WO2021164632A1 - 一种直线位移绝对位置编码器 - Google Patents

一种直线位移绝对位置编码器 Download PDF

Info

Publication number
WO2021164632A1
WO2021164632A1 PCT/CN2021/076130 CN2021076130W WO2021164632A1 WO 2021164632 A1 WO2021164632 A1 WO 2021164632A1 CN 2021076130 W CN2021076130 W CN 2021076130W WO 2021164632 A1 WO2021164632 A1 WO 2021164632A1
Authority
WO
WIPO (PCT)
Prior art keywords
encoding
code
coding
magnetoresistive sensor
absolute position
Prior art date
Application number
PCT/CN2021/076130
Other languages
English (en)
French (fr)
Inventor
郭海平
李昊晨
沈卫锋
薛松生
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US17/904,414 priority Critical patent/US20220404171A1/en
Priority to JP2022549244A priority patent/JP2023513826A/ja
Priority to EP21757028.2A priority patent/EP4109048A4/en
Publication of WO2021164632A1 publication Critical patent/WO2021164632A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/249Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using pulse code
    • G01D5/2497Absolute encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/10Detecting linear movement
    • G01D2205/18Detecting linear movement using magnetic means not otherwise provided for in this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other

Definitions

  • the disclosed embodiments relate to the field of magnetic sensors, and in particular to a linear displacement absolute position encoder.
  • Linear displacement sensors are widely used in position monitoring and measurement, such as displacement measurement in precision instruments, machine tool table position control, elevator position monitoring, etc.
  • photoelectric sensors For long-distance displacement measurement, photoelectric sensors, capacitive coupling sensors and magnetic grid sensors are usually used to detect.
  • the magnetic grid sensor is more suitable for use in harsh environments, such as elevators, open-air rails, etc., because of its strong anti-pollution characteristics.
  • the current detection distance of the magnetic grid displacement sensor is relatively short, mostly within 10 meters. If the magnetic grid displacement sensor is applied to the long-distance displacement measurement, there will be a problem of high cost of the permanent magnet magnetic grid.
  • the purpose of the embodiments of the present disclosure is to provide a linear displacement absolute position encoder, which can realize long-distance position monitoring with low cost.
  • a linear displacement absolute position encoder which is characterized in that it is used to detect the displacement of the device under test.
  • the linear displacement absolute position encoder includes a base, a magnetoresistive sensor array, an encoding belt and a back magnet;
  • the code tape is fixed on the base and extends along the track of the device under test.
  • the code tape is a piece of magnetic material with recesses and protrusions that identify coding information at different positions;
  • the magnetoresistive sensor array is non-contactly arranged between the code tape and the back magnet;
  • the back magnet is used to generate a non-uniform magnetic field around the code tape to magnetize the code tape;
  • the magnetoresistance sensor array includes N rows and M columns of magnetoresistance sensors, where N ⁇ 1, M ⁇ 1, and N and M are positive integers.
  • the magnetoresistance sensor array is used to obtain the position coding information of the coding band by detecting the magnetic field information of the coding band .
  • the code strip has P lines of code tracks arranged along the track direction of the device under test, each line of code tracks includes M code bits, the code bits are formed by recesses or protrusions, and the M code bits constitute the position of the code track where it is located. Coding information, the position coding information of each row of coded channels is different, where 1 ⁇ P ⁇ 2 M , and P is a positive integer.
  • the distance between two adjacent magnetoresistive sensors in each row is equal to the distance between two adjacent coded bits in each row.
  • the magnetoresistive sensor is a linear magnetoresistive sensor
  • the linear magnetoresistive sensor includes any one of a Hall effect sensor, an anisotropic sensor, a giant magnetoresistive sensor, and a tunnel magnetoresistive sensor.
  • the magnetoresistive sensor is a gradient magnetoresistive sensor
  • the gradient magnetoresistive sensor includes any one of a Hall effect sensor, an anisotropic sensor, a giant magnetoresistive sensor, and a tunnel magnetoresistive sensor.
  • code band and the base are integrally formed.
  • the coding form of the coding band is binary code or Gray code.
  • the embodiment of the disclosure uses a piece of magnetic material blocks with concave and convex portions to identify different positions of the coded information to form the code strip, and the code strip is fixed on the base so that it extends along the track direction of the device under test, and the magnetoresistive sensor
  • the array is arranged non-contact between the encoding belt and the back magnet, and the back magnet is used to generate an uneven magnetic field around the encoding belt, so that the magnetoresistance sensor array can obtain the position encoding information of the encoding belt by detecting the magnetic field information of the encoding belt.
  • This solution uses a back magnet to magnetize the encoding tape, which achieves the purpose of detecting the displacement of the device under test, and greatly reduces the cost of the linear displacement absolute position encoder.
  • FIG. 1 is a schematic diagram of the overall structure of a linear displacement absolute position encoder provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of a structure of the encoding tape and the magnetoresistive sensor array in Fig. 1;
  • Fig. 3 is another schematic diagram of the structure of the encoding tape and the magnetoresistive sensor array in Fig. 1;
  • FIG. 4 is a schematic diagram of the structure of the recesses and protrusions of a row of code tracks in FIG. 2 or FIG. 3;
  • Fig. 5 is a schematic diagram showing the distribution of magnetic lines of force around the code track shown in Fig. 4 under the action of the back magnet;
  • Fig. 6 is a curve diagram of the magnetic field intensity distribution corresponding to each coded bit in a row of coded channels corresponding to Fig. 5;
