JP2007258018A - 燃料電池制御装置 - Google Patents

燃料電池制御装置 Download PDF

Info

Publication number
JP2007258018A
JP2007258018A JP2006081478A JP2006081478A JP2007258018A JP 2007258018 A JP2007258018 A JP 2007258018A JP 2006081478 A JP2006081478 A JP 2006081478A JP 2006081478 A JP2006081478 A JP 2006081478A JP 2007258018 A JP2007258018 A JP 2007258018A
Authority
JP
Japan
Prior art keywords
fuel cell
relay
battery
output
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006081478A
Other languages
English (en)
Inventor
Koji Uchihashi
浩二 内橋
Ryokichi Tanaka
亮吉 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2006081478A priority Critical patent/JP2007258018A/ja
Publication of JP2007258018A publication Critical patent/JP2007258018A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】燃料電池と負荷とを接続するためのリレーの駆動時に生じるシステムバッテリの電圧低下によって、システムが誤作動することを防止する。
【解決手段】燃料電池制御装置は、燃料電池(1)の出力を、燃料電池(1)または第1のバッテリ(7)の出力を駆動源とする負荷(3)に接続するリレー(2)をオンするに先立って、この燃料電池制御装置に電力を供給する第2のバッテリ(10)を強制充電する。
【選択図】図1

