JP5897371B2 - Method for adjusting sensitivity of electrochemical gas sensor and gas detector - Google Patents

Method for adjusting sensitivity of electrochemical gas sensor and gas detector Download PDF

Info

Publication number
JP5897371B2
JP5897371B2 JP2012071326A JP2012071326A JP5897371B2 JP 5897371 B2 JP5897371 B2 JP 5897371B2 JP 2012071326 A JP2012071326 A JP 2012071326A JP 2012071326 A JP2012071326 A JP 2012071326A JP 5897371 B2 JP5897371 B2 JP 5897371B2
Authority
JP
Japan
Prior art keywords
sensitivity
counter electrode
electrode
detection
detection electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012071326A
Other languages
Japanese (ja)
Other versions
JP2013205068A (en
Inventor
篤 野中
篤 野中
崇 中島
崇 中島
英正 野中
英正 野中
大西 久男
久男 大西
敏郎 中山
敏郎 中山
新宅 英城
英城 新宅
正文 岡田
正文 岡田
利浩 宇高
利浩 宇高
兼安 一成
一成 兼安
裕樹 藤森
裕樹 藤森
浩文 井上
浩文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Osaka Gas Co Ltd
Original Assignee
Figaro Engineering Inc
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Osaka Gas Co Ltd filed Critical Figaro Engineering Inc
Priority to JP2012071326A priority Critical patent/JP5897371B2/en
Publication of JP2013205068A publication Critical patent/JP2013205068A/en
Application granted granted Critical
Publication of JP5897371B2 publication Critical patent/JP5897371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

この発明は電気化学ガスセンサに関し、特に電気化学ガスセンサに直流電流あるいは直流電圧を加えることにより、ガス感度を変化させることに関する。   The present invention relates to an electrochemical gas sensor, and more particularly to changing gas sensitivity by applying a direct current or a direct voltage to an electrochemical gas sensor.

発明者らは、複素インピーダンスにより、電気化学ガスセンサを診断することを提案した(特許文献1 特開2011-158468)。電気化学ガスセンサでは、液体電解質を保持するセパレータもしくは固体電解質膜の両面に、検知極と対極とが設けられている。そして特許文献1では、検知極と対極間の複素インピーダンスを測定する。これらの部材に結露等が生じ、ガスの拡散性が低下すると、複素インピーダンスの実数部が低下するので、検出できる。   The inventors have proposed diagnosing an electrochemical gas sensor by complex impedance (Patent Document 1 Japanese Patent Laid-Open No. 2011-158468). In an electrochemical gas sensor, a detection electrode and a counter electrode are provided on both surfaces of a separator or a solid electrolyte membrane that holds a liquid electrolyte. And in patent document 1, the complex impedance between a detection electrode and a counter electrode is measured. When condensation or the like occurs in these members and the gas diffusibility is lowered, the real part of the complex impedance is lowered and can be detected.

特許文献1は、インピーダンスを測定することにより、電気化学ガスセンサの状態を診断することを意図しており、電気化学ガスセンサの感度を積極的に変化させることは意図していない。発明者は、電気化学ガスセンサに直流電流あるいは直流電圧を加えることにより、ガス感度を変化させることを検討し、この発明に到った。   Patent Document 1 intends to diagnose the state of the electrochemical gas sensor by measuring impedance, and does not intend to positively change the sensitivity of the electrochemical gas sensor. The inventor studied changing the gas sensitivity by applying a direct current or a direct voltage to the electrochemical gas sensor, and reached the present invention.

特開2011-158468JP2011-158468

この発明の課題は、電気化学ガスセンサの感度を簡単に調整する技術を確立することにある。   An object of the present invention is to establish a technique for easily adjusting the sensitivity of an electrochemical gas sensor.

この発明は、液体電解質を保持するセパレータもしくは固体高分子プロトン導電体膜の被検出雰囲気側に検知極が、基準雰囲気側に対極が設けられている電気化学ガスセンサに対し、前記検知極と対極間に、検知極を+、前記対極を−として、検知極から対極へ直流電流を加えることにより、CO感度を低下させると共にH2感度を増加させるか、あるいは検知極を−、対極を+として、対極から検知極へ直流電流を加えることにより、CO感度を増加させると共にH2感度を低下させる、電気化学ガスセンサの感度調整方法にある。 The present invention relates to an electrochemical gas sensor in which a detection electrode is provided on a detection atmosphere side of a separator or a solid polymer proton conductor film that holds a liquid electrolyte , and a counter electrode is provided on a reference atmosphere side. In addition, if the detection electrode is set to + and the counter electrode is set to-, and a DC current is applied from the detection electrode to the counter electrode, the CO sensitivity is lowered and the H2 sensitivity is increased, or the detection electrode is set to-and the counter electrode is set to +. This is an electrochemical gas sensor sensitivity adjustment method that increases the CO sensitivity and decreases the H2 sensitivity by applying a direct current from the sensor to the detection electrode .