  • Figure 7 is a characteristic curve diagram of a magnetoresistive sensor.
  • FIG. 1 is a schematic diagram of the overall structure of a linear displacement absolute position encoder provided by an embodiment of the present disclosure.
  • the linear displacement absolute position encoder 10 can be used to detect the displacement of the device under test. See FIG. 1, the linear displacement absolute position encoder 10 includes: a base 100, a magnetoresistive sensor array 300, an encoding tape 200, and a back magnet (not shown), wherein the encoding tape 200 is fixed on the base 100 and extends along the track direction AA' of the device under test, and the encoding tape 200 is a piece of magnetic material with recesses and protrusions that identify the encoding information at different positions; the magnetoresistance sensor array 300 is arranged non-contact between the encoding tape 200 and the back magnet; the back magnet is used to produce unevenness around the encoding tape 200 The magnetic field is magnetized for the encoding tape 200; the magnetoresistive sensor array 300 includes N rows and M columns of magnetoresistive sensors, where N ⁇ 1, M ⁇ 1, and N and M are positive integers
  • the general principle of position measurement is: in the entire measuring range, place the encoder disk representing the position, and the encoder disk position is fixed, and then fix the sensor on the moving part to detect the relative displacement of the moving part.
  • the code tape 200 is made of a magnetic material, and different recesses and protrusions are provided at different positions of the code tape 200 to form position code information for identifying different positions.
  • the position encoding information corresponding to the first position 201 and the second position 202 can be made different.
  • the magnetoresistance sensor array 300 and the back magnet can be installed on the device under test, so that the magnetoresistance sensor array 300 and the back magnet move with the movement of the device under test.
  • the back magnet is used to A magnetic field is formed around the encoding belt 200, and the magnetic resistance sensor in the magnetic resistance sensor array 300 is used to sense the magnetic field distribution on the encoding belt 200. Since the encoding tape 200 has different concaves and protrusions at different positions, the magnetic field distribution at different positions of the encoding tape 200 is different and non-uniform.
  • the magnetoresistive sensor array 300 detects the different positions of the encoding tape 200. The distribution of the magnetic field can obtain the position coding information at the corresponding position to determine the position of the device under test.
  • a permanent magnet may be used for the back magnet, and a soft magnetic material may be used for the code tape 200, and the cost of the soft magnetic material with recesses and protrusions is lower.
  • the use of permanent magnets to magnetize the soft magnetic material can avoid the use of long-distance permanent magnets. Magnetic grid, thereby saving costs.
  • the permanent magnet is not affected by the demagnetization of the magnet, so that the linear displacement absolute position encoder 10 can have a longer life.
  • Fig. 1 does not show the concave and convex structures of the code tape 200. Its function is to make the magnetic field applied by the back magnet on the code tape appear different because the concave and convex structures at different positions do not pass through.
  • the distribution status so as to achieve the purpose of identifying different locations, can be set by those skilled in the art, and this disclosure example does not limit this.
  • the back magnet is not shown in FIG. 1 and subsequent drawings. It can be understood that, in an actual product, the back magnet is arranged opposite to the surface of the code tape 200 having the concave and convex structure.
  • the magnetoresistive sensor array 300 is also arranged opposite to the surface of the code tape 200 with concave and convex structures, and the magnetoresistance sensor array 300 has no contact with the code tape 200.
  • the magnetic field distribution around the code tape 200 can be obtained by sensing the magnetic field distribution around the code tape 200. The location information of the measuring equipment.
  • the embodiment of the disclosure uses a piece of magnetic material blocks with concave and convex portions to identify different positions of the coded information to form the code strip, and the code strip is fixed on the base so that it extends along the track direction of the device under test, and the magnetoresistive sensor
  • the array is arranged non-contact between the encoding belt and the back magnet, and the back magnet is used to generate an uneven magnetic field around the encoding belt, so that the magnetoresistance sensor array can obtain the position encoding information of the encoding belt by detecting the magnetic field information of the encoding belt.
  • This solution uses a back magnet to magnetize the encoding tape, which achieves the purpose of detecting the displacement of the device under test, and greatly reduces the cost of the linear displacement absolute position encoder.
  • the encoding tape 200 has P lines of encoding tracks 210 arranged along the track direction of the device under test.
  • Each line of encoding tracks 210 includes M encoding bits, and the encoding bits are formed by concave portions 211 or protrusions 212, M
  • Each coded bit constitutes the position coding information of the coded channel 210 where it is located.
  • the position coded information of each row of the coded channel 210 is different, where 1 ⁇ P ⁇ 2 M and P is a positive integer.
  • the coded bit is formed by the concave portion 211 or the convexity 212. It can be seen from FIG. 2 that the concave portion 211 and the convexity 212 of each row of the coded track 210 are different. Therefore, the position code information of each row of the coded track 210 Different, in other words, the encoding information on each encoding track 210 is unique, and the encoding band 200 can identify at least 2 M positions.
  • the code track 210 with the recesses 211 and the protrusions 212 can be used as a magnetic grid structure to achieve a two-dimensional distribution of the magnetic grid, thereby greatly reducing the size of the magnetic grid.
