JP5897372B2 - Electrochemical gas sensor, method for selectively detecting CO and H2, and method for modifying electrochemical gas sensor - Google Patents

Electrochemical gas sensor, method for selectively detecting CO and H2, and method for modifying electrochemical gas sensor Download PDF

Info

Publication number
JP5897372B2
JP5897372B2 JP2012071327A JP2012071327A JP5897372B2 JP 5897372 B2 JP5897372 B2 JP 5897372B2 JP 2012071327 A JP2012071327 A JP 2012071327A JP 2012071327 A JP2012071327 A JP 2012071327A JP 5897372 B2 JP5897372 B2 JP 5897372B2
Authority
JP
Japan
Prior art keywords
gas sensor
counter electrode
electrode
electrochemical gas
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012071327A
Other languages
Japanese (ja)
Other versions
JP2013205069A (en
Inventor
篤 野中
篤 野中
崇 中島
崇 中島
英正 野中
英正 野中
大西 久男
久男 大西
敏郎 中山
敏郎 中山
新宅 英城
英城 新宅
正文 岡田
正文 岡田
利浩 宇高
利浩 宇高
兼安 一成
一成 兼安
裕樹 藤森
裕樹 藤森
浩文 井上
浩文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Osaka Gas Co Ltd
Original Assignee
Figaro Engineering Inc
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Osaka Gas Co Ltd filed Critical Figaro Engineering Inc
Priority to JP2012071327A priority Critical patent/JP5897372B2/en
Publication of JP2013205069A publication Critical patent/JP2013205069A/en
Application granted granted Critical
Publication of JP5897372B2 publication Critical patent/JP5897372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は電気化学ガスセンサに関し、特にCOとH2とを識別して検出することに関する。   The present invention relates to an electrochemical gas sensor, and more particularly to identifying and detecting CO and H2.

発明者らは、複素インピーダンスにより、電気化学ガスセンサを診断することを提案した(特許文献1 特開2011-158468)。電気化学ガスセンサでは、液体電解質を保持するセパレータもしくは固体電解質膜の両面に、検知極と対極とが設けられている。そして特許文献1では、検知極と対極間の複素インピーダンスを測定する。これらの部材に結露等が生じ、ガスの拡散性が低下すると、複素インピーダンスの実数部が低下するので、検出できる。   The inventors have proposed diagnosing an electrochemical gas sensor by complex impedance (Patent Document 1 Japanese Patent Laid-Open No. 2011-158468). In an electrochemical gas sensor, a detection electrode and a counter electrode are provided on both surfaces of a separator or a solid electrolyte membrane that holds a liquid electrolyte. And in patent document 1, the complex impedance between a detection electrode and a counter electrode is measured. When condensation or the like occurs in these members and the gas diffusibility is lowered, the real part of the complex impedance is lowered and can be detected.

特許文献1は、インピーダンスを測定することにより、電気化学ガスセンサの状態を診断することを意図しており、電気化学ガスセンサを積極的に改質することは意図していない。発明者は、電気化学ガスセンサに直流電流あるいは直流電圧を加えることにより、ガス感度を変化させることを検討し、この発明に到った。   Patent Document 1 intends to diagnose the state of an electrochemical gas sensor by measuring impedance, and does not intend to positively reform the electrochemical gas sensor. The inventor studied changing the gas sensitivity by applying a direct current or a direct voltage to the electrochemical gas sensor, and reached the present invention.

特開2011-158468JP2011-158468

この発明の課題は、電気化学ガスセンサからCOとH2とで逆向きの出力が生じるようにすることにある。   An object of the present invention is to generate outputs in opposite directions from CO and H2 from an electrochemical gas sensor.

この発明は、液体電解質を保持するセパレータもしくは固体高分子プロトン導電体膜の被検出雰囲気側に検知極が、基準雰囲気側に対極が設けられている電気化学ガスセンサにおいて、H2中で電気化学ガスセンサ内を対極から検知極へ向けて電流が流れ、CO中で検知極から対極へ向けて電流が流れるように改質されていることを特徴とする。 The present invention relates to an electrochemical gas sensor in which a detection electrode is provided on a detected atmosphere side of a separator or a solid polymer proton conductor film holding a liquid electrolyte, and a counter electrode is provided on a reference atmosphere side. Is characterized in that the current flows from the counter electrode to the detection electrode and the current flows in the CO from the detection electrode to the counter electrode.

この発明はまた、液体電解質を保持するセパレータもしくは固体電解質膜の、被検出雰囲気側に検知極が、基準雰囲気側に対極が設けられ、前記対極側を+、前記検知極側を−として、対極から検知極へ直流電流を加えることにより改質されている電気化学ガスセンサを用い、電気化学ガスセンサ内を対極から検知極へ向けて電流が流れる際にH2を検出し、検知極から対極へ電流が流れる際にCOを検出する、COとH2との選択的検出方法にある。   The present invention also provides a separator or solid electrolyte membrane for holding a liquid electrolyte, in which a detection electrode is provided on the detected atmosphere side and a counter electrode is provided on the reference atmosphere side, the counter electrode side being + and the detection electrode side being-. Using an electrochemical gas sensor that has been modified by applying a direct current to the sensing electrode, H2 is detected when current flows from the counter electrode to the sensing electrode in the electrochemical gas sensor, and the current flows from the sensing electrode to the counter electrode. There is a selective detection method of CO and H2, which detects CO when flowing.

