JP2007255949A - Flaw inspection device - Google Patents

Flaw inspection device Download PDF

Info

Publication number
JP2007255949A
JP2007255949A JP2006077825A JP2006077825A JP2007255949A JP 2007255949 A JP2007255949 A JP 2007255949A JP 2006077825 A JP2006077825 A JP 2006077825A JP 2006077825 A JP2006077825 A JP 2006077825A JP 2007255949 A JP2007255949 A JP 2007255949A
Authority
JP
Japan
Prior art keywords
light
measurement
photodetector
light shielding
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006077825A
Other languages
Japanese (ja)
Other versions
JP4996116B2 (en
Inventor
Toyoki Kanzaki
豊樹 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2006077825A priority Critical patent/JP4996116B2/en
Publication of JP2007255949A publication Critical patent/JP2007255949A/en
Application granted granted Critical
Publication of JP4996116B2 publication Critical patent/JP4996116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw inspection device capable of detecting the flaw on a measuring surface with high accuracy at a high speed, while having a simple and inexpensive constitution. <P>SOLUTION: The flaw inspection device is equipped with a light source 21 for irradiating a measuring target S, which has a pattern surface Sc parallel to measuring surfaces Sa and Sb, with a measuring light L1, an optical scanning part 23 for scanning the measuring light L1 with respect to the measuring target S, a photodetector 32, arranged at a position that avoids the detection lights L2 reflected from the measuring surfaces Sa and Sb and the diffracted light M1 and/or the scattered light M2 from the pattern surface Sc, when the measuring target S is irradiated with the measuring light L1 and a shading cylinder 4 for at least preventing the stray light M that has been diffracted and/or scattered by the pattern surface Sc and arrives at the photodetector 32 to be detected. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光散乱を利用したレティクル/マスクなどの欠陥検査装置に関するものである。   The present invention relates to a defect inspection apparatus such as a reticle / mask using light scattering.

従来、簡単な構成で且つ受光光学系を大型化することなく、正確に異物検査を行えるようにした異物検査装置が知られている。   2. Description of the Related Art Conventionally, there is known a foreign substance inspection apparatus that can perform a foreign substance inspection with a simple structure and without increasing the size of a light receiving optical system.

具体的にこの種の異物検査装置は、例えば、光ビームを射出するレーザ光源と、光ビームを走査偏光するガルバノスキャナミラーと、走査レンズと、測定対象(例えば、レティクル)を載置するステージと、このステージをX方向およびY方向に移動する駆動装置とを具備して成る。そして、レーザ光源より射出された光ビームを、ガルバノスキャナミラーにより走査偏向した後、走査レンズに向かわせ、走査レンズから射出した光ビームが測定対象であるレチクルの表面を走査線上をX方向に走査させる一方、ガルバノスキャナミラーにより光ビームを走査線上でX方向に走査するのと同期して、或る一定の速度でステージをY方向に移動させることにより、測定対象の表面全面の異物検査を行えるようにしてある(例えば、特許文献1参照)。   Specifically, this kind of foreign matter inspection apparatus includes, for example, a laser light source that emits a light beam, a galvano scanner mirror that scans and polarizes the light beam, a scanning lens, and a stage on which a measurement target (for example, a reticle) is placed. And a driving device for moving the stage in the X and Y directions. The light beam emitted from the laser light source is scanned and deflected by the galvano scanner mirror and then directed to the scanning lens. The light beam emitted from the scanning lens scans the surface of the reticle to be measured in the X direction on the scanning line. On the other hand, by moving the stage in the Y direction at a certain speed in synchronization with the scanning of the light beam in the X direction on the scanning line by the galvano scanner mirror, it is possible to inspect the entire surface of the measurement target surface. (For example, refer to Patent Document 1).

また、迷光の影響を防止して正確に異物検査を行うために、受光レンズと検査面との間又は受光レンズと光検出器との間に、少なくとも1個のスリットを受光レンズの光軸と直交する面内に配置した異物検査装置が知られている(例えば、特許文献2参照)。
特開平7−229844 特開平8−15168
In addition, in order to prevent the influence of stray light and accurately inspect foreign matter, at least one slit is provided between the light receiving lens and the inspection surface or between the light receiving lens and the light detector and the optical axis of the light receiving lens. There is known a foreign substance inspection apparatus arranged in a plane perpendicular to the plane (for example, see Patent Document 2).
JP-A-7-229844 JP-A-8-15168

しかしながら、従来の構成、特に特許文献1の構成では、パターンからの回折光等は、非常に強度が強く、例えば、受光光学系内で反射、散乱したものが光検出器に入射すると誤検出の原因となり、光検出器で精度良く測定表面上の異物を検出(判別)できないといった問題点を有している。   However, in the conventional configuration, particularly in the configuration of Patent Document 1, the intensity of diffracted light from the pattern is very strong. For example, if the light reflected or scattered in the light receiving optical system enters the photodetector, it is erroneously detected. This causes a problem that foreign matter on the measurement surface cannot be detected (discriminated) with high accuracy by the photodetector.

一方、特許文献2の構成では、受光レンズと検査面又は受光レンズと光検出器との間で、如何にしてスリットを固定しておくか、といったスリットの配置上の問題があり、適宜位置に配置できない場合には迷光の影響が残ってしまう。たとえスリットを適宜位置に配置できたとしても、外部から進入していくる光に対しては何ら対策がなされておらず、この外部進入光の影響を受けて精度良く異物を検出することができない。   On the other hand, in the configuration of Patent Document 2, there is a problem in the arrangement of the slits such as how to fix the slits between the light receiving lens and the inspection surface or between the light receiving lens and the photodetector. If it cannot be arranged, the effect of stray light remains. Even if the slit can be arranged at an appropriate position, no countermeasure is taken against the light entering from the outside, and the foreign matter cannot be detected with high accuracy due to the influence of the external entering light.

本発明は、このような課題に着目してなされたものであって、主たる目的は、簡単で安価な構成でありながらも高精度で高速に測定表面上の欠陥を検出可能な、優れた欠陥検査装置を提供することにある。   The present invention has been made paying attention to such problems, and its main purpose is to provide an excellent defect capable of detecting a defect on a measurement surface with high accuracy and high speed while having a simple and inexpensive configuration. It is to provide an inspection device.

