, comparing the maximum power loss of this embodiment with those of the first and second embodiments under the following conditions: (1) Output voltage of the external power supply device 5: V0 = 15v (2) Charging current: Ib = 50mA (3) Charging Operable voltage of control microcomputer 2: Vm = 6
v In the case of the present embodiment, the maximum power loss during precharging is 15v × 0.05A = 0.75W when the output of the rechargeable battery device 4 is 0v.

【0049】実施例1および実施例2の場合、最大充電
電流は充電式バッテリ装置4の出力が0vのときで、 0.05A × 15v/(15vー6v)=0.083A 予備充電時の最大電力損失は、 15v ×0.083A=1.25W 従って、本実施例は実施例1、2と比較し60%電力損
失を低減できる。また、実施例1の予備充電回路7を抵
抗器Rで構成した場合の充電電流は(Vo − Vb )
/Rで充電が進み充電式バッテリ装置4の出力電圧 Vb
が高くなると充電電流は減少するが、本実施例の定電
流充電では一定電流で充電するので効率良く充電でき
る。
In the case of Example 1 and Example 2, the maximum charging current is 0.05A × 15v / (15v−6v) = 0.083A when the output of the rechargeable battery device 4 is 0v. The power loss is 15v × 0.083A = 1.25W Therefore, this embodiment can reduce the power loss by 60% as compared with the first and second embodiments. The charging current when the pre-charging circuit 7 of the first embodiment is composed of the resistor R is (Vo-Vb).
/ R advances charging and output voltage Vb of rechargeable battery device 4
However, the constant current charging of the present embodiment charges at a constant current, so that the charging current can be efficiently charged.

【0050】実施例4.本実施例は実施例2の急速充電
ON/OFFスィッチ回路1、予備充電ON/OFFス
ィッチ回路6、および予備充電回路7の3つの回路があ
わせもつ機能と同じ機能を少ない部品数で、構成したも
のである。図6は実施例2の急速充電ON/OFFスィ
ッチ回路1、予備充電ON/OFFスィッチ回路6、お
よび予備充電回路7を図示したもので、図7は本実施例
を示す。図6において、R1、R2は抵抗器、FET
1、FET4、FET5は電界効果トランジスタ,TR
4,TR5はトランジスタで、部品数は7個である。他
は実施例1と同じである。なお、本実施例では電界効果
トランジスタFET4、FET5はPーチャネルのタイ
プを使用しているがNーチャネルでもよい。Pーチャネ
ルの場合はゲート・ソース間電圧(Vgs)にマイナス
の電位差が生じる様にゲートの電位をソースの電位より
下げてやればよい。またNーチャネルの場合はゲート・
ソース間電圧(Vgs)にプラスの電位差が生じるよう
にゲートの電位をソース、及びドレインの電位より高く
してやればよい。
Example 4. In this embodiment, the same functions as those of the quick charge ON / OFF switch circuit 1, the precharge ON / OFF switch circuit 6 and the precharge circuit 7 of the second embodiment are combined with a small number of parts. It is a thing. FIG. 6 shows the rapid charging ON / OFF switch circuit 1, the preliminary charging ON / OFF switch circuit 6, and the preliminary charging circuit 7 of the second embodiment, and FIG. 7 shows the present embodiment. In FIG. 6, R1 and R2 are resistors and FETs
1, FET4, FET5 are field effect transistors, TR
4 and TR5 are transistors, and the number of parts is 7. Others are the same as in the first embodiment. Although the field effect transistors FET4 and FET5 are of P-channel type in this embodiment, they may be N-channel. In the case of the P-channel, the gate potential may be lower than the source potential so that a negative potential difference is generated in the gate-source voltage (Vgs). In the case of N-channel, the gate
The gate potential may be set higher than the source and drain potentials so that a positive potential difference is generated in the source-to-source voltage (Vgs).

【0051】次に動作は、充電制御マイコン2が急速充
電ON命令を出力するとトランジスタTR4のベース・
エミッタ間に電流が流れトランジスタTR4がONにな
る。そして、電界効果トランジスタFET4のゲートの
電位は、ほぼ0v(TR4の飽和電圧)になり、ゲート
・ソース間にマイナスの電位差が生じFET4のドレイ
ン・ソース間は導通し、外部電源装置5から充電式バッ
テリ装置4に急速充電電流が流れる。次に、充電制御マ
イコン2が急速充電OFFの命令を出力するとトランジ
スタTR4のベース・エミッタ間に電流が流れず、トラ
ンジスタTR4がOFFになる。
Next, when the charge control microcomputer 2 outputs a quick charge ON command, the operation of the base of the transistor TR4 is started.
A current flows between the emitters and the transistor TR4 is turned on. Then, the potential of the gate of the field effect transistor FET4 becomes approximately 0 v (saturation voltage of TR4), a negative potential difference is generated between the gate and the source, the drain and the source of the FET4 become conductive, and the external power supply device 5 charges the battery. A quick charge current flows through the battery device 4. Next, when the charge control microcomputer 2 outputs a command to turn off the quick charge, no current flows between the base and emitter of the transistor TR4, and the transistor TR4 is turned off.

【0052】そして、電界効果トランジスタFET4が
オフ状態になり、ソース・ドレイン間が遮断され急速充
電電流は流れない。そして充電制御マイコン2が予備充
電ONの命令を出力するとトランジスタTR5がONに
なる。そして電界効果トランジスタFET5は前記FE
T4と同原理でソース・ドレイン間が導通し、予備充電
回路7を介して外部電源装置5から充電式バッテリ装置
4に予備充電電流が流れる。また、充電制御マイコン2
が予備充電OFFの命令を出力するとトランジスタTR
5がOFFになる。そして電界効果トランジスタFET
5がオフ状態になり、ソース・ドレイン間が遮断され充
電電流は流れない。
Then, the field effect transistor FET4 is turned off, the source-drain is cut off, and the rapid charging current does not flow. Then, when the charge control microcomputer 2 outputs a command for turning on the preliminary charge, the transistor TR5 is turned on. The field effect transistor FET5 is the FE
According to the same principle as T4, the source and the drain are electrically connected, and the preliminary charging current flows from the external power supply device 5 to the rechargeable battery device 4 through the preliminary charging circuit 7. In addition, the charge control microcomputer 2
When the transistor outputs the command to turn off the precharge, the transistor TR
5 turns off. And field effect transistor FET
5 is turned off, the source-drain is cut off, and the charging current does not flow.