この発明はまた、液体電解質を保持するセパレータもしくは固体高分子プロトン導電体膜の被検出雰囲気側に検知極が、基準雰囲気側に対極が設けられている電気化学ガスセンサを備えているガス検出装置において、前記検知極と対極間に、検知極を+、前記対極を−として、検知極から対極へ直流電流を加えることにより、CO感度を低下させると共にH2感度を増加させるか、あるいは検知極を−、対極を+として、対極から検知極へ直流電流を加えることにより、CO感度を増加させると共にH2感度を低下させる、電気化学ガスセンサのガス感度を調整する感度調整手段を備えていることを特徴とする。 The present invention also provides a gas detection apparatus comprising an electrochemical gas sensor in which a detection electrode is provided on the detected atmosphere side of a separator or a solid polymer proton conductor film holding a liquid electrolyte, and a counter electrode is provided on a reference atmosphere side. By adding a direct current from the detection electrode to the counter electrode, the CO sensitivity is lowered and the H2 sensitivity is increased, or the detection electrode is- It has a sensitivity adjustment means that adjusts the gas sensitivity of the electrochemical gas sensor , which increases the CO sensitivity and decreases the H2 sensitivity by adding a direct current from the counter electrode to the detection electrode with the counter electrode set to +. To do.

発明者は、電気化学ガスセンサの検知極と対極間に直流電流を加えると、ガス感度が変化することを見出した。例えば検知極を+、対極を−として、検知極から対極へ直流電流を加えると、CO感度が低下し、H2感度が増加する。通常の電気化学ガスセンサでは、CO感度はH2感度に比べ相当に高いので、CO感度を低下させH2感度を増加させると、不完全燃焼で生じたCOとH2の双方を検出するように感度を調整できる。逆に対極を+、検知極を−として、対極から検知極へ直流電流を加えると、CO感度が増してH2感度が低下するので、CO選択性を高めることが出来る。また電気化学ガスセンサは温暖で湿潤な時期には感度が高く、寒冷で乾燥した時期には感度が低い。そこでガス検出装置にタイマあるいは温度センサを設けて季節を検出し、冬季にCO感度が増し、あるいは夏期にCO感度が減少するように、直流電流を加えると、ガス感度の季節変動を小さくできる。電気化学ガスセンサのガス感度は、使用時間と共に低下して行くことが多い。そこでタイマ等で使用時間を積算し、CO等のガス感度が増すように直流電流を加えると、使用によるガス感度の低下を補正できる。   The inventor has found that the gas sensitivity changes when a direct current is applied between the detection electrode and the counter electrode of the electrochemical gas sensor. For example, if the detection electrode is set to + and the counter electrode is set to-, and a direct current is applied from the detection electrode to the counter electrode, the CO sensitivity decreases and the H2 sensitivity increases. In ordinary electrochemical gas sensors, the CO sensitivity is considerably higher than the H2 sensitivity, so if the CO sensitivity is reduced and the H2 sensitivity is increased, the sensitivity is adjusted to detect both CO and H2 generated by incomplete combustion. it can. Conversely, if the counter electrode is set to + and the detection electrode is set to-, and a direct current is applied from the counter electrode to the detection electrode, the CO sensitivity increases and the H2 sensitivity decreases, so that the CO selectivity can be increased. Electrochemical gas sensors have high sensitivity when warm and wet, and low sensitivity when cold and dry. Therefore, a seasonal change in gas sensitivity can be reduced by providing a timer or temperature sensor in the gas detection device to detect the season and applying direct current so that the CO sensitivity increases in winter or decreases in summer. The gas sensitivity of an electrochemical gas sensor often decreases with time of use. Therefore, by integrating the usage time with a timer or the like and applying a direct current so that the gas sensitivity of CO or the like is increased, the decrease in gas sensitivity due to use can be corrected.

液体電解質を保持するセパレータもしくは固体電解質膜と、検知極と、対極との集合体をMEAと呼ぶ。直流電流を加えることによるMEAへの影響は、検知極及び対極の電気化学的性質の変化、検知極あるいは対極とセパレータもしくは固体電解質膜との界面の変化などが考えられる。発明者の実験では、直流電流の向きを変えると、効果は逆向きになるので、直流電流の極性が重要である。また発明者は、セパレータに液体電解質を保持させたMEAで実験したが、固体高分子プロトン導電体膜を用いたMEAでも、同様の結果が得られた。定電流等の直流電流をMEAに加えても良く、あるいは直流定電圧等をMEAに加えて直流電流を流しても良い。また直流電流に交流電流を重畳しても良い。直流電流の影響は、直流電流の向き、電流あるいは電圧の大小、電流を加える時間と回数に依存し、これらの条件を変えることにより、簡単に最適条件を求めることができる。なお最適条件はMEAの種類に依存するものと考えられる。   An assembly of the separator or solid electrolyte membrane holding the liquid electrolyte, the detection electrode, and the counter electrode is referred to as MEA. The effects on the MEA by applying a direct current may include changes in the electrochemical properties of the detection electrode and counter electrode, and changes in the interface between the detection electrode or counter electrode and the separator or solid electrolyte membrane. In the inventor's experiment, changing the direction of the direct current reverses the effect, so the polarity of the direct current is important. The inventor conducted an experiment with MEA in which a liquid electrolyte was held in a separator, but similar results were obtained with MEA using a solid polymer proton conductor membrane. A DC current such as a constant current may be applied to the MEA, or a DC constant voltage or the like may be applied to the MEA to cause a DC current to flow. Moreover, you may superimpose an alternating current on a direct current. The influence of the direct current depends on the direction of the direct current, the magnitude of the current or voltage, the time and number of times the current is applied, and the optimum condition can be easily obtained by changing these conditions. The optimal condition is considered to depend on the type of MEA.