すなわち本発明に係る欠陥検査装置は、測定表面及びこの測定表面に平行なパターン面を有する測定対象に対して測定光を照射する光源と、前記測定光を前記測定対象に対して走査する光走査部と、前記光走査部で走査された測定光を前記測定対象に照射した際に、前記測定表面から回折及び/または散乱する光を検出光として検出し且つ前記パターン面からの回折光及び/または散乱光が焦点を結ばない位置に配して成る光検出器と、前記測定対象と前記光検出器との間に配して成り、前記パターン面で回折及び/または散乱した迷光が、前記光検出器に到達して検出されることを少なくとも防止する遮光筒とを具備して成ることを特徴とする。   That is, the defect inspection apparatus according to the present invention includes a light source for irradiating a measurement surface having a measurement surface and a pattern surface parallel to the measurement surface, and a light scanning for scanning the measurement light with respect to the measurement target. And light that is diffracted and / or scattered from the measurement surface is detected as detection light when the measurement light scanned by the optical scanning unit is irradiated onto the measurement object, and diffracted light from the pattern surface and / or Alternatively, a photodetector formed by dispersing the scattered light at a position where it is not in focus, and a stray light diffracted and / or scattered on the pattern surface, which is disposed between the measurement object and the photodetector. It is characterized by comprising a light-shielding cylinder that at least prevents the light from reaching the photodetector.

ここで、「検出光」とは、測定光を測定対象に照射した際に、その測定表面に、欠陥がある場合にはその欠陥によって反射、回折または散乱などされた光を含む概念である。また、「欠陥」とは、例えば測定対象に付着したゴミ等の「測定対象とは別体のもの」を指すのは無論のこと、測定対象の表面にあるキズ等の「測定対象自体にあるもの」をも含む概念である。   Here, the “detection light” is a concept including light reflected, diffracted, or scattered by a defect when the measurement surface has a defect when the measurement object is irradiated with the measurement light. In addition, “defect” means, for example, “separate object from the measurement object” such as dust attached to the measurement object, and “defect” is in the measurement object itself such as a scratch on the surface of the measurement object. It is a concept that includes “things”.

また、「光検出器を、パターン面からの回折光及び/または散乱光が焦点を結ばない位置に配する」とは、これらの入射光量を弱めるように光検出器を配することを含む。   Further, “disposing the photodetector at a position where the diffracted light and / or scattered light from the pattern surface does not focus” includes disposing the photodetector so as to weaken the amount of incident light.

また、「迷光」には、パターン面で回折等し直接光検出器へ向けて射出される光だけでは無く、パターン面で回折等により発生し、パターン面と測定対象表面との間で多重回折等し、光検出器に向けて射出される光等が含まれる。   “Stray light” is not only light that is diffracted on the pattern surface and emitted directly to the photodetector, but also generated by diffraction on the pattern surface, and multiple diffraction between the pattern surface and the surface to be measured. And the like and the like emitted toward the photodetector.

このようなものであれば、光検出器を、パターン面からの回折光及び/または散乱光が焦点を結ばない位置に配しているため、パターンからの回折光及び/または散乱光の影響を回避して、該光検出器で精度良く測定表面上の欠陥を検出することが可能となる。加えて、前記測定対象と前記光検出器との間に配した遮光筒で、前記パターン面で回折及び/または散乱した迷光および外部から進入してくる光の影響を好適に排除して、精度良く欠陥を検出することができる。   In such a case, since the photodetector is arranged at a position where the diffracted light and / or scattered light from the pattern surface does not focus, the influence of the diffracted light and / or scattered light from the pattern is reduced. By avoiding this, it becomes possible to detect defects on the measurement surface with high accuracy by the photodetector. In addition, a light-shielding tube disposed between the measurement object and the light detector suitably eliminates the influence of stray light diffracted and / or scattered on the pattern surface and light entering from the outside, thereby improving accuracy. Defects can be detected well.

このように、光検出器を、パターン面からの回折光及び/または散乱光が焦点を結ばない位置に配し且つ測定対象と光検出器との間に遮光筒を配置するといった簡単で安価な構成でありながらも、特にどこから来るか予測困難な多重回折/散乱によるものも含めて、迷光や外部進入光が光検出器に到達することを好適に防止して、光検出器では検出光のみを好適に検出することができる。したがって、パターン面からの回折光及び/または散乱光や迷光や外部進入光による誤検出を可及的に防止し、精度の良く且つ高速に測定表面上の欠陥を検出することが可能となる。   As described above, the light detector is arranged at a position where the diffracted light and / or scattered light from the pattern surface is not focused, and a light shielding cylinder is disposed between the measurement target and the light detector. Although it is configured, it is preferable to prevent stray light and external incoming light from reaching the photodetector, including those due to multiple diffraction / scattering that are difficult to predict where they will come from. Can be suitably detected. Therefore, erroneous detection due to diffracted light and / or scattered light from the pattern surface, stray light, or external incident light is prevented as much as possible, and defects on the measurement surface can be detected with high accuracy and at high speed.

すなわち、簡単で安価な構成でありながらも高精度で高速に測定表面上の欠陥を検出可能な、優れた欠陥検査装置を提供することができる。   That is, it is possible to provide an excellent defect inspection apparatus capable of detecting defects on the measurement surface with high accuracy and high speed while having a simple and inexpensive configuration.

なお、簡単な構成でありながら、迷光が光検出器に到達することを、効果的に防止するには、前記遮光筒の少なくとも一部が、前記測定対象近傍に位置付けられていることが好ましい。   In order to effectively prevent stray light from reaching the photodetector while having a simple configuration, it is preferable that at least a part of the light shielding tube is positioned in the vicinity of the measurement target.

測定対象と光検出器との間から進入してくる光を、効果的に遮光するには、前記遮光筒が、前記測定対象近傍から前記光検出器にかけて連続的に伸びるものであることが望ましい。   In order to effectively shield light entering between the measurement object and the photodetector, it is desirable that the light shielding cylinder extends continuously from the vicinity of the measurement object to the photodetector. .

前記遮光筒が、前記測定対象側で先窄み形状を有しているのであれば、測定対象に対して遮光筒を近接配置し易くなり、測定対象と遮光筒との間から進入してくる無用な光を好適に遮光することができる。   If the light shielding cylinder has a tapered shape on the measurement object side, the light shielding cylinder can be easily disposed close to the measurement object, and enters from between the measurement object and the light shielding cylinder. Unnecessary light can be suitably shielded.

本発明の遮光筒の望ましい態様としては、この遮光筒が、遮光側壁で囲まれた内部空間を有する中空の遮光筒本体と、前記遮光側壁から前記遮光筒本体の中心に向けて前記検出光の進行を遮らない位置まで突出させた1または複数の遮光板とを具備して成るものが挙げられる。   As a desirable mode of the light shielding cylinder of the present invention, the light shielding cylinder includes a hollow light shielding cylinder body having an internal space surrounded by a light shielding side wall, and the detection light from the light shielding side wall toward the center of the light shielding cylinder body. One having a light shielding plate or a plurality of light shielding plates protruding to a position where the progress is not blocked is mentioned.