【0053】これに対し図7においてR1、R2は抵抗
器。FET1は予備充電または急速充電電流を流す働き
をする電界効果トランジスタで、FET2は急速充電
の、FET3は予備充電のオン・オフ制御する電界効果
トランジスタである。他は実施例1と同じである。な
お、部品数は5個である。また、電界効果トランジスタ
FET1はPーチャネルタイプで、電界効果トランジス
タFET2、FET3はNーチャネルタイプで構成し
た。FET1にN−チャネルを使用することもできる
が、その場合ドレインまたはソースにかかる電位より高
い電位をゲートにかけるようにドライブする。
On the other hand, in FIG. 7, R1 and R2 are resistors. FET1 is a field effect transistor that functions to flow a precharge or quick charge current, FET2 is a field effect transistor that controls on / off of quick charge, and FET3 is a field effect transistor that controls on / off of precharge. Others are the same as in the first embodiment. The number of parts is five. The field effect transistor FET1 is of P-channel type, and the field effect transistors FET2 and FET3 are of N-channel type. It is also possible to use N-channels for FET1, but in that case they are driven to a potential higher than that applied to the drain or source.

【0054】次に動作は、充電制御マイコン2が急速充
電ON命令を出力すると電界効果トランジスタFET2
がオン状態に、そして電界効果トランジスタFET1は
前記FET4と同原理でソース・ドレイン間が導通し、
外部電源装置5から充電式バッテリ装置4に急速充電電
流が流れる。次に、充電制御マイコン2が急速充電OF
F命令を出力すると電界効果トランジスタFET2がオ
フ状態となるが電界効果トランジスタFET1の動作は
充電制御マイコン2からの予備充電ON/OFF命令に
よって決まる。
Next, when the charge control microcomputer 2 outputs a quick charge ON command, the field effect transistor FET2 is operated.
Is turned on, and the field effect transistor FET1 conducts between the source and drain by the same principle as the FET4,
A rapid charging current flows from the external power supply device 5 to the rechargeable battery device 4. Next, the charge control microcomputer 2 sets the quick charge OF.
When the F command is output, the field effect transistor FET2 is turned off, but the operation of the field effect transistor FET1 is determined by the precharge ON / OFF command from the charge control microcomputer 2.

【0055】すなわち充電制御マイコン2が予備充電O
N命令を出力すると電界効果トランジスタFET3はオ
ン状態となり、抵抗器R1、R2、電界効果トランジス
タFET1が図6の予備充電回路7と同じ構成を成し、
実施例2で説明したように電界効果トランジスタFET
1が抵抗として働く。 この回路を介して外部電源装置
5から充電式バッテリ装置4に予備充電電流が流れる。
そして、充電制御マイコン2が予備充電OFF命令を出
力すると電界効果トランジスタFET3がオフ状態に、
そして電界効果トランジスタFET1がオフ状態にな
り、ソース・ドレイン間が遮断され予備充電電流は流れ
ない。
That is, the charge control microcomputer 2 causes the preliminary charge O
When the N command is output, the field effect transistor FET3 is turned on, and the resistors R1 and R2 and the field effect transistor FET1 have the same configuration as the precharge circuit 7 of FIG.
Field effect transistor FET as described in the second embodiment
1 works as a resistance. A preliminary charging current flows from the external power supply device 5 to the rechargeable battery device 4 via this circuit.
When the charge control microcomputer 2 outputs a precharge OFF command, the field effect transistor FET3 is turned off,
Then, the field effect transistor FET1 is turned off, the source-drain is cut off, and the precharge current does not flow.

【0056】以上のように構成したので、実施例2の図
6に示す回路では、急速充電電流は電界効果トランジス
タFET4により流し、予備充電電流はFET1とFE
T5により流すのに対し、本実施例図7の回路では、上
記の機能を電界効果トランジスタFET1が急速充電電
流または予備充電電流を流すので部品数を減らすことが
できる。また、本実施例図7の電界効果トランジスタF
ET2、FET3は電界効果トランジスタFET1の高
インピーダンスのゲートに電圧を加えるための微弱な電
流を流せばよく、ミニモールドの小さい面実装の部品を
使用できる。
With the above configuration, in the circuit shown in FIG. 6 of the second embodiment, the rapid charging current is made to flow by the field effect transistor FET4, and the preliminary charging current is made to the FET1 and FE.
In the circuit of FIG. 7 according to the present embodiment, the field effect transistor FET1 performs the above-described function by supplying the rapid charging current or the preliminary charging current, whereas the number of components can be reduced. In addition, the field effect transistor F of FIG.
ET2 and FET3 need only flow a weak current for applying a voltage to the high-impedance gate of the field effect transistor FET1, and mini-mold small surface-mounted components can be used.

【0057】実施例5.本実施例は予備充電を一定時間
行っても充電式バッテリ装置4の充電電圧が充電制御マ
イコン2の動作可能電圧に達しない場合は、充電異常と
して予備充電を停止するものである。本実施例の構成図
は実施例1の図1と同じで、構成の説明を省略する。充
電制御マイコン2が実行する充電制御のフローチャート
を図8に示す。図8は実施例1の図2にステップ10を
追加したものである。
Example 5. In the present embodiment, if the charging voltage of the rechargeable battery device 4 does not reach the operable voltage of the charging control microcomputer 2 even if the preliminary charging is performed for a certain period of time, the preliminary charging is stopped as a charging abnormality. The configuration diagram of this embodiment is the same as that of FIG. 1 of the first embodiment, and the description of the configuration is omitted. FIG. 8 shows a flowchart of the charging control executed by the charging control microcomputer 2. FIG. 8 is obtained by adding step 10 to FIG. 2 of the first embodiment.

