JP2007255922A - Gas concentration measuring instrument - Google Patents

Gas concentration measuring instrument Download PDF

Info

Publication number
JP2007255922A
JP2007255922A JP2006077214A JP2006077214A JP2007255922A JP 2007255922 A JP2007255922 A JP 2007255922A JP 2006077214 A JP2006077214 A JP 2006077214A JP 2006077214 A JP2006077214 A JP 2006077214A JP 2007255922 A JP2007255922 A JP 2007255922A
Authority
JP
Japan
Prior art keywords
signal processing
circuit
processing circuit
counter electrode
electrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006077214A
Other languages
Japanese (ja)
Other versions
JP4820193B2 (en
Inventor
Kazuyuki Moriya
和行 守谷
Hidetoshi Tanabe
英俊 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2006077214A priority Critical patent/JP4820193B2/en
Publication of JP2007255922A publication Critical patent/JP2007255922A/en
Application granted granted Critical
Publication of JP4820193B2 publication Critical patent/JP4820193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent turbulence of the waveform of the current of magnitude, corresponding to the gas concentration flowing in a latter stage circuit, when intermittently applying the power supply of the latter stage circuit of an electrochemical gas sensor. <P>SOLUTION: When CO concentration in the circumference atmosphere of the electrochemical CO sensor 1, where the power switch SW is turned off by control of μCOM40 is not measured, electrons (2e<SP>-</SP>) generated in the detection pole 31 of a proton-conductor film 3, according to the CO concentration in the circumference atmosphere of the electrochemical CO sensor 1, are moved to a counter electrode 32 located between the drain and the source of an field effect transistor FET that has gone into a conductive state, without the reverse bias being able to apply to the gate by a base voltage of 0V supplied from a base voltage generation circuit 30, and are prevented from retaining in the detection pole 31, as it is. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プロトン導電体膜を用いた電気化学式ガスセンサにより周辺雰囲気中の対象ガス濃度を測定する装置に関するものである。   The present invention relates to an apparatus for measuring a target gas concentration in an ambient atmosphere by an electrochemical gas sensor using a proton conductor film.

燃焼機器の不完全燃焼等によるCOガスを検出し警報するCO警報器のように、周辺雰囲気中のCO濃度を測定する装置として、従来から、電気化学式COセンサを内蔵したものが知られている。   2. Description of the Related Art Conventionally, devices that incorporate an electrochemical CO sensor have been known as devices for measuring the CO concentration in the surrounding atmosphere, such as a CO alarm device that detects and alarms CO gas due to incomplete combustion or the like of combustion equipment. .

図4に断面図で示すように、この電気化学式COセンサ1は、内部に水5が収容された金属缶2の上部開口4にプロトン導電体膜3を設置して、その対極32を金属缶2内に露出させると共に、反対側の検知極31にガス吸着フィルタ8cを内蔵した金属キャップ8を重ねて金属缶2の上部開口4にかしめ固定して構成されている。   As shown in a cross-sectional view in FIG. 4, this electrochemical CO sensor 1 has a proton conductor film 3 installed in an upper opening 4 of a metal can 2 in which water 5 is accommodated, and a counter electrode 32 as a metal can. The metal cap 8 having the gas adsorption filter 8 c built in is overlapped with the detection electrode 31 on the opposite side and is caulked and fixed to the upper opening 4 of the metal can 2.

上述した構成の電気化学式COセンサ1では、周辺雰囲気中のCOが、金属キャップ8の導入孔8aから内部に導入されて、活性炭やシリカゲル、ゼオライト等からなるガス吸着フィルタ8cや導出孔8b、そして、金属キャップ8とプロトン導電体膜3との間に介設した金属製の拡散防止板7の拡散制御孔7aを通過して検知極31に到達し、ここで、対極32側からプロトン導電体膜3に供給される金属缶2内の水5の水分を利用した酸化反応を起こして、検知極31にプロトン(2H+ )と電子(2e- )を発生させる。 In the electrochemical CO sensor 1 having the above-described configuration, CO in the ambient atmosphere is introduced into the inside through the introduction hole 8a of the metal cap 8, and the gas adsorption filter 8c and the discharge hole 8b made of activated carbon, silica gel, zeolite, and the like, and Then, it passes through the diffusion control hole 7a of the metal diffusion prevention plate 7 interposed between the metal cap 8 and the proton conductor film 3, and reaches the detection electrode 31, where the proton conductor from the counter electrode 32 side. An oxidation reaction using the water of the water 5 in the metal can 2 supplied to the membrane 3 is caused to generate protons (2H + ) and electrons (2e ) at the detection electrode 31.

検知極31に発生した電子(2e- )はプロトン導電体膜3の内部を通過できないので検知極31に滞留し、一方、プロトン(2H+ )は、プロトン導電体膜3の内部を通過して対極32に移動し、ここで、容器2内の酸素と還元反応を起こして、対極32に水(H2 O)を生成する。 The electrons (2e ) generated in the detection electrode 31 cannot pass through the proton conductor film 3 and therefore stay in the detection electrode 31, while the proton (2H + ) passes through the proton conductor film 3. It moves to the counter electrode 32, where it causes a reduction reaction with oxygen in the container 2 to generate water (H 2 O) at the counter electrode 32.

したがって、検知極31と電気的に接続されてそのターミナルとして機能する金属キャップ8と、拡散防止板7を介して対極32と電気的に接続されてそのターミナルとして機能する金属缶2との間に負荷(図示せず)を接続すると、検知極31に滞留した電子(2e- )の対極32に向かう流れが負荷に生じ、これにより対極32から負荷を経て検知極31に向かう短絡電流の流れが生じるので、この負荷に流れる短絡電流を電流−電圧変換することで、周辺雰囲気中のCO濃度に応じた電圧値のCO濃度信号が得られる(例えば特許文献1,2)。 Therefore, between the metal cap 8 that is electrically connected to the detection electrode 31 and functions as its terminal, and the metal can 2 that is electrically connected to the counter electrode 32 via the diffusion prevention plate 7 and functions as its terminal. When a load (not shown) is connected, a flow of electrons (2e ) accumulated in the detection electrode 31 toward the counter electrode 32 is generated in the load, and thereby a short-circuit current flows from the counter electrode 32 through the load to the detection electrode 31. Therefore, a CO concentration signal having a voltage value corresponding to the CO concentration in the ambient atmosphere can be obtained by current-voltage conversion of the short-circuit current flowing through the load (for example, Patent Documents 1 and 2).