電気化学ガスセンサは、電流を出力とするように使用しても、起電力を出力とするように使用しても良い。また検出対象のガスはCO、H2に限らず、エタノール、アセトン、硫化水素、メチルメルカプタン等、任意である。この明細書において、電気化学ガスセンサに関する記載はそのまま電気化学ガスセンサの感度調整方法及びガス検出装置にも当てはまり、逆に電気化学ガスセンサの感度調整方法に関する記載はそのまま電気化学ガスセンサ及びガス検出装置にも当てはまる。   The electrochemical gas sensor may be used to output current or output electromotive force. The gas to be detected is not limited to CO and H2, but is arbitrary such as ethanol, acetone, hydrogen sulfide, methyl mercaptan, and the like. In this specification, the description regarding the electrochemical gas sensor is directly applied to the sensitivity adjustment method and the gas detection device of the electrochemical gas sensor, and conversely, the description regarding the sensitivity adjustment method of the electrochemical gas sensor is also applied to the electrochemical gas sensor and the gas detection device. .

実施例の電気化学ガスセンサの断面図Sectional view of the electrochemical gas sensor of the example 実施例でのMEAの分解状態を示す図The figure which shows the decomposition | disassembly state of MEA in an Example 実施例でのガス検出装置を示す図The figure which shows the gas detection apparatus in an Example 直流電圧印加前のCOへのレスポンスを示す特性図Characteristic diagram showing response to CO before DC voltage is applied 直流電圧印加前のH2へのレスポンスを示す特性図Characteristic diagram showing response to H2 before DC voltage application -2〜+2Vの直流電圧を100msec加えた後のCOへのレスポンスを示す特性図Characteristic diagram showing the response to CO after applying DC voltage of -2 to + 2V for 100msec -2〜+2Vの直流電圧を100msec×5回加えた後のCOへのレスポンスを示す特性図Characteristic diagram showing the response to CO after applying a DC voltage of -2 to +2 V for 100 msec x 5 times -2〜+2Vの直流電圧を100msec×10回加えた後のCOへのレスポンスを示す特性図Characteristic chart showing the response to CO after applying DC voltage of -2 to + 2V for 100msec x 10 times -2〜+2Vの直流電圧を100msec加えた後のH2へのレスポンスを示す特性図Characteristic diagram showing the response to H2 after applying DC voltage of -2 to + 2V for 100msec -2〜+2Vの直流電圧を100msec×5回加えた後のH2へのレスポンスを示す特性図Characteristic chart showing the response to H2 after applying DC voltage of -2 to + 2V 100msec x 5 times -2〜+2Vの直流電圧を100msec×10回加えた後のH2へのレスポンスを示す特性図Characteristic diagram showing the response to H2 after applying a DC voltage of -2 to + 2V 100msec x 10 times -500mA〜+500mAの直流電流を100msec加えた後のCOへのレスポンスを示す特性図-Characteristic diagram showing the response to CO after applying DC current of -500mA to + 500mA for 100msec -500mA〜+500mAの直流電流を100msec×5回加えた後のCOへのレスポンスを示す特性図-Characteristic chart showing the response to CO after applying -500mA to + 500mA direct current 100msec x 5 times -500mA〜+500mAの直流電流を100msec×10回加えた後のCOへのレスポンスを示す特性図Characteristic diagram showing the response to CO after applying -500mA to + 500mA DC current 100msec x 10 times -500mA〜+500mAの直流電流を100msec加えた後のH2へのレスポンスを示す特性図-Characteristics showing response to H2 after applying DC current of -500mA to + 500mA for 100msec -500mA〜+500mAの直流電流を100msec×5回加えた後のH2へのレスポンスを示す特性図-Characteristics showing response to H2 after applying DC current of -500mA to + 500mA for 100msec x 5 times -500mA〜+500mAの直流電流を100msec×10回加えた後のH2へのレスポンスを示す特性図-Characteristics showing response to H2 after applying DC current of -500mA to + 500mA for 100msec x 10 times +300mA×100msecの直流電流を加えた際の、空気中での電流と電圧の波形図Current and voltage waveforms in air when a + 300mA x 100msec DC current is applied −300mA×100msecの直流電流を加えた際の、空気中での電流と電圧の波形図Waveform diagram of current and voltage in air when a DC current of −300 mA x 100 msec is applied 直流電圧(100msec単位で印加)によるCO300ppmへの感度変化を示す特性図Characteristic diagram showing the change in sensitivity to CO300ppm due to DC voltage (applied in units of 100msec) 直流電圧(1sec印加)によるCO300ppmへの感度変化を示す特性図Characteristic diagram showing sensitivity change to CO300ppm by DC voltage (1sec applied) 直流電圧(100msec単位で印加)によるH2 300ppmへの感度変化を示す特性図Characteristic chart showing sensitivity change to 300ppm of H2 by DC voltage (applied in 100msec unit) 直流電圧(1sec印加)によるH2 300ppmへの感度変化を示す特性図Characteristic diagram showing the change in sensitivity to 300ppm of H2 due to DC voltage (1sec applied) 直流電流(100msec単位で印加)によるCO300ppmへの感度変化を示す特性図Characteristic diagram showing change in sensitivity to CO300ppm due to DC current (applied in units of 100msec) 直流電流(1sec印加)によるCO300ppmへの感度変化を示す特性図Characteristic diagram showing sensitivity change to CO300ppm by DC current (1sec applied) 直流電流(100msec単位で印加)によるH2 300ppmへの感度変化を示す特性図Characteristic diagram showing sensitivity change to 300ppm of H2 by DC current (applied in 100msec unit) 直流電流(1sec印加)によるH2 300ppmへの感度変化を示す特性図Characteristic diagram showing change in sensitivity to H2 300ppm by DC current (1sec applied)