【0058】図において、充電制御マイコン2はステッ
プ1で充電スタートし、ステップ2で充電制御マイコン
2が予備充電を行うよう急速充電ON/OFFスィッチ
回路1をオフにし、予備充電ON/OFFスィッチ回路
6をオンとなるよう制御する。そして、ステップ3で充
電制御マイコン2が充電式バッテリ装置4の出力電圧を
A/Dコンバータ10を介して充電式バッテリ装置4の
出力電圧を読み取り、充電制御マイコン2の動作可能電
圧、例えば6v以上か判定し、6v未満ならステップ1
0に進み、規定時間、即ち正常の充電式バッテリ装置4
なら予備充電開始した後、充電制御マイコン2の動作可
能電圧に達するはずの時間を経過したか判定する。
In the figure, the charging control microcomputer 2 starts charging in step 1, and in step 2, the rapid charging ON / OFF switch circuit 1 is turned off so that the charging control microcomputer 2 performs preliminary charging, and the preliminary charging ON / OFF switch circuit is turned on. 6 is turned on. Then, in step 3, the charge control microcomputer 2 reads the output voltage of the rechargeable battery device 4 via the A / D converter 10 and reads the output voltage of the rechargeable battery device 4, and the operable voltage of the charge control microcomputer 2, for example, 6 V or more. If it is less than 6v, step 1
0, the rechargeable battery device 4 for a specified time, that is, for normal operation
Then, it is determined whether or not the time that should reach the operable voltage of the charge control microcomputer 2 has elapsed after starting the preliminary charging.

【0059】規定時間経過したならステップ9に進み充
電異常として充電を停止する。規定時間経過していなけ
ればステップ2にもどり継続して予備充電を行う。6v
以上ならステップ4に進み、充電制御マイコン2は予備
充電ON/OFFスィッチ回路6をオフにし、急速充電
ON/OFFスィッチ回路1をオンに制御し、充電式バ
ッテリ装置4の出力電圧が安定するまでの時間、例えば
3分間急速充電する。以下は、図2と同じで説明を省略
する。
When the stipulated time has elapsed, the process proceeds to step 9 and the charging is judged to be abnormal and the charging is stopped. If the specified time has not elapsed, the procedure returns to step 2 to continue the preliminary charging. 6v
If so, the process proceeds to step 4, where the charge control microcomputer 2 turns off the preliminary charge ON / OFF switch circuit 6 and controls the rapid charge ON / OFF switch circuit 1 to ON until the output voltage of the rechargeable battery device 4 stabilizes. For a period of time, for example, rapid charging for 3 minutes. The subsequent steps are the same as those in FIG.

【0060】ここで、規定時間について例えば、深放電
したために出力電圧が下がってしまったニッケルカドミ
ュウム電池は一般に1分以内の予備充電で活性化し出力
電圧を充電制御マイコン2の動作可能電圧に引き上げる
ことができるので、規定時間を1分にすればよい。そこ
で、予備充電回路の部品は定格で定まる発熱に耐えるほ
どの性能は必要なく、1分間に相当する発熱に耐えうる
部品でよく小型化できる。
Here, for a specified time, for example, a nickel-cadmium battery whose output voltage has dropped due to deep discharge is generally activated by precharging within 1 minute and the output voltage is set to an operable voltage of the charge control microcomputer 2. Since it can be pulled up, the specified time may be set to 1 minute. Therefore, the parts of the pre-charging circuit do not have to have the performance to withstand the heat generation determined by the rating, and the parts that can withstand the heat generation corresponding to one minute can be well miniaturized.

【0061】実施例1、2、3と同じ様に、本実施例の
予備充電回路7は図3、図4、および図5に示す構成と
することができる。また、本実施例の急速充電ON/O
FFスィッチ回路1、予備充電ON/OFFスィッチ回
路6、および予備充電回路7を図7の構成とすることも
できる。
Similar to the first, second and third embodiments, the precharging circuit 7 of the present embodiment can be configured as shown in FIGS. 3, 4 and 5. In addition, the quick charge ON / O of this embodiment
The FF switch circuit 1, the pre-charging ON / OFF switch circuit 6, and the pre-charging circuit 7 may be configured as shown in FIG.

【0062】実施例6.本実施例は充電式バッテリ装置
4を急速充電する前に、予備充電において不活性の充電
式バッテリ装置4を活性化し、充電式バッテリ装置4に
短絡セルを含むか否か区別しようとするものである。実
施例1の予備充電率では後述の様に充電式バッテリ装置
4に短絡セルを含むか否か区別できないので、本実施例
は充電電流を多くして深放電のセル12は早く電圧上昇
させ、短絡したセル12との区別をしようとするもので
ある。本実施例は予備充電で実施例1より多くの充電電
流を流すため予備充電回路に用いる部品は大きくなる
が、短絡有無を早く検出しようとするものである。本実
施例の構成は実施例1の図1と同じで、説明を省略す
る。本実施例の予備充電電流は実施例1より多い標準の
充電率、即ち1/15C〜1/7Cの充電率で決まる電
流で、容量1200mAhの充電式バッテリ装置4なら
80mA〜170mAの充電電流で予備充電を行う。充
電制御マイコン2が実行する充電制御のフローチャート
を図9に示す。
Example 6. In the present embodiment, before rapidly charging the rechargeable battery device 4, the inactive rechargeable battery device 4 is activated in the pre-charging to distinguish whether the rechargeable battery device 4 includes a short-circuit cell. is there. Since it is not possible to distinguish whether the rechargeable battery device 4 includes a short-circuit cell or not in the preliminary charging rate of the first embodiment as will be described later, in this embodiment, the charging current is increased and the deep discharge cell 12 is quickly raised in voltage. It is intended to distinguish from the short-circuited cell 12. In the present embodiment, since a larger amount of charging current is supplied in the precharging than in the first embodiment, the components used in the precharging circuit are large, but the presence or absence of a short circuit is to be detected quickly. The configuration of this embodiment is the same as that of the first embodiment shown in FIG. The pre-charging current of this embodiment is a standard charging rate higher than that of the first embodiment, that is, a current determined by a charging rate of 1 / 15C to 1 / 7C, and a charging current of 80mA to 170mA for a rechargeable battery device 4 having a capacity of 1200mAh. Pre-charge. FIG. 9 shows a flowchart of charging control executed by the charging control microcomputer 2.

【0063】図において、充電制御マイコン2はステッ
プ1で充電スタートし、ステップ2で充電制御マイコン
2が予備充電を行うよう急速充電ON/OFFスィッチ
回路1をオフにし、予備充電ON/OFFスィッチ回路
6をオンとなるよう制御する。そして、深放電の充電式
バッテリ装置4の電圧が回復し、充電式バッテリ装置4
の出力電圧が安定するまでの時間、例えば3分間予備充
電する。
In the figure, the charging control microcomputer 2 starts charging in step 1, and in step 2, the rapid charging ON / OFF switch circuit 1 is turned off so that the charging control microcomputer 2 performs preliminary charging, and the preliminary charging ON / OFF switch circuit is turned on. 6 is turned on. Then, the voltage of the deep discharge rechargeable battery device 4 is restored, and the rechargeable battery device 4 is restored.
Pre-charging is performed for 3 minutes, for example, until the output voltage becomes stable.