  • FIG. 2 exemplarily shows that the magnetoresistive sensor array 300 has a structure of 1 row and 16 columns of magnetoresistive sensors 310.
  • each magnetoresistance sensor 310 can collect the magnetic field intensity of the corresponding code bit, thereby Determine the coding information of each coding bit, and finally determine the position coding information of the coding channel 210 where it is located by the coding information of the M coding bits, thereby determining the position of the device under test.
  • the distance D1 between two adjacent magnetoresistive sensors 310 in each row is equal to the distance D2 between two adjacent coded bits in each row.
  • the result of the magnetoresistance sensor 310 detecting the magnetic field intensity of the corresponding code bit can be more accurate. , So as to ensure the accuracy of the position coding information finally obtained, and to ensure the excellent performance of the encoder.
  • L determines the resolution of the encoder. The smaller the L, the higher the resolution of the encoder.
  • the number of coded bits in each row of coded channels 210 determines the number of coded channels 210. Therefore, in order to increase the measurement range, the larger the number of coded bits, the better.
  • TMR Tunnel Magneto Resistance
  • FIG. 3 is another structural schematic diagram of the encoding tape and the magnetoresistive sensor array in FIG. 1.
  • Fig. 4 is a schematic diagram of the structure of the recesses and protrusions of a row of coded tracks in Fig. 2 or Fig. 3, referring to Fig. 4, optionally, the coding form of the coding band 200 is binary code or Gray code.
  • the coding information of the concave portion 211 in the coding track 210 is "0", and the coding information of the protrusion 212 is "1", and the position coding information of the coding track 210 is uniquely determined by "1011 0001 0101 0001".
  • Using binary code or Gray code encoding can make the encoding form simpler, and does not require complex cursor calculations.
  • Those skilled in the art can choose to use natural binary code or Gray binary code when coding the code band.
  • the natural binary code encoding method is simple, but because there will be multiple level inversions when switching between adjacent numbers, it is easy to cause errors.
  • Gray binary code there is only one level conversion every time a decimal number is changed, which can greatly reduce the noise in the conversion process and improve the accuracy.
  • Fig. 5 is a schematic diagram of the distribution of magnetic lines of force around the code track shown in Fig. 4 under the action of the back magnet.
  • the bold arrow indicates the magnetizing direction of the back magnet for the magnetization of the code tape 200.
  • Fig. 6 is a curve diagram of the magnetic field intensity distribution corresponding to each coded bit in a row of coded channels corresponding to Fig. 5, which is obtained by finite element simulation. It can be seen from FIG. 6 that the magnetic field intensity corresponding to the code bit at each concave portion 211 is relatively small, and the magnetic field intensity corresponding to the code bit at each protrusion 212 is relatively large.
  • the magnetoresistive sensor is a linear magnetoresistive sensor
  • the linear magnetoresistive sensor includes any one of a Hall effect sensor, an anisotropic sensor, a giant magnetoresistive sensor, and a tunnel magnetoresistive sensor.
  • Fig. 7 is a characteristic curve diagram of a magnetoresistive sensor, in which the abscissa H represents the magnetic field strength, and the ordinate Vout represents the output voltage of the magnetic sensor. It can be seen from this characteristic curve that the magnetoresistive sensor will saturate when the magnetic field is strong, that is, the output voltage of the magnetoresistive sensor will no longer increase with the increase of the external magnetic field. Therefore, when using the encoder, the magnetic field should be optimized to make the magnetoresistive sensor work in the linear region H1-H2.
  • the magnetoresistive sensor is a gradient magnetoresistive sensor
  • the gradient magnetoresistive sensor includes any one of a Hall effect sensor, an anisotropic sensor, a giant magnetoresistive sensor, and a tunnel magnetoresistive sensor.
  • Both the linear magnetoresistive sensor and the gradient magnetoresistive sensor have good magnetic induction capabilities, and those skilled in the art can choose according to actual needs, which is not limited in the embodiment of the disclosure.
  • the coding band 200 and the base 100 are integrally formed.
  • This configuration can further reduce the cost of the encoder and simplify the manufacturing process.
  • the disclosed embodiment constructs a horizontally arranged M code bits formed by recesses or protrusions on a high-permeability material, thereby forming a code track at one position, and a number of code tracks along the high-permeability material
  • the track direction is arranged to form an encoding band, and then binary or Gray code encoding is used for its encoding to identify different positions.
  • the back magnet is used to magnetize the code tape to form an uneven magnetic field around it, and M magnetoresistance sensors are arranged horizontally to make them correspond to the code bits one by one and form a magnetoresistance sensor array for reading the corresponding codes
  • the position code information of the track is used to magnetize the code tape to form an uneven magnetic field around it, and M magnetoresistance sensors are arranged horizontally to make them correspond to the code bits one by one and form a magnetoresistance sensor array for reading the corresponding codes
  • the linear displacement absolute position encoder has the advantages of low cost, small size, simple coding method, long life, anti-pollution and anti-vibration, and has good practicability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种直线位移绝对位置编码器(10),用于检测被测设备的位移,该直线位移绝对位置编码器(10)包括:基座(100)、磁电阻传感器阵列(300)、编码带(200)和背磁铁,编码带(200)固定在基座(100)上并沿被测设备的轨道方向延伸,编码带(200)是一条具有标识不同位置编码信息的凹部和凸起的磁性材料块,磁电阻传感器阵列(300)非接触地设置在编码带(200)和背磁铁之间,背磁铁用于在编码带(300)周围产生不均匀的磁场以为编码带(200)充磁,磁电阻传感器阵列(300)用于通过检测编码带(200)的磁场信息获取编码带(200)的位置编码信息。编码器(10)能够实现长距离的位置监测,且成本较低。