この発明はまた、液体電解質を保持するセパレータもしくは固体高分子プロトン導電体膜の、被検出雰囲気側に検知極が、基準雰囲気側に対極が設けられている電気化学ガスセンサに対し、前記対極側を+、前記検知極側を−として、対極から検知極へ直流電流を加えることにより、H2中で電気化学ガスセンサ内を対極から検知極へ向けて電流が流れ、CO中で検知極から対極へ向けて電流が流れるように、電気化学ガスセンサを改質する電気化学ガスセンサの改質方法にある。 The present invention also provides a separator or solid polymer proton conductor film for holding a liquid electrolyte, and the counter electrode side of the electrochemical gas sensor having a detection electrode on the detected atmosphere side and a counter electrode on the reference atmosphere side. By adding a direct current from the counter electrode to the detection electrode with + as the detection electrode side, current flows in the electrochemical gas sensor from the counter electrode to the detection electrode in H2, and from CO to the detection electrode in CO. Thus, there is a method for reforming an electrochemical gas sensor that reforms the electrochemical gas sensor so that a current flows.

発明者は、液体電解質を保持するセパレータの被検出雰囲気側に検知極が、基準雰囲気側に対極が設けられている電気化学ガスセンサに対し、対極側を+、検知極側を−として、対極から検知極へ直流電流を加えると、ガス感度が変化することを見出した。即ち、H2中で電気化学ガスセンサ内を対極から検知極へ向けて電流が流れ、CO中で検知極から対極へ向けて電流が流れるように、ガス感度が変化した。ガス感度の変化は、対極から検知極への直流電流が大きいほど、あるいは対極を+、検知極を−として加える電圧が大きいほど、著しかった。電気化学ガスセンサ(以下単に「ガスセンサ」ということがある)に直流電流を加えるとは、文字通りに直流電流を加えることのみでなく、直流電圧を加えて直流電流を流すことを含んでいる。また加える電流は、単純な直流以外に直流に交流を重ね合わせたものでも良い。直流電流を加える時間と回数は任意で、ガスセンサの感度変化には、回数と時間、及び直流電流の大小あるいは直流電圧の大小が影響する。   The inventor makes the detection electrode on the detected atmosphere side of the separator holding the liquid electrolyte and the counter electrode on the reference atmosphere side, and the counter electrode side is +, the detection electrode side is-, and the counter electrode is from the counter electrode. It was found that the gas sensitivity changes when a direct current is applied to the detection electrode. That is, the gas sensitivity was changed so that current flowed from the counter electrode to the detection electrode in the electrochemical gas sensor in H2, and current flowed from the detection electrode to the counter electrode in CO. The change in gas sensitivity was more significant as the DC current from the counter electrode to the detection electrode was larger, or as the voltage applied with the counter electrode as + and the detection electrode as-was larger. Applying a direct current to an electrochemical gas sensor (hereinafter sometimes simply referred to as a “gas sensor”) includes not only applying a direct current literally, but also applying a direct current by applying a direct current voltage. Further, the applied current may be a direct current superimposed on a direct current in addition to a simple direct current. The time and number of times the DC current is applied are arbitrary, and the sensitivity change of the gas sensor is affected by the number and time and the magnitude of the DC current or the magnitude of the DC voltage.

H2中で電気化学ガスセンサ内を対極から検知極へ向けて電流が流れるためには、対極側へH2が回り込む機構が必要である。液体電解質を保持するセパレータもしくは固体電解質膜と検知極と対極との集合体をMEAと呼ぶと、MEAの周囲には対極を被検出雰囲気と遮断するためのガスケットあるいはO−リングが有り、MEAとガスケットあるいはO−リングとの間には隙間がある。ガスケットあるいはO−リングをH2が拡散する、あるいはMEAとガスケットあるいはO−リングとの隙間をH2が拡散することが考えられる。またMEA自体をH2が拡散する可能性もある。   In order for the current to flow from the counter electrode to the detection electrode in the electrochemical gas sensor in H2, a mechanism for H2 to wrap around to the counter electrode side is necessary. The assembly of the separator or solid electrolyte membrane holding the liquid electrolyte and the sensing electrode and the counter electrode is called MEA. Around the MEA, there is a gasket or O-ring around the MEA to shut off the counter electrode from the detected atmosphere. There is a gap between the gasket or O-ring. It is conceivable that H2 diffuses in the gasket or O-ring, or H2 diffuses in the gap between the MEA and the gasket or O-ring. There is also a possibility that H2 diffuses in the MEA itself.

対極側へH2が回り込むと、 H2→2H+2e- の反応が検知極と対極の双方で発生し、MEAを流れる電流は検知極と対極との反応速度の大小で定まる。そして対極から検知極へ加えた直流電流により、検知極あるいは対極の水素のイオン化活性、あるいは検知極とスペーサ間のイオン電導の状態もしくは対極とスペーサ間のイオン電導の状態等が変化する。これらのことが生じているものとすると、H2中で電気化学ガスセンサ内を対極から検知極へ向けて電流が流れることを説明できる。対極から検知極へ直流電流を加えても、CO中では検知極から対極へ電流が流れ、しかもCO中での電流値は直流を加える前に比べて増加する。 When H2 is goes around to the side of the counter electrode, H2 → 2H + + 2e - reaction occurs in both the sensing electrode and counter electrode, the current flowing through the MEA is determined by the magnitude of the rate of reaction between the sensing electrode and the counter electrode. The direct current applied from the counter electrode to the detection electrode changes the ionization activity of hydrogen on the detection electrode or the counter electrode, the state of ion conduction between the detection electrode and the spacer, or the state of ion conduction between the counter electrode and the spacer. Assuming that this has happened, it can be explained that the current flows in the electrochemical gas sensor from the counter electrode to the detection electrode in H2. Even if a direct current is applied from the counter electrode to the detection electrode, a current flows from the detection electrode to the counter electrode in CO, and the current value in the CO increases compared to that before the direct current is applied.

これらの結果、H2中とCO中とでガスセンサを流れる電流、あるいは起電力の向きが逆になり、H2とCOとを弁別できる。例えば水素のパイプラインから洩れが生じているのか、周囲で不完全燃焼が生じているのかを弁別できる。またCH4をCO2とH2とに改質するコンバータを備えた燃料電池システムでは、コンバータの生成ガス中ではH2が主成分で、COが有害な不純物である。ここでH2中とCO中とでガスセンサの信号が逆になると、生成ガス中のCO濃度を容易に検出できる。   As a result, the current flowing through the gas sensor or the direction of electromotive force is reversed between H2 and CO, and H2 and CO can be discriminated. For example, it can be discriminated whether there is leakage from the hydrogen pipeline or incomplete combustion around it. Also, in a fuel cell system equipped with a converter that reforms CH4 into CO2 and H2, H2 is the main component in the gas produced by the converter, and CO is a harmful impurity. Here, if the signal of the gas sensor is reversed between H2 and CO, the CO concentration in the product gas can be easily detected.

発明者はセパレータに液体電解質を保持させたMEAでこの現象を発見したが、固体高分子プロトン導電体膜を用いたMEAでも同じ現象が生じた。直流は電流として加えても、電圧として加えても良い。加える直流電流あるいは直流電圧の大小、時間、繰り返しの回数等はMEAの材質とサイズに依存するものと考えられ、MEAが定まれば容易に最適値を発見できる。電気化学ガスセンサの出力は電流でも起電力でも良い。またこの明細書において、電気化学ガスセンサに関する記載はそのままCOとH2との選択的検出方法及び電気化学ガスセンサの改質方法にもあてはまり、逆に電気化学ガスセンサの改質方法に関する記載はそのままCOとH2との選択的検出方法及び電気化学ガスセンサにもあてはまる。   The inventor discovered this phenomenon with MEA in which a liquid electrolyte was held in a separator, but the same phenomenon occurred with MEA using a solid polymer proton conductor membrane. Direct current may be applied as a current or a voltage. The magnitude of DC current or DC voltage applied, time, number of repetitions, etc. are considered to depend on the material and size of the MEA. Once the MEA is determined, the optimum value can be easily found. The output of the electrochemical gas sensor may be current or electromotive force. In this specification, the description about the electrochemical gas sensor is also applied to the selective detection method of CO and H2 and the modification method of the electrochemical gas sensor, and the description about the modification method of the electrochemical gas sensor is directly changed to CO and H2. This also applies to the selective detection method and the electrochemical gas sensor.

実施例の電気化学ガスセンサの断面図Sectional view of the electrochemical gas sensor of the example 実施例でのMEAの分解状態を示す図The figure which shows the decomposition | disassembly state of MEA in an Example 実施例でのガス検出装置を示す図The figure which shows the gas detection apparatus in an Example 直流電圧印加前のCOへのレスポンスを示す特性図Characteristic diagram showing response to CO before DC voltage is applied 直流電圧印加前のH2へのレスポンスを示す特性図Characteristic diagram showing response to H2 before DC voltage application -2〜+2Vの直流電圧を100msec加えた後のCOへのレスポンスを示す特性図Characteristic diagram showing the response to CO after applying DC voltage of -2 to + 2V for 100msec -2〜+2Vの直流電圧を100msec×5回加えた後のCOへのレスポンスを示す特性図Characteristic diagram showing the response to CO after applying a DC voltage of -2 to +2 V for 100 msec x 5 times -2〜+2Vの直流電圧を100msec×10回加えた後のCOへのレスポンスを示す特性図Characteristic chart showing the response to CO after applying DC voltage of -2 to + 2V for 100msec x 10 times -2〜+2Vの直流電圧を100msec加えた後のH2へのレスポンスを示す特性図Characteristic diagram showing the response to H2 after applying DC voltage of -2 to + 2V for 100msec -2〜+2Vの直流電圧を100msec×5回加えた後のH2へのレスポンスを示す特性図Characteristic chart showing the response to H2 after applying DC voltage of -2 to + 2V 100msec x 5 times -2〜+2Vの直流電圧を100msec×10回加えた後のH2へのレスポンスを示す特性図Characteristic diagram showing the response to H2 after applying a DC voltage of -2 to + 2V 100msec x 10 times -500mA〜+500mAの直流電流を100msec加えた後のCOへのレスポンスを示す特性図-Characteristic diagram showing the response to CO after applying DC current of -500mA to + 500mA for 100msec -500mA〜+500mAの直流電流を100msec×5回加えた後のCOへのレスポンスを示す特性図-Characteristic chart showing the response to CO after applying -500mA to + 500mA direct current 100msec x 5 times -500mA〜+500mAの直流電流を100msec×10回加えた後のCOへのレスポンスを示す特性図Characteristic diagram showing the response to CO after applying -500mA to + 500mA DC current 100msec x 10 times -500mA〜+500mAの直流電流を100msec加えた後のH2へのレスポンスを示す特性図-Characteristics showing response to H2 after applying DC current of -500mA to + 500mA for 100msec -500mA〜+500mAの直流電流を100msec×5回加えた後のH2へのレスポンスを示す特性図-Characteristics showing response to H2 after applying DC current of -500mA to + 500mA for 100msec x 5 times -500mA〜+500mAの直流電流を100msec×10回加えた後のH2へのレスポンスを示す特性図-Characteristics showing response to H2 after applying DC current of -500mA to + 500mA for 100msec x 10 times +300mA×100msecの直流電流を加えた際の、空気中での電流と電圧の波形図Current and voltage waveforms in air when a + 300mA x 100msec DC current is applied −300mA×100msecの直流電流を加えた際の、空気中での電流と電圧の波形図Waveform diagram of current and voltage in air when a DC current of −300 mA x 100 msec is applied 直流電圧(100msec単位で印加)によるCO300ppmへの感度変化を示す特性図Characteristic diagram showing the change in sensitivity to CO300ppm due to DC voltage (applied in units of 100msec) 直流電圧(1sec印加)によるCO300ppmへの感度変化を示す特性図Characteristic diagram showing sensitivity change to CO300ppm by DC voltage (1sec applied) 直流電圧(100msec単位で印加)によるH2 300ppmへの感度変化を示す特性図Characteristic chart showing sensitivity change to 300ppm of H2 by DC voltage (applied in 100msec unit) 直流電圧(1sec印加)によるH2 300ppmへの感度変化を示す特性図Characteristic diagram showing the change in sensitivity to 300ppm of H2 due to DC voltage (1sec applied) 直流電流(100msec単位で印加)によるCO300ppmへの感度変化を示す特性図Characteristic diagram showing change in sensitivity to CO300ppm due to DC current (applied in units of 100msec) 直流電流(1sec印加)によるCO300ppmへの感度変化を示す特性図Characteristic diagram showing sensitivity change to CO300ppm by DC current (1sec applied) 直流電流(100msec単位で印加)によるH2 300ppmへの感度変化を示す特性図Characteristic diagram showing sensitivity change to 300ppm of H2 by DC current (applied in 100msec unit) 直流電流(1sec印加)によるH2 300ppmへの感度変化を示す特性図Characteristic diagram showing change in sensitivity to H2 300ppm by DC current (1sec applied)

以下に本発明を実施するための最適実施例を示す。なお実施例はこの発明を限定するものではなく、周知技術等を加味して実施例を変更できる。   In the following, an optimum embodiment for carrying out the present invention will be shown. Note that the embodiments do not limit the present invention, and the embodiments can be changed in consideration of known techniques and the like.

図1〜図27に実施例を示す。図1,図2は電気化学センサ2(以下「ガスセンサ2」)の構造を示し、4は金属容器で、水6を収容し、8はMEAである。10は金属の底板、12は金属の拡散制御板、16は金属のキャップ、11,14,18,19は開口で、この内、開口14はMEA8への被検出雰囲気の拡散を制限する。キャップ16には活性炭、シリカゲル、ゼオライト等のフィルタ材20が収容され、22はリング状のガスケットでキャップ16と金属容器4とを気密に絶縁する。なおMEA8の外周とガスケット22の内周との間には隙間が有る。ガスセンサ2の構造、材料は公知であり、水6はなくても良く、MEA8の取り付け構造は任意である。   Examples are shown in FIGS. 1 and 2 show the structure of an electrochemical sensor 2 (hereinafter referred to as “gas sensor 2”), 4 is a metal container, containing water 6 and 8 is an MEA. 10 is a metal bottom plate, 12 is a metal diffusion control plate, 16 is a metal cap, and 11, 14, 18 and 19 are openings. Of these, the opening 14 limits the diffusion of the detected atmosphere to the MEA 8. The cap 16 accommodates a filter material 20 such as activated carbon, silica gel, or zeolite, and 22 is a ring-shaped gasket that hermetically insulates the cap 16 and the metal container 4. There is a gap between the outer periphery of the MEA 8 and the inner periphery of the gasket 22. The structure and material of the gas sensor 2 are known, water 6 is not necessary, and the attachment structure of the MEA 8 is arbitrary.

図2に示すように、MEA8は液体電解質を保持した膜状の微孔質セパレータ24と、その両面の検知極S及び対極C、並びにカーボンシート等のガス拡散膜25,26から成る。実施例では液体電解質は芳香族スルホン酸のポリマーであるが、硫酸、KOH水溶液、K2CO3水溶液等、任意である。なおガス拡散膜25,26は無くても良く、また電極S,Cとセパレータ24との間に、固体高分子プロトン導電体膜、固体高分子アニオン導電体膜等を設けても良い。検知極S、対極Cは、Ptを担持したカーボンブラックにプロトン導電性の高分子を添加したもので、材質は任意である。   As shown in FIG. 2, the MEA 8 includes a membrane-like microporous separator 24 holding a liquid electrolyte, detection electrodes S and counter electrodes C on both sides thereof, and gas diffusion films 25 and 26 such as carbon sheets. In the embodiment, the liquid electrolyte is a polymer of aromatic sulfonic acid, but it is optional such as sulfuric acid, KOH aqueous solution, K2CO3 aqueous solution and the like. The gas diffusion films 25 and 26 may not be provided, and a solid polymer proton conductor film, a solid polymer anion conductor film, or the like may be provided between the electrodes S and C and the separator 24. The detection electrode S and the counter electrode C are obtained by adding proton conductive polymer to carbon black supporting Pt, and the material is arbitrary.

ガスセンサ2は、対極から検知極へ向けて直流電流を加えることにより、CO感度を増感すると共に、H2感度の向き、即ちH2中で流れる電流あるいは起電力の向きを反転させたものである。この処理の効果は、図4〜図27に示す。   The gas sensor 2 increases the CO sensitivity by applying a direct current from the counter electrode to the detection electrode, and reverses the direction of the H2 sensitivity, that is, the direction of the current or electromotive force flowing in the H2. The effect of this processing is shown in FIGS.

図3はガス検出装置を示し、30は電池等の直流電源で、抵抗R1,R2等により1V等の定電位を取り出し、ガスセンサ2の対極Cの電位を定電位に保つ。検知極S側に増幅回路A1を接続し、CO,H2等によりガスセンサ2を流れる検知電流を増幅して電圧信号に変換し、算術論理回路32により、電圧信号の正負と大小とによりCOかH2かを識別すると共にその濃度を求める。なお対極Cを増幅回路A1及び算術論理回路32側へ接続しても良い。   FIG. 3 shows a gas detection device. Reference numeral 30 denotes a DC power source such as a battery, which takes out a constant potential such as 1 V by resistors R1, R2, etc., and keeps the potential of the counter electrode C of the gas sensor 2 at a constant potential. An amplification circuit A1 is connected to the detection pole S side, and the detection current flowing through the gas sensor 2 is amplified by CO, H2, etc., and converted into a voltage signal. And determine its concentration. The counter electrode C may be connected to the amplifier circuit A1 and the arithmetic logic circuit 32 side.

図4〜図27に、ガスセンサ2への直流電圧及び直流電流の影響を示す。実験では各条件毎に3個のセンサを用いたが、図4〜図19の波形図では各1個のセンサの信号を示す。また対極C側を+、検知極S側を−として加えた直流電圧と直流電流の極性を示し、図中の300等の数字はガス濃度を示し、縦軸は増幅回路A1の出力を示す。図4は直流を加える前のCOへのレスポンスを、図5は直流を加える前のH2へのレスポンスを示し、これらはガスセンサ2のばらつきを示している。図6は、-2V〜+2Vの直流電圧を100msec×1回加えた後のCOへのレスポンスを示し、直流電圧の影響は小さい。図7は、-2V〜+2Vの直流電圧を100msec×5回加えた後のCOへのレスポンスを示し、+の直流電圧を加えるとCO感度はわずかに増加ないしわずかに減少し、−の直流電圧を加えるとCO感度は減少する。図8は、-2V〜+2Vの直流電圧を100msec×10回加えた後のCOへのレスポンスを示し、この例では直流電圧の影響は大きくはない。   4 to 27 show the influence of the direct current voltage and direct current on the gas sensor 2. In the experiment, three sensors were used for each condition, but the waveforms of FIGS. 4 to 19 show the signals of one sensor each. Further, the polarity of the DC voltage and the DC current applied with + on the counter electrode C side and-on the detection electrode S side is shown, the numbers such as 300 in the figure show the gas concentration, and the vertical axis shows the output of the amplifier circuit A1. FIG. 4 shows the response to CO before DC is applied, and FIG. 5 shows the response to H2 before DC is applied. These show the variations of the gas sensor 2. FIG. 6 shows the response to CO after applying a DC voltage of −2 V to +2 V 100 msec × 1 time, and the influence of the DC voltage is small. Fig. 7 shows the response to CO after applying a DC voltage of -2V to + 2V for 100msec x 5 times. When a DC voltage of + is applied, the CO sensitivity slightly increases or decreases slightly, and -DC CO sensitivity decreases when voltage is applied. FIG. 8 shows the response to CO after applying a DC voltage of −2 V to +2 V for 100 msec × 10 times. In this example, the influence of the DC voltage is not great.

図9は、-2V〜+2Vの直流電圧を100msec×1回加えた後のH2へのレスポンスを示し、直流電圧の影響は小さい。図10は、-2V〜+2Vの直流電圧を100msec×5回加えた後のH2へのレスポンスを示し、+1.5V以上の直流電圧を加えるとH2感度は極性が反転し、対極Cから検知極Sへ向けて検知電流が流れるようになる。図11は、-2V〜+2Vの直流電圧を100msec×10回加えた後のH2へのレスポンスを示し、+1.5V以上の直流電圧を加えると、対極Cから検知極Sへ向けて検知電流が流れるようになる。   FIG. 9 shows the response to H2 after a DC voltage of −2 V to +2 V is applied once for 100 msec × 1, and the influence of the DC voltage is small. Figure 10 shows the response to H2 after applying DC voltage of -2V to + 2V for 100msec x 5 times. When DC voltage of + 1.5V or more is applied, the polarity of H2 sensitivity is reversed and detected from the counter electrode C. The detection current flows toward the pole S. Fig. 11 shows the response to H2 after applying a DC voltage of -2V to + 2V for 100msec x 10 times. When a DC voltage of + 1.5V or more is applied, the detection current flows from the counter electrode C to the detection electrode S. Begins to flow.

図12は、-500mA〜+500mAの直流電流を100msec×1回加えた後のCOへのレスポンスを示し、+の直流電流を加えるとCO感度が増し、-の直流電流を加えるとCO感度が減少する。図13は、-500mA〜+500mAの直流電流を100msec×5回加えた後のCOへのレスポンスを示し、+の直流電流を加えるとCO感度が著しく増し、-の直流電流を加えるとCO感度は著しく減少する。図14は、-500mA〜+500mAの直流電流を100msec×10回加えた後のCOへのレスポンスを示し、+の直流電流を加えるとCO感度が著しく増し、-の直流電流を加えるとCO感度が著しく減少する。   Figure 12 shows the response to CO after applying a direct current of -500mA to + 500mA for 100msec x 1 time. Adding a positive DC current increases the CO sensitivity. Adding a negative DC current increases the CO sensitivity. Decrease. Fig. 13 shows the response to CO after applying a direct current of -500mA to + 500mA for 100msec x 5 times. When a positive DC current is added, the CO sensitivity increases significantly. Decreases significantly. FIG. 14 shows the response to CO after applying a direct current of −500 mA to +500 mA for 100 msec × 10 times. When the positive DC current is added, the CO sensitivity is remarkably increased, and when the negative DC current is added, the CO sensitivity is shown. Is significantly reduced.

図15は、-500mA〜+500mAの直流電流を100msec×1回加えた後のH2へのレスポンスを示し、+300mAの直流電流を加えるとH2感度は負になり、検知極Sから対極Cへ向けて検知電流が流れるようになる。図16は、-500mA〜+500mAの直流電流を100msec×5回加えた後のH2へのレスポンスを示し、+100mA以上の直流電流を加えると、H2に対して対極Cから検知極Sへ向けて検知電流が流れるようになる。図17は、-500mA〜+500mAの直流電流を100msec×10回加えた後のH2へのレスポンスを示し、+100mA以上の直流電流を加えると、H2に対して対極Cから検知極Sへ向けて検知電流が流れるようになる。   Figure 15 shows the response to H2 after applying a direct current of -500mA to + 500mA for 100msec x 1 time. When a direct current of + 300mA is applied, the H2 sensitivity becomes negative, and the detection electrode S to the counter electrode C The detection current flows toward. Fig. 16 shows the response to H2 after applying a direct current of -500mA to + 500mA for 100msec x 5 times. When a direct current of + 100mA or more is applied, H2 is directed from the counter electrode C to the sensing electrode S. The detection current flows. FIG. 17 shows the response to H2 after applying a direct current of −500 mA to +500 mA for 100 msec × 10 times. When a direct current of +100 mA or more is applied, H2 is directed from the counter electrode C to the detection electrode S. The detection current flows.

図18は+300mAの直流電流を空気中で加えている際の電流と電圧の波形を示し,図19は-300mAの直流電流を空気中で加えている際の電流と電圧の波形を示す。ガスセンサ2の抵抗成分は10〜20Ω程度で、抵抗には極性があり、抵抗成分の他に容量成分も含まれている。   18 shows current and voltage waveforms when a +300 mA DC current is applied in the air, and FIG. 19 shows a current and voltage waveforms when a −300 mA DC current is applied in the air. The resistance component of the gas sensor 2 is about 10 to 20Ω, the resistance has polarity, and includes a capacitance component in addition to the resistance component.

図20,図21は直流電圧の印加前後でのCO300ppmへの感度の変化を示し、図20では100msec単位で印加し、図21では1sec印加した。図22,図23は直流電圧の印加前後でのH2 300ppmへの感度の変化を示し、図22では100msec単位で印加し、図23では1sec印加した。+の直流電圧を加えると、CO感度が増加してH2感度は負になり、-の直流電圧を加えると、CO感度が減少しH2感度が増加する。   20 and 21 show changes in sensitivity to CO 300 ppm before and after the application of a DC voltage. In FIG. 20, the sensitivity was applied in units of 100 msec, and in FIG. 22 and 23 show changes in sensitivity to H2 300 ppm before and after application of a DC voltage. In FIG. 22, the sensitivity was applied in units of 100 msec, and in FIG. Applying a positive DC voltage increases the CO sensitivity and makes the H2 sensitivity negative. Adding a negative DC voltage decreases the CO sensitivity and increases the H2 sensitivity.

図24,図25は直流電流の印加前後でのCO300ppmへの感度の変化を示し、図24では100msec単位で印加し、図25では1sec印加した。図26,図27は直流電流の印加前後でのH2 300ppmへの感度の変化を示し、図26では100msec単位で印加し、図27では1sec印加した。+の直流電流を加えると、CO感度が増加してH2感度は負になり、-の直流電流を加えると、CO感度が減少しH2感度が増加する。   24 and 25 show changes in sensitivity to CO 300 ppm before and after application of a direct current. In FIG. 24, application was performed in units of 100 msec, and in FIG. 25, application was performed for 1 second. 26 and 27 show changes in sensitivity to H2 300 ppm before and after application of a direct current. In FIG. 26, application was performed in units of 100 msec, and in FIG. 27, application was performed for 1 second. Adding a positive DC current increases the CO sensitivity and makes the H2 sensitivity negative. Adding a negative DC current decreases the CO sensitivity and increases the H2 sensitivity.

実施例ではセパレータ24に液体電解質を支持させたが、セパレータ24に代えて、固体高分子プロトン導電体を用いても、同様の結果が得られた。直流電流あるいは直流電圧の値、印加時間、印加回数等はMEAの材質、サイズ等の種類に応じて最適値が有り、実施例に限定されるものではない。 In the example, the liquid electrolyte was supported on the separator 24, but the same result was obtained when a solid polymer proton conductor was used instead of the separator 24. The value of DC current or DC voltage, the application time, the number of applications, etc. have optimum values according to the type of material, size, etc. of the MEA, and are not limited to the examples.

2 電気化学ガスセンサ
4 金属容器
6 水
8 MEA
10 底板
12 拡散制御板
16 キャップ
11,14,18,19 開口
20 フィルタ材
22 ガスケット
24 セパレータ
25,26 ガス拡散膜
30 電源
32 算術論理回路
C 対極
S 検知極
R1,R2 抵抗
A1 増幅回路
2 Electrochemical gas sensor 4 Metal container 6 Water 8 MEA
10 Bottom plate 12 Diffusion control plate 16 Cap 11, 14, 18, 19 Opening 20 Filter material 22 Gasket 24 Separator 25, 26 Gas diffusion film 30 Power source 32 Arithmetic logic circuit
C counter electrode
S detection pole
R1, R2 resistance
A1 Amplifier circuit

Claims (3)

液体電解質を保持するセパレータもしくは固体高分子プロトン導電体膜の被検出雰囲気側に検知極が、基準雰囲気側に対極が設けられている電気化学ガスセンサにおいて、
H2中で電気化学ガスセンサ内を対極から検知極へ向けて電流が流れ、CO中で検知極から対極へ向けて電流が流れるように改質されていることを特徴とする電気化学ガスセンサ。
In an electrochemical gas sensor in which a detection electrode is provided on a detected atmosphere side of a separator or a solid polymer proton conductor film holding a liquid electrolyte, and a counter electrode is provided on a reference atmosphere side,
The electrochemical gas sensor is modified so that a current flows in the H2 from the counter electrode to the detection electrode and a current flows in the CO from the detection electrode to the counter electrode.
液体電解質を保持するセパレータもしくは固体電解質膜の、被検出雰囲気側に検知極が、基準雰囲気側に対極が設けられ、
前記対極側を+、前記検知極側を−として、対極から検知極へ直流電流を加えることにより改質されている電気化学ガスセンサを用い、
電気化学ガスセンサ内を対極から検知極へ向けて電流が流れる際にH2を検出し、検知極から対極へ電流が流れる際にCOを検出する、COとH2との選択的検出方法。
The separator or solid electrolyte membrane holding the liquid electrolyte is provided with a detection electrode on the detected atmosphere side and a counter electrode on the reference atmosphere side,
Using the electrochemical gas sensor modified by applying a direct current from the counter electrode to the detection electrode, with the counter electrode side being + and the detection electrode side being-,
A selective detection method of CO and H2 that detects H2 when current flows from the counter electrode to the detection electrode in the electrochemical gas sensor and detects CO when current flows from the detection electrode to the counter electrode.
液体電解質を保持するセパレータもしくは固体高分子プロトン導電体膜の、被検出雰囲気側に検知極が、基準雰囲気側に対極が設けられている電気化学ガスセンサに対し、
前記対極側を+、前記検知極側を−として、対極から検知極へ直流電流を加えることにより、H2中で電気化学ガスセンサ内を対極から検知極へ向けて電流が流れ、CO中で検知極から対極へ向けて電流が流れるように、電気化学ガスセンサを改質する電気化学ガスセンサの改質方法。
For an electrochemical gas sensor having a sensing electrode on the detected atmosphere side and a counter electrode on the reference atmosphere side of the separator or solid polymer proton conductor film holding the liquid electrolyte,
By applying a direct current from the counter electrode to the detection electrode with the counter electrode side set to + and the detection electrode side set to-, a current flows in the electrochemical gas sensor from the counter electrode to the detection electrode in H2, and the detection electrode in CO. A method for modifying an electrochemical gas sensor, wherein the electrochemical gas sensor is modified so that a current flows from the first electrode to the counter electrode.
JP2012071327A 2012-03-27 2012-03-27 Electrochemical gas sensor, method for selectively detecting CO and H2, and method for modifying electrochemical gas sensor Active JP5897372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012071327A JP5897372B2 (en) 2012-03-27 2012-03-27 Electrochemical gas sensor, method for selectively detecting CO and H2, and method for modifying electrochemical gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012071327A JP5897372B2 (en) 2012-03-27 2012-03-27 Electrochemical gas sensor, method for selectively detecting CO and H2, and method for modifying electrochemical gas sensor

Publications (2)

Publication Number Publication Date
JP2013205069A JP2013205069A (en) 2013-10-07
JP5897372B2 true JP5897372B2 (en) 2016-03-30

Family

ID=49524322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012071327A Active JP5897372B2 (en) 2012-03-27 2012-03-27 Electrochemical gas sensor, method for selectively detecting CO and H2, and method for modifying electrochemical gas sensor

Country Status (1)

Country Link
JP (1) JP5897372B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118956A (en) * 1982-01-11 1983-07-15 Hitachi Ltd Method and apparatus for gas detection
JP3275939B2 (en) * 1995-09-26 2002-04-22 東京瓦斯株式会社 Cleaning method for carbon monoxide sensor
JP3589384B2 (en) * 1998-04-24 2004-11-17 東京瓦斯株式会社 Carbon monoxide sensor and its aging method

Also Published As

Publication number Publication date
JP2013205069A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JPS58118956A (en) Method and apparatus for gas detection
JP2004279293A (en) Self-diagnosis method for proton conductor gas sensor, and gas detector
JP2015519539A (en) Electrochemical gas sensor with anion exchange membrane
JP2011506976A5 (en)
EP2366995A1 (en) Amperometric sensor
JP2007248313A (en) Constant-potential electrolysis type gas sensor
WO2003074997A3 (en) Detection of carbon monoxide in hydrogen-based gas streams
JP5897372B2 (en) Electrochemical gas sensor, method for selectively detecting CO and H2, and method for modifying electrochemical gas sensor
Dib et al. Statistical Short Time Analysis for Proton Exchange Membrane Fuel Cell Diagnostic‐Application to Water Management
KR20110100361A (en) Noxious gas sensor, method for detection
CN211784145U (en) Battery leakage detection equipment
US20230280322A1 (en) Hydrogen gas sensor and methods and systems using same to quantitate hydrogen gas and/or to assess hydrogen gas purity
Sakthivel et al. A portable limiting current solid-state electrochemical diffusion hole type hydrogen sensor device for biomass fuel reactors: engineering aspect
US20130157153A1 (en) Apparatus and method of in situ catalyst degradation detection during fuel cell operation
JP5897371B2 (en) Method for adjusting sensitivity of electrochemical gas sensor and gas detector
JP6467146B2 (en) Diaphragm sensor, liquid analyzer
JP4458795B2 (en) Electrochemical gas detector
US8815077B2 (en) Electrochemical sensor for measuring the oxygen partial pressure in a process fluid and a method for testing its function
JP4308223B2 (en) Gas sensor for ammonia, ammonia detection method
CN203443914U (en) Multi-parameter gas tester
US8736274B2 (en) Method and apparatus for diagnosing electrochemical sensor
JP2000275209A (en) Hydrogen sensor
JP2004170147A (en) Carbon monoxide gas sensor element and carbon monoxide gas detector
WO2019080025A1 (en) Systems and methods for using a plurality of solid electrolyte sensors for a selective, low resolution formaldehyde detector
CN108414601B (en) Gas sensing array device for simultaneously and continuously detecting multiple gases on line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160302

R150 Certificate of patent or registration of utility model

Ref document number: 5897372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350