【0064】次に、ステップ3に進み充電制御マイコン
2はA/Dコンバータ10を介して充電式バッテリ装置
4の出力電圧を読み取り、短絡状態のセル12があるか
を判定する。判定方法は充電式バッテリ装置4の充電電
圧が基準電圧例えば8v以上かにより判定する。そし
て、基準電圧8v未満ならステップ7に進み充電異常と
して充電を停止する。基準電圧8v以上ならステップ4
に進み、充電制御マイコン2は予備充電ON/OFFス
ィッチ回路6をオフにし、急速充電ON/OFFスィッ
チ回路1をオンに制御し急速充電を行う。そして、ステ
ップ5で充電式バッテリ装置4は満充電になったか判定
する。満充電になったなら充電正常としてステップ6に
進み充電を停止する。満充電でなければステップ4に戻
り継続して急速充電を行う。
Next, in step 3, the charge control microcomputer 2 reads the output voltage of the rechargeable battery device 4 via the A / D converter 10 and determines whether or not there is a short-circuited cell 12. The determination method is based on whether the charging voltage of the rechargeable battery device 4 is a reference voltage, for example, 8 V or higher. If it is less than the reference voltage 8v, the process proceeds to step 7 and the charging is judged to be abnormal and the charging is stopped. If the reference voltage is 8v or higher, step 4
Then, the charging control microcomputer 2 turns off the pre-charging ON / OFF switch circuit 6 and controls the rapid charging ON / OFF switch circuit 1 to turn on the rapid charging. Then, in step 5, it is determined whether the rechargeable battery device 4 is fully charged. If the battery is fully charged, it is determined that the charging is normal and the process proceeds to step 6 to stop the charging. If not fully charged, the process returns to step 4 to continue rapid charging.

【0065】充電電流について、一般に実施例1の充電
率1/30C〜1/20Cでは、充電制御マイコン2が
充電式バッテリ装置4の出力電圧により短絡セル12の
有無を識別できない。例えば、充電式バッテリ装置4を
6vに充電したとすると、6個の正常なセル12が各々
1.0vに充電され、1.0v×6個=6vに達する場
合もあるし、1個の短絡セル12と5個の正常なセル1
2を含み、正常なセル12が1.2vに充電され0v×
1個+1.2v×5個=6vに達する場合もあるため、
短絡の有無を識別できない。
Regarding the charging current, generally, at the charging rates of 1 / 30C to 1 / 20C of the first embodiment, the charging control microcomputer 2 cannot identify the presence or absence of the short-circuit cell 12 by the output voltage of the rechargeable battery device 4. For example, if the rechargeable battery device 4 is charged to 6v, the six normal cells 12 may be charged to 1.0v, respectively, reaching 1.0v × 6 = 6v, or one short circuit. Cell 12 and 5 normal cells 1
Normal cell 12 including 2 is charged to 1.2v and 0v x
Since 1 + 1.2v × 5 = 6v may be reached,
Cannot identify the presence or absence of a short circuit.

【0066】そこで、充電率を標準の充電率、例えば1
/10C中心に、1/15C〜1/7Cの範囲に上げる
と、一般に3分以内に、セル1つ当たりの充電電圧は
1.35vに達するが1.5vを超えることはないの
で、例えば、充電式バッテリ装置4の充電電圧は、6個
の正常なセル12を含む場合、1.33vに充電すれば
1.33v×6個=8vに達するのに対し、短絡セル1
個と5個の正常なセル12を含む場合、正常なセル12
を1.5vに充電しても0v×1個+1.5v×5個=
7.5vで8vに達しないので、充電制御マイコン2は
短絡判定の基準電圧を8vに選定すれば、充電式バッテ
リ装置4の出力電圧により1つ以上の短絡セル12を含
むか判定できる。
Therefore, the charging rate is set to the standard charging rate, for example, 1
When it is raised to the range of 1 / 15C to 1 / 7C around / 10C, the charging voltage per cell generally reaches 1.35v but does not exceed 1.5v within 3 minutes. When the charging voltage of the rechargeable battery device 4 includes 6 normal cells 12, the charging voltage reaches 1.33v × 6 = 8v when the battery is charged to 1.33v, whereas the short circuit cell 1
Normal cell 12 if 5 and 5 normal cells 12 are included
Even if the battery is charged to 1.5v, 0v x 1 + 1.5v x 5 =
Since 7.5v does not reach 8v, the charging control microcomputer 2 can determine whether or not one or more short-circuit cells 12 are included by the output voltage of the rechargeable battery device 4 if the reference voltage for short-circuit determination is selected to be 8v.

【0067】以上のように、標準の充電率での予備充電
において、深放電の充電式バッテリ装置4を活性化でき
ると共に、充電式バッテリ装置4に内蔵するセル12の
短絡有無を早く検出でき、充電作業の短縮が計れる。な
お、充電制御マイコン2の動作可能電圧は6vとし本実
施例の短絡判定の8vより低いので、動作可能電圧のチ
ェックを省いたが、動作可能電圧が8v以上なら充電式
バッテリ装置4の出力電圧がその電圧に達したのを確か
めてから急速充電に切り換える。実施例1、2、3と同
様に、本実施例の予備充電回路7は図3、図4、および
図5に示す構成とすることができる。また、本実施例の
急速充電ON/OFFスィッチ回路1、予備充電ON/
OFFスィッチ回路6、および予備充電回路7を図7の
構成とすることもできる。
As described above, during preliminary charging at the standard charging rate, the deep-discharge rechargeable battery device 4 can be activated, and the presence or absence of a short circuit in the cell 12 built in the rechargeable battery device 4 can be detected quickly. The charging work can be shortened. Since the operable voltage of the charging control microcomputer 2 is 6v, which is lower than 8v of the short circuit determination of the present embodiment, the check of the operable voltage is omitted. However, if the operable voltage is 8v or more, the output voltage of the rechargeable battery device 4 is After confirming that the voltage has reached that level, switch to quick charge. Similar to the first, second, and third embodiments, the precharge circuit 7 of the present embodiment can be configured as shown in FIGS. 3, 4, and 5. In addition, the quick charge ON / OFF switch circuit 1 of this embodiment, the preliminary charge ON / OFF
The OFF switch circuit 6 and the pre-charging circuit 7 can be configured as shown in FIG.