Description

一种直线位移绝对位置编码器 技术领域
本揭露实施例涉及磁性传感器领域,尤其涉及一种直线位移绝对位置编码器。
背景技术
直线位移传感器广泛被应用于位置的监控与测量,如精密仪器中的位移测量、机床工作台位置控制、电梯位置监控等。
对于长距离的位移测量通常使用光电传感器、电容耦合式传感器和磁栅传感器来检测。其中,磁栅传感器因其具有抗污染性强的特点,更适合在恶劣环境中使用,如电梯、露天轨道等。
但是,目前磁栅位移传感器的检测距离较短,多在10米以内。如果将磁栅位移传感器应用于长距离的位移测量中,将会存在永磁体磁栅成本较高的问题。
发明内容
本揭露实施例的目的在于提出一种直线位移绝对位置编码器,该编码器能够实现长距离的位置监测,且成本较低。
为达此目的,本揭露实施例采用以下技术方案:
一种直线位移绝对位置编码器,其特征在于,用于检测被测设备的位移,直线位移绝对位置编码器包括:基座、磁电阻传感器阵列、编码带和背磁铁;
编码带固定在基座上并沿被测设备的轨道方向延伸,编码带是一条具有标识不同位置编码信息的凹部和凸起的磁性材料块;
磁电阻传感器阵列非接触地设置在编码带和背磁铁之间;
背磁铁用于在编码带周围产生不均匀的磁场以为编码带充磁;
磁电阻传感器阵列包括N行M列磁电阻传感器,其中N≥1,M≥1,且N和M为正 整数,磁电阻传感器阵列用于通过检测编码带的磁场信息获取编码带的位置编码信息。
进一步地,编码带具有沿着被测设备轨道方向设置的P行编码道,每行编码道包括M个编码位,编码位由凹部或凸起形成,M个编码位构成其所在编码道的位置编码信息,每行编码道的位置编码信息不同,其中,1≤P≤2 M,且P为正整数。
进一步地,行方向上,每行相邻两个磁电阻传感器的间距等于每行相邻两个编码位的间距。
进一步地,磁电阻传感器为线性磁电阻传感器,线性磁电阻传感器包括霍尔效应传感器、各向异性传感器、巨磁阻传感器和隧道磁阻传感器中的任意一种。
进一步地,磁电阻传感器为梯度磁电阻传感器,梯度磁电阻传感器包括霍尔效应传感器、各向异性传感器、巨磁阻传感器和隧道磁阻传感器中的任意一种。
进一步地,编码带与基座一体成型。
进一步地,编码带的编码形式为二进制码或者格雷码。
本揭露实施例利用一条具有标识不同位置编码信息的凹部和凸起的磁性材料块形成编码带,并将编码带固定在基座上,使其沿被测设备的轨道方向延伸,将磁电阻传感器阵列非接触地设置在编码带和背磁铁之间,利用背磁铁在编码带周围产生不均匀的磁场,使磁电阻传感器阵列通过检测编码带的磁场信息获取编码带的位置编码信息。该方案采用背磁铁为编码带充磁的方式,实现了检测被测设备位移的目的,且大大降低了直线位移绝对位置编码器的成本。
附图说明
为了更清楚地说明本揭露实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本揭露的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本揭露实施例提供的一种直线位移绝对位置编码器的整体结构示意图;
图2是图1中编码带和磁电阻传感器阵列的一种结构示意图;
图3是图1中编码带和磁电阻传感器阵列的另一种结构示意图;
图4是图2或图3中一行编码道的凹部和凸起的结构示意图;
图5是在背磁铁的作用下图4所示编码道周围的磁力线分布示意图;
图6是与图5对应的一行编码道中各编码位所对应的磁场强度分布曲线图;
图7是磁电阻传感器的一种特性曲线图。
具体实施方式
下面结合附图和实施例对本揭露作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本揭露,而非对本揭露的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本揭露相关的部分而非全部结构。
图1是本揭露实施例提供的一种直线位移绝对位置编码器的整体结构示意图,该直线位移绝对位置编码器10可用于检测被测设备的位移,参见图1,该直线位移绝对位置编码器10包括:基座100、磁电阻传感器阵列300、编码带200和背磁铁(未示出),其中,编码带200固定在基座100上并沿被测设备的轨道方向AA’延伸,编码带200是一条具有标识不同位置编码信息的凹部和凸起的磁性材料块;磁电阻传感器阵列300非接触地设置在编码带200和背磁铁之间;背磁铁用于在编码带200周围产生不均匀的磁场以为编码带200充磁;磁电阻传感器阵列300包括N行M列磁电阻传感器,其中N≥1,M≥1,且N和M为正整数(图1未示出磁电阻传感器的阵列排布结构),磁电阻传感器阵列300用于通过检测编码带200的磁场信息获取编码带200的位置编码信息。
位置测量的一般性原理为:在整个测量行程范围内,放置代表位置的编码盘,且编码盘位置固定,再将传感器固定在运动部件上,即可检测运动部件的相对位移量。