以上説明したように本発明の欠陥検査装置によれば、光検出器を、パターン面からの回折光及び/または散乱光が焦点を結ばない位置に配しているため、パターンからの回折光及び/または散乱光の影響を回避して、該光検出器で精度良く測定表面上の欠陥を検出することが可能となる。加えて、前記測定対象と前記光検出器との間に配した遮光筒で、前記パターン面で回折及び/または散乱した迷光および外部から進入してくる光の影響を好適に排除して、精度良く欠陥を検出することができる。   As described above, according to the defect inspection apparatus of the present invention, the photodetector is arranged at a position where the diffracted light and / or scattered light from the pattern surface does not focus, so that the diffracted light from the pattern and It is possible to avoid the influence of scattered light and detect defects on the measurement surface with high accuracy by the photodetector. In addition, a light-shielding tube disposed between the measurement object and the light detector suitably eliminates the influence of stray light diffracted and / or scattered on the pattern surface and light entering from the outside, thereby improving accuracy. Defects can be detected well.

このように、光検出器を、パターン面からの回折光及び/または散乱光が焦点を結ばない位置に配し且つ測定対象と光検出器との間に遮光筒を配置するといった簡単で安価な構成でありながらも、特にどこから来るか予測困難な多重回折/散乱によるものも含めて、迷光や外部進入光が光検出器に到達することを好適に防止して、光検出器では検出光のみを好適に検出することができる。したがって、パターン面からの回折光及び/または散乱光や迷光や外部進入光による誤検出を可及的に防止し、精度の良く且つ高速に測定表面上の欠陥を検出することが可能となる。   As described above, the light detector is arranged at a position where the diffracted light and / or scattered light from the pattern surface is not focused, and a light shielding cylinder is disposed between the measurement target and the light detector. Although it is configured, it is preferable to prevent stray light and external incoming light from reaching the photodetector, including those due to multiple diffraction / scattering that are difficult to predict where they will come from. Can be suitably detected. Therefore, erroneous detection due to diffracted light and / or scattered light from the pattern surface, stray light, or external incident light is prevented as much as possible, and defects on the measurement surface can be detected with high accuracy and at high speed.

すなわち、簡単で安価な構成でありながらも高精度で高速に測定表面上の欠陥を検出可能な、優れた欠陥検査装置を提供することができる。   That is, it is possible to provide an excellent defect inspection apparatus capable of detecting defects on the measurement surface with high accuracy and high speed while having a simple and inexpensive configuration.

以下、本発明の一実施形態について、図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態にかかる欠陥検査装置Aは、図1、図2、図3に示すように、ガラス面Sa及びペリクル面Sb(ガラス面Sa及び/またはペリクル面Sbが本発明の「測定表面」に相当)を有するとともにこれら各面Sa、Sbに挟まれながら平行を成すパターン面Scを有するサンプルS(本発明の「測定対象」に相当)を載置するステージ1と、このステージ1に載置させたサンプルSに対して測定光L1を走査しながら照射する光照射系2と、光照射系2で走査された測定光L1がサンプルSに照射された際にそのサンプルS表面から回折及び/または散乱する光を検出光L2として検出し且つ前記パターン面Scからの回折光M1及び/または散乱光M2を避ける位置(焦点を結ばない位置)に配して成る光検出系3と、光照射系2と光検出系3との間に設けて成り且つ前記パターン面Scで回折及び/または散乱した迷光Mや外部から進入する外部進入光Nが、光検出系3に到達して検出されることを少なくとも防止する遮光筒4と、を具備して成る。以下、各部を具体的に説明するが、本実施形態では、ガラス面Saおよびペリクル面Sbのうち、ガラス面Saを被検面として説明を進める。   As shown in FIGS. 1, 2, and 3, the defect inspection apparatus A according to the present embodiment has a glass surface Sa and a pellicle surface Sb (the glass surface Sa and / or the pellicle surface Sb are the “measurement surface” of the present invention. And a stage 1 on which a sample S (corresponding to “measuring object” of the present invention) having a parallel pattern surface Sc sandwiched between the surfaces Sa and Sb is placed. The light irradiation system 2 that irradiates the sample S while scanning the measurement light L1, and when the measurement light L1 scanned by the light irradiation system 2 is irradiated to the sample S, diffraction and / or Alternatively, a light detection system 3 configured to detect scattered light as detection light L2 and to be disposed at a position (a position where the focal point is not focused) that avoids diffracted light M1 and / or scattered light M2 from the pattern surface Sc, and light irradiation System 2 and At least preventing stray light M, which is provided between the detection system 3 and diffracted and / or scattered on the pattern surface Sc, and external approach light N entering from the outside, from reaching the light detection system 3 and being detected. And a light-shielding cylinder 4. Hereinafter, although each part is demonstrated concretely, in this embodiment, description is advanced by making glass surface Sa into a test surface among glass surface Sa and pellicle surface Sb.

ステージ1は、X軸、Y軸、Z軸に移動可能なものであって、測定光L1の走査方向と垂直な方向に一定速度で移動することで、後述するレーザビームの走査と合わせて、該ステージ1に載置したサンプルSの被検面Sa全面を測定することができる。   The stage 1 is movable in the X axis, the Y axis, and the Z axis, and moves at a constant speed in a direction perpendicular to the scanning direction of the measurement light L1, so that it is combined with the laser beam scanning described later, The entire test surface Sa of the sample S placed on the stage 1 can be measured.

光照射系2は、図1に示すように、測定光L1であるレーザビームを出射するレーザ光源21(例えば、HeNeレーザ光源)と、このレーザ光源21から出射された測定光L1を適宜拡大するビームエキスパンダ22と、このビームエキスパンダ22で拡大された測定光L1を走査して被検面Sa上に焦点を結ばせる走査ミラー23a(例えば、ガルバノミラー)および走査レンズ23b(例えば、fθレンズ)から成る光走査部23とを具備するものである。   As shown in FIG. 1, the light irradiation system 2 appropriately expands a laser light source 21 (for example, a HeNe laser light source) that emits a laser beam that is the measurement light L1 and the measurement light L1 emitted from the laser light source 21. A beam expander 22, a scanning mirror 23a (for example, a galvano mirror) that scans the measurement light L1 magnified by the beam expander 22 and focuses it on the surface Sa, and a scanning lens 23b (for example, an fθ lens) And an optical scanning unit 23 composed of

そして、本実施形態では、測定光L1を、被検面Saに対して10〜40度の角度で入射し(入射角で50〜80度)、光走査部23を用いて被検面Sa全面を走査するように構成している。   In this embodiment, the measurement light L1 is incident on the surface Sa to be measured at an angle of 10 to 40 degrees (incidence angle is 50 to 80 degrees), and the entire surface of the surface Sa to be measured using the optical scanning unit 23. Are configured to scan.