以下に本発明を実施するための最適実施例を示す。なお実施例はこの発明を限定するものではなく、周知技術等を加味して実施例を変更できる。   In the following, an optimum embodiment for carrying out the present invention will be shown. Note that the embodiments do not limit the present invention, and the embodiments can be changed in consideration of known techniques and the like.

図1〜図27に実施例を示す。図1,図2は電気化学センサ2(以下「ガスセンサ2」)の構造を示し、4は金属容器で、水6を収容し、8はMEAである。10は金属の底板、12は金属の拡散制御板、16は金属のキャップ、11,14,18,19は開口で、この内、開口14はMEA8への被検出雰囲気の拡散を制限する。キャップ16には活性炭、シリカゲル、ゼオライト等のフィルタ材20が収容され、22はリング状のガスケットでキャップ16と金属容器4とを気密に絶縁する。なおMEA8の外周とガスケット22の内周との間には隙間が有る。ガスセンサ2の構造、材料は公知であり、水6はなくても良く、MEA8の取り付け構造は任意である。   Examples are shown in FIGS. 1 and 2 show the structure of an electrochemical sensor 2 (hereinafter referred to as “gas sensor 2”), 4 is a metal container, containing water 6 and 8 is an MEA. 10 is a metal bottom plate, 12 is a metal diffusion control plate, 16 is a metal cap, and 11, 14, 18 and 19 are openings. Of these, the opening 14 limits the diffusion of the detected atmosphere to the MEA 8. The cap 16 accommodates a filter material 20 such as activated carbon, silica gel, or zeolite, and 22 is a ring-shaped gasket that hermetically insulates the cap 16 and the metal container 4. There is a gap between the outer periphery of the MEA 8 and the inner periphery of the gasket 22. The structure and material of the gas sensor 2 are known, water 6 is not necessary, and the attachment structure of the MEA 8 is arbitrary.

図2に示すように、MEA8は液体電解質を保持した膜状の微孔質セパレータ24と、その両面の検知極S及び対極C、並びにカーボンシート等のガス拡散膜25,26から成る。実施例では液体電解質は芳香族スルホン酸のポリマーであるが、硫酸、KOH水溶液、K2CO3水溶液等、任意である。なおガス拡散膜25,26は無くても良く、また電極S,Cとセパレータ24との間に、固体高分子プロトン導電体膜、固体高分子アニオン導電体膜等を設けても良い。検知極S、対極Cは、Ptを担持したカーボンブラックにプロトン導電性の高分子を添加したもので、材質は任意である。   As shown in FIG. 2, the MEA 8 includes a membrane-like microporous separator 24 holding a liquid electrolyte, detection electrodes S and counter electrodes C on both sides thereof, and gas diffusion films 25 and 26 such as carbon sheets. In the embodiment, the liquid electrolyte is a polymer of aromatic sulfonic acid, but it is optional such as sulfuric acid, KOH aqueous solution, K2CO3 aqueous solution and the like. The gas diffusion films 25 and 26 may not be provided, and a solid polymer proton conductor film, a solid polymer anion conductor film, or the like may be provided between the electrodes S and C and the separator 24. The detection electrode S and the counter electrode C are obtained by adding proton conductive polymer to carbon black supporting Pt, and the material is arbitrary.

ガスセンサ2は、対極と検知極との間で直流電流あるいは直流電圧を加えることにより、CO感度とH2感度とを変化させたものである。この処理の効果は、図4〜図27に示す。   The gas sensor 2 is obtained by changing the CO sensitivity and the H2 sensitivity by applying a direct current or a direct voltage between the counter electrode and the detection electrode. The effect of this processing is shown in FIGS.