本实施例中,具体的,编码带200采用磁性材料制成,在编码带200的不同位置处具有不同的凹部和凸起以形成位置编码信息,用于标识不同的位置。示例性的,参见图1,通过在编码带200的第一位置201和第二位置202处设置不同的凹部和凸起,可使第一位置201和第二位置202对应的位置编码信息不同。将编码带200固定于基座100上并沿被测设备的轨道方向延伸,即可利用编码带200标识被测设备移动方向上的不同位置。
示例性的,可以将磁电阻传感器阵列300和背磁铁安装在被测设备上,从而使磁电阻传感器阵列300以及背磁铁随着被测设备的移动而移动,在移动过程中,利用背磁铁在 编码带200的周围形成磁场,利用磁电阻传感器阵列300中的磁电阻传感器感测编码带200上的磁场分布。由于编码带200不同位置处具有不同的凹部和凸起,因此,编码带200不同位置处的磁场分布是不同的,而且是不均匀的,磁电阻传感器阵列300通过检测编码带200不同位置处的磁场分布情况即可获取对应位置处的位置编码信息,从而确定被测设备的位置。
示例性的,背磁铁可以采用永磁铁,编码带200可以采用软磁材料,具有凹部和凸起的软磁材料的成本更低,通过永磁铁磁化软磁铁材料,可以避免使用长距离的永磁体磁栅,从而节省成本。另外,永磁铁不受磁铁退磁的影响,可以使直线位移绝对位置编码器10具有较长的寿命。
需要说明的是,图1未示出编码带200的凹部和凸起结构,其作用是使背磁铁在编码带上施加的磁场由于不同位置处的凹部和凸起结构不通过而呈现出不同的分布状态,从而达到标识不同位置的目的,本领域技术人员可自行设定,本揭露实例对此不作限定。
还需要说明的是,图1及后续附图未示出背磁铁,可以理解的,在实际的产品中,背磁铁与编码带200具有凹部和凸起结构的表面相对设置。相应的,磁电阻传感器阵列300同样与编码带200具有凹部和凸起结构的表面相对设置,且磁电阻传感器阵列300与编码带200无接触,通过感测编码带200周围的磁场分布情况获取被测设备的位置信息。
本揭露实施例利用一条具有标识不同位置编码信息的凹部和凸起的磁性材料块形成编码带,并将编码带固定在基座上,使其沿被测设备的轨道方向延伸,将磁电阻传感器阵列非接触地设置在编码带和背磁铁之间,利用背磁铁在编码带周围产生不均匀的磁场,使磁电阻传感器阵列通过检测编码带的磁场信息获取编码带的位置编码信息。该方案采用背磁铁为编码带充磁的方式,实现了检测被测设备位移的目的,且大大降低了直线位移绝对位置编码器的成本。
图2是图1中编码带和磁电阻传感器阵列的一种结构示意图,在上述实施例的基础上,对编码带200和磁电阻传感器阵列300的结构做了进一步的示例性说明。参见图2,可选的,编码带200具有沿着被测设备轨道方向设置的P行编码道210,每行编码道210包括M个编码位,编码位由凹部211或凸起212形成,M个编码位构成其所在编码道210的位置编码信息,每行编码道210的位置编码信息不同,其中,1≤P≤2 M,且P为正整数。
示例性的,图2以方格表示编码位并示出了M=16,即一行编码道210包括16个编码位的编码带200结构。具体的,编码位由凹部211或凸起212形成,从图2可以看出,每行编码道210所具有的凹部211和凸起212是不同的,因此,每行编码道210的位置编码信息不同,换句话说,每个编码道210上编码信息均唯一,编码带200至少可以标识2 M个位置。
如此设置,可以将具有凹部211和凸起212的编码道210作为磁栅结构,实现磁栅的二维分布,从而大大减小磁栅的尺寸。
图2示例性的示出了磁电阻传感器阵列300具有1行16列磁电阻传感器310的结构。通过将磁电阻传感器阵列300在行方向上设置与一行编码道210的M个编码位一一对应的M个磁电阻传感器310,可以使每个磁电阻传感器310采集到对应编码位的磁场强度,从而确定每一个编码位的编码信息,最终通过M个编码位的编码信息确定其所在编码道210的位置编码信息,从而确定被测设备的位置。
继续参见图2,可选的,行方向上,每行相邻两个磁电阻传感器310的间距D1等于每行相邻两个编码位的间距D2。
行方向上,通过设置每行相邻两个磁电阻传感器310的间距D1与每行相邻两个编码位的间距D2相等,可以使磁电阻传感器310检测对应编码位的磁场强度时的结果更加准确,从而保证最终获取的位置编码信息的准确性,确保编码器性能优异。
需要说明的是,本领域技术人员可自行设定每行编码道210的编码位的数量M,本揭露实施例对此不做限定。如图2所示,沿着轨道方向AA’,相邻两行编码道210的距离为L,可以理解的,L决定了编码器的分辨率,L越小,编码器的分辨率越高。而每行编码道210中编码位的数量决定了编码道210的数量,因此,为了提高测量范围,编码位的个数越多越好。