【0068】実施例7.本実施例は充電制御マイコン2
の電源を充電式バッテリ装置4からとることにより、従
来例のように深放電または短絡状態のセル12を含む充
電式バッテリ装置4を断続的な動作不能復旧を繰り返す
ような充電を行わないようにするものである。すなわ
ち、充電式バッテリ装置4の出力が充電制御マイコン2
を駆動できれば充電し、駆動できなければ充電しない。
本実施例の構成を図10に示す。図10は従来例の図1
1の定電圧電源装置3が外部電源装置5に接続されてい
たのを充電式バッテリ装置4に接続した点が異なる。他
は同一なので説明を省略する。
Example 7. This embodiment is a charge control microcomputer 2
By taking the power source of the above from the rechargeable battery device 4, it is possible to prevent the rechargeable battery device 4 including the deeply discharged or short-circuited cells 12 from being charged as in the conventional example by repeating intermittent recovery from inoperability. To do. That is, the output of the rechargeable battery device 4 is the charge control microcomputer 2
If it can be driven, it is charged. If it cannot be driven, it is not charged.
The structure of this embodiment is shown in FIG. FIG. 10 shows the conventional example shown in FIG.
The constant voltage power supply device 3 of No. 1 is different from the external power supply device 5 in that it is connected to the rechargeable battery device 4. Since the others are the same, the description is omitted.

【0069】次に動作について説明する。充電式バッテ
リ装置4が装着されると充電制御マイコン2が動作し、
充電式バッテリ装置4が充電制御マイコン2を正常に動
作できるだけの容量を有するなら、外部電源装置5の電
源入っている状態で電子機器本体13の電源スイッチ
(図示せず)をオフにすると、充電制御マイコン2は急
速充電ON/OFFスィッチ回路1をオンにして充電式
バッテリ装置4を急速充電する。 以後の動作は従来例
の図12と同じで説明を省略する。
Next, the operation will be described. When the rechargeable battery device 4 is attached, the charge control microcomputer 2 operates,
If the rechargeable battery device 4 has a capacity that allows the charge control microcomputer 2 to operate normally, charging is performed by turning off the power switch (not shown) of the electronic device body 13 while the external power supply device 5 is powered on. The control microcomputer 2 turns on the quick charge ON / OFF switch circuit 1 to rapidly charge the rechargeable battery device 4. The subsequent operation is the same as that of the conventional example shown in FIG.

【0070】次に充電式バッテリ装置4の出力電圧が充
電制御マイコン2の動作可能電圧に達しないなら充電制
御マイコン2は充電制御できず、急速充電ON/OFF
スィッチ回路1をオンにすることはない。以上のように
して、充電式バッテリ装置4が充電制御マイコン2を正
常に動作させるだけの容量がないなら充電制御できない
ので、従来例のように深放電状態または短絡状態の充電
式バッテリ装置4を急速充電すると、充電制御マイコン
2が動作不能、復旧を繰り返し急速充電を断続的に行う
ことはない。
Next, if the output voltage of the rechargeable battery device 4 does not reach the operable voltage of the charging control microcomputer 2, the charging control microcomputer 2 cannot control the charging, and the rapid charging is turned on / off.
The switch circuit 1 is never turned on. As described above, charge control cannot be performed unless the rechargeable battery device 4 has a capacity for operating the charge control microcomputer 2 normally. Therefore, the rechargeable battery device 4 in the deep discharge state or the short-circuited state as in the conventional example is used. When the quick charge is performed, the charge control microcomputer 2 cannot operate and is repeatedly recovered, and the quick charge is not intermittently performed.

【0071】[0071]

【発明の効果】第一の発明は、充電制御手段が、充電式
バッテリ装置の充電電圧が急速充電できる電圧に達した
なら急速充電を行うので、従来例のように深放電または
短絡した充電式バッテリ装置4のために、充電制御マイ
コン2が動作できなくなることはない。 また、充電制
御手段が充電式バッテリ装置に急速充電を行う前に、負
荷の軽い微弱電流で充電するので、深放電の充電式バッ
テリ装置をこの微弱電流で充電して、急速充電出来る電
圧に引き上げたあと、急速充電できる。さらに、微弱電
流で予備充電したので予備充電回路に消費電力の少ない
小型の部品が使用できる。
According to the first aspect of the present invention, the charging control means performs quick charging when the charging voltage of the rechargeable battery device reaches a voltage at which it can be rapidly charged. Because of the battery device 4, the charge control microcomputer 2 does not become inoperable. Further, since the charging control means charges the rechargeable battery device with a weak current having a light load before performing the rapid charging, the deep-discharge rechargeable battery device is charged with this weak current to raise it to a voltage capable of rapid charging. After that, you can charge quickly. Furthermore, since the pre-charging is performed with a weak current, a small component with low power consumption can be used in the pre-charging circuit.

【0072】第二の発明は、予備充電は所定の短時間内
に終えるので、予備充電回路の部品は定格で定まる発熱
に耐えるほどの性能は必要なく、規定時間内の発熱に耐
えうる部品でよく小型化できる。
According to the second aspect of the invention, since the pre-charging is completed within a predetermined short time, the parts of the pre-charging circuit do not need to have the performance to withstand the heat generation determined by the rating, and the parts can withstand the heat generation within the specified time. Can be miniaturized well.

【0073】第三の発明は、標準の充電率で予備充電す
るので、従来例のように深放電または短絡した充電式バ
ッテリ装置4のために、充電制御マイコン2が動作でき
なくなることはない。また、充電式バッテリ装置4に内
蔵するセル12の短絡有無を早く検出でき、充電作業の
短縮が計れる。
In the third aspect of the invention, since the precharge is performed at the standard charge rate, the charge control microcomputer 2 does not become inoperable due to the rechargeable battery device 4 which is deeply discharged or short-circuited as in the conventional example. Further, the presence or absence of a short circuit in the cell 12 built in the rechargeable battery device 4 can be quickly detected, and the charging work can be shortened.

【0074】第四の発明は、予備充電回路7を抵抗器1
つで構成するので、小型にでき、実装スペースを少なく
できる。
In a fourth aspect of the invention, the precharge circuit 7 is connected to the resistor 1
Since it is composed of two parts, the size can be reduced and the mounting space can be reduced.

【0075】第五の発明は、 面実装タイプの電界効果
トランジスタが使えるので、面実装ラインでの自動組立
が可能となり製造が容易になる。また、電界効果トラン
ジスタのゲートに一定電圧を加える回路は、微弱電流を
流せばよく小型で面実装タイプの部品が使える。
In the fifth aspect of the present invention, since the surface-mounting type field effect transistor can be used, automatic assembly in the surface-mounting line becomes possible and the manufacturing becomes easy. Further, the circuit for applying a constant voltage to the gate of the field effect transistor may be a small-sized surface mount type component as long as it allows a weak current to flow.

【0076】第六の発明は、充電式バッテリ装置が短絡
していても定電流しか流れないので電力損失少なく、定
電流で充電するので効率良く充電できる。
In the sixth aspect of the invention, even if the rechargeable battery device is short-circuited, only a constant current flows, so there is little power loss, and charging is performed at a constant current, so efficient charging is possible.

【0077】第七の発明は、一つ電界効果トランジスタ
で予備充電または急速充電電流を流せるように構成した
ので、小さい面実装の部品を使用でき部品数を少なくで
きる。電界効果トランジスタを制御するゲート回路は、
微弱電流を流せばよく小型で面実装タイプの部品が使え
る。
According to the seventh aspect of the invention, one field-effect transistor is used so that the precharge or quick charge current can flow. Therefore, a small surface mount component can be used and the number of components can be reduced. The gate circuit that controls the field effect transistor is
It is possible to use small and surface mounting type parts if only a weak current is applied.

【0078】第八の発明は、充電式バッテリ装置が充電
制御手段に電源を供給するので、正常に動作させるだけ
の充電容量がないなら充電制御手段が動作できないた
め、従来例のように深放電状態または短絡状態の充電式
バッテリ装置4を急速充電すると、充電制御マイコン2
が動作不能、復旧を繰り返し急速充電を断続的に行うこ
とはなく、動作が安定する。
In the eighth aspect of the invention, since the rechargeable battery device supplies power to the charging control means, the charging control means cannot operate unless the charging capacity is sufficient for normal operation. When the rechargeable battery device 4 in the state of being short-circuited is rapidly charged, the charge control microcomputer 2
Does not operate, recovers repeatedly and does not intermittently perform rapid charging, and operation is stable.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による、回路構成図であ
る。
FIG. 1 is a circuit configuration diagram according to a first embodiment of the present invention.

【図2】この発明の実施例1による、充電プロセスチャ
ートである。
FIG. 2 is a charging process chart according to the first embodiment of the present invention.

【図3】この発明の実施例1の予備充電回路を抵抗で構
成した図である。
FIG. 3 is a diagram in which a precharge circuit according to the first embodiment of the present invention is configured by resistors.

【図4】この発明の実施例2の予備充電回路を半導体と
抵抗で構成した図である。
FIG. 4 is a diagram in which a precharge circuit according to a second embodiment of the present invention is configured with a semiconductor and a resistor.

【図5】この発明の実施例3の予備充電回路を定電流回
路で構成した図である。
FIG. 5 is a diagram in which a pre-charging circuit according to a third embodiment of the present invention is configured by a constant current circuit.

【図6】この発明の実施例4の予備充電と急速充電を切
り換える回路を示す図である。
FIG. 6 is a diagram showing a circuit for switching between preliminary charging and quick charging according to a fourth embodiment of the present invention.

【図7】この発明の実施例4の上記の回路を少ない部品
で構成した図である。
FIG. 7 is a diagram in which the above-described circuit of Embodiment 4 of the present invention is configured with a small number of parts.

【図8】この発明の実施例5による充電プロセスチャー
トである。
FIG. 8 is a charging process chart according to a fifth embodiment of the present invention.

【図9】この発明の実施例6による充電プロセスチャー
トである。
FIG. 9 is a charging process chart according to Example 6 of the present invention.

【図10】この発明の実施例7の回路構成図である。FIG. 10 is a circuit configuration diagram of a seventh embodiment of the present invention.

【図11】従来の回路構成図である。FIG. 11 is a conventional circuit configuration diagram.

【図12】従来の充電プロセスチャートである。FIG. 12 is a conventional charging process chart.

【符号の説明】[Explanation of symbols]

1.急速充電ON/OFFスイッチ回路 2.充電制御マイコン 3.定電圧電源装置 4.充電式バッテリ装置 5.外部電源装置 6.予備充電ON/OFFスイッチ回路 7.予備充電回路 10.A/Dコンバータ 12.セル 13.電子機器本体 1. Quick charge ON / OFF switch circuit 2. Charge control microcomputer 3. Constant voltage power supply 4. Rechargeable battery device 5. External power supply 6. Pre-charge ON / OFF switch circuit 7. Pre-charging circuit 10. A / D converter 12. Cell 13. Electronic device body

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 以下の構成要素を有する充電装置。 1.自己放電電流より大きく、充電式バッテリ装置の容
量に応じた標準の充電電流より小さい電流で前記充電式
バッテリ装置を充電する予備充電手段、 2.前記充電式バッテリ装置の容量に応じた標準の充電
電流より大きい電流で前記充電式バッテリ装置を充電す
る急速充電手段、 3.あらかじめ決めておいた所定の基準電圧と前記充電
式バッテリ装置の充電電圧とを比較する比較手段、 4.前記予備充電手段によって充電し、前記比較手段に
より前記基準電圧と前記充電式バッテリ装置の充電電圧
を比較し、この充電電圧が前記基準電圧より高ければ、
前記急速充電手段により急速充電するよう制御する充電
制御手段。
1. A charging device having the following components. 1. 1. Pre-charging means for charging the rechargeable battery device with a current larger than the self-discharge current and smaller than the standard charge current according to the capacity of the rechargeable battery device; 2. quick charging means for charging the rechargeable battery device with a current larger than a standard charging current according to the capacity of the rechargeable battery device; 3. Comparison means for comparing a predetermined reference voltage determined in advance with the charging voltage of the rechargeable battery device; Charging by the preliminary charging means, comparing the reference voltage with the charging voltage of the rechargeable battery device by the comparing means, if this charging voltage is higher than the reference voltage,
Charging control means for controlling to perform rapid charging by the rapid charging means.
【請求項2】 前記充電制御手段は、前記予備充電手段
によって充電し、所定の時間後に前記比較手段により前
記基準電圧と前記充電式バッテリ装置の充電電圧を比較
し、この充電電圧が前記基準電圧より低ければ、充電を
停止するよう制御することを特徴とする請求項1記載の
充電装置。
2. The charging control means charges by the preliminary charging means, and after a predetermined time, the comparing means compares the reference voltage with the charging voltage of the rechargeable battery device, and the charging voltage is the reference voltage. The charging device according to claim 1, wherein the charging device is controlled so as to stop charging if it is lower.
【請求項3】 以下の構成要素を有する充電装置。 1.充電式バッテリ装置の容量に応じた標準の充電電流
で充電する予備充電手段、 2.前記充電式バッテリ装置の容量に応じた標準の充電
電流より大きい電流で前記充電式バッテリ装置を充電す
る急速充電手段、 3.所定の時間充電し、正常な充電式バッテリ装置なら
達し、短絡したセルを含む充電式バッテリ装置なら達し
得ない電圧を基準電圧とし、この基準電圧と前記充電式
バッテリ装置の充電電圧とを比較する比較手段、 4.前記予備充電手段によって充電し、所定の時間後に
前記比較手段により前記基準電圧と前記充電式バッテリ
装置の充電電圧を比較し、この充電電圧が基準電圧より
低いなら充電を停止し、高いなら前記急速充電手段によ
り充電するよう制御する充電制御手段。
3. A charging device having the following components. 1. 1. Pre-charging means for charging with a standard charging current according to the capacity of the rechargeable battery device; 2. quick charging means for charging the rechargeable battery device with a current larger than a standard charging current according to the capacity of the rechargeable battery device; After charging for a predetermined time, a voltage that can be reached by a normal rechargeable battery device and cannot be reached by a rechargeable battery device including a short-circuited cell is used as a reference voltage, and this reference voltage is compared with the charging voltage of the rechargeable battery device. 3. comparison means, The pre-charging means charges the battery, and after a predetermined time, the comparing means compares the reference voltage with the charging voltage of the rechargeable battery device. If the charging voltage is lower than the reference voltage, the charging is stopped. Charging control means for controlling the charging by the charging means.
【請求項4】 前記予備充電手段は抵抗素子で構成した
ことを特徴とする請求項1、請求項2または請求項3記
載の充電装置。
4. The charging device according to claim 1, wherein the pre-charging means is composed of a resistance element.
【請求項5】 前記予備充電手段は、ゲートに一定電圧
を加えた電界効果トランジスタで構成したことを特徴と
する請求項1、請求項2または請求項3記載の充電装
置。
5. The charging device according to claim 1, wherein the pre-charging means comprises a field effect transistor having a gate to which a constant voltage is applied.
【請求項6】 前記予備充電手段は定電流回路で構成し
たことを特徴とする請求項1、請求項2または請求項3
記載の充電装置。
6. The method according to claim 1, wherein the pre-charging means is composed of a constant current circuit.
The charging device described.
【請求項7】 前記予備充電手段および前記充電制御手
段は予備充電の電流または急速充電の電流を流す電界効
果トランジスタと、前記急速充電の電流を流すよう前記
電界効果トランジスタを制御する第一のスイッチング素
子と、前記予備充電の電流を流すよう前記電界効果トラ
ンジスタを制御する第二のスイッチング素子とを具備す
ることを特徴とする請求項1、請求項2または請求項3
記載の充電装置。
7. The pre-charging means and the charge control means control a field-effect transistor that causes a pre-charging current or a rapid charging current to flow, and a first switching that controls the field-effect transistor to cause the rapid charging current to flow. An element and a second switching element for controlling the field effect transistor so as to allow the pre-charging current to flow, and the second switching element is provided.
The charging device described.
【請求項8】 以下の構成要素を有する充電装置。 1.前記充電式バッテリ装置の容量に応じた標準の充電
電流より大きい電流で充電式バッテリ装置を充電する急
速充電手段、 2.前記急速充電手段により充電するよう制御する充電
制御手段、 3.前記充電式バッテリ装置から前記充電制御手段に電
源を供給する電源供給手段。
8. A charging device having the following components. 1. 1. Rapid charging means for charging the rechargeable battery device with a current larger than the standard charging current according to the capacity of the rechargeable battery device. 2. Charge control means for controlling to charge by the quick charge means, Power supply means for supplying power from the rechargeable battery device to the charge control means.
JP6275128A 1994-11-09 1994-11-09 Charger Pending JPH08140281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6275128A JPH08140281A (en) 1994-11-09 1994-11-09 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6275128A JPH08140281A (en) 1994-11-09 1994-11-09 Charger

Publications (1)

Publication Number Publication Date
JPH08140281A true JPH08140281A (en) 1996-05-31

Family

ID=17551097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6275128A Pending JPH08140281A (en) 1994-11-09 1994-11-09 Charger

Country Status (1)