ここで、測定光L1を被検面Saから10〜40度の角度で入射しているのは、以下の理由による。   Here, the measurement light L1 is incident at an angle of 10 to 40 degrees from the test surface Sa for the following reason.

測定光L1は、被検面Saに対して入射光として入射し、被検面Saを透過した後、パターン面Scに到達する(ガラスは透明であるため。なおペリクルも透明である。)。そこで、パターン面Scから回折光M1/散乱光M2の誤検出を避けるため、測定光L1が被検面Saに到達する位置と、測定光L1がパターン面Scに到達する位置の距離をできるだけ長くする必要がある。このため、測定光L1は、被検面Saに対して低い角度で入射することが望ましい。しかし、低すぎると被検面Saの位置(Z方向位置)が変化することで、測定光L1/光検出系3の焦点位置をはずれる可能性があるとともに、実際に測定する位置もずれる。このため、測定光L1を、被検面Saに対して10〜40度の角度で入射することが望ましいからである。   The measurement light L1 enters the test surface Sa as incident light, passes through the test surface Sa, and then reaches the pattern surface Sc (since glass is transparent, the pellicle is also transparent). Therefore, in order to avoid erroneous detection of the diffracted light M1 / scattered light M2 from the pattern surface Sc, the distance between the position where the measurement light L1 reaches the test surface Sa and the position where the measurement light L1 reaches the pattern surface Sc is made as long as possible. There is a need to. For this reason, it is desirable that the measurement light L1 is incident at a low angle with respect to the test surface Sa. However, if it is too low, the position of the test surface Sa (Z-direction position) changes, so that the focus position of the measurement light L1 / photodetection system 3 may deviate, and the actual measurement position is also shifted. Therefore, it is desirable that the measurement light L1 is incident at an angle of 10 to 40 degrees with respect to the test surface Sa.

光検出系3は、図3のYZ平面内に光軸を有し、被検面Saに略垂直な位置から、入射角と等しい反射角の角度未満となる位置、好ましくは、測定光L1に対して、散乱角が90度となる位置までの間に配置したものであって、集光レンズ系31と、光検出器32と、これら集光レンズ系31と光検出器32との間に配されるスリット33とを具備するものである。ここで、「散乱角」とは、散乱体を中心に、プローブ光(測定光L1)進行方向から光検出器32光軸への角度をいう。図3における「〜90度」はその補角である。   The light detection system 3 has an optical axis in the YZ plane of FIG. 3 and is located at a position that is less than the angle of reflection equal to the incident angle from a position that is substantially perpendicular to the surface Sa to be measured, preferably the measurement light L1. On the other hand, it is arranged up to a position where the scattering angle is 90 degrees, and is between the condensing lens system 31, the photodetector 32, and the condensing lens system 31 and the photodetector 32. The slit 33 is provided. Here, the “scattering angle” refers to an angle from the traveling direction of the probe light (measurement light L1) to the optical axis of the photodetector 32 with the scatterer as the center. “˜90 degrees” in FIG. 3 is the complementary angle.

集光レンズ系31は、1または複数のレンズを組み合わせて成り、検出光が光検出器32に焦点を結ぶよう構成されている。レンズの種類や組み合わせ方は実施態様に応じて適宜でよい。   The condensing lens system 31 is configured by combining one or a plurality of lenses, and is configured such that the detection light is focused on the photodetector 32. The type and combination of lenses may be appropriate depending on the embodiment.

光検出器32には、PMT(Photo Multiplier Tube;光電子増倍管)、あるいは、ラインセンサーなどを用いることができる。そして、光検出器32を、PMTとする場合は、図3のようにスリット33と被検面Sa上走査線とが、光学的に共役な位置となるように配置し、ラインセンサーとする場合には、ラインセンサーと被検面Sa上走査線が光学的に共役な位置となるように配置する。   As the photodetector 32, a PMT (Photo Multiplier Tube) or a line sensor can be used. When the photodetector 32 is a PMT, as shown in FIG. 3, the slit 33 and the scanning line on the test surface Sa are arranged so as to be optically conjugate to form a line sensor. Are arranged so that the line sensor and the scanning line on the surface Sa to be tested are in an optically conjugate position.

また、本実施形態では、光検出器32を、測定光L1の走査線に垂直な方向、且つ、走査線の中央付近(被検面Saの中央付近)に配置し、且つ、光検出器32の光軸が、概ね散乱角90度方向となる位置から被検面Saに垂直な位置までの間に配置し、走査線全体を1つの光検出器32で見込む光学配置としている。   In the present embodiment, the photodetector 32 is arranged in the direction perpendicular to the scanning line of the measuring light L1 and in the vicinity of the center of the scanning line (near the center of the surface Sa), and the photodetector 32. Are arranged between a position where the optical axis is substantially in the direction of the scattering angle of 90 degrees and a position perpendicular to the test surface Sa, and an optical arrangement in which the entire scanning line is viewed by one photodetector 32 is employed.

スリット33は、板状部材の厚み方向に貫通させた横長略矩形状を成すものである。そして、本実施形態では、その長手方向と、後述する遮光筒4の先端開口部411の長手方向とが略一致するように、光検出器32の光の入射側直前に設け、前記集光レンズ系31による集光光の一部を光検出器32に導くように構成されている。   The slit 33 has a horizontally long substantially rectangular shape penetrating in the thickness direction of the plate-like member. In the present embodiment, the condenser lens is provided immediately before the light incident side of the light detector 32 so that the longitudinal direction thereof substantially coincides with the longitudinal direction of the distal end opening 411 of the light shielding cylinder 4 described later. A part of the light collected by the system 31 is guided to the photodetector 32.

遮光筒4は、図5の破線で示すようなパターン面Scからの回折光M1が、光検出系3の集光レンズに進入しないように遮光する役割を有するものであって、遮光側壁410で囲まれた横断面略矩形状の内部空間を有する中空の遮光筒本体41と、前記遮光側壁410の内壁面から前記遮光筒本体41の中心に向けて前記検出光L2の進行を遮らない位置まで突出させた1または複数の遮光板42とを具備して成る。   The light shielding cylinder 4 has a role of shielding the diffracted light M1 from the pattern surface Sc as shown by a broken line in FIG. 5 so as not to enter the condenser lens of the light detection system 3. A hollow light shielding cylinder body 41 having an enclosed internal space with a substantially rectangular cross-section and a position where the detection light L2 is not obstructed from the inner wall surface of the light shielding side wall 410 toward the center of the light shielding cylinder body 41. One or a plurality of light-shielding plates 42 are provided.