示例性的,以高分辨率的隧道磁阻(Tunnel Magneto Resistance,TMR)传感器为例,其最小单元尺寸0.2mm,即D1=D2=0.2mm,假设磁电阻传感器阵列300由20个磁电阻传感器310横向排列构成,为了保证每行编码道210的位置编码信息唯一,最多可以设置2 20行编码道210,若相邻编码道210的间距L=1mm,则测量长度为2 20×1mm=1,048,576mm,测量分辨率为1mm;若采用30个磁电阻传感器310横向排列,则最 多可以设置2 30行编码道210,测量长度可以达到1000Km。若需要提高编码器的分辨率,减小间距L即可。
图3是图1中编码带和磁电阻传感器阵列的另一种结构示意图,示例性的,磁电阻传感器阵列300包括多行(N=3)磁电阻传感器310。如此设置,磁电阻传感器310可以同时获取相邻N行的编码道210的位置编码信息,从而保障了检测结果的准确性,提高了编码器的可靠性。
图4是图2或图3中一行编码道的凹部和凸起的结构示意图,参见图4,可选的,编码带200的编码形式为二进制码或者格雷码。
如图4所示,编码道210中凹部211的编码信息为“0”,凸起212的编码信息为“1”,该编码道210的位置编码信息由“1011 0001 0101 0001”唯一确定。采用二进制码或格雷码的编码方式,可以使编码形式更加简单,而且不需要复杂的游标计算。本领域人员在为编码带编码时,可以选择使用自然二进制码,或者格雷二进制码。自然二进制码编码方式简单,但是由于相邻数字间转换时会有多个电平的翻转,容易造成误差。而格雷二进制码中,每变一个十进制数,只有一个电平的转换,可以大大减小转换过程中的噪声,提高精度。
图5是在背磁铁的作用下,图4所示编码道周围的磁力线分布示意图。图5中,加粗箭头表示背磁铁为编码带200充磁的充磁方向,当编码道210暴露在背磁铁产生的磁场中时,由于其表面具有凹部和凸起,在凹部和凸起附近,会使磁场发生偏移。从图5可以看出,编码道210凹部处的磁力线较为稀疏,而凸起处的磁力线则较为密集,利用磁电阻传感器阵列300检测每个编码位的磁场强度,再进行数字处理,即可得到各个编码位的编码信息,从而获得对应编码道210的位置编码信息。
图6是与图5对应的一行编码道中各编码位所对应的磁场强度分布曲线图,利用有限元仿真模拟得到。从图6可以看出,各个凹部211处的编码位所对应的磁场强度较小,各个凸起212处的编码位所对应的磁场强度较大。若以1100Gs(如图中虚线所示)为界,可以将编码位1~16的值进行归类,定义小于1100Gs的为“0”,高于1100Gs的为“1”,则该曲线读出的位置编码信息为“1011 0001 0101 0001”,与图4中的位置编码信息一致,证明了该方案的正确性。
可选的,磁电阻传感器为线性磁电阻传感器,线性磁电阻传感器包括霍尔效应传感器、各向异性传感器、巨磁阻传感器和隧道磁阻传感器中的任意一种。
图7是磁电阻传感器的一种特性曲线图,其中,横坐标H表示磁场强度,纵坐标Vout表示磁传感器的输出电压。从该特性曲线可以看出,磁电阻传感器在磁场强度较大时会饱和,即磁电阻传感器的输出电压不再随外界磁场的增加而增加。因此,在使用编码器时,应对磁场进行优化,使磁电阻传感器工作于线性区H1-H2。
此外,可选的,磁电阻传感器为梯度磁电阻传感器,梯度磁电阻传感器包括霍尔效应传感器、各向异性传感器、巨磁阻传感器和隧道磁阻传感器中的任意一种。
上述线性磁电阻传感器和梯度磁电阻传感器均具有良好的磁感应能力,本领域技术人员可根据实际需要自行选择,本揭露实施例对此不做限定。
可选的,编码带200与基座100一体成型。
如此设置,可以进一步降低编码器的成本,简化制备工艺。
本揭露实施例通过在高磁导率材料上构建横向排列的M个由凹部或凸起形成的编码位,由此构成一个位置的编码道,并由若干个编码道沿着高磁导率材料的轨道方向排列以构成编码带,再采用二进制或格雷码的编码方式为其编码,以标识不同的位置。利用背磁铁为编码带充磁,在其周围形成不均匀的磁场,并通过设置M个磁电阻传感器横向排列,使其与编码位一一对应并形成磁电阻传感器阵列,用于读取对应编码道的位置编码信息。由于每一个位置的编码道具有唯一的位置编码信息,利用磁传感器阵列,即可获取被测设备在移动过程中不同位置处的位置编码信息,实现其直线位移绝对位置的测量。该直线位移绝对位置编码器具有成本低、体积小、编码方式简单、寿命长以及抗污染和抗震动等优势,具有很好的实用性。
注意,上述仅为本揭露的较佳实施例及所运用技术原理。本领域技术人员会理解,本揭露不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本揭露的保护范围。因此,虽然通过以上实施例对本揭露进行了较为详细的说明,但是本揭露不仅仅限于以上实施例,在不脱离本揭露构思的情况下,还可以包括更多其他等效实施例,而本揭露的范围由所附的权利要求范围决定。

Claims (7)

  1. 一种直线位移绝对位置编码器,其特征在于,用于检测被测设备的位移,所述直线位移绝对位置编码器包括:基座、磁电阻传感器阵列、编码带和背磁铁;
    所述编码带固定在所述基座上并沿所述被测设备的轨道方向延伸,所述编码带是一条具有标识不同位置编码信息的凹部和凸起的磁性材料块;
    所述磁电阻传感器阵列非接触地设置在所述编码带和所述背磁铁之间;
    所述背磁铁用于在所述编码带周围产生不均匀的磁场以为所述编码带充磁;
    所述磁电阻传感器阵列包括N行M列磁电阻传感器,其中N≥1,M≥1,且N和M为正整数,所述磁电阻传感器阵列用于通过检测所述编码带的磁场信息获取所述编码带的位置编码信息。
  2. 根据权利要求1所述的直线位移绝对位置编码器,其特征在于,所述编码带具有沿着被测设备轨道方向设置的P行编码道,每行所述编码道包括M个编码位,所述编码位由所述凹部或所述凸起形成,所述M个编码位构成其所在编码道的位置编码信息,每行所述编码道的所述位置编码信息不同,其中,1≤P≤2 M,且P为正整数。
  3. 根据权利要求2所述的直线位移绝对位置编码器,其特征在于,行方向上,每行相邻两个所述磁电阻传感器的间距等于每行相邻两个所述编码位的间距。
  4. 根据权利要求1所述的直线位移绝对位置编码器,其特征在于,所述磁电阻传感器为线性磁电阻传感器,所述线性磁电阻传感器包括霍尔效应传感器、各向异性传感器、巨磁阻传感器和隧道磁阻传感器中的任意一种。
  5. 根据权利要求1所述的直线位移绝对位置编码器,其特征在于,所述磁电阻传感器为梯度磁电阻传感器,所述梯度磁电阻传感器包括霍尔效应传感器、各向异性传感器、巨磁阻传感器和隧道磁阻传感器中的任意一种。
  6. 根据权利要求1所述的直线位移绝对位置编码器,其特征在于,所述编码带与所述基座一体成型。
  7. 根据权利要求1所述的直线位移绝对位置编码器,其特征在于,所述编码带的编码形式为二进制码或者格雷码。
PCT/CN2021/076130 2020-02-17 2021-02-09 一种直线位移绝对位置编码器 WO2021164632A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/904,414 US20220404171A1 (en) 2020-02-17 2021-02-09 Linear displacement absolute position encoder
JP2022549244A JP2023513826A (ja) 2020-02-17 2021-02-09 線形変位アブソリュート位置エンコーダ
EP21757028.2A EP4109048A4 (en) 2020-02-17 2021-02-09 ABSOLUTE POSITION ENCODER WITH LINEAR SHIFT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020177471.0 2020-02-17
CN202020177471.0U CN211346681U (zh) 2020-02-17 2020-02-17 一种直线位移绝对位置编码器

Publications (1)

Publication Number Publication Date
WO2021164632A1 true WO2021164632A1 (zh) 2021-08-26

Family

ID=72097998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076130 WO2021164632A1 (zh) 2020-02-17 2021-02-09 一种直线位移绝对位置编码器

Country Status (5)

Country Link
US (1) US20220404171A1 (zh)
EP (1) EP4109048A4 (zh)
JP (1) JP2023513826A (zh)
CN (1) CN211346681U (zh)
WO (1) WO2021164632A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151956A1 (en) * 2021-09-20 2023-03-22 ATS Automation Tooling Systems Inc. System and method for tracking a moving element in a conveyor system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211346681U (zh) * 2020-02-17 2020-08-25 江苏多维科技有限公司 一种直线位移绝对位置编码器
CN112660200B (zh) * 2021-03-17 2021-06-22 中国科学院地质与地球物理研究所 基于磁编码的铁路道岔位置测定装置及方法
CN116793339B (zh) * 2023-08-29 2023-11-07 深圳智荟物联技术有限公司 车辆定位方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336884A (en) * 1992-07-01 1994-08-09 Rockwell International Corporation High resolution optical hybrid absolute incremental position encoder
JP2004294362A (ja) * 2003-03-28 2004-10-21 Denso Corp 回転検出装置
CN102301205A (zh) * 2009-01-27 2011-12-28 瑞尼斯豪公司 磁性编码器装置
CN102322878A (zh) * 2011-05-28 2012-01-18 安徽大学 高精度编码器和角度传感器的制备方法
EP2561319B1 (de) * 2010-04-20 2014-02-26 Hamilton Bonaduz AG Positionserfassungsvorrichtung und verfahren zur herstellung einer markierungsanordnung für eine positionserfassungsvorrichtung
CN106104211A (zh) * 2014-03-14 2016-11-09 三菱电机株式会社 磁力式位置检测装置、磁力式位置检测方法
CN208736432U (zh) * 2018-07-20 2019-04-12 江苏多维科技有限公司 一种用于检测电梯绝对位置的磁编码器
CN211346681U (zh) * 2020-02-17 2020-08-25 江苏多维科技有限公司 一种直线位移绝对位置编码器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450009A (en) * 1990-12-28 1995-09-12 Kabushiki Kaisha Komatsu Seisakusho Magnetic sensor and structure of its mounting
DE4203073C2 (de) * 1992-02-04 1994-12-15 Heidenhain Gmbh Dr Johannes Positionsmeßeinrichtung
JP6197839B2 (ja) * 2015-08-11 2017-09-20 Tdk株式会社 回転検出装置
US10809097B2 (en) * 2017-09-29 2020-10-20 Asahi Kasei Microdevices Corporation Detector apparatus and detector system
US11022464B2 (en) * 2018-10-11 2021-06-01 Allegro Microsystems, Llc Back-biased magnetic field sensor having one or more magnetoresistance elements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336884A (en) * 1992-07-01 1994-08-09 Rockwell International Corporation High resolution optical hybrid absolute incremental position encoder
JP2004294362A (ja) * 2003-03-28 2004-10-21 Denso Corp 回転検出装置
CN102301205A (zh) * 2009-01-27 2011-12-28 瑞尼斯豪公司 磁性编码器装置
EP2561319B1 (de) * 2010-04-20 2014-02-26 Hamilton Bonaduz AG Positionserfassungsvorrichtung und verfahren zur herstellung einer markierungsanordnung für eine positionserfassungsvorrichtung
CN102322878A (zh) * 2011-05-28 2012-01-18 安徽大学 高精度编码器和角度传感器的制备方法
CN106104211A (zh) * 2014-03-14 2016-11-09 三菱电机株式会社 磁力式位置检测装置、磁力式位置检测方法
CN208736432U (zh) * 2018-07-20 2019-04-12 江苏多维科技有限公司 一种用于检测电梯绝对位置的磁编码器
CN211346681U (zh) * 2020-02-17 2020-08-25 江苏多维科技有限公司 一种直线位移绝对位置编码器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4109048A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151956A1 (en) * 2021-09-20 2023-03-22 ATS Automation Tooling Systems Inc. System and method for tracking a moving element in a conveyor system

Also Published As

Publication number Publication date
EP4109048A4 (en) 2024-03-13
US20220404171A1 (en) 2022-12-22
EP4109048A1 (en) 2022-12-28
CN211346681U (zh) 2020-08-25
JP2023513826A (ja) 2023-04-03

Similar Documents

Publication Publication Date Title
WO2021164632A1 (zh) 一种直线位移绝对位置编码器
CN208736432U (zh) 一种用于检测电梯绝对位置的磁编码器
JP4880066B2 (ja) 原点位置信号検出器
TWI548960B (zh) 線性位置測量系統
US9719805B2 (en) Position detecting device
TWI586942B (zh) Magnetic position sensor and position detection method
CN101876557B (zh) 位置检测装置及其信号处理方法
JP2015038464A (ja) 電流センサ
JP7097462B2 (ja) 絶対値符号器
US9322677B2 (en) Position detecting device
CN108369113A (zh) 位置检测装置
US20080218159A1 (en) Sensor System For Determining a Position or a Rotational Speed of an Object
JP2015087392A (ja) 位置測定装置
JPS5818117A (ja) デイジタル計測センサ
JP6387788B2 (ja) 磁気エンコーダ用磁気媒体、磁気エンコーダ、並びに磁気媒体の製造方法
CN201503273U (zh) 位置检测装置及其信号处理装置
CN115597477A (zh) 一种用于磁栅尺的单场扫描装置及扫描方法
CN205718823U (zh) 位移测量传感器
JP4775705B2 (ja) 磁気式アブソリュートエンコーダー
JP2007303891A (ja) 磁気センサ
CN213179847U (zh) 一种基于永磁磁通测量的位移传感装置
EP4001853A1 (en) Magnetic encoder and method of detecting translational and/or rotational displacement
CN108291821A (zh) 位置检测装置
CN111492206A (zh) 基于磁阻效应的用于距离或角度测量的电磁测量系统
JP6226091B2 (ja) 電流センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549244

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021757028

Country of ref document: EP

Effective date: 20220919