Description

本発明は、燃料電池によってモータ等の負荷を駆動する燃料電池システムのための制御装置に関し、特に燃料電池を負荷に接続するに当たってシステムを安定して動作させることが可能な燃料電池制御装置に関する。
一般に、水素と酸素を燃料とする燃料電池は、水素と空気中に含まれる酸素とが電気化学的に反応する場合に発生する電気を利用した発電システムであり、反応生成物として水のみを生成し発電システムとして二酸化炭素を発生しないので、環境保護の面だけでなく発電効率が非常に優れた発電システムを提供する。また、このような燃料電池を車両の駆動源として利用した場合、発電システムとして二酸化炭素および窒素含有ガスを排出しないので、環境にやさしい車両を実現することができる。
車載用の燃料電池システムは、通常、高圧バッテリを備え、燃料電池の起動時はこの高圧バッテリにより水素ポンプ、エアーコンプレッサ等を駆動することによって、燃料電池に発電を開始させる。発電された電力はインバータを介してモータに供給され、車両を駆動する。モータの停止時およびブレーキの作動時には、燃料電池および発電機として動作するモータの出力により高圧バッテリを充電するようにしている。
このような車載用燃料電池システムの基本構造は、例えば特許文献1および2に開示されている。
特開2004−63338号 特開2004−349110号
燃料電池システムでは、通常、燃料電池への水素、空気の供給量が不足していると充分な起電力が発生されない。この状態で燃料電池を負荷に接続すると、燃料電池補機を駆動するための高圧バッテリから燃料電池へ逆電流が流れて燃料電池の電解質膜が損傷される恐れがある。これを防止するために一般の燃料電池システムでは、燃料電池の起動時、大容量の高電圧リレー(以下、FCリレー)を設けて燃料電池を負荷から切り離すようにしている。燃料電池による発電が安定し充分な起電力が得られるようになると、FCリレーをオン制御して燃料電池を負荷に接続する。
この高電圧リレーの容量として、100kW程度の燃料電池の場合400A程度(高電圧側)が必要であり、そのため、高電圧リレーを接続する場合には電圧が12Vの場合で数十Aの突入電流が流れる。この電流は、その後エコノマイザーにより消費電力が抑制されて低下する。高電圧リレーを駆動するための電力は、通常、車両のECU、モータ駆動用インバータ基板、昇圧コンバータ基板などに電力を供給する12Vのバッテリ(以下、システムバッテリ)によって供給される。
したがって、高電圧リレーを接続するために燃料電池システムに瞬間的に大きな電流が流れると、通常12Vであるシステムバッテリの電圧は7〜8Vまで低下し、システムが誤作動するようになる。例えば、システムバッテリによって駆動されるECU、モータ駆動用インバータ基板、昇圧コンバータ基板などがフェイル信号を出力し、ダイアグ機能(診断機能)が異常を検知して燃料電池システムを停止させる。
このように、従来の燃料電池システムでは、負荷を含むシステム側に燃料電池を接続した瞬間、システムバッテリの電圧が異常低下してシステム全体を停止させる不具合が発生する。
本発明は、従来の燃料電池システムにおける上記のような問題点を解決する目的でなされたもので、システム起動時の誤ダイアグ発生を防止して、燃料電池を安定して動作させることが可能な燃料電池制御装置を提供することを課題とする。
本発明の第1の燃料電池制御装置は、上記課題を解決するために、燃料電池出力を、燃料電池または第1のバッテリの出力を駆動源とする負荷に接続するリレーをオンするに先立って、当該燃料電池制御装置に電力を供給する第2のバッテリを強制充電するように構成されている。
本発明の第2の燃料電池制御装置は、上記課題を解決するために、燃料電池出力を、燃料電池または第1のバッテリの出力を駆動源とする負荷にリレーを介して接続する場合、前記リレーに含まれる並列接続された複数の小容量リレーを、タイミングをずらせて駆動するように構成されている。
本発明の第3の燃料電池制御装置は、上記課題を解決するために、燃料電池出力を、燃料電池または第1のバッテリの出力を駆動源とする負荷にリレーを介して接続する場合、前記燃料電池に含まれる独立して負荷に接続可能な複数の燃料電池スタックを、それぞれタイミングをずらせて前記負荷に接続するように構成されている。
本発明の第4の燃料電池制御装置は、上記課題を解決するために、燃料電池出力を、燃料電池または第1のバッテリの出力を駆動源とする負荷に接続するためのリレーのオン後、一定時間、当該燃料電池制御装置に電力を供給する第2のバッテリの出力異常を検出する診断機能をマスクするように構成されている。
上記第1の燃料電池制御装置では、リレーを接続するタイミングに先立って第2のバッテリ、即ちシステムバッテリを強制充電し、リレー接続に伴うシステムバッテリの電力消費に備えるようにしている。これによって、リレーを接続して燃料電池をシステム側に接続しても、システムバッテリの電圧異常低下は発生せず、システムのダイアグ機能が誤作動することもないので、燃料電池が安定して起動される。