Country Link
JP (1) JPH08140281A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317245A (en) * 1998-04-30 1999-11-16 Yamaha Motor Co Ltd Charging control device for detachable battery pack
US6946752B2 (en) 2001-04-12 2005-09-20 Nec Communication Systems, Ltd. Input power stabilizing circuit
US7348760B2 (en) 2000-09-21 2008-03-25 O2Micro International Limited Power management topologies
US7378819B2 (en) 2005-01-13 2008-05-27 Dell Products Lp Systems and methods for regulating pulsed pre-charge current in a battery system
US7391184B2 (en) 2005-02-16 2008-06-24 Dell Products L.P. Systems and methods for integration of charger regulation within a battery system
US7436149B2 (en) 2006-09-26 2008-10-14 Dell Products L.P. Systems and methods for interfacing a battery-powered information handling system with a battery pack of a physically separable battery-powered input or input/output device
CN101299544A (en) * 2007-03-09 2008-11-05 索尼株式会社 Battery pack, battery charger and charging method
US7564220B2 (en) 2000-09-21 2009-07-21 O2Micro International Ltd. Method and electronic circuit for efficient battery wake up charging
WO2009104348A1 (en) * 2008-02-18 2009-08-27 パナソニック株式会社 Charge control circuit, and charging device equipped with charge control circuit, battery pack
JP2009254215A (en) * 2008-04-10 2009-10-29 Ricoh Co Ltd Battery charger
US7646169B2 (en) 2004-03-25 2010-01-12 O2Micro International Ltd. Trickle discharge for battery pack protection
US7876068B2 (en) * 2003-10-24 2011-01-25 International Components Corporation Battery charge indicator
JP2011029009A (en) * 2009-07-27 2011-02-10 Ntt Facilities Inc Lithium ion battery pack management device, control method, and lithium ion battery pack system
US8232773B2 (en) 2004-03-25 2012-07-31 O2Micro, Inc. Over voltage transient controller
US8618805B2 (en) 2004-03-25 2013-12-31 02Micro, Inc. Battery pack with a battery protection circuit
JP2014014198A (en) * 2012-07-03 2014-01-23 Panasonic Corp Charger
JP2022099761A (en) * 2020-12-23 2022-07-05 プライムプラネットエナジー&ソリューションズ株式会社 Battery control device and mobile battery
JP2022099762A (en) * 2020-12-23 2022-07-05 プライムプラネットエナジー&ソリューションズ株式会社 Battery control device and mobile battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317245A (en) * 1998-04-30 1999-11-16 Yamaha Motor Co Ltd Charging control device for detachable battery pack
JP4562214B2 (en) * 1998-04-30 2010-10-13 ヤマハ発動機株式会社 Detachable battery pack charge control device
US7791314B2 (en) 2000-09-21 2010-09-07 O2Micro International Limited Power management topologies to control power between a DC power source and one or more batteries to a system load
US7348760B2 (en) 2000-09-21 2008-03-25 O2Micro International Limited Power management topologies
US8350534B2 (en) 2000-09-21 2013-01-08 O2Micro International, Ltd. Method and electronic circuit for efficient battery wake up charging
US8120312B2 (en) 2000-09-21 2012-02-21 02Micro International Limited Power management topologies to control power between a DC power source and one or more batteries to a system load
US7564220B2 (en) 2000-09-21 2009-07-21 O2Micro International Ltd. Method and electronic circuit for efficient battery wake up charging
US6946752B2 (en) 2001-04-12 2005-09-20 Nec Communication Systems, Ltd. Input power stabilizing circuit
US7876068B2 (en) * 2003-10-24 2011-01-25 International Components Corporation Battery charge indicator
US8232773B2 (en) 2004-03-25 2012-07-31 O2Micro, Inc. Over voltage transient controller
US7646169B2 (en) 2004-03-25 2010-01-12 O2Micro International Ltd. Trickle discharge for battery pack protection
US8618805B2 (en) 2004-03-25 2013-12-31 02Micro, Inc. Battery pack with a battery protection circuit
US7378819B2 (en) 2005-01-13 2008-05-27 Dell Products Lp Systems and methods for regulating pulsed pre-charge current in a battery system
US7391184B2 (en) 2005-02-16 2008-06-24 Dell Products L.P. Systems and methods for integration of charger regulation within a battery system
US7436149B2 (en) 2006-09-26 2008-10-14 Dell Products L.P. Systems and methods for interfacing a battery-powered information handling system with a battery pack of a physically separable battery-powered input or input/output device
CN101299544A (en) * 2007-03-09 2008-11-05 索尼株式会社 Battery pack, battery charger and charging method
US8264198B2 (en) 2007-03-09 2012-09-11 Sony Corporation Battery pack, battery charger and charging method having multiple charging modes
CN101939893A (en) * 2008-02-18 2011-01-05 松下电器产业株式会社 Charge control circuit, and charging device equipped with charge control circuit, battery pack
US8330427B2 (en) 2008-02-18 2012-12-11 Panasonic Corporation Charge control circuit, and charging device and battery pack incorporated with the same
WO2009104348A1 (en) * 2008-02-18 2009-08-27 パナソニック株式会社 Charge control circuit, and charging device equipped with charge control circuit, battery pack
JP2009195081A (en) * 2008-02-18 2009-08-27 Panasonic Corp Charging control circuit, charger device equipped with circuit, and battery pack
JP2009254215A (en) * 2008-04-10 2009-10-29 Ricoh Co Ltd Battery charger
JP2011029009A (en) * 2009-07-27 2011-02-10 Ntt Facilities Inc Lithium ion battery pack management device, control method, and lithium ion battery pack system
JP2014014198A (en) * 2012-07-03 2014-01-23 Panasonic Corp Charger
JP2022099761A (en) * 2020-12-23 2022-07-05 プライムプラネットエナジー&ソリューションズ株式会社 Battery control device and mobile battery
JP2022099762A (en) * 2020-12-23 2022-07-05 プライムプラネットエナジー&ソリューションズ株式会社 Battery control device and mobile battery

Similar Documents

Publication Publication Date Title
JPH08140281A (en) Charger
JP4101816B2 (en) Battery protection circuit
JP3222999B2 (en) Overdischarge prevention circuit for secondary battery
JP3713770B2 (en) Secondary battery pack
US20060043932A1 (en) Charging circuit for secondary battery
US7652450B2 (en) Secondary battery charging device
JPH09140065A (en) Secondary battery for parallel use
JPH07154924A (en) Battery usage system for portable electronic device
JPH104635A (en) Battery device
CN109904886B (en) Control circuit module and control method thereof
KR101068391B1 (en) Enabling Circuit For Avoiding Negative Voltage Transients
JPH11178224A (en) Battery pack
JP2023511753A (en) Charging management device, charging management method, and electric vehicle
US7948213B2 (en) System and method of trickle charging a battery in a narrow rail architecture
JPH07227045A (en) Charged type power unit
JP2799261B2 (en) Battery charge control device
US6686723B1 (en) Charging circuit for deeply discharged cells
JP2021158752A (en) Charge and discharge control device and battery device
KR20060098636A (en) Battery chager of portable terminal
JP3726339B2 (en) Secondary battery charging device, control circuit thereof, and charging processing method
JPH09294332A (en) Low power-consumption mode controller for battery pack
JP2002345156A (en) Rechargeable battery or rechargeable battery pack
JPH08103029A (en) Battery pack, charger and charging adapter
JPH09200971A (en) Charging equipment
JPH099518A (en) Charging device