そして、本実施形態では、この遮光筒4が、サンプルS側で先窄み形状を有するとともにサンプルS近傍に臨ませた先端開口部411を有し、サンプルS近傍から前記光検出系3にかけて連続的に伸びる形状を有するものとしている。なお、遮光筒4は、前記光検出器系3の光入射側に一体的に支持されている。   In this embodiment, the light-shielding cylinder 4 has a tapered shape on the sample S side and has a tip opening 411 that faces the vicinity of the sample S, and is continuous from the vicinity of the sample S to the light detection system 3. It has a shape that stretches. The light shielding cylinder 4 is integrally supported on the light incident side of the photodetector system 3.

遮光板42の配置場所などについて具体的に説明する。   The location of the light shielding plate 42 will be specifically described.

まず、サンプルSのパターン面Scは、スリット33などと共役な位置にないため、これらの光が直接スリット33を通り抜けて光検出器32に入射することはない。しかし、回折光M1は、検出対象である欠陥の散乱光M2に比べると、非常に強度が強く、集光レンズ系31内で反射、散乱したものがスリット33を通り抜けただけで、誤検出の原因となる。   First, since the pattern surface Sc of the sample S is not in a conjugate position with the slit 33 or the like, these lights do not directly pass through the slit 33 and enter the photodetector 32. However, the diffracted light M1 is much stronger than the scattered light M2 of the defect to be detected, and the light reflected and scattered in the condensing lens system 31 only passes through the slit 33, and is erroneously detected. Cause.

これを防ぐため、遮光筒4の遮光側壁410には、図3、図4、図5に示すように、光検出系3が見込む領域を避けて、先端部に遮光板42aを配置したものとなっている。そして、本実施形態では、さらにその実効性を期すべく、遮光筒4の内部に遮光板42を複数配置している。具体的には、図5に示すように、パターン面Scからの迷光Mを遮光し、検出光L2を通す間隙を設けた遮光板42aと、この遮光板42aの上方にその間隙を通り抜けた迷光Mを遮光する遮光板42bとを配置するに加え、遮光板42c〜42eを適宜間隔で配置している。   In order to prevent this, on the light shielding side wall 410 of the light shielding cylinder 4, as shown in FIGS. 3, 4, and 5, a light shielding plate 42a is disposed at the tip portion avoiding the region expected by the light detection system 3. It has become. In the present embodiment, a plurality of light shielding plates 42 are arranged inside the light shielding cylinder 4 in order to further increase the effectiveness. Specifically, as shown in FIG. 5, the light shielding plate 42a that shields the stray light M from the pattern surface Sc and provides a gap through which the detection light L2 passes, and the stray light that passes through the gap above the light shielding plate 42a. In addition to arranging the light shielding plate 42b that shields M, the light shielding plates 42c to 42e are arranged at appropriate intervals.

このうち遮光板42aは、パターン面Scからの迷光Mが、この遮光板42aでさらに反射/散乱した場合に、これが被検面Saで表面反射して、光検出器32に入射しないように、一定の傾きを持たせている。この傾きαは、パターン面Scからの回折光M1が遮光板42aのサンプルS側の端部にちょうどあたる場合の角度より小さく設定している(例えば、被検面Saから60度の角度で遮光板42aの間隙を通り抜けられる場合、遮光板42aを被検面Saから55度とする。)。これは、遮光板42aを通り抜けた光が、遮光板42aの内側(図の上側)に到達すると、光検出系3が見込む範囲に近いところで、散乱が起きるため、誤検出の原因となるためである。   Among these, the light shielding plate 42a is configured so that, when the stray light M from the pattern surface Sc is further reflected / scattered by the light shielding plate 42a, it is reflected from the surface Sa to be examined and does not enter the photodetector 32. It has a certain inclination. This inclination α is set to be smaller than the angle at which the diffracted light M1 from the pattern surface Sc just hits the end of the light shielding plate 42a on the sample S side (for example, the light is shielded at an angle of 60 degrees from the test surface Sa). When the light can pass through the gap between the plates 42a, the light shielding plate 42a is set to 55 degrees from the test surface Sa). This is because when light passing through the light shielding plate 42a reaches the inner side (upper side in the drawing) of the light shielding plate 42a, scattering occurs near the range expected by the light detection system 3, which may cause erroneous detection. is there.

次に、このように構成した欠陥検査装置Aの動作について、図を参照しながら説明する。   Next, the operation of the defect inspection apparatus A configured as described above will be described with reference to the drawings.

まず、レーザ光源21から出射されたレーザビームを、ビームエキスパンダ22で適宜拡大し、光走査部23の走査ミラー23aおよび走査レンズ23bを介して、被検面Sa上に焦点を結ばせる(図4参照)。   First, the laser beam emitted from the laser light source 21 is appropriately expanded by the beam expander 22 and focused on the surface Sa to be measured via the scanning mirror 23a and the scanning lens 23b of the optical scanning unit 23 (FIG. 4).

被検面Saの欠陥の無い場所では、測定光L1は、光検出器32で検出光L2として検出されない。   The measurement light L1 is not detected as the detection light L2 by the photodetector 32 in a place where there is no defect on the test surface Sa.

一方、被検面Saの欠陥が在る場所では、測定光L1は、その欠陥によって反射、回折または散乱し、集光レンズ系31、及びスリット33を介して光検出器32で検出光L2として検出される。ただし、反射・回折・散乱度合い等によっては、遮光筒4の遮光板42によって遮られ光検出器32では検出されないものもある(図4のL3)。   On the other hand, in the place where the defect of the test surface Sa exists, the measurement light L1 is reflected, diffracted or scattered by the defect, and is detected as the detection light L2 by the photodetector 32 through the condenser lens system 31 and the slit 33. Detected. However, depending on the degree of reflection / diffraction / scattering, etc., there are some which are blocked by the light blocking plate 42 of the light blocking cylinder 4 and are not detected by the light detector 32 (L3 in FIG. 4).

また、測定光L1のうち、被検面Saを透過してパターン面Scに到達した光は、そのパターン面Scで回折または散乱され、また、パターン面Scとガラス面Saとの間で多重回折または多重散乱し迷光Mとなる(図5参照)。   Of the measurement light L1, light that has passed through the test surface Sa and reached the pattern surface Sc is diffracted or scattered by the pattern surface Sc, and multiple diffraction is performed between the pattern surface Sc and the glass surface Sa. Or it is multiply scattered and becomes stray light M (see FIG. 5).