上記第2の燃料電池制御装置では、複数の小容量リレーを備えたリレーにおいて、それぞれの小容量リレーを、タイミングをずらせて駆動するので、リレー接続に伴う突入電流の最大値が抑えられ、その結果システムバッテリの出力電圧は異常低下しない。これによって、燃料電池をシステム側に接続した場合にシステムのダイアグ機能が誤作動することがなく、燃料電池が安定して起動される。
上記第3の燃料電池制御装置では、個々の燃料電池の負荷への接続をタイミングをずらせて行うことにより、リレーを接続することによって瞬間的に流れる突入電流の最大値が抑えられるので、システムバッテリの瞬間的な電圧低下が生ずることがなく、燃料電池が安定して起動される。
上記第4の燃料電池制御装置では、リレーを接続することによって燃料電池を負荷に接続した場合、リレー接続によって生じた突入電流は、システムに一般的に備えられるエコノマイザーによって短期間のうちに緩和され、それに伴ってシステムバッテリの電圧も通常の状態に復帰する。したがって、リレー接続のタイミングから突入電流が緩和されるために要する時間、例えば500msの間システムのダイアグ機能をマスクしておくことにより、例えシステムバッテリの出力電圧が異常低下した場合であっても、システムはそれを異常とは検出しない。その結果、燃料電池が安定して起動される。
[実施形態1]
図1は、本発明の実施形態1にかかる車載用燃料電池システムの構成を示すブロック図である。図において、1は燃料電池スタックを示し、複数の燃料電池セルが積層されて高電圧出力を形成するようにされている。2は燃料電池スタック1を燃料電池システムの負荷側に接続するための第1の高電圧リレー(以下、FCリレー)、3は車両を駆動するためのモータであり、インバータ4を介して入力される燃料電池スタック1の出力により回転駆動される。5は第1のDC/DCコンバータ、6は第2の高電圧リレー(以下、バッテリ側リレー)、7は高圧バッテリを示す。第1のDC/DCコンバータ5は、高圧バッテリ7の充電のために燃料電池スタック1の出力を降圧すると共に、高圧バッテリ7からモータ3あるいは後述する高圧補機に電力を供給する場合は、その出力電圧をモータ3等の駆動電圧まで昇圧する働きをする。第1のDC/DCコンバータ5の電圧変換動作は、コンバータ制御ユニット8によって制御される。
FCリレー2は、燃料電池スタック1の出力が安定せず十分な起電力を得られない場合に、高圧バッテリ7から燃料電池スタック1へ電流が逆流することを防止するために設けられているものであり、燃料電池スタック1の出力が安定したことを燃料電池制御ユニット9が判定するとオンとなって、燃料電池スタック1と負荷とを接続する。なお、[発明が解決しようとする課題]の項で述べたように、高圧バッテリ7から燃料電池スタック1への逆電流が発生すると、燃料電池セルを構成する反応膜がダメージを受け、燃料電池の寿命が低下するという不具合がある。
燃料電池システムはさらに、低電圧(例えば12V)のシステムバッテリ10を備えている。システムバッテリ10は、高圧バッテリ7の出力を第2のDC/DCコンバータ11で降圧したものにより充電され、各種の制御ユニット、例えば図示するコンバータ制御ユニット8、燃料電池制御ユニット9、モータ駆動インバータ制御ユニット12および高電圧リレー制御ユニット13に駆動用の電力を供給する。
14は、燃料電池システムの高圧補機であって、エアーコンプレッサ15、水素ポンプ16およびウォータポンプ17を含み、燃料電池システムに起動信号が入力されると、バッテリ側リレー6を介して高圧バッテリ7から電力の供給を受けて駆動され、燃料電池スタック1に水素および空気を供給する。このようにして水素および空気が供給されると、燃料電池スタック1は電気化学反応を起こして発電を開始する。ウォータポンプ17は、電気化学反応に伴う燃料電池スタック1の発熱を冷却するための冷却水を、燃料電池スタック1の周囲に循環させるためのものである。
なお、上記各種の制御ユニット8、9、12および13は個々のECU(電子制御ユニット)であっても良いが、あるいは、これらのサブECUとこれを総合して制御するためのメインECUで構成されていても良い。
図1に示す本発明の実施形態1では、燃料電池制御ユニット9が、燃料電池スタック1が充分な起電力を安定して出力するようになったことを判定すると、FCリレー2を接続して燃料電池スタック1の出力を負荷側に接続するが、この接続に先立って第2のDC/DCコンバータ11を駆動して、システムバッテリ10を強制充電するようにしている。そのため、FCリレー2の接続のために燃料電池制御ユニット9が瞬間的に大電流を要しても、システムバッテリ10はシステム駆動のために必要な電圧を維持することができる。
図2は、図1に示す燃料電池システムの動作説明のためのフローチャートである。以下、図2に沿って、図1に示す燃料電池システムの起動処理フローを説明する。
車載用燃料電池システムでは、イグニッションスイッチをオンとすることによって、燃料電池ECUが燃料電池システムの起動信号を形成する。図2のフローは、この起動信号の形成によってスタート(ステップS1)する。ステップS2では、燃料電池スタック1と燃料電池システムの負荷側とを接続するFCリレー2がオフとされているか否かが判定される。FCリレー2が接続されている場合(ステップS2のNO)、ステップS3でFCリレー2をオフとする。