このような検出原理の構成による電気化学式COセンサ1は、それ自身では、周辺雰囲気中のCO濃度に応じた電圧値のCO濃度信号を生成するために外部からの電力供給を必要としないことから、電池によって長期間駆動する必要のあるCO警報器での利用に適している。
特開2004−170101号公報 特開2004−279293号公報
The electrochemical CO sensor 1 having such a detection principle configuration itself does not require an external power supply to generate a CO concentration signal having a voltage value corresponding to the CO concentration in the surrounding atmosphere. It is suitable for use in a CO alarm device that needs to be driven for a long time by a battery.
JP 2004-170101 A JP 2004-279293 A

このように、上述した電気化学式COセンサ1自身はCO濃度信号の元となる電流の生成のために外部からの電力供給を必要としないが、CO濃度信号を取り込んで周辺雰囲気中のCO濃度を割り出す以降の処理を行う後段回路は外部からの電力供給を必要とすることから、電池駆動式のCO警報器では、間欠的に行われるCO濃度の測定時にだけ、後段回路の電源が周期的に投入される。   As described above, the above-described electrochemical CO sensor 1 itself does not require an external power supply to generate a current that is a source of the CO concentration signal, but the CO concentration signal is taken in and the CO concentration in the surrounding atmosphere is reduced. Since the post-stage circuit that performs the subsequent processing requires external power supply, in the battery-driven CO alarm device, the power source of the post-stage circuit is periodically switched only when intermittently measuring the CO concentration. It is thrown.

そのため、後段回路の電源が投入されているCO濃度の測定時には、後段回路を経由して電気化学式COセンサ1の対極32側に移動する、電気化学式COセンサ1の検知極31で発生した電子(2e- )が、後段回路の電源が投入されていないCO濃度の非測定時には検知極31にそのまま滞留する。 Therefore, at the time of measuring the CO concentration when the power of the latter circuit is turned on, electrons generated at the detection electrode 31 of the electrochemical CO sensor 1 that moves to the counter electrode 32 side of the electrochemical CO sensor 1 via the latter circuit ( 2e ) stays at the detection electrode 31 as it is when the CO concentration is not measured when the power of the subsequent circuit is not turned on.

すると、次に後段回路の電源が投入された時に検知極31の電子(2e- )が、金属缶2から電気化学式COセンサ1の後段回路を経て金属キャップ8に一気に移動して、後段回路で生成、出力されるCO濃度信号の波形に乱れが生じ、これに基づいたCO濃度の測定やCO濃度の警報動作の精度に悪影響が及んでしまう。 Then, when the power of the subsequent circuit is turned on next time, the electrons (2e ) of the detection electrode 31 are moved from the metal can 2 to the metal cap 8 through the subsequent circuit of the electrochemical CO sensor 1 at a stretch. Disturbance occurs in the waveform of the generated and output CO concentration signal, which adversely affects the measurement of the CO concentration based on this and the accuracy of the alarm operation of the CO concentration.

そして、以上に説明した問題点は、CO警報器においてのみ発生し得るものではなく、電気化学式のガスセンサを用い、後段回路の電源を消費電力抑制のため間欠的に投入する、電池駆動式のガス濃度測定装置の全般に、広く発生するものである。   The above-described problems cannot be generated only in the CO alarm, but the battery-driven gas that uses an electrochemical gas sensor and intermittently turns on the power of the subsequent circuit to suppress power consumption. It occurs widely in all density measuring devices.

本発明は前記事情に鑑みなされたもので、本発明の目的は、電池駆動式のガス警報器等、周辺雰囲気中の対象ガス濃度を測定する装置において用いられる電気化学式ガスセンサの、検知極で発生する酸化反応と対極で発生する還元反応とによって、検知極と対極との間に接続された電気化学式ガスセンサの後段回路を対極側から検知極側に流れる、ガス濃度に応じた大きさの電流の波形が、後段回路の電源を間欠的に投入する際に乱れてしまうのを防止することができる、ガス濃度測定装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is generated at a detection electrode of an electrochemical gas sensor used in an apparatus for measuring a target gas concentration in an ambient atmosphere such as a battery-driven gas alarm device. The current of a magnitude corresponding to the gas concentration flows from the counter electrode side to the detection electrode side through the downstream circuit of the electrochemical gas sensor connected between the detection electrode and the counter electrode due to the oxidation reaction that occurs and the reduction reaction that occurs at the counter electrode. An object of the present invention is to provide a gas concentration measuring device capable of preventing the waveform from being disturbed when the power supply of the subsequent circuit is intermittently turned on.

前記目的を達成するため請求項1に記載した本発明のガス濃度測定装置は、電気化学式ガスセンサの検知極と対極とに接続された信号処理回路の、間欠的な電源ON中に、前記電気化学式ガスセンサの周辺雰囲気中の対象ガスの濃度に応じて発生した電子が前記信号処理回路を介して前記検知極に移動することで、前記検知極から前記信号処理回路を介して前記対極に流れる短絡電流を、該信号処理回路において前記電気化学式ガスセンサの周辺雰囲気中の対象ガスの濃度に応じた電圧値のガス濃度信号に変換するガス濃度測定装置において、前記検知極と前記対極とを前記電気化学式ガスセンサの外部で短絡、開放するスイッチ手段と、前記信号処理回路の電源ON中に前記スイッチ手段により前記検知極と前記対極とを開放させ、前記信号処理回路の電源OFF中に前記スイッチ手段により前記検知極と前記対極とを短絡させるスイッチ制御手段とを備えることを特徴とする。   In order to achieve the above object, the gas concentration measuring device of the present invention according to claim 1 is characterized in that the electrochemical method is used during intermittent power ON of a signal processing circuit connected to a detection electrode and a counter electrode of an electrochemical gas sensor. A short-circuit current that flows from the detection electrode to the counter electrode via the signal processing circuit when electrons generated according to the concentration of the target gas in the ambient atmosphere of the gas sensor move to the detection electrode via the signal processing circuit. In the gas concentration measuring apparatus for converting the detection electrode and the counter electrode into the gas gas signal having a voltage value corresponding to the concentration of the target gas in the ambient atmosphere of the electrochemical gas sensor in the signal processing circuit, the electrochemical gas sensor Switch means for short-circuiting and opening outside the signal processing circuit, and opening the detection electrode and the counter electrode by the switch means while the signal processing circuit is powered on. By the switch means during power OFF processing circuit, characterized in that it comprises a switch control means for short-circuiting the said and the sensing electrode the counter electrode.

また、請求項2に記載した本発明のガス濃度測定装置は、請求項1に記載した本発明のガス濃度測定装置において、前記スイッチ手段が、前記対極にドレインが電気的に接続され前記検知極にソースが電気的に接続されたノーマリーON型の電界効果トランジスタで構成されており、前記スイッチ制御手段が、前記信号処理回路の電源ON中に、該電界効果トランジスタのゲート−ソース間に逆バイアスをかけて前記電界効果トランジスタのドレイン−ソース間を非導通状態とすると共に、前記信号処理回路の電源OFF中に、前記電界効果トランジスタのゲートとソースを同電位として該電界効果トランジスタのドレイン−ソース間を導通状態とするためのベース電圧を、前記電界効果トランジスタのゲート又はソースに印加するベース電圧発生回路で構成されているものとした。   A gas concentration measuring device according to the present invention described in claim 2 is the gas concentration measuring device according to claim 1, wherein the switch means has a drain electrically connected to the counter electrode and the detection electrode. The switch control means is reverse-biased between the gate and source of the field effect transistor while the signal processing circuit is powered on. And the drain and source of the field effect transistor are brought into a non-conductive state, and the drain and source of the field effect transistor are set to the same potential while the power source of the signal processing circuit is turned off. A base voltage applied to the gate or source of the field effect transistor to establish a conductive state between the two. It was assumed to be formed by the generator.

請求項1に記載した本発明のガス濃度測定装置によれば、信号処理回路の間欠的な電源ON中には、電気化学式ガスセンサの周辺雰囲気中の対象ガスの濃度に応じて検知極に発生し信号処理回路を介して対極に移動していた電子が、信号処理回路の電源OFF中には、スイッチ制御手段により検知極と対極とを短絡させたスイッチ手段を介して検知極から対極に移動する。   According to the gas concentration measuring apparatus of the present invention as set forth in claim 1, during intermittent power-on of the signal processing circuit, it occurs at the detection electrode according to the concentration of the target gas in the ambient atmosphere of the electrochemical gas sensor. Electrons that have moved to the counter electrode via the signal processing circuit move from the detection electrode to the counter electrode via the switch means in which the detection electrode and the counter electrode are short-circuited by the switch control means while the signal processing circuit is powered off. .

このため、信号処理回路の電源OFF中に電子の流れが滞って次の電源ONの際に一気に検知極から対極に移動するようになるのを防ぎ、信号処理回路の電源が次にONされて電気化学式ガスセンサの周辺雰囲気中の対象ガスの濃度が測定開始される時に、電気化学式ガスセンサの検知極から信号処理回路を経て対極に流れる短絡電流、ひいては、この信号処理回路に流れる短絡電流から変換されるガス濃度信号の波形に、乱れが生じないようにすることができる。   For this reason, it is possible to prevent the flow of electrons from being delayed while the power of the signal processing circuit is turned off and to move from the detection electrode to the counter electrode at the same time when the power is turned on, and the power of the signal processing circuit is turned on next time. When the measurement of the concentration of the target gas in the ambient atmosphere of the electrochemical gas sensor is started, it is converted from the short-circuit current that flows from the detection electrode of the electrochemical gas sensor to the counter electrode via the signal processing circuit, and then the short-circuit current that flows to this signal processing circuit. It is possible to prevent the disturbance of the waveform of the gas concentration signal.

また、請求項2に記載した本発明のガス濃度測定装置によれば、請求項1に記載した本発明のガス濃度測定装置において、ベース電圧発生回路によってノーマリーON型の電界効果トランジスタのゲート−ソース間の電圧をコントロールして、ドレイン−ソース間の状態を導通、非導通の相互間で切り換えさせることで、電気化学式ガスセンサの外部において行う検知極と対極との短絡、開放を、自らは動作用電源を必要としない電界効果トランジスタを用いて省電力方式で行うことができる。   According to the gas concentration measuring apparatus of the present invention described in claim 2, in the gas concentration measuring apparatus of the present invention described in claim 1, the gate-source of the normally ON type field effect transistor by the base voltage generating circuit. By controlling the voltage between them, the state between the drain and source is switched between conductive and non-conductive, so that the detection electrode and the counter electrode are short-circuited and opened outside the electrochemical gas sensor. A power-saving method can be performed using a field-effect transistor that does not require a power source.

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係るガス濃度測定装置を採用した電気化学式COセンサ内蔵CO警報器の斜視図であり、図1中引用符号100で示す本実施形態の電気化学式COセンサ内蔵CO警報器(以下、「CO警報器」と略記する。)は、予め設置先の壁面(図示せず)に取着される取付部材200のフック210に樹脂製のケース110を吊り下げて使用される。   FIG. 1 is a perspective view of an electrochemical CO sensor built-in CO alarm device employing a gas concentration measuring apparatus according to an embodiment of the present invention. The electrochemical CO sensor built-in CO of this embodiment indicated by reference numeral 100 in FIG. An alarm device (hereinafter abbreviated as “CO alarm device”) is used by suspending a resin case 110 on a hook 210 of a mounting member 200 that is attached to a wall surface (not shown) of an installation destination in advance. The

前記ケース110の内部には、従来技術の欄で説明した図4の電気化学式COセンサ1(請求項中の電気化学式ガスセンサに相当)や、図2に電気的構成の回路図で示す電池B、定電圧回路10、信号処理回路20、ベース電圧発生回路30、ノーマリーON型の電界効果トランジスタFET、スイッチ回路IC1、電源スイッチSW、マイクロコンピュータ(以下、「μCOM」と略記する。)40、音声IC50、インジケータ60、及び、スピーカ70が内蔵されている。   Inside the case 110 are the electrochemical CO sensor 1 of FIG. 4 (corresponding to the electrochemical gas sensor in the claims) described in the section of the prior art, and the battery B shown in the circuit diagram of the electrical configuration in FIG. Constant voltage circuit 10, signal processing circuit 20, base voltage generation circuit 30, normally ON type field effect transistor FET, switch circuit IC1, power switch SW, microcomputer (hereinafter abbreviated as “μCOM”) 40, audio IC 50 The indicator 60 and the speaker 70 are incorporated.

前記定電圧回路10は、電池Bの電圧を定電圧化するものであり、前記信号処理回路20は、電気化学式COセンサ1の金属キャップ8と金属缶2との間に接続されて、電気化学式COセンサ1の対極32から金属缶2及び信号処理回路20を経て金属キャップ8乃至検知極31に向かう短絡電流を電圧に変換、増幅し、CO濃度(請求項中の対象ガスの濃度に相当)に応じた電圧のCO濃度信号(請求項中のガス濃度信号に相当)として出力するものである。   The constant voltage circuit 10 converts the voltage of the battery B to a constant voltage, and the signal processing circuit 20 is connected between the metal cap 8 and the metal can 2 of the electrochemical CO sensor 1 so as to be electrochemical. The short-circuit current from the counter electrode 32 of the CO sensor 1 through the metal can 2 and the signal processing circuit 20 to the metal cap 8 to the detection electrode 31 is converted into a voltage, amplified, and CO concentration (corresponding to the concentration of the target gas in the claims). Is output as a CO concentration signal (corresponding to a gas concentration signal in the claims) of a voltage corresponding to the above.

前記ベース電圧発生回路30(請求項中のスイッチ制御手段に相当)は、信号処理回路20におけるCO濃度信号の増幅時のゲインを定めるベース電圧を生成し、電気化学式COセンサ1の検知極31側のターミナルである金属キャップ8と信号処理回路20とに供給するものである。   The base voltage generation circuit 30 (corresponding to the switch control means in the claims) generates a base voltage that determines the gain at the time of amplification of the CO concentration signal in the signal processing circuit 20, and is on the detection electrode 31 side of the electrochemical CO sensor 1. Are supplied to the metal cap 8 and the signal processing circuit 20, which are the terminals.

尚、信号処理回路20及びベース電圧発生回路30は、CO警報器1の周辺雰囲気中のCO濃度を測定する際にONされる電源スイッチSWの投入中に、定電圧回路10からの定電圧を電源として作動するものであり、ベース電圧発生回路30が電気化学式COセンサ1の金属キャップ8と信号処理回路20とに出力する、信号処理回路20内のアンプ(図示せず)のゲインを定めるベース電圧(レファレンス電圧)は、電源スイッチSWがONしているCO濃度の測定時は、定電圧回路10から供給される定電圧電源から作られた例えば2.7Vとなり、電源スイッチSWがOFFしているCO濃度の非測定時は、定電圧回路10から定電圧電源が供給されないので0Vとなる。   The signal processing circuit 20 and the base voltage generation circuit 30 apply the constant voltage from the constant voltage circuit 10 while the power switch SW is turned on when measuring the CO concentration in the ambient atmosphere of the CO alarm device 1. A base that operates as a power source and determines the gain of an amplifier (not shown) in the signal processing circuit 20 that the base voltage generation circuit 30 outputs to the metal cap 8 of the electrochemical CO sensor 1 and the signal processing circuit 20. The voltage (reference voltage) is, for example, 2.7 V generated from the constant voltage power source supplied from the constant voltage circuit 10 when measuring the CO concentration when the power switch SW is ON, and the power switch SW is turned OFF. When the CO concentration is not measured, the constant voltage power supply is not supplied from the constant voltage circuit 10, and therefore it becomes 0V.

前記電界効果トランジスタFET(請求項中のスイッチ手段に相当)は、接合型FETやディプレッション型MOS−FETといったノーマリーON型のものであり(図2では接合型FETを用いる場合を示している)、そのドレインは対極32側のターミナルである金属缶2に、動作安定用の抵抗Rを介して接続されており、そのソースは検知極31側のターミナルである金属キャップ8に接続されており、ゲートは接地(0V)されている。   The field effect transistor FET (corresponding to the switch means in the claims) is a normally ON type such as a junction type FET or a depletion type MOS-FET (FIG. 2 shows a case where a junction type FET is used), The drain is connected to the metal can 2 which is a terminal on the counter electrode 32 side via a resistance R for operation stabilization, and the source is connected to the metal cap 8 which is a terminal on the detection electrode 31 side. Is grounded (0V).

この電界効果トランジスタFETは、ゲート−ソース間に逆バイアスがかかるとドレイン−ソース間が非導通状態となって、プロトン導電体膜3の検知極31側のターミナルである金属キャップ8から対極32側のターミナルである金属缶2を絶縁させ、ゲートとソースを同電位にするとドレイン−ソース間が導通状態となって、金属キャップ8を金属缶2に電気的に接続させる。   In the field effect transistor FET, when a reverse bias is applied between the gate and the source, the drain and the source become nonconductive, and the metal cap 8 which is a terminal on the detection electrode 31 side of the proton conductor film 3 is connected to the counter electrode 32 side. When the metal can 2, which is the terminal, is insulated and the gate and the source are set to the same potential, the drain-source becomes conductive, and the metal cap 8 is electrically connected to the metal can 2.

前記スイッチ回路IC1は、電源スイッチSWの投入中に定電圧回路10から供給される定電圧を電源として作動するものであり、電源スイッチSWがOFFしているCO濃度の非測定時に強制的にOFFとなるノーマリーOFF型に構成されていて、このOFF状態では信号処理回路20からプロトン導電体膜3の対極32を切り離し、電源スイッチSWがONされたCO濃度の測定時に、後述するμCOM40の制御によりONされると、信号処理回路20をプロトン導電体膜3の対極32に接続するものである。   The switch circuit IC1 operates with the constant voltage supplied from the constant voltage circuit 10 as the power source when the power switch SW is turned on, and is forcibly turned off when the CO concentration is not measured when the power switch SW is OFF. In this OFF state, the counter electrode 32 of the proton conductor film 3 is disconnected from the signal processing circuit 20 and the power switch SW is turned on to measure the CO concentration by the control of the μCOM 40 described later. When turned on, the signal processing circuit 20 is connected to the counter electrode 32 of the proton conductor film 3.

前記μCOM40は、電源スイッチSWのON、OFFに関係なく常時、定電圧回路10からの定電圧電源の供給を受けて作動するもので、電源スイッチSWや電界効果トランジスタFET、スイッチ回路IC1のON、OFFを制御すると共に、信号処理回路20から入力されるCO濃度信号に基づいて、CO警報器1の周辺雰囲気中のCO濃度が警報レベルに達しているか否かの判定を行い、達している場合に、インジケータ60を点灯させると共に、「ピッポピッポ、空気が汚れて危険です。窓を開けて換気をして下さい。」等の音声メッセージを音声IC50から読み出してスピーカ70により鳴動(音声出力)させる。   The μCOM 40 is operated by always receiving a constant voltage power supply from the constant voltage circuit 10 regardless of whether the power switch SW is turned on or off. The power switch SW, the field effect transistor FET, and the switch circuit IC1 are turned on. When OFF is controlled, it is determined whether or not the CO concentration in the ambient atmosphere of the CO alarm device 1 has reached the alarm level based on the CO concentration signal input from the signal processing circuit 20. In addition, the indicator 60 is turned on and a voice message such as “Pippippo is dangerous because the air is dirty. Open the window to ventilate” is read from the voice IC 50 and is sounded (voice output) by the speaker 70.

ちなみに、電池Bの−側、定電圧回路10、信号処理回路20、ベース電圧発生回路30、スイッチ回路IC1、及び、μCOM40は、いずれも接地(0V)されている。   Incidentally, the negative side of the battery B, the constant voltage circuit 10, the signal processing circuit 20, the base voltage generation circuit 30, the switch circuit IC1, and the μCOM 40 are all grounded (0 V).

このような構成のCO警報器100においては、電気化学式COセンサ1の周辺雰囲気中のCO濃度の非測定時に、μCOM40の制御により電源スイッチSWがOFFされ、これにより、スイッチ回路IC1がOFFされて信号処理回路20からプロトン導電体膜3の対極32が切り離されると共に、ベース電圧発生回路30からプロトン導電体膜3の検知極31側のターミナルである金属キャップ8に0Vのベース電圧が供給される。   In the CO alarm device 100 having such a configuration, when the CO concentration in the ambient atmosphere of the electrochemical CO sensor 1 is not measured, the power switch SW is turned off by the control of the μCOM 40, and thereby the switch circuit IC1 is turned off. The counter electrode 32 of the proton conductor film 3 is disconnected from the signal processing circuit 20, and a base voltage of 0 V is supplied from the base voltage generation circuit 30 to the metal cap 8 that is a terminal on the detection electrode 31 side of the proton conductor film 3. .

すると、金属キャップ8に接続された電界効果トランジスタFETのソースの電位(0V)が、接地(0V)されているゲートの電位と等しくなって、ゲートに逆バイアスがかからない電界効果トランジスタFETのドレイン−ソース間が導通状態となるので、電気化学式COセンサ1の周辺雰囲気中のCO濃度に応じてプロトン導電体膜3の検知極31に発生する電子(2e- )は、スイッチ回路IC1のOFFによりプロトン導電体膜3の対極32から切り離された信号処理回路20に代わって、電界効果トランジスタFETのドレイン−ソース間を介して、プロトン導電体膜3の対極32に移動する。 Then, the source potential (0 V) of the field effect transistor FET connected to the metal cap 8 becomes equal to the potential of the grounded (0 V) gate, and the drain of the field effect transistor FET in which the gate is not reverse-biased. Since the source is in a conductive state, electrons (2e ) generated at the detection electrode 31 of the proton conductor film 3 according to the CO concentration in the ambient atmosphere of the electrochemical CO sensor 1 are protonated by turning off the switch circuit IC1. Instead of the signal processing circuit 20 separated from the counter electrode 32 of the conductor film 3, it moves to the counter electrode 32 of the proton conductor film 3 through the drain-source of the field effect transistor FET.

したがって、μCOM40の制御により電源スイッチSWがOFFされる電気化学式COセンサ1の周辺雰囲気中のCO濃度の非測定時に、プロトン導電体膜3の検知極31に発生する電子(2e- )が検知極31にそのまま滞留することはない。 Therefore, when the CO concentration in the ambient atmosphere of the electrochemical CO sensor 1 in which the power switch SW is turned off by the control of the μCOM 40 is not measured, electrons (2e ) generated at the detection electrode 31 of the proton conductor film 3 are detected. 31 does not stay as it is.

また、その後、電気化学式COセンサ1の周辺雰囲気中のCO濃度を間欠的に測定するタイミングが到来すると、μCOM40の制御により電源スイッチSWがONされ、これにより、スイッチ回路IC1がONされて信号処理回路20がプロトン導電体膜3の対極32に接続されると共に、ベース電圧発生回路30からプロトン導電体膜3の検知極31側のターミナルである金属キャップ8に2.7Vのベース電圧が供給される。   Thereafter, when the timing for intermittently measuring the CO concentration in the ambient atmosphere of the electrochemical CO sensor 1 is reached, the power switch SW is turned on by the control of the μCOM 40, whereby the switch circuit IC1 is turned on to perform signal processing. The circuit 20 is connected to the counter electrode 32 of the proton conductor film 3, and a base voltage of 2.7 V is supplied from the base voltage generation circuit 30 to the metal cap 8 that is a terminal on the detection electrode 31 side of the proton conductor film 3. The

すると、金属キャップ8に接続された電界効果トランジスタFETのソースの電位(2.7V)が、接地(0V)されているゲートの電位よりも高くなって、ゲートに逆バイアスがかかった電界効果トランジスタFETのドレイン−ソース間が非導通状態となるので、電気化学式COセンサ1の周辺雰囲気中のCO濃度に応じてプロトン導電体膜3の検知極31に発生する電子(2e- )は、非導通状態となった電界効果トランジスタFETのドレイン−ソース間ではなく、スイッチ回路IC1のONによりプロトン導電体膜3の対極32に接続された信号処理回路20を介して、対極32に移動する。 Then, the potential (2.7 V) of the source of the field effect transistor FET connected to the metal cap 8 becomes higher than the potential of the grounded (0 V) gate, and the gate is reverse-biased. Since the drain-source of the FET is non-conductive, electrons (2e ) generated at the detection electrode 31 of the proton conductor film 3 in accordance with the CO concentration in the ambient atmosphere of the electrochemical CO sensor 1 are non-conductive. It moves to the counter electrode 32 through the signal processing circuit 20 connected to the counter electrode 32 of the proton conductor film 3 by turning on the switch circuit IC1, not between the drain and source of the field effect transistor FET which has become a state.

したがって、電子(2e- )の移動経路上にある信号処理回路20に短絡電流が流れて、信号処理回路20における短絡電流のCO濃度信号への電流−電圧変換や信号増幅が行われ、このCO濃度信号が入力されるμCOM40において、CO濃度信号の示すCO濃度が警報レベルに達したか否かの判定や、警報レベルに達した際のインジケータ60やスピーカ70を用いた警報動作が、適宜行われることになる。 Therefore, a short-circuit current flows through the signal processing circuit 20 on the movement path of the electrons (2e ), and current-voltage conversion and signal amplification of the short-circuit current into a CO concentration signal in the signal processing circuit 20 are performed. In the μCOM 40 to which the concentration signal is input, whether or not the CO concentration indicated by the CO concentration signal has reached the alarm level and the alarm operation using the indicator 60 and the speaker 70 when the alarm level is reached are appropriately performed. It will be.

このように本実施形態のCO警報器100によれば、μCOM40の制御により電源スイッチSWがOFFされる電気化学式COセンサ1の周辺雰囲気中のCO濃度の非測定時には、ベース電圧発生回路30から供給される0Vのベース電圧によってゲートに逆バイアスがかからず導通状態となった電界効果トランジスタFETのドレイン−ソース間を介して、電気化学式COセンサ1の周辺雰囲気中のCO濃度に応じてプロトン導電体膜3の検知極31に発生する電子(2e- )が対極32に移動し、検知極31にそのまま滞留しない。 As described above, according to the CO alarm device 100 of the present embodiment, when the CO concentration in the ambient atmosphere of the electrochemical CO sensor 1 in which the power switch SW is turned off by the control of the μCOM 40 is not measured, it is supplied from the base voltage generation circuit 30. Proton conduction according to the concentration of CO in the ambient atmosphere of the electrochemical CO sensor 1 through the drain-source of the field effect transistor FET in which the gate is not reverse-biased by the 0 V base voltage and becomes conductive. Electrons (2e ) generated at the detection electrode 31 of the body film 3 move to the counter electrode 32 and do not stay in the detection electrode 31 as they are.

このため、CO濃度のを間欠測定タイミングの到来でμCOM40の制御により電源スイッチSWがONされて、スイッチ回路IC1のONにより信号処理回路20がプロトン導電体膜3の対極32に接続された際に、それまで検知極31に滞留していた電子(2e- )が対極32に一気に移動するようになるのを防ぎ、信号処理回路20を介して対極32から検知極31に流れる短絡電流、ひいては、この信号処理回路20に流れる短絡電流から変換されるCO濃度信号の波形に、乱れが生じないようにして、μCOM40によりCO濃度を精度よく検出させて、周辺雰囲気中のCO濃度が警報レベルに達した旨のインジケータ60やスピーカ70による警報の表示や鳴動を、的確に行わせることができる。 Therefore, when the CO concentration is intermittently measured, the power switch SW is turned on by the control of the μCOM 40, and the signal processing circuit 20 is connected to the counter electrode 32 of the proton conductor film 3 by turning on the switch circuit IC1. Thus, the electrons (2e ) that have stayed in the detection electrode 31 are prevented from moving to the counter electrode 32 all at once, and a short-circuit current flowing from the counter electrode 32 to the detection electrode 31 via the signal processing circuit 20, The CO concentration is accurately detected by the μCOM 40 so that the waveform of the CO concentration signal converted from the short-circuit current flowing in the signal processing circuit 20 is not disturbed, and the CO concentration in the ambient atmosphere reaches the alarm level. It is possible to accurately display and sound an alarm by the indicator 60 and the speaker 70 to the effect.

尚、電界効果トランジスタFETに代えて、図3に電気的構成の回路図で示す、電源スイッチSWのON、OFFに関係なく常時、定電圧回路10からの定電圧電源の供給を受けて作動する第2スイッチ回路IC2を用い、電源スイッチSWがOFFしているCO濃度の非測定時に、μCOM40の制御によりONさせて、プロトン導電体膜3の検知極31側のターミナルである金属キャップ8を対極32側のターミナルである金属缶2に電気的に接続させると共に、電源スイッチSWがONされたCO濃度の測定時に、μCOM40の制御によりOFFさせて、金属キャップ8から金属缶2を絶縁させるように構成することもできる。   In place of the field effect transistor FET, the constant voltage power supply from the constant voltage circuit 10 is always operated regardless of whether the power switch SW is turned on or off as shown in the circuit diagram of the electrical configuration in FIG. When the CO concentration when the power switch SW is OFF is not measured using the second switch circuit IC2, the metal cap 8 which is a terminal on the detection electrode 31 side of the proton conductor film 3 is turned on by controlling the μCOM 40. It is electrically connected to the metal can 2 which is the terminal on the 32 side, and when measuring the CO concentration when the power switch SW is turned on, it is turned off by the control of the μCOM 40 so that the metal can 2 is insulated from the metal cap 8. It can also be configured.

そのように構成する場合は、第2スイッチ回路IC2が請求項中のスイッチ手段に相当し、μCOM40が請求項中のスイッチ制御手段に相当することになる。   In such a configuration, the second switch circuit IC2 corresponds to the switch means in the claims, and the μCOM 40 corresponds to the switch control means in the claims.

しかし、上述した図2の電界効果トランジスタFETを用いる方が、定電圧回路10から供給される定電圧を電源として作動する図3の第2スイッチ回路IC2を用いるよりも、消費電力を抑えて初期の効果を得ることができるので、電池Bの長寿命化を図る上で有利である。   However, the use of the above-described field effect transistor FET of FIG. 2 suppresses the power consumption and reduces the initial power than using the second switch circuit IC2 of FIG. 3 that operates using the constant voltage supplied from the constant voltage circuit 10 as a power source. This is advantageous in extending the life of the battery B.

そして、本実施形態では電気化学式COセンサ1を用いてCO濃度の測定及び警報動作を行うCO警報器を例に取って説明したが、本発明はCOに限らず、酸素や二酸化炭素等、電気化学式のガスセンサで対象ガスのガス濃度を測定する場合に広く適用可能であることは、言うまでもない。   In the present embodiment, the CO alarm device that measures the CO concentration and performs the alarm operation using the electrochemical CO sensor 1 has been described as an example. However, the present invention is not limited to CO, and may be an oxygen, carbon dioxide, or other electric device. Needless to say, the present invention is widely applicable when measuring the gas concentration of the target gas with a chemical gas sensor.

本発明が適用される電気化学式COセンサ内蔵CO警報器の一実施形態を示す斜視図である。It is a perspective view showing one embodiment of a CO alarm with a built-in electrochemical CO sensor to which the present invention is applied. 図1の電気化学式COセンサ内蔵CO警報器に内蔵される電気的構成の回路図である。FIG. 2 is a circuit diagram of an electrical configuration built in the electrochemical CO sensor built-in CO alarm device of FIG. 1. 図1の電気化学式COセンサ内蔵CO警報器に内蔵される他の実施形態に係るCO警報器の電気的構成の回路図である。電気化学式COセンサの構成を示す断面図である。It is a circuit diagram of the electric constitution of the CO alarm device which concerns on other embodiment built in the CO alarm device with an electrochemical CO sensor of FIG. It is sectional drawing which shows the structure of an electrochemical CO sensor. 一般的な電気化学式COセンサの構成を示す断面図である。It is sectional drawing which shows the structure of a general electrochemical CO sensor.

符号の説明Explanation of symbols

1 電気化学式COセンサ(電気化学式ガスセンサ)
31 検知極
32 対極
20 信号処理回路
30 ベース電圧発生回路(スイッチ制御手段)
40 マイクロコンピュータ(スイッチ制御手段)
FET 電界効果トランジスタ(スイッチ手段)
IC2 第2スイッチ回路(スイッチ手段)
1 Electrochemical CO sensor (electrochemical gas sensor)
31 detection electrode 32 counter electrode 20 signal processing circuit 30 base voltage generation circuit (switch control means)
40 Microcomputer (switch control means)
FET field effect transistor (switching means)
IC2 Second switch circuit (switch means)

Claims (2)

電気化学式ガスセンサの検知極と対極とに接続された信号処理回路の、間欠的な電源ON中に、前記電気化学式ガスセンサの周辺雰囲気のガス濃度に応じて前記検知極に発生した電子が前記信号処理回路を介して前記対極に移動することで、前記対極から前記信号処理回路を介して前記検知極に流れる短絡電流を、該信号処理回路において前記電気化学式ガスセンサの周辺雰囲気のガス濃度に応じた電圧値のガス濃度信号に変換するガス濃度測定装置において、
前記検知極と前記対極とを前記電気化学式ガスセンサの外部で短絡、開放するスイッチ手段と、
前記信号処理回路の電源ON中に前記スイッチ手段により前記検知極と前記対極とを開放させ、前記信号処理回路の電源OFF中に前記スイッチ手段により前記検知極と前記対極とを短絡させるスイッチ制御手段と、
を備えることを特徴とするガス濃度測定装置。
Electrons generated at the detection electrode according to the gas concentration in the ambient atmosphere of the electrochemical gas sensor during the intermittent power ON of the signal processing circuit connected to the detection electrode and the counter electrode of the electrochemical gas sensor are the signal processing. A voltage corresponding to the gas concentration in the ambient atmosphere of the electrochemical gas sensor in the signal processing circuit in the signal processing circuit by causing a short circuit current flowing from the counter electrode to the detection electrode through the signal processing circuit by moving to the counter electrode through a circuit. In the gas concentration measuring device that converts the gas concentration signal of the value,
Switch means for short-circuiting and opening the detection electrode and the counter electrode outside the electrochemical gas sensor;
Switch control means for causing the switch means to open the detection electrode and the counter electrode while the signal processing circuit is turned on, and for causing the switch means to short-circuit the detection electrode and the counter electrode while the signal processing circuit is turned off. When,
A gas concentration measuring device comprising:
前記スイッチ手段は、前記対極にドレインが電気的に接続され前記検知極にソースが電気的に接続されたノーマリーON型の電界効果トランジスタで構成されており、前記スイッチ制御手段は、前記信号処理回路の電源ON中に、該電界効果トランジスタのゲート−ソース間に逆バイアスをかけて前記電界効果トランジスタのドレイン−ソース間を非導通状態とすると共に、前記信号処理回路の電源OFF中に、前記電界効果トランジスタのゲートとソースを同電位として該電界効果トランジスタのドレイン−ソース間を導通状態とするためのベース電圧を、前記電界効果トランジスタのゲート又はソースに印加するベース電圧発生回路で構成されている請求項1記載のガス濃度測定装置。   The switch means includes a normally-ON type field effect transistor having a drain electrically connected to the counter electrode and a source electrically connected to the detection electrode, and the switch control means includes the signal processing circuit. When the power source of the signal processing circuit is turned on, a reverse bias is applied between the gate and the source of the field effect transistor to make the drain and source of the field effect transistor non-conductive, and the power source of the signal processing circuit is turned off. The base voltage generating circuit is configured to apply a base voltage for setting the gate and source of the effect transistor to the same potential and bringing the drain and source of the field effect transistor into a conductive state to the gate or source of the field effect transistor. The gas concentration measuring apparatus according to claim 1.
JP2006077214A 2006-03-20 2006-03-20 Gas concentration measuring device Active JP4820193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077214A JP4820193B2 (en) 2006-03-20 2006-03-20 Gas concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077214A JP4820193B2 (en) 2006-03-20 2006-03-20 Gas concentration measuring device

Publications (2)

Publication Number Publication Date
JP2007255922A true JP2007255922A (en) 2007-10-04
JP4820193B2 JP4820193B2 (en) 2011-11-24

Family

ID=38630335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077214A Active JP4820193B2 (en) 2006-03-20 2006-03-20 Gas concentration measuring device

Country Status (1)

Country Link
JP (1) JP4820193B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037549A (en) * 2015-08-12 2017-02-16 新コスモス電機株式会社 Alarm unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116248A (en) * 1985-10-18 1987-05-27 ネオトロニクス リミテイド Gas monitor circuit
JP2000146908A (en) * 1998-09-29 2000-05-26 Atwood Ind Inc Gas sensor with electrically conductive, hydrophobic membrane
JP2004170101A (en) * 2002-11-18 2004-06-17 Figaro Eng Inc Proton conductive material gas sensor and co detection method
JP2004226241A (en) * 2003-01-23 2004-08-12 Matsushita Electric Ind Co Ltd Gas sensor
JP2004279293A (en) * 2003-03-18 2004-10-07 Figaro Eng Inc Self-diagnosis method for proton conductor gas sensor, and gas detector
WO2006046568A1 (en) * 2004-10-28 2006-05-04 Figaro Engineering Inc. Gas detecting device provided with electrochemical gas sensor and capable of self-diagnosis
JP2007240484A (en) * 2006-03-13 2007-09-20 Yazaki Corp Co alarm and electrochemical sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116248A (en) * 1985-10-18 1987-05-27 ネオトロニクス リミテイド Gas monitor circuit
JP2000146908A (en) * 1998-09-29 2000-05-26 Atwood Ind Inc Gas sensor with electrically conductive, hydrophobic membrane
JP2004170101A (en) * 2002-11-18 2004-06-17 Figaro Eng Inc Proton conductive material gas sensor and co detection method
JP2004226241A (en) * 2003-01-23 2004-08-12 Matsushita Electric Ind Co Ltd Gas sensor
JP2004279293A (en) * 2003-03-18 2004-10-07 Figaro Eng Inc Self-diagnosis method for proton conductor gas sensor, and gas detector
WO2006046568A1 (en) * 2004-10-28 2006-05-04 Figaro Engineering Inc. Gas detecting device provided with electrochemical gas sensor and capable of self-diagnosis
JP2007240484A (en) * 2006-03-13 2007-09-20 Yazaki Corp Co alarm and electrochemical sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037549A (en) * 2015-08-12 2017-02-16 新コスモス電機株式会社 Alarm unit

Also Published As

Publication number Publication date
JP4820193B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
KR100816436B1 (en) Gas detecting device with self-diagnosis for electrochemical gas sensor
JP4194085B2 (en) Self-diagnosis method and gas detector for proton conductor gas sensor
US7834634B2 (en) Low-power switch state detection circuit and method and mobile telephone incorporating the same
JP4157881B2 (en) Gas detection system
JP2008517271A (en) Electrochemical sensing circuit with high dynamic range
KR20120044894A (en) Temperature detection device
JP2005150550A (en) Solenoid driving device
JP4820193B2 (en) Gas concentration measuring device
JP4800908B2 (en) Gas alarm with built-in electrochemical gas sensor
JP4714612B2 (en) Gas concentration measuring device
JP2008286724A (en) Gas alarm
JP4158930B2 (en) Electrochemical gas concentration measuring device
JPH07218662A (en) Electronic apparatus with water depth meter
JP4842789B2 (en) Gas concentration measuring device
JP2008164305A (en) Electrochemical sensor, target gas monitor device, and concentration detection method of electrochemical sensor
JP2009229254A (en) Electrochemical gas detection apparatus
KR200356237Y1 (en) The Electric current Sensor Which Used Hall Device
JP5861834B2 (en) Energization control device for gas detection element
KR102553045B1 (en) Voltage detection system and method of fuel cell stack
JP2007318352A (en) Magnetoelectric transducing switch
JP5897372B2 (en) Electrochemical gas sensor, method for selectively detecting CO and H2, and method for modifying electrochemical gas sensor
JP5065332B2 (en) Carbon monoxide gas measuring device and alarm
JP2001124731A (en) Gas sensor device and starting method for gas sensor
KR20120065862A (en) Power converting apparatus and method of sensing output current thereof
JPH0887690A (en) Gas leakage alarm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4820193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250