このようにして生じた迷光M(多重回折等による迷光Mb)が、光検出系3に向けて進行しようとしても、図5に示すように、遮光筒4が、サンプルS側で先窄み形状を有するとともにサンプルS近傍に臨ませた先端開口部411を有しているため、まず、この部分でその進行を防ぐことができる。また、先端開口部411から、進入できた迷光M(直接の迷光Ma)があったとしても、次に、遮光筒本体41内部に配した遮光板42でその進行を防ぐことができる。このように、複数段階で、迷光Mの光検出系3への進行を防止することができる。   Even if the stray light M generated in this way (stray light Mb due to multiple diffraction or the like) is going to travel toward the light detection system 3, the light-shielding tube 4 has a tapered shape on the sample S side as shown in FIG. In addition, since the tip opening 411 facing the vicinity of the sample S is provided, it is possible to prevent the progress of this portion first. Further, even if there is stray light M (direct stray light Ma) that can enter from the front end opening 411, the light shielding plate 42 disposed inside the light shielding cylinder main body 41 can prevent the progression thereof. In this way, the stray light M can be prevented from progressing to the light detection system 3 in a plurality of stages.

さらに、サンプルS近傍から前記光検出系3にかけて連続的に伸びる形状を有するものとしているため、無用な光(外部進入光N)が、外部から進入してくることもない。   Furthermore, since it has a shape that continuously extends from the vicinity of the sample S to the light detection system 3, unnecessary light (external incoming light N) does not enter from the outside.

したがって、以上のように構成した本実施形態に係る欠陥検査装置Aによれば、光検出器32を、パターン面Sc面からの回折光M1及び/または散乱光M2が焦点を結ばない位置に配しているため、それら光M1、M2の入射光量が減少され、パターン面Scからの回折光M1及び/または散乱光M2の影響を回避して、該光検出器32で精度良く測定表面である被検面Sa上の欠陥を検出することが可能となる。加えて、前記サンプルSと前記光検出器32との間に配した遮光筒4で、前記パターン面Sc面で回折及び/または散乱した迷光Mおよび外部進入光Nの影響を好適に排除して、精度良く欠陥を検出することができる。   Therefore, according to the defect inspection apparatus A according to the present embodiment configured as described above, the photodetector 32 is arranged at a position where the diffracted light M1 and / or scattered light M2 from the pattern surface Sc does not focus. Therefore, the amount of incident light of these lights M1 and M2 is reduced, the influence of the diffracted light M1 and / or scattered light M2 from the pattern surface Sc is avoided, and the light detector 32 is a measurement surface with high accuracy. It becomes possible to detect a defect on the test surface Sa. In addition, the light shielding cylinder 4 disposed between the sample S and the photodetector 32 preferably eliminates the influence of stray light M and external incident light N diffracted and / or scattered on the pattern surface Sc. , Defects can be detected with high accuracy.

このように、光検出器32を、パターン面Scからの回折光M1及び/または散乱光M2が焦点を結ばない位置に配し且つサンプルSと光検出系3との間に遮光筒4を配置するといった簡単で安価な構成でありながらも、特にどこから来るか予測困難な多重回折/散乱によるものも含めて、迷光Mや外部進入光Nが光検出系3の光検出器32に到達することを好適に防止して、光検出器32では検出光L2のみを好適に検出することができる。したがって、パターン面Scからの回折光M1及び/または散乱光M2や迷光Mや外部進入光Nによる誤検出を可及的に防止し、精度の良く且つ高速に被検面Sa上の異物を検出することが可能となる。   In this way, the photodetector 32 is arranged at a position where the diffracted light M1 and / or scattered light M2 from the pattern surface Sc is not focused, and the light shielding cylinder 4 is arranged between the sample S and the light detection system 3. The stray light M and the external incoming light N reach the light detector 32 of the light detection system 3, including those caused by multiple diffraction / scattering, which are difficult to predict where they come from, especially with a simple and inexpensive configuration. The light detector 32 can preferably detect only the detection light L2. Therefore, erroneous detection by the diffracted light M1 and / or scattered light M2, stray light M, and external approach light N from the pattern surface Sc is prevented as much as possible, and foreign matter on the surface Sa to be detected is detected with high accuracy and high speed. It becomes possible to do.

また、光走査系からの走査線全体について、1つの検出光学系でまかなえるので、2以上の光検出器を用いたときと比べ、走査線の両端で光検出器との距離が大きく異なり、光学倍率の違い、見込む立体角の違いから、大きく感度が異なったり、その他の迷光の影響が大きくなるといった問題を解消できるとともに、光検出器の調整に時間を要したり多くの部品を必要とするなどといった費用の問題をも、効果的に解消することができる。   Further, since the entire scanning line from the optical scanning system can be covered by one detection optical system, the distance from the optical detector at the both ends of the scanning line is greatly different from that when two or more optical detectors are used. Solves problems such as large differences in sensitivity and other effects of stray light due to differences in magnification and solid angle to be expected, and it takes time to adjust the photodetector and requires many parts. Cost problems such as these can be effectively resolved.

すなわち、簡単で安価な構成でありながらも高精度で高速に被検面Sa上の欠陥を検出可能な、優れた欠陥検査装置Aを提供することができる。   That is, it is possible to provide an excellent defect inspection apparatus A that can detect a defect on the surface Sa to be detected with high accuracy and high speed while having a simple and inexpensive configuration.

遮光筒4の先端開口部411を、サンプルS近傍に位置付けているため、簡単な構成でありながら、迷光Mが光検出器32に到達することを、効果的に防止することができる。   Since the tip opening 411 of the light shielding tube 4 is positioned in the vicinity of the sample S, it is possible to effectively prevent the stray light M from reaching the photodetector 32 with a simple configuration.

遮光筒4を、サンプルS近傍から光検出系3にかけて連続的に伸びるように構成しているため、サンプルSと光検出系3との間から進入してくる外部進入光Nを、効果的に遮光することができる。   Since the light-shielding cylinder 4 is configured to continuously extend from the vicinity of the sample S to the light detection system 3, the external approach light N entering between the sample S and the light detection system 3 is effectively prevented. Can be shielded from light.

遮光筒4を、サンプルS側で先窄み形状を有するものとしているため、サンプルSに対して遮光筒4を近接配置し易くなり、サンプルSと遮光筒4との間から進入してくる無用な光を好適に遮光することができる。   Since the light-shielding cylinder 4 has a tapered shape on the sample S side, the light-shielding cylinder 4 can be easily placed close to the sample S, and the light entering from between the sample S and the light-shielding cylinder 4 is unnecessary. Light can be suitably shielded.

また、複数の遮光板42を、遮光筒本体41の内部にそれぞれ設けているため、遮光板42の取付位置が例えば外力を受けて不意にずれてしまうといった不具合を防止でき、当該欠陥検出装置が安定した欠陥検出性能を発揮するのに資する。   In addition, since the plurality of light shielding plates 42 are respectively provided inside the light shielding cylinder main body 41, it is possible to prevent a problem that the mounting position of the light shielding plate 42 is unintentionally shifted due to, for example, an external force. Contributes to exhibiting stable defect detection performance.