ステップS2でFCリレー2がオフであることが確認されると(ステップS2のYES)、ステップS4においてバッテリ側リレー6を接続し、ステップS5で第1のDC/DCコンバータ5を昇圧駆動する。これによって、高圧バッテリ7の出力が高圧補機14を駆動することができる電圧まで昇圧されるので、ステップS6での高圧補機、即ち、エアーコンプレッサ15、水素ポンプ16およびウォータポンプ17の駆動が可能となる。その結果、燃料電池スタック1に空気、水素が供給され、燃料電池スタック1が発電を開始する。
燃料電池制御ユニット9は燃料電池スタック1の出力を監視しており、ステップS7においてその出力が充分であるか否かを判定する。出力が充分でない場合(ステップS7のNO)は、出力が充分になるまでステップS7を繰り返す。ステップS7で、燃料電池スタック1の出力が充分であると判断されると(ステップS7のYES)、ステップS8に移動して第2のDC/DCコンバータ11を強制駆動し、システムバッテリ10を強制充電する。この状態で、FCリレー2をオンし(ステップS9)、起動処理を終了する(ステップS10)。
以上の様に、本実施形態の燃料電池システムでは、燃料電池スタック1が発電を開始し、充分な出力を生成するようになると、燃料電池制御ユニット9が第2のDC/DCコンバータ11を駆動してシステムバッテリ10の強制充電を開始し、その後にFCリレー2を接続する。そのため、FCリレー2の接続によって瞬間的に大きな電流が消費されても、システムバッテリ10の電圧が異常低下せず、その結果、燃料電池ECUが異常を検知してダイアグ機能を誤作動させ、燃料電池システムを停止させるような事態の発生を防止することができる。
[実施形態2]
図3に、本発明の実施形態2にかかる燃料電池システムの構成を示す。なお、図3では本実施形態の特徴的な部分のみを示しており、したがって図示する以外の部分は図1の燃料電池システムと同じか同様の構成を有する。本実施形態の燃料電池システムでは、燃料電池スタック1と燃料電池システムの負荷側21とを接続するためのFCリレー20を、並列に接続される複数の容量の小さいリレー20a、20b・・・20nで構成し、それぞれの駆動タイミングを微小時間(20ms程度)ずらして駆動することを特徴としている。容量の小さいリレー20a、20b・・・20nの合計の容量は、図1のFCリレー2と同じである。
なお、燃料電池システムの負荷側21は、図1のモータ3、インバータ4、第1のDC/DCコンバータ5、高圧補機14等の、FCリレー2に接続される機器を含み、したがって、燃料電池スタック1をシステムの負荷側21に接続することは、図1の例ではFCリレー2の出力をモータの電源線、即ち、第1のDC/DCコンバータ5とインバータ4間に接続することを意味する。
以上のように、本実施形態の燃料電池システムでは、FCリレー20が並列接続された複数の容量の小さいリレー20a、20b・・・20nで構成されているため、個々のリレー20a、20b・・・20nを接続するために要する電流はその分小さくなる。例えば、FCリレー20を容量の同じ2個のリレーで構成した場合、それぞれのリレーに流れる電流は図1の場合の1/2となる。そのため、2個の小リレーを、タイミングをずらせて駆動することにより、リレーを駆動するための突入電流の最大値を大幅に抑制することができる。これによって、システムバッテリ10の電圧がシステム異常と判断される程度に低下することが避けられる。
図4は、図3に示す燃料電池システムの動作フローを示す図である。図2に示す実施形態1の場合と同様に、先ず、燃料電池システムの起動信号の入力によって、起動処理がスタートする(ステップS20)。次に、ステップS21でFCリレー20がオフであること、即ち全ての小容量リレー20a、20b・・・20nがオフであることを確認した後、ステップS22でバッテリ側リレー6をオンとし、第1のDC/DCコンバータ5を駆動して高圧バッテリ7の出力を昇圧し(ステップS23)、高圧補機14を駆動する(ステップS24)。これによって、燃料電池スタック1に水素および酸素が供給され、燃料電池が発電を開始する。なお、ステップS21でNOの場合は、ステップS29でオフでない小容量リレーをオフとする。
次のステップS25で、燃料電池出力は充分か否かを判定し、YESであればステップS26に移って小容量リレー20a、20b・・・20nの時間差を置いた駆動を実行する。次のステップS27で全ての小容量リレーが駆動されたことを確認した後、処理を終了する(ステップS28)。なお、ステップS25で燃料電池出力が充分でない場合は、出力が充分となるまでステップS25を繰り返し、また、ステップS27で駆動されていない小容量リレーの存在が確認されると(ステップS27のNO)、ステップS26以下を再び実行する。
[実施形態3]
図5は、本発明の実施形態3にかかる燃料電池システムの構成を示す図面であって、特に燃料電池スタック30とシステム側負荷との接続部分を示す。図示する以外の部分の構成は、図1に示す実施形態1の構成と同じか同様であるため、その記載は省略する。本実施形態の燃料電池スタック30は、複数の燃料電池スタックa、スタックb・・・スタックnを有し、FCリレー2は、燃料電池スタックa〜nを接続のタイミングをずらしてシステム側負荷に接続する。この構成により、各燃料電池スタックのリレー接続時に発生する突入電流は全ての燃料電池スタックを同時に接続する場合に比べて格段に小さくなり、システムバッテリ10の電圧異常低下は発生しない。なお、各燃料電池スタックを、FCリレーによりタイミングをずらせてシステムの電源線に接続するために、燃料電池制御ユニット9は各燃料電池スタックの接続のタイミングを制御し監視する機能を有している。
