JP2007253172A - Friction stir welding method of aluminum alloy and steel sheet, and friction stir welding member - Google Patents
Friction stir welding method of aluminum alloy and steel sheet, and friction stir welding member Download PDFInfo
- Publication number
- JP2007253172A JP2007253172A JP2006078342A JP2006078342A JP2007253172A JP 2007253172 A JP2007253172 A JP 2007253172A JP 2006078342 A JP2006078342 A JP 2006078342A JP 2006078342 A JP2006078342 A JP 2006078342A JP 2007253172 A JP2007253172 A JP 2007253172A
- Authority
- JP
- Japan
- Prior art keywords
- friction stir
- stir welding
- metal material
- melting point
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003756 stirring Methods 0.000 title claims abstract description 84
- 238000003466 welding Methods 0.000 title claims abstract description 79
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 78
- 239000010959 steel Substances 0.000 title claims abstract description 78
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000005304 joining Methods 0.000 claims abstract description 75
- 238000002844 melting Methods 0.000 claims abstract description 64
- 230000008018 melting Effects 0.000 claims abstract description 64
- 239000007769 metal material Substances 0.000 claims abstract description 63
- 239000007790 solid phase Substances 0.000 claims abstract description 10
- 229910000765 intermetallic Inorganic materials 0.000 claims description 9
- 238000003780 insertion Methods 0.000 claims description 7
- 230000037431 insertion Effects 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 238000007747 plating Methods 0.000 abstract description 33
- 239000012530 fluid Substances 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 238000012545 processing Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 5
- 238000005246 galvanizing Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910001203 Alloy 20 Inorganic materials 0.000 description 1
- 229910021329 Fe4Al13 Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
本発明は、鋼板とアルミ合金のように異なった金属材料の摩擦攪拌接合方法および、摩擦攪拌接合部材に関するものである。 The present invention relates to a friction stir welding method and a friction stir welding member for different metal materials such as a steel plate and an aluminum alloy.
現在、比較的融点の低い金属材料(例えば、アルミ合金)に関して、その接合方法として摩擦攪拌接合が確立されている。摩擦攪拌接合は、金属材料を溶融せずに塑性流動の状態にして攪拌し固相接合するので、充分な強度が得られかつ、工法が簡単なため安価に自動化できるといったコスト面での優位さもあるため、自動車製造や鉄道車両製造などの分野で広く利用されている。 Currently, friction stir welding has been established as a joining method for metal materials having relatively low melting points (for example, aluminum alloys). Friction stir welding has the advantage in cost that it can be automated at low cost because it is simple and easy to construct because it stirs and solid phase bonds in a plastic flow state without melting the metal material. Therefore, it is widely used in fields such as automobile manufacturing and railway vehicle manufacturing.
一方で、摩擦攪拌接合は異なった金属材料(例えば、鋼板とアルミ合金)の接合に関しては充分な強度が得られないという問題がある。これは、接合する金属材料の融点に差があるため、塑性流動による攪拌が充分に行われないことが主な原因である。この問題の解決策として、融点の低い金属材料側から接合用の接合ピンを挿入して、その接合ピン形状と挿入深さを調整して、異なった金属材料を摩擦攪拌接合する技術が公開されている(特許文献1参照)。
しかし、融点の高い金属材料としてGA鋼板やSP鋼板、融点の低い金属材料としてアルミ合金を用いた摩擦攪拌接合が多い現状に鑑みると、従来技術の摩擦攪拌接合では、充分な強度の接合継手を得られないのが現状である。 However, in view of the current state of friction stir welding using GA steel or SP steel as a metal material with a high melting point and aluminum alloy as a metal material with a low melting point, the friction stir welding of the prior art has a joint joint with sufficient strength. The current situation is that it cannot be obtained.
原因は、摩擦攪拌接合時に鋼板が接合ピンと接触する範囲(略接合ピン径に相当)でしかアルミ合金と固相接合できず、接合界面が非常に小さいことにある。 The cause is that the solid interface can be solid-phase bonded to the aluminum alloy only in the range where the steel plate contacts the bonding pin during friction stir welding (approximately equivalent to the diameter of the bonding pin), and the bonding interface is very small.
これは、鋼板は非常に酸化しやすくSP鋼板においては常に表面が酸化膜で覆われた状態であり、またGA鋼板は酸化防止のため表面に合金化溶融亜鉛メッキが施されていることに起因する。 This is because the steel plate is very easy to oxidize, and the surface of the SP steel plate is always covered with an oxide film, and the GA steel plate is galvanized on the surface to prevent oxidation. To do.