なお、本発明は前記実施形態に限られるものではない。   The present invention is not limited to the above embodiment.

例えば、ステージ1が、X、Yステージであって、光検出系3などがZステージに搭載された構成とすることもできる。   For example, the stage 1 may be an X and Y stage, and the light detection system 3 and the like may be mounted on the Z stage.

また、ステージ1が固定で、光検出系3などがX、Y、Zステージに搭載された構成とすることもできる。   Alternatively, the stage 1 may be fixed and the light detection system 3 and the like may be mounted on the X, Y, and Z stages.

また、上述の実施形態では、ガラス面Saを被検面としているが、図6に示すように、ペリクル面Sbを被検面とすることもできる。この場合には、パターン面Scに到達する位置が、光検出系3が見込む位置からより遠くなり、各光の到達点は図6に示す関係となる。   In the above-described embodiment, the glass surface Sa is the test surface. However, as shown in FIG. 6, the pellicle surface Sb can be the test surface. In this case, the position reaching the pattern surface Sc is farther from the position expected by the light detection system 3, and the arrival point of each light has the relationship shown in FIG.

また、遮光筒4の形状や構成も本実施形態のものに限られるものではなく、実施態様に応じて適宜変更可能である。   Further, the shape and configuration of the light shielding cylinder 4 are not limited to those of the present embodiment, and can be appropriately changed according to the embodiment.

また、欠陥検査装置を、2以上の光検出器を用いて構成することを妨げない。   Further, it does not prevent the defect inspection apparatus from being configured using two or more photodetectors.

例えば、図7に示すように、光検出器K1、K2(以下、「光検出器K」と総称する)を、パターン面Scからの回折光M1及び/または散乱光M2を避ける位置(例えば、次の具体的な位置で、上述した焦点を結ばない位置にそれぞれ配することができる。例えば、図7のXY平面内で、X軸に平行な方向を0度とするとき、0、45、90、135度の方向をもつそれぞれのパターンからの回折光/散乱光は、概ね図8に示す斜線部以外の回折光/散乱光領域Rxにあらわれる。   For example, as shown in FIG. 7, the photodetectors K1 and K2 (hereinafter collectively referred to as “photodetector K”) are positioned to avoid the diffracted light M1 and / or scattered light M2 from the pattern surface Sc (for example, The following specific positions can be arranged at the above-mentioned positions where the focal point is not formed, for example, 0, 45, when the direction parallel to the X axis is 0 degree in the XY plane of FIG. Diffracted light / scattered light from the respective patterns having directions of 90 and 135 degrees generally appears in the diffracted light / scattered light region Rx other than the hatched portion shown in FIG.

また、このような0、45、90、135度のパターンは、測定対象S´上に多く存在するものである。   In addition, such patterns of 0, 45, 90, and 135 degrees exist on the measurement target S ′.

そこで、例えば、図7に示す光検出系のように、この回折光/散乱光領域Rxを避けた斜線領域Ra、Rb、Rcに、走査線JJと光検出系の光軸とが直交しないように、光検出器Kを配することで、パターンからの回折光等の影響を回避して、該光検出器Kで精度良く測定表面上の欠陥を検出することが可能となる。   Therefore, for example, as in the light detection system shown in FIG. 7, the scanning lines JJ and the optical axis of the light detection system are not orthogonal to the hatched areas Ra, Rb, Rc avoiding the diffracted light / scattered light area Rx. Further, by arranging the photodetector K, it is possible to avoid the influence of diffracted light from the pattern and to detect defects on the measurement surface with high accuracy by the photodetector K.

加えて0、45、90、135度以外の例外パターン(例えば、30度)が存在した場合や、予測できないような多重回折及び/又は多重散乱による迷光に対しても、遮光筒4が、例外パターンからの回折光等や迷光が光検出器Kに到達することを防止するので、例外パターンからの回折光等や迷光による誤検出を好適に防止することができる。   In addition, when there is an exceptional pattern other than 0, 45, 90, and 135 degrees (for example, 30 degrees), or for stray light due to multiple diffraction and / or multiple scattering that cannot be predicted, the light shielding cylinder 4 is exceptional. Since diffracted light or the like from the pattern or stray light is prevented from reaching the photodetector K, erroneous detection due to diffracted light or the like from the exceptional pattern or stray light can be suitably prevented.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明の一実施形態である欠陥検査装置の構成を概略的に示す全体概略図。1 is an overall schematic view schematically showing a configuration of a defect inspection apparatus according to an embodiment of the present invention. 同実施形態に係るサンプルの側面図(ガラス面を上にしたとき)。The side view of the sample which concerns on the same embodiment (when a glass surface is turned up). 同実施形態に係るサンプル、遮光筒および光検出系の配置関係を示す図。The figure which shows the arrangement | positioning relationship of the sample which concerns on the same embodiment, a light shielding cylinder, and a photon detection system. 同実施形態に係る測定光、検出光および迷光の一例を示す図。The figure which shows an example of the measurement light based on the embodiment, detection light, and stray light. 同実施形態に係る遮光筒の作用を説明するための図。The figure for demonstrating the effect | action of the light shielding cylinder which concerns on the same embodiment. 本発明の他の実施形態におけるサンプルの側面図(ペリクル面を上にしたとき)。The side view of a sample in another embodiment of the present invention (when the pellicle surface is up). 本発明の他の実施形態における異物検査装置の構成を概略的に示す全体概略図。The whole schematic diagram which shows schematically the structure of the foreign material inspection apparatus in other embodiment of this invention. 光検出器を配置可能な領域を説明するための図。The figure for demonstrating the area | region which can arrange | position a photodetector.

符号の説明Explanation of symbols

A・・・・・欠陥検査装置
L1・・・・測定光
L2・・・・検出光
M・・・・・迷光
M1・・・・回折光
M2・・・・散乱光
S・・・・・測定対象(サンプル)
Sa・・・・測定表面(ガラス面)
Sb・・・・測定表面(ペリクル面)
Sc・・・・パターン面
4・・・・・遮光筒
21・・・・光源(レーザ光源)
23・・・・光走査部
32・・・・光検出器
41・・・・遮光筒本体
42・・・・遮光板
410・・・遮光側壁
A ... Defect inspection device L1 ... Measurement light L2 ... Detection light M ... Stray light M1 ... Diffracted light M2 ... Scattered light S ... Measurement target (sample)
Sa ... Measurement surface (glass surface)
Sb ... Measurement surface (pellicle surface)
Sc ··· Pattern surface 4 ··· Shading cylinder 21 ··· Light source (laser light source)
23... Optical scanning section 32... Photodetector 41...