図6は、図5の燃料電池システムを起動する場合の処理フローを示す。図2に示す実施形態1の場合と同様に、先ず、燃料電池システムの起動信号の入力によって、処理をスタートする(ステップS30)。次に、ステップS31でFCリレー2がオフであることを確認した後、ステップS32でバッテリ側リレー6をオンとし、第1のDC/DCコンバータ5を昇圧駆動して(ステップS33)、高圧バッテリ7の出力を昇圧して高圧補機14に給電しこれを駆動する(ステップS34)。これによって、燃料電池スタック30に水素および酸素が供給され、燃料電池が発電を開始する。なお、ステップS31でNOの場合は、ステップS39で、FCリレーをオフとする。
ステップS35で、燃料電池出力は充分か否かを判定し、YESであればステップS36に移ってFCリレー2による各燃料電池スタックa〜nの時間差接続を実行する。次のステップS37で全ての燃料電池スタックa〜nが駆動されたことを確認した後、処理を終了する(ステップS38)。なお、ステップS35で燃料電池出力が充分でない場合は、出力が充分となるまでステップS35を繰り返し、また、ステップS37で駆動されていない燃料電池スタックの存在が確認されると(ステップS37のNO)、ステップS36以下を再び実行する。
[実施形態4]
図7は、本発明の実施形態4にかかる燃料電池システムの構成を説明するためのフローチャートであり、特に燃料電池システムの起動処理を実行するためのフローを示す。本実施形態の燃料電池システムの特徴は、燃料電池スタックに充分な起電力が生成され、燃料電池制御ユニット9がFCリレー2に燃料電池スタックをシステム側の電源線に接続するように指令したタイミングにおいて、この接続のタイミングから一定時間(例えば500ms)システムのダイアグ(診断)機能をマスクし、ダイアグ機能が動作しないようにすることである。なお、ここに記載する参照符号は、図1に示す燃料電池システムを参照して示されている。
FCリレー2が駆動されることによって、燃料電池システムには瞬間的に相当量の突入電流が流れるが、この電流はその後システムに一般的に設けられているエコノマイザーによって抑えられる。そのため、リレーの接続後一定時間、例えば500ms程度が経過すると、一旦低下したシステムバッテリ10の出力電位は元の値に回復する。したがって、リレーの接続後システムバッテリ10の出力電位が回復するまでシステムのダイアグ機能をマスクしておけば、燃料電池システムが異常を検出してシステムを停止させることはない。ダイアグ機能のマスク処理は、メインの燃料電池ECUで行われても良く、あるいはコンバータ制御ユニット8、燃料電池制御ユニット9、モータ駆動インバータ制御ユニット12、高電圧リレー制御ユニット13等のサブECUで個々に行われても良い。
以下、図7を参照して実施形態4にかかる燃料電池システムの構成を説明する。図2に示す実施形態1の場合と同様に、先ず、燃料電池システムの起動信号の入力によって、処理をスタートする(ステップS40)。次に、ステップS41でFCリレー2がオフであることを確認した後、ステップS42でバッテリ側リレー6をオンとし、第1のDC/DCコンバータ5を昇圧駆動して(ステップS33)、高圧バッテリ7の出力を昇圧し高圧補機14に給電してこれを駆動する(ステップS44)。これによって、燃料電池スタック30に水素および酸素が供給され、燃料電池が発電を開始する。なお、ステップS41でNOの場合は、ステップS49で、FCリレーをオフとする。
ステップS45で、燃料電池出力は充分か否かを判定し、YESであればステップS46に移ってFCリレー2をオンとする処理を行い、燃料電池スタック1をシステム側負荷に接続する。次のステップS47で、一定時間(例えば500ms)システムのダイアグをマスクする処理を実行し、処理を終了する(ステップS48)。これによって、FCリレーの接続に伴ってシステムに大きな突入電流が流れても、燃料電池システムが誤作動することはない。
本発明の実施形態1にかかる燃料電池システムの構成を示す図。 図1に示す燃料電池システムの起動処理フローを示す図。 本発明の実施形態2にかかる燃料電池システムの一部の構成を示す図。 図3に示す燃料電池システムの起動処理フローを示す図。 本発明の実施形態3にかかる燃料電池システムの一部の構成を示す図。 図5に示す燃料電池システムの起動処理フローを示す図。 本発明の実施形態4にかかる燃料電池システムの起動処理フローを示す図。
符号の説明
1 燃料電池スタック
2 FCリレー
3 モータ
4 インバータ
5 第1のDC/DCコンバータ
6 バッテリ側リレー
7 高圧バッテリ
8 コンバータ制御ユニット
9 燃料電池制御ユニット
10 システムバッテリ
11 第2のDC/DCコンバータ
14 高圧補機
15 エアーコンプレッサ
16 水素ポンプ
17 ウォータポンプ

Claims (5)

  1. 燃料電池制御装置であって、燃料電池出力を、燃料電池または第1のバッテリの出力を駆動源とする負荷に接続するリレーをオンするに先立って、当該燃料電池制御装置に電力を供給する第2のバッテリを強制充電することを特徴とする、燃料電池制御装置。
  2. 請求項1に記載の燃料電池制御装置において、さらに、前記強制充電は、前記第1のバッテリ出力を降圧して前記第2のバッテリを充電するためのDC/DCコンバータを強制駆動させることを特徴とする、燃料電池制御装置。
  3. 燃料電池制御装置であって、燃料電池出力を、燃料電池または第1のバッテリの出力を駆動源とする負荷にリレーを介して接続する場合、前記リレーに含まれる並列接続された複数の小容量リレーを、タイミングをずらせて駆動することを特徴とする、燃料電池制御装置。
  4. 燃料電池制御装置であって、燃料電池出力を、燃料電池または第1のバッテリの出力を駆動源とする負荷にリレーを介して接続する場合、前記燃料電池に含まれる独立して負荷に接続可能な複数の燃料電池スタックを、それぞれタイミングをずらせて前記負荷に接続することを特徴とする、燃料電池制御装置。
  5. 燃料電池制御装置であって、燃料電池出力を、燃料電池または第1のバッテリの出力を駆動源とする負荷に接続するためのリレーのオン後、一定時間、当該燃料電池制御装置に電力を供給する第2のバッテリの出力異常を検出する診断機能をマスクすることを特徴とする、燃料電池制御装置。
JP2006081478A 2006-03-23 2006-03-23 燃料電池制御装置 Withdrawn JP2007258018A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081478A JP2007258018A (ja) 2006-03-23 2006-03-23 燃料電池制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081478A JP2007258018A (ja) 2006-03-23 2006-03-23 燃料電池制御装置

Publications (1)

Publication Number Publication Date
JP2007258018A true JP2007258018A (ja) 2007-10-04

Family

ID=38632036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081478A Withdrawn JP2007258018A (ja) 2006-03-23 2006-03-23 燃料電池制御装置

Country Status (1)

Country Link
JP (1) JP2007258018A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119175A (ja) * 2008-11-12 2010-05-27 Honda Motor Co Ltd Dc/dcコンバータ装置、燃料電池車両、電気自動車、及びハイブリッド直流電源システム並びに該システムにおけるコンデンサの放電方法
JP2010176864A (ja) * 2009-01-27 2010-08-12 Honda Motor Co Ltd 燃料電池車両
JP2014089846A (ja) * 2012-10-29 2014-05-15 Central Research Institute Of Electric Power Industry 熱電併給型調整用電源及び熱電併給システム
JP2017193245A (ja) * 2016-04-20 2017-10-26 トヨタ自動車株式会社 ハイブリッド車両
US10464550B2 (en) 2016-04-20 2019-11-05 Toyota Jidosha Kabushiki Kaisha Abnormality detection of current sensor for electrically heated catalyst device in hybrid vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119175A (ja) * 2008-11-12 2010-05-27 Honda Motor Co Ltd Dc/dcコンバータ装置、燃料電池車両、電気自動車、及びハイブリッド直流電源システム並びに該システムにおけるコンデンサの放電方法
JP2010176864A (ja) * 2009-01-27 2010-08-12 Honda Motor Co Ltd 燃料電池車両
JP2014089846A (ja) * 2012-10-29 2014-05-15 Central Research Institute Of Electric Power Industry 熱電併給型調整用電源及び熱電併給システム
JP2017193245A (ja) * 2016-04-20 2017-10-26 トヨタ自動車株式会社 ハイブリッド車両
US10301993B2 (en) 2016-04-20 2019-05-28 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
US10464550B2 (en) 2016-04-20 2019-11-05 Toyota Jidosha Kabushiki Kaisha Abnormality detection of current sensor for electrically heated catalyst device in hybrid vehicle

Similar Documents

Publication Publication Date Title
US9150170B2 (en) Circuit system for redistribution of electrical energy in a vehicle
KR101230900B1 (ko) 연료전지 하이브리드 시스템의 운전 제어 방법
US10017138B2 (en) Power supply management system and power supply management method
KR101684028B1 (ko) 연료전지 차량의 파워넷 시스템 및 그 제어 방법
JP5227620B2 (ja) 燃料電池システムの始動方法
US9985446B2 (en) Vehicle electric power supply control system and vehicle
JP2009089536A (ja) 電源システム
JP2013013196A (ja) 車両用電源装置
CN111032417B (zh) 电源系统及其控制方法
KR101417121B1 (ko) 연료전지 차량의 시동 방법
WO2015198687A1 (ja) 無停電電源装置
JP2007149574A (ja) 燃料電池システム
JP2007258018A (ja) 燃料電池制御装置
CN111032418A (zh) 电力供给系统及其运转方法
JP2007280741A (ja) 燃料電池装置
JP2015186408A (ja) 燃料電池システムの運転方法、及び、燃料電池システム
JP6341432B2 (ja) 電力システム及びその制御方法
JP2008226594A (ja) 燃料電池システム
JP2010238531A (ja) 燃料電池システムおよび燃料電池システムを搭載した電動車両
JP2004146118A (ja) 燃料電池システム
KR100872647B1 (ko) 연료전지 하이브리드 전기 차량의 파워다운 제어방법
JP2014166109A (ja) 2電源負荷駆動システム及び燃料電池自動車
JP4870040B2 (ja) 燃料電池車両
JP2011517015A (ja) 燃料電池システムの制御方法及び燃料電池システム
JP2018014808A (ja) 電力供給システム

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090107