図3はガス検出装置を示し、30は電池等の直流電源で、抵抗R1,R2等により1V等の定電位を取り出し、ガスセンサ2の対極Cの電位を定電位に保つ。検知極S側に増幅回路A1を接続し、CO,H2等によりガスセンサ2を流れる検知電流を増幅して電圧信号に変換し、算術論理回路32により、電圧信号の正負と大小とによりCOかH2かを識別すると共にその濃度を求める。パルス発生回路34はタイマを内蔵し、例えば1か月毎に、あるいは冬等のCO感度が低下する季節が来る毎に、パルス電圧をガスセンサ2へ加えることによって、ガスセンサ2の感度を調整する。またガス検出装置の使用時間をパルス発生回路34で積算し、使用に伴うCO感度の低下を補うように、パルス電圧をガスセンサ2へ加える。例えば検知極Sから対極Cへ向けて、-1V×100msec程度のパルス電圧をスイッチ36を介してガスセンサ2へ印加し、CO感度を増加させる。なお対極Cと検知極Sの接続を逆にする場合は、対極C側からパルス電圧を加える。パルス発生回路34とスイッチ36が感度調整手段の例である。   FIG. 3 shows a gas detection device. Reference numeral 30 denotes a DC power source such as a battery, which takes out a constant potential such as 1 V by resistors R1, R2, etc., and keeps the potential of the counter electrode C of the gas sensor 2 at a constant potential. An amplification circuit A1 is connected to the detection pole S side, and the detection current flowing through the gas sensor 2 is amplified by CO, H2, etc., and converted into a voltage signal. And determine its concentration. The pulse generation circuit 34 has a built-in timer, and adjusts the sensitivity of the gas sensor 2 by applying a pulse voltage to the gas sensor 2 every month or every time when the CO sensitivity decreases such as in winter. Further, the use time of the gas detection device is integrated by the pulse generation circuit 34, and a pulse voltage is applied to the gas sensor 2 so as to compensate for the decrease in CO sensitivity accompanying use. For example, a pulse voltage of about −1 V × 100 msec from the detection electrode S to the counter electrode C is applied to the gas sensor 2 via the switch 36 to increase the CO sensitivity. When the connection between the counter electrode C and the detection electrode S is reversed, a pulse voltage is applied from the counter electrode C side. The pulse generation circuit 34 and the switch 36 are examples of sensitivity adjustment means.

図4〜図27に、ガスセンサ2への直流電圧及び直流電流の影響を示す。実験では各条件毎に3個のセンサを用いたが、図4〜図19の波形図では各1個のセンサの信号を示す。また対極C側を+、検知極S側を−として加えた直流電圧と直流電流の極性を示し、図中の300等の数字はガス濃度を示し、縦軸は増幅回路A1の出力を示す。図4は直流を加える前のCOへのレスポンスを、図5は直流を加える前のH2へのレスポンスを示し、これらはガスセンサ2のばらつきを示している。図6は、-2V〜+2Vの直流電圧を100msec×1回加えた後のCOへのレスポンスを示している。図7は、-2V〜+2Vの直流電圧を100msec×5回加えた後のCOへのレスポンスを示し、−の直流電圧を加えるとCO感度は減少する。図8は、-2V〜+2Vの直流電圧を100msec×10回加えた後のCOへのレスポンスを示している。   4 to 27 show the influence of the direct current voltage and direct current on the gas sensor 2. In the experiment, three sensors were used for each condition, but the waveforms of FIGS. 4 to 19 show the signals of one sensor each. Further, the polarity of the DC voltage and the DC current applied with + on the counter electrode C side and-on the detection electrode S side is shown, the numbers such as 300 in the figure show the gas concentration, and the vertical axis shows the output of the amplifier circuit A1. FIG. 4 shows the response to CO before DC is applied, and FIG. 5 shows the response to H2 before DC is applied. These show the variations of the gas sensor 2. FIG. 6 shows the response to CO after applying a DC voltage of −2 V to +2 V once for 100 msec × 1. FIG. 7 shows the response to CO after applying a DC voltage of −2 V to +2 V for 100 msec × 5 times. When a negative DC voltage is applied, the CO sensitivity decreases. FIG. 8 shows the response to CO after applying a DC voltage of −2V to + 2V 100 msec × 10 times.

図9は、-2V〜+2Vの直流電圧を100msec×1回加えた後のH2へのレスポンスを示し、直流電圧の影響は小さい。図10は、-2V〜+2Vの直流電圧を100msec×5回加えた後のH2へのレスポンスを示し、+の直流電圧を加えるとH2感度は一旦減少し、+1.5V以上でH2感度は極性が反転し、対極Cから検知極Sへ向けて検知電流が流れるようになる。図11は、-2V〜+2Vの直流電圧を100msec×10回加えた後のH2へのレスポンスを示し、+1VではH2感度は減少し、+1.5V以上では対極Cから検知極Sへ向けて検知電流が流れるようになる。   FIG. 9 shows the response to H2 after a DC voltage of −2 V to +2 V is applied once for 100 msec × 1, and the influence of the DC voltage is small. Fig. 10 shows the response to H2 after applying a DC voltage of -2V to + 2V for 100msec x 5 times. When a DC voltage of + is applied, the H2 sensitivity once decreases and at + 1.5V or higher, the H2 sensitivity is The polarity is reversed, and the detection current flows from the counter electrode C to the detection electrode S. Fig. 11 shows the response to H2 after applying DC voltage of -2V to + 2V for 100msec x 10 times. The sensitivity of H2 decreases at + 1V, and from + C to the detection pole S at + 1.5V or higher. Detection current flows.

図12は、-500mA〜+500mAの直流電流を100msec×1回加えた後のCOへのレスポンスを示し、+の直流電流を加えるとCO感度が増し、-の直流電流を加えるとCO感度が減少する。図13は、-500mA〜+500mAの直流電流を100msec×5回加えた後のCOへのレスポンスを示し、+の直流電流を加えるとCO感度が著しく増し、-の直流電流を加えるとCO感度は著しく減少する。図14は、-500mA〜+500mAの直流電流を100msec×10回加えた後のCOへのレスポンスを示し、+の直流電流を加えるとCO感度が著しく増し、-の直流電流を加えるとCO感度が著しく減少する。   Figure 12 shows the response to CO after applying a direct current of -500mA to + 500mA for 100msec x 1 time. Adding a positive DC current increases the CO sensitivity. Adding a negative DC current increases the CO sensitivity. Decrease. Fig. 13 shows the response to CO after applying a direct current of -500mA to + 500mA for 100msec x 5 times. When a positive DC current is added, the CO sensitivity increases significantly. Decreases significantly. FIG. 14 shows the response to CO after applying a direct current of −500 mA to +500 mA for 100 msec × 10 times. When the positive DC current is added, the CO sensitivity is remarkably increased, and when the negative DC current is added, the CO sensitivity is shown. Is significantly reduced.

図15は、-500mA〜+500mAの直流電流を100msec×1回加えた後のH2へのレスポンスを示し、+300mAの直流電流を加えるとH2感度は負になり、検知極Sから対極Cへ向けて検知電流が流れるようになる。図16は、-500mA〜+500mAの直流電流を100msec×5回加えた後のH2へのレスポンスを示し、+100mAの直流電流を加えるとH2感度はほぼ0となり、+300mA以上ではH2に対して対極Cから検知極Sへ向けて検知電流が流れるようになる。図17は、-500mA〜+500mAの直流電流を100msec×10回加えた後のH2へのレスポンスを示し、+100mA以上の直流電流を加えると、H2に対して対極Cから検知極Sへ向けて検知電流が流れるようになる。   Figure 15 shows the response to H2 after applying a direct current of -500mA to + 500mA for 100msec x 1 time. When a direct current of + 300mA is applied, the H2 sensitivity becomes negative, and the detection electrode S to the counter electrode C The detection current flows toward. Fig. 16 shows the response to H2 after applying a direct current of -500mA to + 500mA for 100msec x 5 times. When a + 100mA direct current is applied, the H2 sensitivity is almost 0, and at + 300mA or higher, the counter electrode is opposite to H2. The detection current flows from C toward the detection pole S. FIG. 17 shows the response to H2 after applying a direct current of −500 mA to +500 mA for 100 msec × 10 times. When a direct current of +100 mA or more is applied, H2 is directed from the counter electrode C to the detection electrode S. The detection current flows.

図18は+300mAの直流電流を空気中で加えている際の電流と電圧の波形を示し,図19は-300mAの直流電流を空気中で加えている際の電流と電圧の波形を示す。ガスセンサ2の抵抗成分は10〜20Ω程度で、抵抗には極性があり、抵抗成分の他に容量成分も含まれている。   18 shows current and voltage waveforms when a +300 mA DC current is applied in the air, and FIG. 19 shows a current and voltage waveforms when a −300 mA DC current is applied in the air. The resistance component of the gas sensor 2 is about 10 to 20Ω, the resistance has polarity, and includes a capacitance component in addition to the resistance component.

図20,図21は直流電圧の印加前後でのCO300ppmへの感度の変化を示し、図20では100msec単位で印加し、図21では1sec印加した。図22,図23は直流電圧の印加前後でのH2 300ppmへの感度の変化を示し、図22では100msec単位で印加し、図23では1sec印加した。+の直流電圧を加えると、CO感度が増加してH2感度は0〜負になり、-の直流電圧を加えると、CO感度が減少しH2感度が増加する。   20 and 21 show changes in sensitivity to CO 300 ppm before and after the application of a DC voltage. In FIG. 20, the sensitivity was applied in units of 100 msec, and in FIG. 22 and 23 show changes in sensitivity to H2 300 ppm before and after application of a DC voltage. In FIG. 22, the sensitivity was applied in units of 100 msec, and in FIG. When a positive DC voltage is applied, the CO sensitivity increases and the H2 sensitivity becomes 0 to negative, and when a negative DC voltage is applied, the CO sensitivity decreases and the H2 sensitivity increases.

図24,図25は直流電流の印加前後でのCO300ppmへの感度の変化を示し、図24では100msec単位で印加し、図25では1sec印加した。図26,図27は直流電流の印加前後でのH2 300ppmへの感度の変化を示し、図26では100msec単位で印加し、図27では1sec印加した。+の直流電流を加えると、CO感度が増加してH2感度は0〜負になり、-の直流電流を加えると、CO感度が減少しH2感度が増加する。   24 and 25 show changes in sensitivity to CO 300 ppm before and after application of a direct current. In FIG. 24, application was performed in units of 100 msec, and in FIG. 25, application was performed for 1 second. 26 and 27 show changes in sensitivity to H2 300 ppm before and after application of a direct current. In FIG. 26, application was performed in units of 100 msec, and in FIG. 27, application was performed for 1 second. When + DC current is added, the CO sensitivity increases and the H2 sensitivity becomes 0 to negative, and when-DC current is applied, the CO sensitivity decreases and the H2 sensitivity increases.

以上のように、加える直流電流あるいは直流電圧の値と時間、印加回数を選ぶことにより、CO感度とH2感度を調整できる。例えばCO感度を増しながらH2感度をほぼ0にすることができる。このようにすると水素燃料の燃料電池システム等において、燃料中の不純物であるCOを検出することができる。例えばCH4をH2へ変換するコンバータでは、生成ガスの主成分がH2で、有害な不純物がCOである。そこでH2感度がほぼ0でCO感度が高いセンサは、生成ガス中のCOの検出に適している。またCO感度とH2感度をほぼ等しくすると、不完全燃焼の検出に適している。即ち、不完全燃焼の特徴はCOとH2の双方が発生することで、これらを同等の感度で検出できると、不完全燃焼をより確実にかつより高感度に検出できる。   As described above, the CO sensitivity and H2 sensitivity can be adjusted by selecting the value and time of the DC current or DC voltage to be applied and the number of times of application. For example, H2 sensitivity can be made almost zero while increasing CO sensitivity. In this way, CO, which is an impurity in the fuel, can be detected in a hydrogen fuel cell system or the like. For example, in a converter that converts CH4 to H2, the main component of the product gas is H2, and the harmful impurity is CO. Therefore, a sensor with H2 sensitivity of almost 0 and high CO sensitivity is suitable for detecting CO in the product gas. If the CO sensitivity and H2 sensitivity are almost equal, it is suitable for detecting incomplete combustion. That is, the feature of incomplete combustion is that both CO and H2 are generated. If these can be detected with the same sensitivity, incomplete combustion can be detected more reliably and with higher sensitivity.

実施例ではセパレータ24に液体電解質を支持させたが、セパレータ24に代えて、固体高分子プロトン導電体を用いても、同様の結果が得られた。直流電流あるいは直流電圧の値、印加時間、印加回数等はMEAの材質、サイズ等の種類に応じて実験的に定めることができ、実施例に限定されるものではない。 In the example, the liquid electrolyte was supported on the separator 24, but the same result was obtained when a solid polymer proton conductor was used instead of the separator 24. The value of DC current or DC voltage, the application time, the number of applications, etc. can be determined experimentally according to the type of MEA material, size, etc., and are not limited to the examples.

2 電気化学ガスセンサ
4 金属容器
6 水
8 MEA
10 底板
12 拡散制御板
16 キャップ
11,14,18,19 開口
20 フィルタ材
22 ガスケット
24 セパレータ
25,26 ガス拡散膜
30 電源
32 算術論理回路
34 パルス発生回路
36 スイッチ
C 対極
S 検知極
R1,R2 抵抗
A1 増幅回路
2 Electrochemical gas sensor 4 Metal container 6 Water 8 MEA
10 Bottom plate 12 Diffusion control plate 16 Cap 11, 14, 18, 19 Opening 20 Filter material 22 Gasket 24 Separator 25, 26 Gas diffusion film 30 Power supply 32 Arithmetic logic circuit 34 Pulse generation circuit 36 Switch
C counter electrode
S detection pole
R1, R2 resistance
A1 Amplifier circuit

Claims (3)