Claims (5)

測定表面及びこの測定表面に平行なパターン面を有する測定対象に対して測定光を照射する光源と、
前記測定光を前記測定対象に対して走査する光走査部と、
前記光走査部で走査された測定光を前記測定対象に照射した際に、前記測定表面から回折及び/または散乱する光を検出光として検出し且つ前記パターン面からの回折光及び/または散乱光が焦点を結ばない位置に配して成る光検出器と、
前記測定対象と前記光検出器との間に配して成り、前記パターン面で回折及び/または散乱した迷光が、前記光検出器に到達して検出されることを少なくとも防止する遮光筒とを具備して成ることを特徴とする欠陥検査装置。
A light source for irradiating measurement light to a measurement surface and a measurement object having a pattern surface parallel to the measurement surface;
An optical scanning unit that scans the measurement light with respect to the measurement object;
When the measurement light scanned by the light scanning unit is irradiated onto the measurement object, light diffracted and / or scattered from the measurement surface is detected as detection light, and diffracted light and / or scattered light from the pattern surface A photodetector that is placed at a position where is not in focus,
A light shielding tube that is arranged between the measurement object and the photodetector and at least prevents stray light diffracted and / or scattered on the pattern surface from reaching the photodetector and being detected. A defect inspection apparatus comprising the defect inspection apparatus.
前記遮光筒の少なくとも一部が、前記測定対象近傍に位置付けられていることを特徴とする請求項1記載の欠陥検査装置。   The defect inspection apparatus according to claim 1, wherein at least a part of the light shielding cylinder is positioned in the vicinity of the measurement target. 前記遮光筒が、前記測定対象近傍から前記光検出器にかけて連続的に伸びるものであることを特徴とする請求項2記載の欠陥検査装置。   The defect inspection apparatus according to claim 2, wherein the light shielding cylinder extends continuously from the vicinity of the measurement object to the photodetector. 前記遮光筒が、前記測定対象側で先窄み形状を有していることを特徴とする請求項1乃至3いずれか記載の欠陥検査装置。   The defect inspection apparatus according to claim 1, wherein the light shielding cylinder has a tapered shape on the measurement target side. 前記遮光筒が、遮光側壁で囲まれた内部空間を有する中空の遮光筒本体と、前記遮光側壁から前記遮光筒本体の中心に向けて前記検出光の進行を遮らない位置まで突出させた1または複数の遮光板とを具備して成ることを特徴とする請求項1乃至4いずれか記載の欠陥検査装置。
The light shielding tube has a hollow light shielding tube main body having an internal space surrounded by a light shielding side wall, and is protruded from the light shielding side wall toward the center of the light shielding tube main body to a position where the progress of the detection light is not blocked. The defect inspection apparatus according to claim 1, further comprising a plurality of light shielding plates.
JP2006077825A 2006-03-20 2006-03-20 Defect inspection equipment Expired - Fee Related JP4996116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077825A JP4996116B2 (en) 2006-03-20 2006-03-20 Defect inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077825A JP4996116B2 (en) 2006-03-20 2006-03-20 Defect inspection equipment

Publications (2)

Publication Number Publication Date
JP2007255949A true JP2007255949A (en) 2007-10-04
JP4996116B2 JP4996116B2 (en) 2012-08-08

Family

ID=38630359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077825A Expired - Fee Related JP4996116B2 (en) 2006-03-20 2006-03-20 Defect inspection equipment

Country Status (1)

Country Link
JP (1) JP4996116B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051759A (en) * 2018-09-21 2020-04-02 キヤノン株式会社 Foreign matter inspection device, exposure device, and article production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332943A (en) * 1992-05-29 1993-12-17 Canon Inc Surface state inspection device
JPH0627027A (en) * 1992-07-08 1994-02-04 Nikon Corp Foreign matter inspecting apparatus
JPH06273225A (en) * 1993-03-17 1994-09-30 Mitsubishi Electric Corp Cold shield
JPH07229789A (en) * 1994-02-17 1995-08-29 Nikon Corp Infrared ray detecting device
JP2003007746A (en) * 2001-06-18 2003-01-10 Sharp Corp Method and equipment for inspecting semiconductor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332943A (en) * 1992-05-29 1993-12-17 Canon Inc Surface state inspection device
JPH0627027A (en) * 1992-07-08 1994-02-04 Nikon Corp Foreign matter inspecting apparatus
JPH06273225A (en) * 1993-03-17 1994-09-30 Mitsubishi Electric Corp Cold shield
JPH07229789A (en) * 1994-02-17 1995-08-29 Nikon Corp Infrared ray detecting device
JP2003007746A (en) * 2001-06-18 2003-01-10 Sharp Corp Method and equipment for inspecting semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051759A (en) * 2018-09-21 2020-04-02 キヤノン株式会社 Foreign matter inspection device, exposure device, and article production method
JP7292842B2 (en) 2018-09-21 2023-06-19 キヤノン株式会社 Foreign Matter Inspection Apparatus, Exposure Apparatus, and Article Manufacturing Method

Also Published As

Publication number Publication date
JP4996116B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
KR100861604B1 (en) Optical inspection method and apparatus utilizing a variable angle design
JP4760564B2 (en) Pattern shape defect detection method and detection apparatus
JP5268061B2 (en) Board inspection equipment
WO2007100615A3 (en) High-sensitivity surface detection system and method
JP2010112803A5 (en)
US4330205A (en) Optical apparatus for measuring the size and location of optical in an article
RU2008144482A (en) DEVICE AND METHOD FOR OPTICAL STUDY OF VALUABLE DOCUMENTS
JP5592108B2 (en) Interference confocal microscope and light source imaging method
US6809324B1 (en) Scanning device, especially for detecting fluorescent light
JP4519832B2 (en) Defect inspection equipment
JP5356804B2 (en) Raman scattered light measurement system
JP4536337B2 (en) Surface inspection method and surface inspection apparatus
JP4996116B2 (en) Defect inspection equipment
JP5472780B2 (en) Hole shape measuring apparatus and optical system
JP2008268041A (en) Defect inspection device
JP2017150872A (en) Defect inspection device
JP2008096187A (en) Edge-part flaw inspecting device
US20230060883A1 (en) Defect inspection apparatus and defect inspection method
JP2010236920A (en) Particle measuring device
JP3106521B2 (en) Optical inspection equipment for transparent substrates
JP6129014B2 (en) Fluorescence detection apparatus and fluorescence detection method
JP2011058953A (en) Detector, optical apparatus with the same
WO2024090109A1 (en) Inspection device, inspection method, and inspection program
JP2016102776A (en) Inspection device and method for inspection
JP2006313107A (en) Inspection device, inspection method, and method of manufacturing pattern substrate using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4996116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees