JP2020051759A - Foreign matter inspection device, exposure device, and article production method - Google Patents

Foreign matter inspection device, exposure device, and article production method Download PDF

Info

Publication number
JP2020051759A
JP2020051759A JP2018178081A JP2018178081A JP2020051759A JP 2020051759 A JP2020051759 A JP 2020051759A JP 2018178081 A JP2018178081 A JP 2018178081A JP 2018178081 A JP2018178081 A JP 2018178081A JP 2020051759 A JP2020051759 A JP 2020051759A
Authority
JP
Japan
Prior art keywords
light
unit
foreign matter
inspection
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018178081A
Other languages
Japanese (ja)
Other versions
JP7292842B2 (en
JP2020051759A5 (en
Inventor
浩平 前田
Kohei Maeda
浩平 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018178081A priority Critical patent/JP7292842B2/en
Priority to TW108130577A priority patent/TW202012917A/en
Priority to KR1020190110470A priority patent/KR102582877B1/en
Priority to CN201910873185.XA priority patent/CN110941138B/en
Publication of JP2020051759A publication Critical patent/JP2020051759A/en
Publication of JP2020051759A5 publication Critical patent/JP2020051759A5/ja
Application granted granted Critical
Publication of JP7292842B2 publication Critical patent/JP7292842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95676Masks, reticles, shadow masks

Abstract

To provide a foreign matter inspection device which is robust to a decrease in flatness of an object to be inspected.SOLUTION: A foreign matter inspection device which inspects foreign matter on a surface to be inspected of an object comprises: a light projecting section which projects inspection light onto the surface to be inspected; and a light receiving section which receives scattered light from the foreign matter caused by the inspection light being projected by the light projecting section. The light projecting section and the light receiving section are disposed so that a point where an optical axis of the light projecting section and an optical axis of the light receiving section cross is positioned out of a range of a possible height of the surface to be inspected.SELECTED DRAWING: Figure 2

Description

本発明は、異物検査装置、露光装置、および物品製造方法に関する。   The present invention relates to a foreign matter inspection device, an exposure device, and an article manufacturing method.

近年、露光装置に用いられるマスクの大型化によりマスクが自重で撓み、像性能が悪化することが懸念されている。そこで、マスクの上側を平面ガラスで塞いで密閉室を構成し、マスク下面の撓みを検出し、その検出結果に基づいて密閉室の圧力を調整することによってマスクの撓みを補正する露光装置が知られている。   In recent years, there is a concern that a mask used in an exposure apparatus may be bent by its own weight due to an increase in the size of the mask and deteriorate image performance. Therefore, an exposure apparatus that forms a closed chamber by closing the upper side of the mask with flat glass, detects the bending of the lower surface of the mask, and adjusts the pressure of the closed chamber based on the detection result to correct the bending of the mask is known. Have been.

また、物体の被検面上の異物を検査する異物検査装置が知られている(例えば、特許文献1)。上記のような構成を有する露光装置に関して異物検査を行う場合、マスクのみならず上記の平面ガラスも検査の対象となりうる。   Further, there is known a foreign matter inspection apparatus for inspecting foreign matter on a surface to be inspected of an object (for example, Patent Document 1). When performing a foreign substance inspection on the exposure apparatus having the above-described configuration, not only the mask but also the flat glass described above can be inspected.

特開2012−032252号公報JP 2012-032252 A

しかし、この平面ガラスはマスクよりも薄く形成されるのが一般的であり、そうすると平面ガラスの撓み量はマスクのそれよりも大きいことが想定される。そのような検査対象物の大きな撓みは、異物の有無の判定の精度に影響を与える。   However, the flat glass is generally formed to be thinner than the mask, and it is assumed that the amount of deflection of the flat glass is larger than that of the mask. Such a large deflection of the inspection object affects the accuracy of the determination of the presence or absence of a foreign substance.

本発明は、例えば、検査対象物の平坦度の低下に対してロバストな異物検査装置を提供することを目的とする。   An object of the present invention is to provide, for example, a foreign matter inspection device that is robust against a decrease in flatness of an inspection object.

本発明の一側面によれば、物体の被検面上の異物を検査する異物検査装置であって、前記被検面に検査光を投光する投光部と、前記投光部により前記検査光が投光されることによって生じる前記異物からの散乱光を受光する受光部とを有し、前記投光部の光軸と前記受光部の光軸とが交わる点が前記被検面がとりうる高さ範囲からずれた位置になるように前記投光部と前記受光部が配置されていることを特徴とする異物検査装置が提供される。   According to one aspect of the present invention, there is provided a foreign matter inspection device for inspecting foreign matter on a surface to be inspected of an object, wherein the light projection unit that emits inspection light onto the surface to be inspected, and the inspection is performed by the light projection unit. A light receiving unit that receives scattered light from the foreign matter generated by the light being projected, and the point where the optical axis of the light projecting unit and the optical axis of the light receiving unit intersect is the surface to be measured. A foreign matter inspection apparatus is provided, wherein the light projecting unit and the light receiving unit are arranged so as to be shifted from a height range.

本発明によれば、例えば、検査対象物の平坦度の低下に対してロバストな異物検査装置を提供することができる。   According to the present invention, for example, it is possible to provide a foreign matter inspection apparatus that is robust against a decrease in flatness of an inspection object.

実施形態に係る露光装置の構成例を示す図。FIG. 1 is a diagram illustrating a configuration example of an exposure apparatus according to an embodiment. 露光装置内に設けられる異物検査装置の構成例を示す図。FIG. 2 is a diagram illustrating a configuration example of a foreign substance inspection apparatus provided in the exposure apparatus. 露光装置の外部に設けられる異物検査装置の構成例を示す図。FIG. 2 is a diagram illustrating a configuration example of a foreign substance inspection apparatus provided outside the exposure apparatus. 図3の異物検査装置の動作例を示す図。FIG. 4 is a diagram showing an operation example of the foreign matter inspection device of FIG. 3. 被検面の撓みがない場合の異物検査の例を説明する図。FIG. 6 is a diagram illustrating an example of a foreign substance inspection when the surface to be inspected has no bending. 被検面の撓みがない場合の異物に対する信号強度のばらつきを説明する図。FIG. 7 is a diagram illustrating a variation in signal intensity with respect to a foreign substance in a case where a test surface has no bending. 被検面に撓みがある場合に照明領域がずれる現象を説明する図。FIG. 4 is a diagram illustrating a phenomenon in which an illumination area shifts when a surface to be inspected is bent. 被検面の撓みがある場合の異物に対する信号強度のばらつきを説明する図。FIG. 4 is a diagram for explaining a variation in signal strength with respect to a foreign substance when a test surface is bent. 実施形態における投光部と受光部の配置の例を説明する図。FIG. 4 is a diagram illustrating an example of an arrangement of a light projecting unit and a light receiving unit in the embodiment. 図10の投光部と受光部の配置における、異物に対する信号強度のばらつきを説明する図。FIG. 11 is a diagram illustrating a variation in signal intensity with respect to foreign matter in the arrangement of the light projecting unit and the light receiving unit in FIG. 10. 投光部と受光部との相対位置の調整する例を説明する図。FIG. 4 is a diagram illustrating an example of adjusting a relative position between a light emitting unit and a light receiving unit. 投光部と受光部との相対位置の調整する例を説明する図。FIG. 4 is a diagram illustrating an example of adjusting a relative position between a light emitting unit and a light receiving unit. 平行平板ガラスを調整する例を説明する図。The figure explaining the example which adjusts a parallel plate glass. 遮光部材の配置例を示す図。The figure which shows the example of arrangement | positioning of a light shielding member. 遮光部材の配置例を示す図。The figure which shows the example of arrangement | positioning of a light shielding member. 遮光部材の配置例を示す図。The figure which shows the example of arrangement | positioning of a light shielding member. 遮光部材の配置例を示す図。The figure which shows the example of arrangement | positioning of a light shielding member.

以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の実施形態は本発明の実施の具体例を示すにすぎないものであり、本発明は以下の実施形態に限定されるものではない。また、以下の実施形態の中で説明されている特徴の組み合わせの全てが本発明の課題解決のために必須のものであるとは限らない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the following embodiments merely show specific examples of implementation of the present invention, and the present invention is not limited to the following embodiments. In addition, not all combinations of features described in the following embodiments are necessarily essential for solving the problem of the present invention.

[露光装置]
図1に、実施形態に係る露光装置の構成を示す。露光装置は、マスクのパターンを基板上に投影して基板を露光する装置である。マスク5は、パターン面を下にしてマスクホルダ6によって真空吸着により保持されている。マスク5の上方には露光光を射出する光源1が設けられ、光源1とマスク5との間には、照明光学系2が設けられる。マスク5の露光光が透過した側には投影光学系11を挟んで露光の対象である基板12が配置されている。光源1から射出された露光光は、照明光学系2によってマスク5に照射される。マスク5に形成されたパターンの像は、露光光により投影光学系11を通じて基板12上に投影される。マスクホルダ6の下側にはマスク5の撓みを検出する検出系21が設けられる。
[Exposure equipment]
FIG. 1 shows a configuration of an exposure apparatus according to the embodiment. The exposure apparatus is an apparatus that exposes a substrate by projecting a mask pattern onto the substrate. The mask 5 is held by the mask holder 6 with the pattern surface down by vacuum suction. A light source 1 for emitting exposure light is provided above the mask 5, and an illumination optical system 2 is provided between the light source 1 and the mask 5. On the side of the mask 5 through which the exposure light is transmitted, a substrate 12 to be exposed is disposed with the projection optical system 11 interposed therebetween. Exposure light emitted from the light source 1 is applied to the mask 5 by the illumination optical system 2. The image of the pattern formed on the mask 5 is projected onto the substrate 12 through the projection optical system 11 by exposure light. A detection system 21 for detecting the deflection of the mask 5 is provided below the mask holder 6.

検出系21は、斜入射タイプのフォーカスセンサの構成、機能を備えている。発光ダイオードなどの光源10から投影レンズ(不図示)を介してマスク5のパターン面に対して斜めから検出光が投光される。その反射光を受光レンズ(不図示)を介してフォトダイオードなどのディテクタ9で検出することにより、マスク5の撓みを検出する。   The detection system 21 has the configuration and function of an oblique incidence type focus sensor. Detection light is emitted obliquely to the pattern surface of the mask 5 from a light source 10 such as a light emitting diode via a projection lens (not shown). The deflection of the mask 5 is detected by detecting the reflected light with a detector 9 such as a photodiode via a light receiving lens (not shown).

ディテクタ9の検出信号出力側は、演算部8に接続されている。演算部8の出力側には気圧制御部7が接続されており、この気圧制御部7はパイプ4を介してマスク5の撓みを補正する気密室13に接続されている。気密室13は、下面側がマスク5で、上面側が平面ガラス3(ガラス板)で塞がれた密閉箱状となっている。平面ガラス3はマスク5の上にマスク5と離間して配置され、マスク5の撓みを補正するための空間である気密室13を規定するために使用される。平面ガラス3は、平面板であるため露光光に影響を与えない。平面ガラス3とマスク5とで挟まれた空間は気密室13とされ、この気密室内の圧力を気圧制御部7で制御することでマスク5の撓みを制御する。気圧制御部7は、演算部8から入力される気圧制御量に基づいて、気密室13の気圧を制御する。このように、検出系21によりマスク5の撓みが検出され、演算部8により撓み量とこの撓み量を補正する気圧制御量の算出が行われ、気圧制御部7により気密室13の気圧が制御される。このため、マスク5の自重によって発生する撓みに起因するパターンの横ずれや像面の湾曲、マスク5の熱的変形に起因するディストーションや像面湾曲などが軽減されて、良好にマスク5のパターンの投影を行うことが可能となる。   The detection signal output side of the detector 9 is connected to the calculation unit 8. The output side of the arithmetic unit 8 is connected to an air pressure control unit 7. The air pressure control unit 7 is connected via a pipe 4 to an airtight chamber 13 for correcting the deflection of the mask 5. The airtight chamber 13 has a closed box shape in which the lower surface is closed by the mask 5 and the upper surface is closed by the flat glass 3 (glass plate). The flat glass 3 is disposed on the mask 5 at a distance from the mask 5 and is used to define an airtight chamber 13 which is a space for correcting the deflection of the mask 5. Since the flat glass 3 is a flat plate, it does not affect the exposure light. The space between the flat glass 3 and the mask 5 is an airtight chamber 13, and the pressure in the airtight chamber is controlled by the air pressure control unit 7 to control the deflection of the mask 5. The air pressure control unit 7 controls the air pressure of the airtight chamber 13 based on the air pressure control amount input from the calculation unit 8. As described above, the deflection of the mask 5 is detected by the detection system 21, the amount of deflection and the atmospheric pressure control amount for correcting the amount of deflection are calculated by the calculation unit 8, and the air pressure of the airtight chamber 13 is controlled by the air pressure control unit 7. Is done. For this reason, the lateral displacement of the pattern and the curvature of the image surface due to the deflection caused by the weight of the mask 5 and the distortion and the curvature of the image surface due to the thermal deformation of the mask 5 are reduced, and the pattern of the mask 5 can be satisfactorily reduced. Projection can be performed.

[異物検査装置]
平面ガラス3の上下面(特に上面)、マスク5の上面(非パターン面)、マスク5のパターンを保護するペリクル27に異物が付着すると、露光時の像性能が低下する可能性がある。そのため、異物検査装置を用いてこれらの箇所から異物を検出し、異物が検出された場合にはそれを除去する必要がある。
[Foreign matter inspection device]
If foreign matter adheres to the upper and lower surfaces (particularly the upper surface) of the flat glass 3, the upper surface (non-pattern surface) of the mask 5, and the pellicle 27 that protects the pattern of the mask 5, image performance during exposure may be reduced. Therefore, it is necessary to detect a foreign substance from these places using a foreign substance inspection device, and to remove the foreign substance when it is detected.

本実施形態において、異物検査装置は、露光装置内に設けられてもよいし、露光装置の外部装置として設けられていてもよい。例えば、図2に示すように、平面ガラス3の異物検査は、露光装置内の異物検査装置50によって行うことができる。異物検査装置50は、露光装置内に配置された光透過性の板状部材の表面に付着した異物を検査する。光透過性の板状部材とは、例えば平面ガラス3である。平面ガラス3上の異物検査は、露光用のマスクステージ14上にマスク5と平面ガラス3が図2のように配置されている状態において実施される。   In the present embodiment, the foreign matter inspection device may be provided in the exposure device, or may be provided as an external device of the exposure device. For example, as shown in FIG. 2, the foreign substance inspection of the flat glass 3 can be performed by the foreign substance inspection device 50 in the exposure apparatus. The foreign matter inspection device 50 inspects foreign matter adhering to the surface of the light-transmitting plate-shaped member arranged in the exposure apparatus. The light-transmitting plate-shaped member is, for example, the flat glass 3. The foreign substance inspection on the flat glass 3 is performed in a state where the mask 5 and the flat glass 3 are arranged on the mask stage 14 for exposure as shown in FIG.

異物検査装置50は、物体の被検面に検査光(照明光)を投光する投光部25と、投光部により検査光が投光されることによって生じる異物からの散乱光を受光する受光部26とを含む。投光部25は、発光ダイオード(LED)などの光源16と、光源16から出射される出射光が通過する照明レンズ17と、照明レンズ17を経て被検面へ至る出射光の光路を変更する光路変更部材である平行平板ガラス24とを含みうる。光源16は、例えば、露光装置の光源1(図1)の光と同じ波長の光を発するLEDでありうる。近年、マスクの大型化が進んでおり、それに対処するため、光源16は、異物検査においても検査駆動方向(図2中のY方向)と直交する方向(X方向)にLEDが多列配置されたラインLEDであってもよい。また、投光部25は、投光部25のY方向の位置を調整する機構である調整部51を含みうる。   The foreign matter inspection device 50 receives a light projecting unit 25 that emits inspection light (illumination light) on a surface to be inspected of an object, and receives scattered light from a foreign matter generated by projecting the inspection light by the light projecting unit. And a light receiving unit 26. The light projecting unit 25 changes a light source 16 such as a light emitting diode (LED), an illumination lens 17 through which emitted light emitted from the light source 16 passes, and an optical path of emitted light that reaches the surface to be measured via the illumination lens 17. And a parallel plate glass 24 that is an optical path changing member. The light source 16 can be, for example, an LED that emits light of the same wavelength as the light of the light source 1 (FIG. 1) of the exposure apparatus. In recent years, the size of the mask has been increased, and in order to cope with this, in the light source 16, even in the foreign substance inspection, LEDs are arranged in multiple rows in a direction (X direction) orthogonal to the inspection driving direction (Y direction in FIG. 2). Line LED may be used. Further, the light projecting unit 25 may include an adjusting unit 51 which is a mechanism for adjusting the position of the light projecting unit 25 in the Y direction.

受光部26は、受光レンズ18と、受光レンズ18を通過した光を電気信号に変換するセンサ部19とを含みうる。受光レンズ18は、投光部25の光源16にラインLEDが用いられる場合、それに応じてX方向に伸びるアレイレンズでありうる。また、受光部26は、受光部26のY方向の位置を調整する機構である調整部52を含みうる。   The light receiving unit 26 can include the light receiving lens 18 and the sensor unit 19 that converts light passing through the light receiving lens 18 into an electric signal. When a line LED is used as the light source 16 of the light projecting unit 25, the light receiving lens 18 may be an array lens extending in the X direction accordingly. Further, the light receiving unit 26 may include an adjusting unit 52 that is a mechanism for adjusting the position of the light receiving unit 26 in the Y direction.

投光部25は、物体の被検面である平面ガラス3上に斜めから検査光を投光する。受光部26は、検査光が投光されることによって生じる異物からの散乱光を受光する。実施形態において、光源16からの検査光の入射角度は、被検面の法線に対して斜めに設定される。また、受光部26の光軸(被検面被検面→受光レンズ18→センサ部19)は、被検面の法線に対して斜めに設定される。   The light projecting unit 25 emits inspection light obliquely onto the flat glass 3 which is the surface to be inspected of the object. The light receiving unit 26 receives scattered light from a foreign substance generated by the emission of the inspection light. In the embodiment, the incident angle of the inspection light from the light source 16 is set obliquely with respect to the normal to the surface to be inspected. Further, the optical axis of the light receiving unit 26 (the surface to be measured → the light receiving lens 18 → the sensor unit 19) is set obliquely with respect to the normal line of the surface to be measured.

このように異物検査装置50は、平面ガラス3の上側に配置され、平面ガラス3の上面の異物を検査する。上記したように、マスク5と平面ガラス3による密閉空間となっており、平面ガラス3の下面に異物の付着する確率は低いため、平面ガラス3の下面は検査対象から除外されうる。異物検査装置50は、平面ガラス3の検査の対象とする領域全てにおいて異物検査を実施するため、マスクステージ14をY方向に駆動させながら検査を行うことができる。   As described above, the foreign matter inspection device 50 is arranged above the flat glass 3 and inspects foreign matter on the upper surface of the flat glass 3. As described above, since the closed space is formed by the mask 5 and the flat glass 3 and the probability that foreign matter adheres to the lower surface of the flat glass 3 is low, the lower surface of the flat glass 3 can be excluded from the inspection target. The foreign substance inspection device 50 performs the foreign substance inspection on all the target areas of the flat glass 3 to be inspected, so that the inspection can be performed while the mask stage 14 is driven in the Y direction.

図3は、露光装置の外部に設けられる異物検査装置501の構成例を示す図である。図3の例においては、マスク5はマスクホルダ28(検査ステージ)によって保持され、マスク5の上の平面ガラス3が被検面とされている。第1検査部70は、図2の異物検査装置50と同様の構成を有している。また、第1検査部70は、第1検査部70のZ方向の位置を調整する機構である調整部53を含みうる。平面ガラス3ではなくマスク5の表面を被検面とする場合には、マスク5の上から平面ガラス3(および密閉空間を形成する他の部材)を退避させ、調整部53により第1検査部70のZ方向の位置を調整することにより、検査を行うことができる。   FIG. 3 is a diagram illustrating a configuration example of a foreign substance inspection apparatus 501 provided outside the exposure apparatus. In the example of FIG. 3, the mask 5 is held by a mask holder 28 (inspection stage), and the flat glass 3 on the mask 5 is set as a surface to be inspected. The first inspection unit 70 has a configuration similar to that of the foreign substance inspection device 50 of FIG. The first inspection unit 70 may include an adjustment unit 53 that is a mechanism for adjusting the position of the first inspection unit 70 in the Z direction. When the surface of the mask 5 is used as the surface to be inspected instead of the flat glass 3, the flat glass 3 (and other members forming the closed space) is retracted from above the mask 5, and the first inspection unit is adjusted by the adjustment unit 53. By adjusting the position of 70 in the Z direction, the inspection can be performed.

また、異物検査装置501は、光透過性の板状部材としてのペリクル27に対する異物検査を行うための第2検査部80を有する。第2検査部80は、投光部56と受光部57を含む。投光部56および受光部57はそれぞれ、図2に示した異物検査装置50における投光部25および受光部26と同様の構成でありうる。なお、投光部56は、投光部56のY方向の位置を調整する機構である調整部58を含み、受光部57は、受光部57のY方向の位置を調整する機構である調整部59を含む。また、第2検査部80は、第2検査部80のZ方向の位置を調整する機構である調整部60を含みうる。制御部Cは、第1検査部70および第2検査部80に設けられているそれぞれの調整部を制御する。また、制御部Cは、例えばCPUおよびメモリを含むプロセッサを有し、受光部26,受光部57の受光結果を処理して異物の有無の判定を行う処理部としても機能する(なお、図2においてもこのような制御部を有するが、図2ではそれらの図示を省略している。)。   Further, the foreign substance inspection device 501 has a second inspection unit 80 for performing a foreign substance inspection on the pellicle 27 as a light-transmitting plate-shaped member. The second inspection unit 80 includes a light emitting unit 56 and a light receiving unit 57. The light projecting unit 56 and the light receiving unit 57 may have the same configuration as the light projecting unit 25 and the light receiving unit 26 in the foreign matter inspection device 50 shown in FIG. 2, respectively. The light projecting unit 56 includes an adjusting unit 58 that adjusts the position of the light projecting unit 56 in the Y direction. The light receiving unit 57 is an adjusting unit that adjusts the position of the light receiving unit 57 in the Y direction. 59. Further, the second inspection unit 80 may include an adjustment unit 60 that is a mechanism for adjusting the position of the second inspection unit 80 in the Z direction. The control unit C controls the respective adjustment units provided in the first inspection unit 70 and the second inspection unit 80. Further, the control unit C has, for example, a processor including a CPU and a memory, and also functions as a processing unit that processes the light reception results of the light receiving units 26 and 57 to determine the presence or absence of a foreign substance (see FIG. 2). Also has such a control unit, but illustration thereof is omitted in FIG. 2).

このような露光装置の外部に設けられる異物検査装置501によれば、平面ガラス3、マスク5の上面(非パターン面)、ペリクル27のいずれに対しても異物検査を行うことができる。図4において、左上の図は、第1検査部70がマスク5の上面に対して異物検査を実施する場面を示している。右上の図は、第1検査部70が平面ガラス3の上面に対して異物検査を実施する場面を示している。このように、制御部Cは、第1検査部70の調整部53を制御して、第1検査部70のZ方向の位置をΔZで示される量だけ調整し、異物からの散乱光を正しく検知できるようにする。また、マスクホルダ28は、不図示の駆動機構によりY方向に移動可能に構成されている。したがって、異物検査装置501は、検査の対象とする領域全てにおいて異物検査を実施するため、マスクホルダ28をY方向に駆動させながら検査を行うことができる。   According to the foreign matter inspection apparatus 501 provided outside such an exposure apparatus, foreign matter inspection can be performed on any of the flat glass 3, the upper surface (non-pattern surface) of the mask 5, and the pellicle 27. In FIG. 4, the upper left diagram illustrates a scene where the first inspection unit 70 performs the foreign substance inspection on the upper surface of the mask 5. The upper right figure shows a scene where the first inspection unit 70 performs the foreign substance inspection on the upper surface of the flat glass 3. As described above, the control unit C controls the adjustment unit 53 of the first inspection unit 70 to adjust the position of the first inspection unit 70 in the Z direction by an amount indicated by ΔZ, and correct the scattered light from the foreign matter. Make it detectable. The mask holder 28 is configured to be movable in the Y direction by a drive mechanism (not shown). Therefore, the foreign substance inspection apparatus 501 can perform the inspection while driving the mask holder 28 in the Y direction in order to perform the foreign substance inspection in all the regions to be inspected.

[投光部と受光部の配置について]
以下では、図2または図3の投光部25と受光部26との関係について説明する。図3の投光部56と受光部57との関係についても同様の議論ができる。
[Arrangement of light-emitting part and light-receiving part]
Hereinafter, the relationship between the light projecting unit 25 and the light receiving unit 26 of FIG. 2 or 3 will be described. Similar discussion can be made regarding the relationship between the light projecting unit 56 and the light receiving unit 57 in FIG.

上記したように、実施形態において、光源16からの検査光の入射角度は、被検面の法線に対して斜めに設定される。また、受光部26の光軸(被検面被検面→受光レンズ18→センサ部19)は、被検面の法線に対して斜めに設定される。投光部25と受光部の配置については、(1)被検面から検査光の正反射光がセンサ部19に入射しないこと、(2)フレアなどの迷光がセンサ部19に入射しないこと、(3)異物の検出精度を満足すること、等の検査仕様に沿って決定される。   As described above, in the embodiment, the incident angle of the inspection light from the light source 16 is set to be oblique with respect to the normal to the surface to be inspected. Further, the optical axis of the light receiving unit 26 (the surface to be measured → the light receiving lens 18 → the sensor unit 19) is set obliquely with respect to the normal line of the surface to be measured. Regarding the arrangement of the light projecting unit 25 and the light receiving unit, (1) specular reflection light of inspection light from the surface to be inspected does not enter the sensor unit 19; (2) stray light such as flare does not enter the sensor unit 19; (3) Determined in accordance with inspection specifications such as satisfying the detection accuracy of foreign matter.

しかし、LEDの発光光は指向性がなく配光角度分布を有する。そのため、仮にLED発光面〜被検面の間にコリメータレンズを適切に配置しても、被検面上では照明領域が広がり、その領域内において強度分布(LED発光素子が多列配置された方向と直交方向の強度分布)が生じる。例えば、図5に示されるように、光源から被検面へ斜入射された検査光の強度分布Iは、入射光軸上で最大となり、軸外方向に小さくなる傾向をもつ。   However, the light emitted from the LED has no directivity and has a light distribution angle distribution. Therefore, even if the collimator lens is appropriately arranged between the LED light emitting surface and the surface to be inspected, the illumination area is widened on the surface to be inspected, and the intensity distribution within that region (the direction in which the LED light emitting elements are arranged in multiple rows) And an intensity distribution in the direction perpendicular to the direction. For example, as shown in FIG. 5, the intensity distribution I of the inspection light obliquely incident on the surface to be inspected from the light source has a maximum on the incident optical axis and tends to decrease in an off-axis direction.

これは、被検面の形状が異なることにより、被検面上の受光部の光軸と、強度分布をもつ照明領域との相対位置関係が検査領域内で変化し、結果として、同じ大きさの異物の検査結果にばらつきが発生することを意味する。以下では、このような検査結果のばらつきを抑制する構成を提案する。   This is because the relative position relationship between the optical axis of the light receiving section on the test surface and the illumination region having the intensity distribution changes within the test region due to the difference in the shape of the test surface, resulting in the same size. Means that the inspection result of the foreign matter varies. Hereinafter, a configuration for suppressing such a variation in the inspection result will be proposed.

通常、マスクよりも平面ガラス3の方が厚さが小さい。理由は、少しでも重量に関わる用力やコストを抑えるためである。また、厚さが小さくなることによる撓みの増加が露光性能に及ぼす悪影響が、マスクと比べて小さいためである。図4の左下にマスク5の撓みの例を、右下に平面ガラス3の撓みの例を示した。撓みが破線で示されている。このように、マスクの撓みは平面ガラス3のそれよりも小さいため、検査対象の物体がマスクの場合には、検査光の強度変化の影響を受けにくい。図5の例において、Y方向の位置A,B,Cにおいて、被検面の高さ(Z方向の位置)はほぼ同じである。この場合、Y方向の位置A,B,Cではそれぞれ、受光部26の光軸は被検面上の光強度分布のピーク位置付近にあり、図6(A)に示されるように、位置A,B,Cの間では光強度変化が小さい。そのため、図6(B)に示されるように、同じ大きさの異物に対しては受ける光信号強度のばらつきは小さい。よって、被検面上で投光部の光軸と受光部の光軸が交わるように投光部と受光部を配置すればよく、この場合には、検査光の強度や異物からの光も大きくなりセンサ上の信号出力を高く維持することができる。   Usually, the thickness of the flat glass 3 is smaller than that of the mask. The reason is to reduce utility and cost related to weight at all. In addition, an adverse effect on the exposure performance due to an increase in deflection due to a decrease in thickness is smaller than that of a mask. An example of the bending of the mask 5 is shown at the lower left of FIG. 4, and an example of the bending of the flat glass 3 is shown at the lower right. Deflection is indicated by dashed lines. As described above, since the deflection of the mask is smaller than that of the flat glass 3, when the object to be inspected is a mask, it is less susceptible to a change in the intensity of the inspection light. In the example of FIG. 5, the height of the surface to be inspected (the position in the Z direction) is substantially the same at the positions A, B, and C in the Y direction. In this case, at positions A, B, and C in the Y direction, the optical axis of the light receiving unit 26 is near the peak position of the light intensity distribution on the surface to be measured, and as shown in FIG. , B, and C, the change in light intensity is small. Therefore, as shown in FIG. 6B, the variation in the intensity of the optical signal received with respect to a foreign substance having the same size is small. Therefore, the light projecting unit and the light receiving unit may be arranged such that the optical axis of the light projecting unit and the optical axis of the light receiving unit intersect on the surface to be inspected. As a result, the signal output on the sensor can be kept high.

これに対し、平面ガラス3の場合、撓みが比較的大きいため、検査光の強度変化の影響を受けやすい。図7に示されるように、位置Aでは、位置Bを基準として被検面の高さ(Z方向の位置)が、Z1変化したとき、照明領域が被検面と平行にaだけずれる。同様に、位置Cでは、位置Bを基準として被検面の高さ(Z方向の位置)が、Z2変化したとき、照明領域が被検面と平行にbだけずれる。   On the other hand, in the case of the flat glass 3, since the bending is relatively large, the flat glass 3 is easily affected by the change in the intensity of the inspection light. As shown in FIG. 7, at the position A, when the height of the surface to be inspected (the position in the Z direction) changes by Z1 with respect to the position B, the illumination area is shifted by a in parallel with the surface to be inspected. Similarly, at the position C, when the height (position in the Z direction) of the test surface changes by Z2 with respect to the position B, the illumination area shifts by b in parallel with the test surface.

検査対象が平面ガラス3の場合に、被検面上で投光部の光軸と受光部の光軸とが交わるように配置を調整すると、同じ大きさの異物に対する信号強度のばらつきが大きくなる。これは、投光部の光軸付近の強度変化が大きいため、被検面の高さ変化に対して敏感であるためである。被検面上の撓み(Z1,Z2)に応じて照明領域が被検面と平行方向(a,b)にずれてしまうことにより、図8(A)に示されるように、Y方向の位置A,B,Cの間では被検面上の受光部の光軸上にある照明強度が敏感に変化する。そのため、図8(B)に示されるように、同じ大きさの異物に対する信号強度のばらつきが大きくなる。   If the inspection target is the flat glass 3 and the arrangement is adjusted so that the optical axis of the light projecting portion and the optical axis of the light receiving portion intersect on the surface to be inspected, the variation in signal intensity for foreign matters having the same size increases. . This is because the intensity change in the vicinity of the optical axis of the light projecting portion is large, and is therefore sensitive to a change in the height of the surface to be measured. As shown in FIG. 8A, the illumination area is shifted in the direction (a, b) parallel to the surface to be inspected in accordance with the deflection (Z1, Z2) on the surface to be inspected. Between A, B, and C, the illumination intensity on the optical axis of the light receiving portion on the surface to be detected changes sensitively. Therefore, as shown in FIG. 8B, the variation in signal strength for foreign substances having the same size becomes large.

そこで、実施形態では、投光部25の光軸と受光部26の光軸とが交わる点が被検面がとりうる高さ範囲内からずれた位置になるように投光部25と受光部26が配置される。例えば、図9に示されるように、被検面上の投光部25の光軸から外れた領域で、被検面に平行な方向(Y方向)に、光強度の変化が緩やかな領域に受光部26の光軸が位置するように、投光部25と受光部26が配置される。そうすると、図10(A)に示されるように、被検面上の撓み(Z1,Z2)に応じて照明領域が被検面と平行方向(a,b)にずれてしまっても、Y方向の位置A,B,Cの間で被検面上の受光部の光軸上にある光強度は鈍感に(緩やかに)変化する。そのため、図10(B)に示されるように、同じ大きさの異物に対する信号強度のばらつきも小さい。このとき、照明光の強度や異物からの光も小さくなりセンサ上の信号出力は低くなるが、異物の有無の判別に影響がない信号強度が確保されていればよい。照明領域に対する受光部の相対位置を調整する際に発生した、センサ部で検出された異物からの光量の変化は、光源の出力を調整することが可能である。   Therefore, in the embodiment, the light projecting unit 25 and the light receiving unit 26 are positioned such that the point where the optical axis of the light projecting unit 25 intersects with the optical axis of the light receiving unit 26 is shifted from the height range of the surface to be measured. 26 are arranged. For example, as shown in FIG. 9, in a region off the optical axis of the light projecting unit 25 on the test surface, a region where the light intensity changes gradually in a direction parallel to the test surface (Y direction). The light projecting unit 25 and the light receiving unit 26 are arranged such that the optical axis of the light receiving unit 26 is located. Then, as shown in FIG. 10A, even if the illumination area is shifted in a direction parallel to the test surface (a, b) in accordance with the deflection (Z1, Z2) on the test surface, the Y direction. The light intensity on the optical axis of the light receiving portion on the surface to be inspected between the positions A, B, and C changes insensitively (slowly). Therefore, as shown in FIG. 10B, variation in signal intensity with respect to foreign matters having the same size is small. At this time, the intensity of the illumination light and the light from the foreign matter are also reduced, and the signal output on the sensor is reduced. A change in the amount of light from the foreign matter detected by the sensor unit, which occurs when adjusting the relative position of the light receiving unit with respect to the illumination area, can adjust the output of the light source.

なお、マスク5の場合、平面ガラス3のときのような照明領域に受光部の光軸が来るように調整すると、マスク下面のパターンに照明されたときに発生する回折光が受光部で誤検知される可能性がある。これの対策については後述する。   In the case of the mask 5, if the optical axis of the light receiving unit is adjusted to be in the illumination area as in the case of the flat glass 3, the diffracted light generated when illuminating the pattern on the lower surface of the mask is erroneously detected by the light receiving unit. Could be done. The measures for this will be described later.

投光部25と受光部26との相対位置の調整は、投光部25の調整部51もしくは受光部26の調整部52、またはその両方を用いて行うことができる。図11は、投光部25の調整部51を用いて、投光部25を検査駆動方向(Y方向)に調整する例を示している。制御部Cは、投光部25の光軸と受光部26の光軸とが交わる点が被検面がとりうる高さ範囲からずれた位置になるように調整部51を制御することができる。図12は、受光部26の調整部52を用いて、受光部26を検査駆動方向(Y方向)に調整する例を示している。制御部Cは、投光部25の光軸と受光部26の光軸とが交わる点が被検面がとりうる高さ範囲からずれた位置になるように調整部52を制御することができる。図13は、投光部25の平行平板ガラス24を用いて、投光部25の光軸の位置を調整する例を示している。ここで、投光部25は、図13に示されるように、光路変更部材である平行平板ガラス24の回転角度を調整することにより、被検面へ至る出射光の光路の変更量を調整する調整部24aを含む。制御部Cは、投光部25の光軸と受光部26の光軸とが交わる点が被検面がとりうる高さ範囲からずれた位置になるように調整部24aを制御することができる。   Adjustment of the relative position between the light projecting unit 25 and the light receiving unit 26 can be performed using the adjusting unit 51 of the light projecting unit 25, the adjusting unit 52 of the light receiving unit 26, or both. FIG. 11 shows an example in which the light projecting unit 25 is adjusted in the inspection driving direction (Y direction) by using the adjusting unit 51 of the light projecting unit 25. The control unit C can control the adjustment unit 51 so that the point where the optical axis of the light projecting unit 25 and the optical axis of the light receiving unit 26 intersect is shifted from the height range of the surface to be measured. . FIG. 12 shows an example in which the light receiving unit 26 is adjusted in the inspection driving direction (Y direction) by using the adjusting unit 52 of the light receiving unit 26. The control unit C can control the adjustment unit 52 so that the point where the optical axis of the light projecting unit 25 and the optical axis of the light receiving unit 26 intersect is a position shifted from the height range that the surface to be measured can take. . FIG. 13 shows an example in which the position of the optical axis of the light projecting unit 25 is adjusted using the parallel flat glass 24 of the light projecting unit 25. Here, as shown in FIG. 13, the light projecting unit 25 adjusts the amount of change in the optical path of the outgoing light reaching the surface to be measured by adjusting the rotation angle of the parallel flat glass 24 that is the optical path changing member. An adjusting unit 24a is included. The control unit C can control the adjustment unit 24a such that the point where the optical axis of the light projecting unit 25 and the optical axis of the light receiving unit 26 intersect is shifted from the height range that the surface to be measured can take. .

実施形態において、制御部Cは、被検面の平坦度(撓み、凹凸形状を含む)に応じて、これらの調整部を制御する。例えば、事前に検査対象の物体の物性値から算出される被検面の平坦度と、被検面上の光強度分布と、必要な調整量の関係を記録しておき、その関係に基づいて、調整量を決定してもよい。ここで、被検面の平坦度は、被検面がとりうる高さ範囲を示す値であればよい。また、異物検査前に、予め算出もしくは実測した被検面の平坦度と、サンプル異物に対して検出される信号強度の変化とに基づいて、調整量を決定してもよい。このように、制御部Cは、被検面の平坦度と調整部による調整量との間の予め得られた関係に基づいて、調整量を決定することができる。   In the embodiment, the control unit C controls these adjustment units according to the flatness (including deflection and unevenness) of the test surface. For example, the relationship between the flatness of the test surface calculated from the physical property values of the object to be inspected, the light intensity distribution on the test surface, and the necessary adjustment amount is recorded in advance, and based on the relationship, , The adjustment amount may be determined. Here, the flatness of the test surface may be a value indicating a height range that the test surface can take. Further, before the foreign substance inspection, the adjustment amount may be determined based on the flatness of the test surface calculated or measured in advance and the change in the signal intensity detected for the sample foreign substance. As described above, the control unit C can determine the adjustment amount based on the previously obtained relationship between the flatness of the surface to be inspected and the adjustment amount by the adjustment unit.

上記のような調整は、被検面上の検査領域内で、被検面がとりうる高さ範囲(撓み、形状を含む)において、その検査領域内にある同じ大きさの異物の出力変化が異物検査の検出再現性レベルになるよう行われる。すなわち、制御部Cは、被検面に、想定される平坦度に従う変形があっても、異物有無の判定の所定の精度が確保されるように、調整部による調整量を決定する。   In the adjustment as described above, in the inspection area on the inspection surface, in the height range (including the bending and the shape) that the inspection surface can take, the output change of the foreign matter of the same size in the inspection area is changed. The inspection is performed so that the detection reproducibility level of the foreign substance inspection is achieved. That is, the control unit C determines the adjustment amount by the adjustment unit such that the predetermined accuracy of the determination of the presence or absence of a foreign substance is ensured even if the surface to be inspected is deformed according to the assumed flatness.

次に、マスクパターンからの回折光の誤検出の対策について説明する。   Next, measures for erroneous detection of diffracted light from the mask pattern will be described.

露光装置用のマスクには、露光されるべきプロセスパターンが形成されている。そのため、異物検査装置による検査対象の物体がマスクである場合、投光部により検査光が投光されることによってマスクのパターン部で回折光が発生する。このような回折光は異物の有無の判別に悪影響を及ぼす可能性がある。パターンの種類は任意であるため、受光部で誤検知を防ぐためには、パターンへ入射する検査光を遮断することが必要となる。   A process pattern to be exposed is formed on a mask for an exposure apparatus. Therefore, when the object to be inspected by the foreign substance inspection device is a mask, the inspection light is emitted by the light emitting unit, so that diffracted light is generated in the pattern part of the mask. Such diffracted light may adversely affect the determination of the presence or absence of foreign matter. Since the type of pattern is arbitrary, it is necessary to block inspection light incident on the pattern in order to prevent erroneous detection by the light receiving unit.

そこで実施形態では、図14に示されるように、検査光の一部を遮光する遮光部材35を被検面付近に配置する。第1検査部70によってマスク5の上面を検査する際には、図15に示されるように、検査光がマスク5の上面に入射し、屈折を経てパターン部Pへ入射し、そこからの回折光が受光部26へ入射しうる。よって、実施形態では、検査光がパターンの位置に到達(入射)しないように遮光部材35が配置される。   Therefore, in the embodiment, as shown in FIG. 14, a light blocking member 35 that blocks a part of the inspection light is arranged near the surface to be inspected. When the upper surface of the mask 5 is inspected by the first inspection unit 70, as shown in FIG. 15, inspection light is incident on the upper surface of the mask 5, incident on the pattern unit P via refraction, and diffracted therefrom. Light may enter the light receiving unit 26. Therefore, in the embodiment, the light shielding member 35 is arranged so that the inspection light does not reach (incident) the position of the pattern.

第2検査部80によってペリクル27を検査する際には、図16に示されるように、検査光がペリクル面に入射し、屈折を経て、パターン部Pへ入射し、そこからの回折光が受光部56へ入射しうる。よって、実施形態では、検査光がパターンの位置に到達(入射)しないように遮光部材35が配置される。   When inspecting the pellicle 27 by the second inspection unit 80, as shown in FIG. 16, inspection light enters the pellicle surface, enters the pattern unit P via refraction, and receives diffracted light therefrom. The light may enter the portion 56. Therefore, in the embodiment, the light shielding member 35 is arranged so that the inspection light does not reach (incident) the position of the pattern.

また、第1検査部70によって平面ガラス3の上面を検査する際には、図17に示されるように、検査光が平面ガラス3の上面に入射し、屈折を経て出射し、マスク5の上面に入射し、屈折を経てパターン部Pへ入射する。そのため、パターン部Pからの回折光が受光部26へ入射しうる。よって、実施形態では、検査光がパターンの位置に到達(入射)しないように遮光部材35が配置される。   When the first inspection unit 70 inspects the upper surface of the flat glass 3, as shown in FIG. 17, the inspection light enters the upper surface of the flat glass 3, exits through refraction, and exits through the upper surface of the mask 5. And enters the pattern portion P via refraction. Therefore, diffracted light from the pattern part P can enter the light receiving part 26. Therefore, in the embodiment, the light shielding member 35 is arranged so that the inspection light does not reach (incident) the position of the pattern.

以上の図15〜図17の例において、異物検査装置は遮光部材35の位置を調整する遮光調整部35aを有する。制御部Cは、検査光がパターン部Pの位置に到達しないように遮光調整部35aを制御することができる。このとき、制御部Cは、被検面の変化(平坦度、姿勢、形状、たわみ、厚さ)が生じても、被検面上の異物への検査光を遮光したり、逆にパターン部に検査光が到達することがないように遮光調整部35aを制御する。また、制御部Cは、調整部により投光部と受光部との相対位置を調整したことに応じて遮光調整部35aによる調整を実施する。これにより、投光部と受光部との相対位置が調整される都度、遮光部材35が適切な位置に配置される。   In the examples shown in FIGS. 15 to 17 described above, the foreign matter inspection apparatus has a light-shielding adjustment unit 35 a that adjusts the position of the light-shielding member 35. The control unit C can control the light shielding adjustment unit 35a so that the inspection light does not reach the position of the pattern unit P. At this time, even if a change (flatness, posture, shape, deflection, thickness) of the test surface occurs, the control unit C blocks the inspection light for the foreign matter on the test surface, The light-shielding adjusting unit 35a is controlled so that the inspection light does not reach the first position. Further, the control unit C performs the adjustment by the light-shielding adjustment unit 35a in response to the adjustment of the relative position between the light emitting unit and the light receiving unit by the adjustment unit. Thereby, each time the relative position between the light projecting unit and the light receiving unit is adjusted, the light blocking member 35 is arranged at an appropriate position.

<物品製造方法の実施形態>
本発明の実施形態に係る物品製造方法は、例えば、半導体デバイス等のマイクロデバイス、微細構造を有する素子、フラットディスプレイ等の物品を製造するのに好適である。本実施形態の物品製造方法は、基板に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
<Embodiment of Article Manufacturing Method>
The article manufacturing method according to the embodiment of the present invention is suitable for manufacturing an article such as a microdevice such as a semiconductor device, an element having a fine structure, and a flat display. In the article manufacturing method according to the present embodiment, a step of forming a latent image pattern on the photosensitive agent applied to the substrate using the above-described exposure apparatus (a step of exposing the substrate), and a step of forming the latent image pattern in the step. Developing the substrate. Further, the manufacturing method includes other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, etching, resist peeling, dicing, bonding, packaging, and the like). The article manufacturing method of the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

3:平面ガラス、5:マスク、25:投光部、26:受光部、27:ペリクル、50:異物検査装置 3: flat glass, 5: mask, 25: light emitting part, 26: light receiving part, 27: pellicle, 50: foreign matter inspection device

Claims (12)

物体の被検面上の異物を検査する異物検査装置であって、
前記被検面に検査光を投光する投光部と、
前記投光部により前記検査光が投光されることによって生じる前記異物からの散乱光を受光する受光部と、
を有し、
前記投光部の光軸と前記受光部の光軸とが交わる点が前記被検面がとりうる高さ範囲からずれた位置になるように前記投光部と前記受光部が配置されていることを特徴とする異物検査装置。
A foreign matter inspection device for inspecting foreign matter on a surface to be inspected of an object,
A light emitting unit that emits inspection light onto the surface to be inspected,
A light receiving unit that receives scattered light from the foreign matter caused by the inspection light being emitted by the light emitting unit,
Has,
The light projecting unit and the light receiving unit are arranged such that a point at which the optical axis of the light projecting unit and the optical axis of the light receiving unit intersect is shifted from a height range that the test surface can take. A foreign matter inspection device characterized by the above-mentioned.
前記投光部と前記受光部との相対位置を調整する調整部と、
前記投光部の光軸と前記受光部の光軸とが交わる点が前記高さ範囲からずれた位置になるように前記調整部を制御する制御部と、
を有することを特徴とする請求項1に記載の異物検査装置。
An adjusting unit that adjusts a relative position between the light emitting unit and the light receiving unit,
A control unit that controls the adjustment unit so that a point at which the optical axis of the light emitting unit and the optical axis of the light receiving unit intersect is shifted from the height range.
The foreign matter inspection device according to claim 1, comprising:
前記投光部は、光源と、前記光源から出射される出射光が通過するレンズと、前記レンズを経て前記被検面へ至る前記出射光の光路を変更する光路変更部材とを含み、
前記光路変更部材の回転角度を調整することにより前記光路の変更量を調整する調整部と、
前記投光部の光軸と前記受光部の光軸とが交わる点が前記高さ範囲からずれた位置になるように前記調整部を制御する制御部と、
を有することを特徴とする請求項1に記載の異物検査装置。
The light projecting unit includes a light source, a lens through which emitted light emitted from the light source passes, and an optical path changing member that changes an optical path of the emitted light that reaches the test surface via the lens.
An adjusting unit that adjusts a change amount of the optical path by adjusting a rotation angle of the optical path changing member;
A control unit that controls the adjustment unit so that a point at which the optical axis of the light emitting unit and the optical axis of the light receiving unit intersect is shifted from the height range.
The foreign matter inspection device according to claim 1, comprising:
前記制御部は、前記被検面の平坦度に応じて前記調整部を制御することを特徴とする請求項2または3に記載の異物検査装置。   The foreign matter inspection device according to claim 2, wherein the control unit controls the adjustment unit according to flatness of the surface to be inspected. 前記受光部の受光結果を処理して前記異物の有無の判定を行う処理部を更に有し、
前記制御部は、前記被検面に前記平坦度に従う変形があっても前記判定の所定の精度が確保されるように前記調整部による調整量を決定することを特徴とする請求項4に記載の異物検査装置。
Further comprising a processing unit for processing the light receiving result of the light receiving unit to determine the presence or absence of the foreign matter,
5. The control unit according to claim 4, wherein the control unit determines an adjustment amount by the adjustment unit such that a predetermined accuracy of the determination is ensured even if the test surface has a deformation according to the flatness. 6. Foreign matter inspection device.
前記制御部は、前記被検面の平坦度と前記調整部による調整量との間の予め得られた関係に基づいて、前記調整量を決定することを特徴とする請求項5に記載の異物検査装置。   The foreign matter according to claim 5, wherein the control unit determines the adjustment amount based on a relationship obtained in advance between the flatness of the surface to be inspected and the adjustment amount by the adjustment unit. Inspection equipment. 前記物体は、パターンが形成された露光装置用のマスクであり、
前記検査光の一部を遮光する遮光部材と、
前記遮光部材の位置を調整する遮光調整部と、
を更に有し、
前記制御部は、更に、前記検査光が前記パターンの位置に到達しないように前記遮光調整部を制御することを特徴とする請求項2乃至6のいずれか1項に記載の異物検査装置。
The object is a mask for an exposure apparatus on which a pattern is formed,
A light blocking member that blocks a part of the inspection light,
A light-shielding adjustment unit that adjusts the position of the light-shielding member,
Further having
The foreign matter inspection apparatus according to claim 2, wherein the control unit further controls the light blocking adjustment unit so that the inspection light does not reach the position of the pattern.
前記制御部は、前記調整部を制御したことに応じて、前記遮光調整部を制御することを特徴とする請求項7に記載の異物検査装置。   The foreign matter inspection device according to claim 7, wherein the control unit controls the light blocking adjustment unit in response to controlling the adjustment unit. マスクのパターンを基板上に投影して前記基板を露光する露光装置であって、
前記露光装置内に配置された光透過性の板状部材の表面に付着した異物を検査する請求項1乃至8のいずれか1項に記載の異物検査装置を含むことを特徴とする露光装置。
An exposure apparatus that exposes the substrate by projecting a mask pattern onto the substrate,
An exposure apparatus, comprising: the foreign matter inspection apparatus according to any one of claims 1 to 8, which inspects foreign matter attached to a surface of a light-transmitting plate-shaped member disposed in the exposure apparatus.
前記板状部材は、前記マスクの上に前記マスクと離間して配置され、前記マスクの撓みを補正するためのガラス板を含むことを特徴とする請求項9に記載の露光装置。   The exposure apparatus according to claim 9, wherein the plate-shaped member includes a glass plate disposed on the mask and spaced apart from the mask, and for correcting a deflection of the mask. 前記板状部材は、前記マスクの前記パターンを保護するペリクルを含むことを特徴とする請求項9に記載の露光装置。   The exposure apparatus according to claim 9, wherein the plate member includes a pellicle for protecting the pattern of the mask. 請求項9乃至11のいずれか1項に記載の露光装置を用いて基板を露光する工程と、
前記工程で前記露光された基板を現像する工程と、
を含み、前記現像された基板から物品を製造することを特徴とする物品製造方法。
A step of exposing a substrate using the exposure apparatus according to any one of claims 9 to 11,
Developing the exposed substrate in the step,
And manufacturing an article from the developed substrate.
JP2018178081A 2018-09-21 2018-09-21 Foreign Matter Inspection Apparatus, Exposure Apparatus, and Article Manufacturing Method Active JP7292842B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018178081A JP7292842B2 (en) 2018-09-21 2018-09-21 Foreign Matter Inspection Apparatus, Exposure Apparatus, and Article Manufacturing Method
TW108130577A TW202012917A (en) 2018-09-21 2019-08-27 Foreign object inspection device, exposure device, and article manufacturing method to be robust against a decrease in flatness of an inspection object
KR1020190110470A KR102582877B1 (en) 2018-09-21 2019-09-06 Foreign matter checking apparatus, exposure apparatus, and article manufacturing method
CN201910873185.XA CN110941138B (en) 2018-09-21 2019-09-17 Foreign matter inspection device, exposure device, and article manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018178081A JP7292842B2 (en) 2018-09-21 2018-09-21 Foreign Matter Inspection Apparatus, Exposure Apparatus, and Article Manufacturing Method

Publications (3)

Publication Number Publication Date
JP2020051759A true JP2020051759A (en) 2020-04-02
JP2020051759A5 JP2020051759A5 (en) 2021-10-14
JP7292842B2 JP7292842B2 (en) 2023-06-19

Family

ID=69905842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018178081A Active JP7292842B2 (en) 2018-09-21 2018-09-21 Foreign Matter Inspection Apparatus, Exposure Apparatus, and Article Manufacturing Method

Country Status (4)

Country Link
JP (1) JP7292842B2 (en)
KR (1) KR102582877B1 (en)
CN (1) CN110941138B (en)
TW (1) TW202012917A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288902A (en) * 1993-03-31 1994-10-18 Sony Corp Attenuated total reflactance type thin film evaluating device
JP2006301303A (en) * 2005-04-20 2006-11-02 Canon Inc Device and method for inspecting foreign matter, exposing device, and method for manufacturing device
JP2009139333A (en) * 2007-12-10 2009-06-25 Internatl Business Mach Corp <Ibm> Macro inspection device, and macro inspection method
JP2016125968A (en) * 2015-01-07 2016-07-11 旭硝子株式会社 Check device and method for checking
JP2016133357A (en) * 2015-01-16 2016-07-25 キヤノン株式会社 Foreign matter inspection device, exposure device, and device manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996116B2 (en) 2006-03-20 2012-08-08 株式会社堀場製作所 Defect inspection equipment
JP2011174817A (en) 2010-02-24 2011-09-08 Canon Inc Foreign matter inspection system, exposure system, and device manufacturing method
JP5506555B2 (en) 2010-06-11 2014-05-28 キヤノン株式会社 Foreign matter inspection apparatus, exposure apparatus using the same, and device manufacturing method
JP5520737B2 (en) 2010-07-30 2014-06-11 株式会社日立ハイテクノロジーズ Defect inspection apparatus and defect inspection method
JP5824780B2 (en) * 2011-11-30 2015-12-02 株式会社ブイ・テクノロジー Transparent film inspection apparatus and inspection method
JP5820735B2 (en) * 2012-01-27 2015-11-24 昭和電工株式会社 Surface inspection method and surface inspection apparatus
JP5647716B2 (en) 2013-07-24 2015-01-07 株式会社リューズ A simple telecentric lens device for micro unevenness inspection machine
JP2016057180A (en) * 2014-09-10 2016-04-21 東レエンジニアリング株式会社 Substrate inspection device
JP7170491B2 (en) 2018-10-12 2022-11-14 キヤノン株式会社 Foreign matter detection device, exposure device, and article manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06288902A (en) * 1993-03-31 1994-10-18 Sony Corp Attenuated total reflactance type thin film evaluating device
JP2006301303A (en) * 2005-04-20 2006-11-02 Canon Inc Device and method for inspecting foreign matter, exposing device, and method for manufacturing device
JP2009139333A (en) * 2007-12-10 2009-06-25 Internatl Business Mach Corp <Ibm> Macro inspection device, and macro inspection method
JP2016125968A (en) * 2015-01-07 2016-07-11 旭硝子株式会社 Check device and method for checking
JP2016133357A (en) * 2015-01-16 2016-07-25 キヤノン株式会社 Foreign matter inspection device, exposure device, and device manufacturing method

Also Published As

Publication number Publication date
KR20200034601A (en) 2020-03-31
JP7292842B2 (en) 2023-06-19
TW202012917A (en) 2020-04-01
KR102582877B1 (en) 2023-09-27
CN110941138B (en) 2023-12-08
CN110941138A (en) 2020-03-31

Similar Documents

Publication Publication Date Title
JP5765345B2 (en) Inspection apparatus, inspection method, exposure method, and semiconductor device manufacturing method
JP5790644B2 (en) Inspection apparatus and inspection method
JP2011040549A5 (en)
US7197176B2 (en) Mark position detecting apparatus and mark position detecting method
US8373147B2 (en) Exposure apparatus and device manufacturing method
JP2004325389A (en) Edge part inspection device
KR102011553B1 (en) Foreign matter checking apparatus, exposure apparatus and device manufacturing method
US7767982B2 (en) Optical auto focusing system and method for electron beam inspection tool
CN110658196B (en) Defect detection device and defect detection method
KR20040094780A (en) Position detecting method, surface shape estimating method, and exposure apparatus and device manufacturing method using the same
JP2015078865A (en) Foreign substance inspection device
JP7292842B2 (en) Foreign Matter Inspection Apparatus, Exposure Apparatus, and Article Manufacturing Method
EP3861279B1 (en) Laser triangulation apparatus and calibration method
JP2008066543A (en) Reticle flatness measuring apparatus and exposure apparatus equipped with reticle flatness measuring apparatus, reticle flatness measuring method and exposure method using reticle flatness measuring method, and method for manufacturing device by using exposure apparatus
CN115104000A (en) Film thickness measuring apparatus and film thickness measuring method
JP2010016317A (en) Exposure apparatus and method of manufacturing device
JP2007012949A (en) Flare measuring apparatus and flare measuring method
JP2022162408A (en) Foreign substance inspection device, exposure device, and method for manufacturing items
JP2020060521A (en) Foreign matter detection device, exposure device, and method for manufacturing article
JP2011060799A (en) Exposure apparatus, exposure method and device manufacturing method
JP2017215219A (en) Measurement device, pattern formation device, and article manufacturing method
JP5480601B2 (en) Exposure apparatus and device manufacturing method
JP6313552B2 (en) Measuring device, stage device, exposure device, and article manufacturing method
JP2024017047A (en) Foreign matter determination method and lithography apparatus
JP2011141136A (en) Inspection apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230607

R151 Written notification of patent or utility model registration

Ref document number: 7292842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151