液体電解質を保持するセパレータもしくは固体高分子プロトン導電体膜の被検出雰囲気側に検知極が、基準雰囲気側に対極が設けられている電気化学ガスセンサに対し、
前記検知極と対極間に、検知極を+、前記対極を−として、検知極から対極へ直流電流を加えることにより、CO感度を低下させると共にH2感度を増加させるか、あるいは検知極を−、対極を+として、対極から検知極へ直流電流を加えることにより、CO感度を増加させると共にH2感度を低下させる、電気化学ガスセンサの感度調整方法。
For an electrochemical gas sensor in which a detection electrode is provided on the detected atmosphere side of the separator or solid polymer proton conductor film holding the liquid electrolyte, and a counter electrode is provided on the reference atmosphere side,
Between the detection electrode and the counter electrode, the detection electrode is +, the counter electrode is-, and by adding a direct current from the detection electrode to the counter electrode, the CO sensitivity is lowered and the H2 sensitivity is increased, or the detection electrode is- A sensitivity adjustment method for electrochemical gas sensors that increases the CO sensitivity and decreases the H2 sensitivity by applying a direct current from the counter electrode to the detection electrode with the counter electrode set to + .
前記検知極を+、前記対極を−として、前記検知極から前記対極へ直流電流を加えることにより、CO感度を低下させると共にH2感度を増加させるようにガス感度を調整することを特徴とする、請求項1の電気化学ガスセンサの感度調整方法。 The detection electrode is +, the counter electrode is-, and by adding a direct current from the detection electrode to the counter electrode, the CO sensitivity is lowered and the gas sensitivity is adjusted to increase the H2 sensitivity. The method for adjusting sensitivity of an electrochemical gas sensor according to claim 1 . 液体電解質を保持するセパレータもしくは固体高分子プロトン導電体膜の被検出雰囲気側に検知極が、基準雰囲気側に対極が設けられている電気化学ガスセンサを備えているガス検出装置において、
前記検知極と対極間に、検知極を+、前記対極を−として、検知極から対極へ直流電流を加えることにより、CO感度を低下させると共にH2感度を増加させるか、あるいは検知極を−、対極を+として、対極から検知極へ直流電流を加えることにより、CO感度を増加させると共にH2感度を低下させる、電気化学ガスセンサのガス感度を調整する感度調整手段を備えていることを特徴とする、ガス検出装置。
In a gas detection apparatus comprising an electrochemical gas sensor in which a detection electrode is provided on a detected atmosphere side of a separator or a solid polymer proton conductor film that holds a liquid electrolyte, and a counter electrode is provided on a reference atmosphere side,
Between the detection electrode and the counter electrode, the detection electrode is +, the counter electrode is-, and by adding a direct current from the detection electrode to the counter electrode, the CO sensitivity is lowered and the H2 sensitivity is increased, or the detection electrode is- It has a sensitivity adjustment means that adjusts the gas sensitivity of the electrochemical gas sensor , which increases the CO sensitivity and decreases the H2 sensitivity by applying a direct current from the counter electrode to the detection electrode with the counter electrode set to +. , Gas detection device.
JP2012071326A 2012-03-27 2012-03-27 Method for adjusting sensitivity of electrochemical gas sensor and gas detector Active JP5897371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012071326A JP5897371B2 (en) 2012-03-27 2012-03-27 Method for adjusting sensitivity of electrochemical gas sensor and gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012071326A JP5897371B2 (en) 2012-03-27 2012-03-27 Method for adjusting sensitivity of electrochemical gas sensor and gas detector

Publications (2)

Publication Number Publication Date
JP2013205068A JP2013205068A (en) 2013-10-07
JP5897371B2 true JP5897371B2 (en) 2016-03-30

Family

ID=49524321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012071326A Active JP5897371B2 (en) 2012-03-27 2012-03-27 Method for adjusting sensitivity of electrochemical gas sensor and gas detector

Country Status (1)

Country Link
JP (1) JP5897371B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3589384B2 (en) * 1998-04-24 2004-11-17 東京瓦斯株式会社 Carbon monoxide sensor and its aging method
JP2003004698A (en) * 2001-06-26 2003-01-08 Nissan Motor Co Ltd Flammable gas detector
JP4573514B2 (en) * 2003-10-24 2010-11-04 東亜ディーケーケー株式会社 Constant potential electrolytic gas measurement method
JP2006030027A (en) * 2004-07-16 2006-02-02 Dkk Toa Corp Sensitivity restoring method of diaphragm type sensor, measuring instrument and electrode regeneration device

Also Published As

Publication number Publication date
JP2013205068A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
CN102981124B (en) Spot test method and test device for fuel cell stack membrane electrode conditions
JP4134228B2 (en) Gas detector with self-diagnosis using electrochemical gas sensor
JP2016524789A (en) Estimating the charge state of the positive electrolyte solution in a working redox flow battery cell without a reference electrode
KR101302531B1 (en) Electrochemical gas detection device
RU2000127726A (en) BATTERY HAVING AN INTEGRATED REGULATOR
EP2093562A3 (en) Gas sensor control device
US20130168244A1 (en) Carbon Monoxide Sensor with Reduced Hydrogen Cross Sensitivity
WO2010068653A3 (en) Combined optical and resistance measuring apparatus and method
EP2706350A3 (en) Gas concentration measuring apparatus with failure monitor
JP5897371B2 (en) Method for adjusting sensitivity of electrochemical gas sensor and gas detector
CN205785306U (en) A kind of hydrogen detection system based on metal-oxide gas sensor
JP5897372B2 (en) Electrochemical gas sensor, method for selectively detecting CO and H2, and method for modifying electrochemical gas sensor
CN103163378A (en) Battery polarization internal resistance measuring method
JP6110262B2 (en) Sensor control device
CN214043733U (en) Alcohol fuel cell stack
CN205618271U (en) Detect dirty stifled instrument of automotive air filter
US9816975B2 (en) Fluid state detection apparatus
CN206488894U (en) A kind of oily leak detection warning device of high-frequency sasser capacitance method
CN205449876U (en) Oxygen current measurement circuit and dissolved oxygen measuring apparatu
US20210172899A1 (en) Systems and methods for using a plurality of solid electrolyte sensors for a selective, low resolution formaldehyde detector
JP2008216008A5 (en)
JP2004061171A (en) Proton electric conductor gas sensor, gas detection device using the sensor, and self-diagnosis method of proton electric conductor gas sensor
CN117269246A (en) Proton exchange membrane direct current conductivity testing device and method for eliminating polarization potential
JP6458375B2 (en) Impedance measuring device
CN211125909U (en) Electrolyte leakage detection system for new energy lithium battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160302

R150 Certificate of patent or registration of utility model

Ref document number: 5897371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350