JP2007256085A - 磁気式アブソリュートエンコーダー - Google Patents

磁気式アブソリュートエンコーダー Download PDF

Info

Publication number
JP2007256085A
JP2007256085A JP2006081059A JP2006081059A JP2007256085A JP 2007256085 A JP2007256085 A JP 2007256085A JP 2006081059 A JP2006081059 A JP 2006081059A JP 2006081059 A JP2006081059 A JP 2006081059A JP 2007256085 A JP2007256085 A JP 2007256085A
Authority
JP
Japan
Prior art keywords
signal
magnetic
region
signal pitch
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006081059A
Other languages
English (en)
Inventor
Ryoji Zenitani
亮治 銭谷
Shinji Furuichi
眞治 古市
Taisuke Abe
泰典 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006081059A priority Critical patent/JP2007256085A/ja
Publication of JP2007256085A publication Critical patent/JP2007256085A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

【課題】 連続した信号ピッチ領域を個別の信号として取出せ、信号ピッチ領域の磁界分
布がいびつになることを防ぎ、無信号ピッチ領域からのノイズ発生を低減し、高い信号精
度が得られる磁気式アブソリュートエンコーダーを提供する。
【解決手段】 隣り合う信号ピッチ領域の着磁方向、n分割領域の着磁方向が互いに逆方
向とし、信号ピッチ領域に隣接するn分割領域をピン止め着磁とし磁界分布がいびつにな
ることを防ぐ。信号ピッチ領域の全てを着磁することで、発生磁界強度を大きくでき、磁
気媒体と磁気センサーの間隔を大きくすることができる。また、無信号ピッチ領域を着磁
したn分割領域とすることで、磁気媒体の不必要な磁化を防ぐ。

【選択図】 図1

Description

本発明は、磁気抵抗効果型磁気センサーを用いた磁気式アブソリュートエンコーダーに
関するものである。
本発明は産業機械などで使用するサーボモーター等の回転体の回転絶対位置および直線
移動体の絶対位置を検出する磁気式アブソリュートエンコーダーに関するものである。
等ピッチで形成された2個のピッチ領域(P=正の整数)の各ピッチ領域に、m系列
パターン等に従って着磁された磁気媒体に対向して、磁気抵抗効果型磁気センサー(以降
、磁気センサーと言う)が配されている。磁気媒体と磁気センサーは相対的に移動する。
m系列パターン等で着磁された磁気媒体には、着磁された信号ピッチ領域と無着磁の無信
号ピッチ領域が混在配列されることとなる。磁気センサーで、信号ピッチ領域の漏洩磁界
を検出し符号化処理を行うことで、信号ピッチ領域と無信号ピッチ領域の配列を符号化信
号「1」と「0」に対応させることができる。この信号ピッチ領域と無信号ピッチ領域に
相当するピッチで磁気センサー素子を複数個配置すると、各々の磁気センサー素子が同時
に信号ピッチ領域の漏洩磁界を検出し符号化処理を行うことで、「1」と「0」の信号を
検出する。その信号配列を判別することで磁気媒体上の絶対位置の検出が可能となる。
しかし、現在は絶対位置検出用のエンコーダーとしては、特許文献1に示すような光学
式アブソリュートエンコーダーが主に使用されている。主に用いられている理由は、光学
式エンコーダーはm系列等のパターンを製作し易いことによる。遮光性の媒体に孔を開け
た部位が透光部となるので、m系列等のパターンで孔を開けたスケールが製作し易く、遮
光部と透光部で受光器の出力差が大きいつまり分解能が高いので、容易に高い信号精度が
得られるためである。しかし、受光器の配列等に制約があるため、主に用いられる光学式
エンコーダーのピッチは数100μm以上である。
特開平4−40321号 公報
光学式アブソリュートエンコーダーは、塵埃やオイルミストなどの付着汚れに弱く、ま
た使用環境温度の変化に対して検出精度の安定性が低いとの指摘もある。汚れを防止する
ため、光学式アブソリュートエンコーダーのシール度を高めたり気密性の高いケーシング
等が行われている。しかし、気密性を上げると環境温度変化に追従し難くなることや、小
型、低価格の実現が難しくなる。塵埃やオイルミストなどの付着汚れに比較的強く、使用
環境温度の変化に対しても安定性の高い磁気式アブソリュートエンコーダーの需要が高ま
って来ている。磁気式アブソリュートエンコーダーのピッチは容易に100μm以下が得
られるが、検出精度が低い点が問題であった。
磁気式アブソリュートエンコーダーの検出精度を上げるため、磁気媒体の着磁方法が検
討されている。特許文献2に、ピッチ領域に磁気媒体表面が単極となるように着磁するこ
とが開示されている。N極もしくはS極が連続するピッチ数が場所により異なるため、漏
洩磁界強度が各ピッチ領域により異なってしまう。また、信号ピッチ領域の全域に着磁さ
れているために、隣接する無信号ピッチ領域と干渉して磁界分布が歪み、検出精度の大幅
な改善が見込めない。信号ピッチ領域と無信号ピッチ領域の干渉を低減する方策が、特許
文献3に開示されている。信号ピッチ領域の中央部の一部領域にのみ信号用着磁領域を設
け、信号ピッチ領域の他の部分は無着磁の信号用無着磁領域とし、隣接する無信号ピッチ
領域との磁気的干渉を低減させている。しかし、信号ピッチ領域の一部に設けられた信号
用着磁領域からの漏洩磁界が隣合う無信号ピッチ領域と干渉しないようにするには、信号
用着磁領域の磁界強度を小さくする必要がある。磁界強度を下げるには、信号ピッチ領域
の信号用着磁領域を小さくするか、着磁強度を下げる必要がある。漏洩磁界強度を下げる
と、磁気センサーの出力が低下してしまい検出精度の大幅な改善が見込めない。磁気セン
サーの出力を上げるため、磁気センサーと磁気媒体との間隙を近接させることが考えられ
るが、間隙を小さくすると微小な塵埃を巻き込んだりして、磁気媒体や磁気センサーを損
傷する危険性が大きくなる。
特開2000−352523号 公報 図2、図3 特開平02−201118号 公報 図6
図5に特許文献3を参考にして信号ピッチ領域2を、信号用着磁領域3と信号用無着磁
領域4で形成し、信号用着磁領域幅を信号ピッチ領域幅より小さくしたときの、着磁パタ
ーンを示す。全ての信号ピッチ領域の信号用着磁領域に同一磁界方向に着磁する方法であ
る。この着磁方法では各信号ピッチ領域2において磁気センサーからの信号出力が得られ
るが、図5c)に示すように信号ピッチ領域2が連続する部分の磁気センサー出力は小さ
くなり、無信号ピッチ領域5と隣接する信号ピッチ領域2の磁気センサー出力は大きくな
る。また1ケ以上連続する無信号ピッチ領域5は、両側の信号ピッチ領域2の影響により
不要な磁界が発生する。不要な磁界を磁気センサーが検知することで、図5d)の読出し
符号化パターンと図5a)の書込み符号パターンが異なると言う問題がある。これらは、
連続した信号ピッチ領域2が見掛け上一つの磁石(着磁パターン)として働くためと考え
られる。
図5c)で示した様な、連続した無信号領域5に発生する不要な磁界をなくす方策とし
て、図6b)に示すような信号ピッチ領域2の不連続部分において磁界方向を反転させる
方法がある。無信号ピッチ領域5に発生する不要な磁界は減少するが、信号ピッチ領域2
が多数連続すると見掛け上一つの磁石として働くため、隣接する無信号ピッチ領域5に反
転磁界が発生する。この反転磁界を磁気センサーが検知し、図6d)の読出し符号化パタ
ーンと図6a)の書込み符号パターンが異なると言う問題が生じることがある。
図5と図6を用い説明した問題を解決する方策として、図7に示すように隣接する全て
の信号ピッチ領域2の信号用着磁領域3の磁界方向が逆になるように着磁する方法がある
。各々の信号ピッチ領域2の信号用着磁領域3の磁界は、それぞれ信号用着磁領域内で閉
じた磁場を形成する。そのため、図5と図6の様に連続着磁ピッチ領域が一つの大きな磁
石とはならないので、無着磁ピッチ領域に現れる不要な磁界や反転磁界を大幅に減少させ
ることができ、図7d)の読出し符号化パターンと図7a)の書込み符号パターンが同じ
となり、高い信号精度が得られた。
しかし、隣接する全ての信号ピッチ領域2の信号用着磁領域3の磁界方向が逆になるよ
うに着磁する方法でも、書込みの符号パターンによっては、高い信号精度が得られないこ
とがあった。特に信号ピッチ領域2が多く連続した時に信号精度の低下が見られた。一例
として図8に、信号ピッチ領域2が6ヶ連続した状態を示す。図8a)に書込み符号パタ
ーン、図8b)に着磁パターン、図8c)に磁気センサー出力、図8d)に符号化信号波
形、図8e)に読出し符号パターンを示す。図8c)に示すように、無信号ピッチ領域5
と隣接する信号ピッチ領域2の信号用着磁領域3からの漏洩磁界がいびつになってしまっ
ている。漏洩磁界がいびつになることで、図8d)に示すように符号化処理後信号波形の
パルス幅が広くなってしまい、次のクロック領域に掛かり、誤検出する危険性がある。磁
気センサー出力波形の歪程度やクロックパルス幅等によって、図8e)に示すように、本
来の01111110の符号パターンとは異なり、11111111の間違った符号パタ
ーンとなることが、非常に低い発生頻度であるが発生していた。図8では、6連続の信号
ピッチ領域の例を示したが、信号ピッチ領域の長さと信号用着磁領域の長さの比率関係に
よっては、1ケ以上連続する信号ピッチ領域において同様の問題が発生することが考えら
れる。
図8で説明したような不具合を解消する方法として、信号用無着磁領域4を着磁した領
域とするものである。信号用無着磁領域4に施した着磁を、ピン止め着磁と称する。図9
に示すようなピン止め着磁領域6を設けることで、連続した信号ピッチ領域2の信号用着
磁領域3を個別に信号として取り出すことができ、無信号ピッチ領域と隣接する信号ピッ
チ領域の磁界分布がいびつになることを防ぐことができることを見出し、発明者らは既に
特許出願を行っている。図8c)と図9c)の磁気センサー出力を比較すると良く判るが
、ピン止め着磁を行うことで無信号ピッチ領域と隣接する信号ピッチ領域の磁界の広がり
が抑えられている。
図9に示すような、信号ピッチ領域の信号用着磁領域の両端にピン止め着磁領域6を設
けることで、得られる信号精度を大幅に改善できたが、ピン止め着磁領域の分だけ信号用
着磁領域が狭くなるため磁気センサー出力が小さくなってしまう。そのため、磁気媒体と
磁気センサーの間隔(ギャップ)を大きくすることが難しかった。また、無信号ピッチ領
域は着磁されていないため例えばスクリュードライバーが軽く接触しただけで磁化したり
、長期間使用していると磁化してくるため、ノイズの発生を防ぐことが難しかった。
本願発明は上記問題点を解決するためになされたものであって、連続した信号ピッチ領
域を個別に信号として取り出すことができ、無信号ピッチ領域と隣接する信号ピッチ領域
の磁界分布がいびつになることを防ぎ、無信号ピッチ領域からのノイズ発生を低減し、高
い信号精度が得られる磁気式アブソリュートエンコーダーを提供することを目的とする。
本願発明の磁気式アブソリュートエンコーダーは、ランダムに着磁されたアブソリュー
トパターンを有する磁気媒体と、対向して相対的に移動する磁気抵抗効果型磁気センサー
を有する磁気式アブソリュートエンコーダーであって、移動方向に配されたアブソリュー
トパターンは少なくとも一つ以上連続する信号ピッチ領域と、同一のピッチ領域幅で少な
くとも一つ以上連続する無信号ピッチ領域からなり、隣り合う信号ピッチ領域の着磁方向
は互いに逆方向であり、無信号ピッチ領域は移動方向でn分割されてn分割領域を形成し
、隣り合うn分割領域の着磁方向は互いに逆方向であり、また隣り合う信号ピッチ領域の
着磁方向とn分割領域の着磁方向が、逆方向であることが好ましい。
無信号ピッチ領域は移動方向でn分割されて、隣り合うn分割領域は互いに逆方向に着
磁されている。また、隣り合うn分割領域と信号ピッチ領域も、逆方向に着磁されている
。信号ピッチ領域に接したn分割領域は、ピン止め着磁の効果を発揮する。信号ピッチ領
域と無信号ピッチ領域が隣接した場合、信号ピッチ領域の磁界分布が無信号ピッチ領域の
影響を受け、磁界分布の裾部分が無信号ピッチ領域側に引っ張られた様ないびつな分布と
なる。このいびつな磁界分布は磁気抵抗効果型磁気センサーで電気信号に変えられる。磁
気センサーのアナログ出力をディジタル符号化すると、いびつな部分の分だけパルス幅が
広くなり次のクロック領域に掛かり、誤った検出結果を与えることになる。n分割領域を
設けることで、信号用着磁領域の磁界分布がいびつになることを防ぐことができる。
n分割領域はピン止め着磁効果を呈し、信号ピッチ領域の磁界分布がいびつになるのを
防ぐことができるが、n分割領域で信号が発生してはいけないものである。n分割領域の
磁界を磁気センサーが検知すると、検知された信号は信号ピッチ領域から得られる信号に
対してノイズとなってしまう。そのため、n分割領域の磁界強度は、磁気センサーでは検
知されない程度に小さく、信号ピッチ領域の磁界分布がいびつにならない程度に大きい必
要がある。
n分割されたn分割領域の幅(移動方向の長さ)は同じでなくても良いが、大きく違う
ことは好ましくない。大きな幅と小さな幅のn分割領域が混在した場合、次の様な不具合
が発生する危険性がある。信号ピッチ領域と隣り合うn分割領域が小さな幅の場合、n分
割領域がピン止め着磁効果を果さない。逆に大きな幅の場合、大きなn分割領域が信号ピ
ッチ領域と同じ様に働き、磁気センサーから信号として読み出される。いずれも、読出し
符号が誤ったものとなる危険性がある。そのため、でき得る限りn分割領域の幅は同じと
することが好ましいものである。また、n分割領域の幅を同じとすることで、着磁作業工
程が安定し品質の向上化が図れる。
n分割領域の着磁方向は、隣接する信号ピッチ領域の着磁方向と逆向きである必要があ
る。同方向に着磁を行うと、信号ピッチ領域の磁界分布がいびつになることを防ぐことが
出来ないだけでなく、信号ピッチ領域の磁界分布の裾を更に広げることとなる。
従来の磁気式アブソリュートエンコーダーの無信号ピッチ領域は無着磁であった。その
ため、磁気媒体の取り扱い時に市販のスクリュードライバーの様な金属が軽く接触すると
、磁化してしまうことがあった。また、長期間使用していると予期せぬ外部磁界によって
磁化してしまい、ノイズとなり安定した性能が得られなくなることがあった。これらの磁
化強度(着磁強度)は弱いものであるが、磁化範囲が大きいためノイズとなる程度の磁界
が発生することがある。無信号ピッチ領域を移動方向にn分割し小さなn分割領域を作り
、着磁を行うことで無着磁の領域を無くすことができる。n分割領域は信号ピッチ領域に
比べ移動方向の長さが短いため、発生する磁界が小さい。そのため、所定の磁気媒体と磁
気センサーの間隔(ギャップ)を設けたとき、n分割領域からの磁界を磁気センサーは殆
んど検知することはない。n分割領域は着磁されているので、スクリュードライバーの様
な金属が軽く接触することでの磁化は防ぐことができる。また、長期間使用しても既に磁
化しているため、外部磁界によって磁化することを防ぐことができる。
また、従来の磁気式アブソリュートエンコーダーの信号ピッチ領域は、信号用着磁領域
とピン止め着磁領域で構成されていたため、信号ピッチ領域幅より信号着磁領域幅が狭く
なっていた。そのため、信号ピッチ領域の全幅に着磁した場合に比べ磁界強度は弱くなっ
ている。本願発明では、信号ピッチ領域の全幅に着磁を行なっているので、従来品に比べ
得られる磁界強度は大きくなる。磁界強度が大きくなると、磁気媒体から磁気センサーを
離すことができるため、磁気媒体と磁気センサー間に異物が入り磁気媒体や磁気センサー
を損傷する危険性も減るため、エンコーダーの信頼性の向上につながる。また、磁気媒体
と磁気センサーの間隔を大きくすることで、磁気センサーがn分割領域の磁界を検知し難
くなるのでノイズの低下も図られる。
本願発明の磁気式アブソリュートエンコーダーは、無信号ピッチ領域は移動方向でn分
割されており、分割数nが2以上40以下であることが好ましい。
分割数nは、奇数でも偶数でも構わないものである。分割数は無信号ピッチ領域の幅(
移動方向長さ)を基に決めることができる。無信号ピッチ領域の幅が大きいときは分割数
を多く、小さいときは分割数を少なくすることが好ましい。目安としてn分割領域の幅が
10〜200μm程度になるように、分割することが好ましいものである。
本願発明の磁気式アブソリュートエンコーダー実装時、磁気抵抗効果型磁気センサーの
感磁部に加わる磁気媒体からの磁界強度が、信号ピッチ領域での磁界強度fとn分割領域
での磁界強度gで、磁界強度比g/fが1/2以下であることが好ましい。
n分割領域の幅を変えて磁界強度を変える方法の他に、着磁用磁気ヘッドのコイルに流
す電流値を変える方法も採用することができる。着磁時の電流値を変えることで、n分割
領域の幅を大きく取ることも可能となる。n分割領域を小さな着磁電流で着磁を行うと発
生する磁界も弱くなり、磁気センサーの感磁部で検知できなくなるので、ノイズとなるこ
とはない。
n分割領域の磁界強度gが信号ピッチ領域の磁界強度fの1/2以下であれば磁気セン
サーがn分割領域の磁界によって発生する出力波形は、信号ピッチ領域で発生する出力波
形よりも十分小さくなる。n分割領域での出力波形よりも大きく信号ピッチ領域での出力
波形よりも小さい、符号化比較電圧と比較してディジタル符号化処理を行えば、所望の符
号化信号を得ることができる。n分割領域の磁界強度gが大き過ぎると、符号化比較電圧
の設定が困難となるだけではなく、誤検出の危険性が大きくなる。
磁気センサー出力を符号化信号波形に変換するときに必要なクロック信号は、磁気媒体
の移動方向に配されたアブソリュートパターン着磁と平行にインクリメントパターン着磁
を行い、着磁パターンからの漏れ磁界をインクリメント用の磁気センサーでクロック信号
に変換することで得られる。磁気媒体にアブソリュートパターンとインクリメントパター
ンが一体に描かれ、一体となったアブソリュート用とインクリメント用の磁気センサーで
検出するので、アブソリュート信号とインクリメント信号に時間的な誤差が生じることは
ない。そのため、磁気媒体と磁気センサーの相対移動速度が変化する様な状況でも使用す
ることができる。しかし、インクリメント信号を得るため、磁気媒体と磁気センサーを大
きくする必要が有る。磁気媒体と磁気センサーの相対移動速度が一定である場合しか採用
できないと言う制約はあるが、クロック信号を電気回路で作ることもできる。電気回路で
作ることで、磁気媒体や磁気センサーの大きさを小さく出来ると言う利点がある。
磁気媒体は、非磁性の基体に硬磁性材料を付加した例えば、アルミニウム製のドラムに
ハードフェライト粉末を塗布した磁気ドラムや、樹脂テープや非磁性金属にハードフェラ
イト粉末を塗布した磁気スケールがある。もしくは、非磁性の基体を用いない永久磁石そ
のものや、プラスチックやゴムに磁性粉末を混練して成型したものを用いることができる
隣り合う信号ピッチ領域の着磁方向は互いに逆方向であり、無信号ピッチ領域はn分割
され、着磁方向が互いに逆方向であるn分割領域とすることで、信号ピッチ領域に隣接す
るn分割領域がピン止め着磁として働き、信号ピッチ領域の磁界分布がいびつになること
を防ぐことができる。信号ピッチ領域の移動方向全域を着磁することで、発生磁界強度を
大きくすることができ、磁気媒体と磁気センサーの間隔を大きくすることができる。また
、無信号ピッチ領域をn分割して着磁したn分割領域とすることで、磁気媒体の無着磁の
領域を無くすことができ、磁気媒体の不必要な磁化を防ぎ、高精度で高信頼性の磁気式ア
ブソリュートエンコーダーが得られた。
以下本発明を図面を参照しながら実施例に基づいて詳細に説明する。説明を判り易くす
るため、同一の部品、部位には同じ符号を用いている。
図1に、磁気媒体11に着磁された信号ピッチ領域2と無信号ピッチ領域5の一部を示
す。着磁は、Ф65.2mmの磁気ドラムの外周方向に512パルス(信号ピッチ領域と
無信号ピッチ領域の合計数)となるように、信号ピッチ領域の媒体移動方向長さL1と無
信号ピッチ領域の媒体移動方向長さL0は400μmとした。磁気媒体11の着磁は、リ
ング型磁気ヘッドを磁気ドラムに接触させ、リング型磁気ヘッドのコイルに相対移動距離
に応じて所定方向に電流を流し、信号ピッチ領域2とn分割領域9は連続して着磁を行っ
た。隣り合う信号ピッチ領域2は逆方向に着磁している。無信号ピッチ領域5は移動方向
長さ方向に4等分割し100μm長のn分割領域9とした。信号ピッチ領域2と隣接する
n分割領域9aは信号ピッチ領域2と逆方向になるように着磁し、n分割領域の9aから
9dも隣接する領域は逆方向になるように着磁した。着磁磁界を発生するリング型磁気ヘ
ッドのコイルに流す電流は、信号ピッチ領域に対してn分割領域は半分の値とした。着磁
の長さが1/4で着磁磁界を1/2としたので、磁気抵抗効果型磁気センサーの感磁部に
加わるn分割領域の磁界強度は、信号ピッチ領域の1/20程度となった。
図2に、連続した6ヶの着磁ピッチ領域2の出力電圧と符号化信号波形を示す。図2の
詳細説明の前に、図3を用いて、磁気式アブソリュートエンコーダー1の磁気媒体と磁気
センサーについて述べる。回転する磁気媒体11(本実施例では、磁気ドラムである)に
所定の間隔を持って対向して磁気センサー20を配している。本実施例では、磁気媒体1
1面と磁気センサー20の磁気抵抗効果型センサー素子22のとの間隔(ギャップ)は2
50μmとした。磁気媒体11は、円周方向に信号ピッチ領域と無信号ピッチ領域が混在
する信号領域12と、並んで円周方向に比較領域13を形成した。磁気センサー20は複
数の磁気センサー素子21からなり、磁気センサー素子21は、磁界により抵抗が変化す
る磁気抵抗効果型センサー素子22と、磁気抵抗効果型センサー素子22に磁界が印加さ
れていない時の抵抗値と同等の抵抗値を有する比較抵抗素子23が直列に接続されている
。比較抵抗素子23の他端は接地、磁気抵抗効果型センサー素子22の他端は電源電圧V
ccに接続している。磁気抵抗効果型センサー素子22と比較抵抗素子23の接続点24
から中点電位を取り、この電圧が磁気センサー20の出力電圧となる。磁気抵抗効果型セ
ンサー素子22は磁気媒体11の信号領域12と、比較抵抗素子23は比較領域12と対
向している。磁気抵抗効果型センサー素子22と比較抵抗素子23は、同一組成のパーマ
ロイ(Ni−Fe合金)を用いた。比較抵抗素子23には磁界が印加されないので抵抗は
一定であり、磁気抵抗効果型センサー素子22の比較抵抗として働く。磁気抵抗効果型セ
ンサー素子22が磁気媒体11の信号領域12からの漏洩磁界を検知すると、抵抗が変化
して中間電位が変化する。この中間電位の変化を磁気媒体と磁気センサーの相対位置信号
として検出する。磁気媒体上のクロック信号用の着磁パターンと、磁気センサー素子上の
クロック信号検知素子の図示は省略している。
図2を示しながら、n分割領域9を形成した時の磁気センサーの出力電圧と符号化信号
波形を説明する。図2a)は書込み符号パターン、図2b)は磁気媒体上の着磁パターン
である。図2c)に示すように、磁気センサー出力電圧波形は、n分割領域9と隣接する
信号ピッチ領域2の出力電圧波形はn分割領域側に広がらず、全ての信号ピッチ領域で出
力される磁気センサー出力電圧波形の幅がほぼ同じとなった。図2d)に、符号化信号波
形を示すが、全ての信号幅は略同じで、無信号ピッチ領域に符号化信号波形が掛かること
は無く、図2e)に示すように、書込み符号パターンと同じ読出し符号パターンが得られ
た。n分割領域を設けることで、確実なアブソリュート信号が得られた。
400μm幅の無信号ピッチ領域を5分割し、n分割領域幅を変えてピン止め効果とn
分割領域がノイズ信号となるか否かを測定した。図4a)に示す様に、無信号ピッチ領域
をW1幅を有するn分割領域4個とW2幅を有するn分割領域1個に着磁した。W2幅の
n分割領域をW1幅のn分割領域2個で両側から挟むように配置した。W1を5μmから
80μmまで変化させ、W1幅によるピン止め効果があるか否か、またW2幅によるn分
割領域が閾値(符号化信号電圧)以上の出力で、ノイズレベルにあるか否かを評価した。
m系列パターンで着磁したので、信号ピッチ領域と無信号ピッチ領域の数は略同じである
。着磁磁界を発生するリング型磁気ヘッドのコイルに流す電流は、信号ピッチ領域に対し
n分割領域は半値で着磁した。書込み符号パターンと読出し符号パターンを比較し、1パ
ターンでも違いがあれば、W1のピン止め効果の有無もしくは、W2の出力がノイズレベ
ルに有る無しの判断を行った。
図4b)に、n分割領域幅を変えた時のピン止め効果とノイズレベルの測定結果を示す
。試料#1のW1が5μmではピン止め効果は得られないが、W1が10μm以上あれば
ピン止め効果が得られることが確認できた。また、W2が240μm(試料#5)では出
力がノイズレベル以上であるが、200μm(試料#6)では出力がノイズレベル以下と
なっている。試料#9は、W1=W2で5等分割したものである。図4b)の結果から、
無信号ピッチ領域を2等分割した場合、n分割領域幅は200μmとなりピン止め効果が
得られ出力はノイズレベル以下、40等分割した場合はn分割領域幅は10μm、これも
ピン止め効果が得られ出力もノイズレベル以下となると考えられる。
実施例1の磁気媒体を用いて、スクリュードライバーテストを行った。比較のため無信
号ピッチ領域を無着磁とした磁気媒体を準備した。磁気媒体上に無作為に選んだ30箇所
に市販のスクリュードライバーの鉄製円柱部を軽く接触させた後、無信号ピッチ領域から
閾値(符号化信号電圧)以上のノイズレベル出力があるか否かを測定した。ノイズレベル
出力の有無は書込み符号パターンと読出し符号パターンの異なる部位の有無で評価した。
実施例1の磁気媒体ではノイズレベル以上の出力はなかったが、比較用磁気媒体ではノイ
ズレベル以上の出力箇所が1個見つかった。このことから、着磁したn分割領域を持つ本
願発明の磁気媒体を用いた磁気式アブソリュートエンコーダーは、外部からの影響を受け
難く信頼性の高いものであることが確認できた。
本願発明の第1の実施例の着磁パターンを説明する図である。 本願発明の第1の実施例の着磁パターンや磁気センサー出力等を説明する図である。 本願発明の磁気式アブソリュートエンコーダーの、磁気媒体と磁気センサーを説明する図である。 本願発明の第2の実施例の着磁パターンとピン止め着磁効果、ノイズレベル出力の測定結果を示す図である。 従来の信号ピッチ領域の信号用着磁領域の幅を小さくした、着磁パターンを説明する図である。 従来の信号ピッチ領域の不連続部分で磁界方向を反転させる、着磁パターンを説明する図である。 従来の隣接する全ての信号ピッチ領域の信号用着磁領域の磁界方向が逆になる、着磁パターンを説明する図である。 従来の信号ピッチ領域が6ヶ連続した状態での、着磁パターンや磁気センサー出力等を説明する図である。 従来のピン止め着磁領域を設けた、着磁パターンを説明する図である。
符号の説明
1 磁気式アブソリュートエンコーダー、2 信号ピッチ領域、
3 信号用着磁領域、4 信号用無着磁領域、
5 無信号ピッチ領域、6 ピン止め着磁領域、
9 n分割領域、11 磁気媒体、
12 信号領域、13 比較領域、
20 磁気センサー、21 磁気センサー素子、
22 磁気抵抗効果型センサー素子、23 比較抵抗素子、
24 接続点。

Claims (2)

  1. ランダムに着磁されたアブソリュートパターンを有する磁気媒体と、対向して相対的に
    移動する磁気抵抗効果型磁気センサーを有する磁気式アブソリュートエンコーダーであっ
    て、移動方向に配されたアブソリュートパターンは少なくとも一つ以上連続する信号ピッ
    チ領域と、同一のピッチ領域幅で少なくとも一つ以上連続する無信号ピッチ領域からなり
    、隣り合う信号ピッチ領域の着磁方向は互いに逆方向であり、無信号ピッチ領域は移動方
    向でn分割されてn分割領域を形成し、隣り合うn分割領域の着磁方向は互いに逆方向で
    あり、また隣り合う信号ピッチ領域の着磁方向とn分割領域の着磁方向が、逆方向である
    ことを特徴とする磁気式アブソリュートエンコーダー。
  2. 無信号ピッチ領域は移動方向でn分割されており、分割数nが2以上40以下であるこ
    とを特徴とする請求項1に記載の磁気式アブソリュートエンコーダー。
JP2006081059A 2006-03-23 2006-03-23 磁気式アブソリュートエンコーダー Pending JP2007256085A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081059A JP2007256085A (ja) 2006-03-23 2006-03-23 磁気式アブソリュートエンコーダー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081059A JP2007256085A (ja) 2006-03-23 2006-03-23 磁気式アブソリュートエンコーダー

Publications (1)

Publication Number Publication Date
JP2007256085A true JP2007256085A (ja) 2007-10-04

Family

ID=38630486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081059A Pending JP2007256085A (ja) 2006-03-23 2006-03-23 磁気式アブソリュートエンコーダー

Country Status (1)

Country Link
JP (1) JP2007256085A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241829A (ja) * 1993-02-19 1994-09-02 Nippondenso Co Ltd 回転位置検出装置
JPH09264761A (ja) * 1996-03-29 1997-10-07 Sony Precision Technol Inc 位置検出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241829A (ja) * 1993-02-19 1994-09-02 Nippondenso Co Ltd 回転位置検出装置
JPH09264761A (ja) * 1996-03-29 1997-10-07 Sony Precision Technol Inc 位置検出装置

Similar Documents

Publication Publication Date Title
JP4880066B2 (ja) 原点位置信号検出器
US5574364A (en) Position detector including a reference position wherein the sensor is saturating the MR sensor for preventing hysteresis and in a bridge circuit
JP5217722B2 (ja) 移動体検出器
WO2021164632A1 (zh) 一种直线位移绝对位置编码器
JP2018151181A (ja) 磁気式位置検出装置
US20150115940A1 (en) Position Measuring Device
JP6147637B2 (ja) 位置検出装置
US20080218159A1 (en) Sensor System For Determining a Position or a Rotational Speed of an Object
US7045997B2 (en) Magnetic detection apparatus
JP2002228733A (ja) 磁気検出装置
JP2010008367A (ja) 回転検出装置
JP6387788B2 (ja) 磁気エンコーダ用磁気媒体、磁気エンコーダ、並びに磁気媒体の製造方法
JP4775705B2 (ja) 磁気式アブソリュートエンコーダー
JP4484033B2 (ja) 移動体検出装置
JP2007256085A (ja) 磁気式アブソリュートエンコーダー
US20040017188A1 (en) Magnetic detection apparatus
JP4577263B2 (ja) 磁気センサ
JP2004109113A (ja) 磁気検出装置
KR20070054075A (ko) 자기 검출 장치
JP4506960B2 (ja) 移動体位置検出装置
JP6127271B2 (ja) 巨大磁気抵抗素子
JP7064966B2 (ja) 磁気式エンコーダ
JP6041959B1 (ja) 磁気検出装置
JP2008298729A (ja) 磁気式エンコーダ用磁気スケールおよびその製造方法
JP2006098322A (ja) 磁気式位置回転検出用素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Effective date: 20101008

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110218