すなわち、鋼板とアルミ合金の摩擦攪拌接合は鋼板面と塑性流動化したアルミ合金とが固相接合することで接合するが、SP鋼板を覆う酸化膜は塑性流動化したアルミ合金によって拡散されないため鋼板の新生面が現れず、アルミ合金と固相接合できない。 That is, the friction stir welding of the steel plate and the aluminum alloy is performed by solid-phase joining the steel plate surface and the plastic fluidized aluminum alloy, but the oxide film covering the SP steel plate is not diffused by the plastic fluidized aluminum alloy. The new surface does not appear and solid phase bonding with aluminum alloy is impossible.
またGA鋼板は表面に亜鉛(Zn)メッキ層が存在するが、GA鋼板は合金化溶融亜鉛メッキ処理が施されており、Znメッキ層の融点は約750℃以上となる。アルミ合金は約450℃で塑性流動化するため、アルミ合金の塑性流動によってもZnメッキ層は拡散されず鋼板の新生面が現れないので、アルミ合金と固相接合できない。 The GA steel sheet has a zinc (Zn) plating layer on the surface, but the GA steel sheet is subjected to an alloying hot dip galvanizing process, and the melting point of the Zn plating layer is about 750 ° C. or higher. Since the aluminum alloy plastically fluidizes at about 450 ° C., the Zn plating layer is not diffused even by the plastic flow of the aluminum alloy, and the new surface of the steel sheet does not appear, so that solid phase bonding with the aluminum alloy cannot be performed.
そして、接合ピンが回転接触して酸化膜やZnメッキ層を削り取った部分(鋼板の新生面)のみ、塑性流動化したアルミ合金と固相接合できるという特性による。 And only the part (new surface of a steel plate) which the joining pin rotated and contacted and scraped off the oxide film and Zn plating layer is based on the characteristic that it can carry out solid phase joining with the plastic fluidized aluminum alloy.
以上のように、従来技術においては、接合ピンが鋼板と接触する部分のみでの接合となるため、接合界面が非常に小さく充分な強度の接合継手を得られないという問題がある。 As described above, in the prior art, since the joining is performed only at the portion where the joining pin is in contact with the steel sheet, there is a problem in that a joining joint having a very small joining interface cannot be obtained.
そこで、本発明は、鋼板とアルミ合金の接合においても接合界面が大きく、より接合強度の高い接合を行える摩擦攪拌接合方法と摩擦攪拌接合部材を提供することを課題とする。 Accordingly, an object of the present invention is to provide a friction stir welding method and a friction stir welding member capable of performing bonding with a larger bonding interface and higher bonding strength even in the bonding of a steel plate and an aluminum alloy.
前記課題を解決するため、請求項1に係る発明では、第1の金属材料と、前記第1の金属材料の融点よりも低い融点を有する第2の金属材料との組み合わせによる摩擦攪拌接合方法において、前記第1の金属材料の表面には、少なくとも接合面領域で前記第2の金属材料が接する側の表面に、前記第2の金属材料の融点よりも低い融点を有する皮膜を形成し、前記第1の金属材料と前記第2の金属材料を重ね合わせて前記接合面領域を形成し、前記接合面領域において前記第2の金属材料の表面から回転する接合ピンを、前記第1の金属材料と前記第2の金属材料が接合する接合界面の近傍まで挿入して摩擦攪拌し、前記第2の金属材料の塑性流動により前記皮膜を拡散して前記第1の金属材料の新生面を露出させ、前記新生面において固相接合することを特徴とする摩擦攪拌接合方法とした。この発明により、接合界面が大きく、接合強度の高い接合を行える摩擦攪拌接合方法を提供することができる。 In order to solve the above-mentioned problem, in the invention according to claim 1, in the friction stir welding method by a combination of the first metal material and the second metal material having a melting point lower than the melting point of the first metal material. A film having a melting point lower than the melting point of the second metal material is formed on the surface of the first metal material at least on the surface in contact with the second metal material in the bonding surface region; The first metal material and the second metal material are overlapped to form the joint surface region, and a joint pin that rotates from the surface of the second metal material in the joint surface region is used as the first metal material. And inserted to the vicinity of the joining interface where the second metal material is joined and frictionally stirred, the film is diffused by the plastic flow of the second metal material to expose the new surface of the first metal material, Solid phase on the new surface And the friction stir welding method, characterized in that the coupling. According to the present invention, it is possible to provide a friction stir welding method capable of performing bonding with a large bonding interface and high bonding strength.
さらに、請求項2に係る発明では、前記接合ピンを前記第2の金属材料の表面から挿入する際に、前記接合ピンの前記第1の金属材料への挿入量が、−0.1mm〜0.2mmの範囲になることを特徴とする摩擦攪拌接合方法とした。この発明により、摩擦攪拌接合の加工効率を落とすことなく最適な接合強度を得ることができる。 Furthermore, in the invention which concerns on Claim 2, when the said joining pin is inserted from the surface of the said 2nd metal material, the insertion amount to the said 1st metal material of the said joining pin is -0.1mm-0. The friction stir welding method was characterized by being in the range of 2 mm. According to the present invention, it is possible to obtain optimum joint strength without reducing the processing efficiency of friction stir welding.
さらに、請求項3に係る発明では、前記第1の金属材料は鋼板からなり、前記第2の金属材料はアルミ合金からなりかつ、前記皮膜は、融点が450℃以下であることを特徴とする摩擦攪拌接合方法とした。この発明により、アルミ合金と鋼板の摩擦攪拌接合において、好適な接合強度を有する摩擦攪拌接合を得ることができる。 Further, in the invention according to claim 3, the first metal material is made of a steel plate, the second metal material is made of an aluminum alloy, and the film has a melting point of 450 ° C. or less. The friction stir welding method was used. According to the present invention, friction stir welding having suitable joint strength can be obtained in friction stir welding of an aluminum alloy and a steel plate.
さらに、請求項4に係る発明では、前記皮膜はメッキ層からなり、前記メッキ層が、亜鉛、アルミニウム、マグネシウムにより組成される合金からなることを特徴とする摩擦攪拌接合方法とした。この発明により、アルミ合金と鋼板の摩擦攪拌接合において、好適な接合強度を有する摩擦攪拌接合を得ることができる。 Furthermore, in the invention according to claim 4, the friction stir welding method is characterized in that the film is made of a plated layer, and the plated layer is made of an alloy composed of zinc, aluminum, and magnesium. According to the present invention, friction stir welding having suitable joint strength can be obtained in friction stir welding of an aluminum alloy and a steel plate.
さらに、請求項5に係る発明は、第1の金属材料と前記第1の金属材料の融点よりも低い融点を有する第2の金属材料が請求項1から請求項4に記載の摩擦攪拌接合方法によって摩擦攪拌接合された摩擦攪拌接合部材であって、前記第1の金属材料と前記第2の金属材料が接合する接合界面に、前記摩擦攪拌接合によって金属間化合物が生成され、前記金属間化合物は、厚みが10nm〜1μmの粒状形態もしくは、分断された層状形態であってかつ、前記接合界面に分散することを特徴とする摩擦攪拌接合部材とした。この発明により、好適な接合強度を有する摩擦攪拌接合部材を得ることができる。 Furthermore, the invention according to claim 5 is the friction stir welding method according to any one of claims 1 to 4, wherein the first metal material and the second metal material having a melting point lower than the melting point of the first metal material are used. A friction stir welding member that is friction stir welded by an intermetallic compound produced by the friction stir welding at a joint interface where the first metal material and the second metal material are joined. Is a friction stir welding member having a granular form with a thickness of 10 nm to 1 μm or a divided layered form and dispersed at the joining interface. According to the present invention, a friction stir welding member having suitable joint strength can be obtained.
本発明によれば、鋼板とアルミ合金との間で、接合界面が大きく接合強度の高い接合を行える摩擦攪拌接合方法および、摩擦攪拌接合部材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the friction stir welding method and friction stir welding member which can perform joining with a large joining interface and high joining strength between a steel plate and an aluminum alloy can be provided.
以下、本発明を実施するための最良の実施形態について、適宜図を用いて詳細に説明する。 Hereinafter, the best embodiment for carrying out the present invention will be described in detail with reference to the drawings as appropriate.
図1は、摩擦攪拌接合に使用される接合ツール1を示す図である。接合ツール1は、図示しないモータ等の回転駆動装置によって回転軸Aの回りに回転駆動される円筒状の回転子12の底部から、回転軸Aを中心に同心円状に突出した略円筒形の接合ピン10を有する。接合ピン10の直径は回転子12の直径より小さく、接合ピン10と回転子12の直径の段差部分でショルダ部11を形成している。 FIG. 1 is a view showing a welding tool 1 used for friction stir welding. The joining tool 1 is a substantially cylindrical joining projecting concentrically around the rotational axis A from the bottom of a cylindrical rotor 12 that is rotationally driven around the rotational axis A by a rotational drive device such as a motor (not shown). It has a pin 10. The diameter of the joining pin 10 is smaller than the diameter of the rotor 12, and the shoulder portion 11 is formed by a step portion of the diameter of the joining pin 10 and the rotor 12.
図2に本発明の実施形態を図示する。図2は、鋼板にメッキ層を設けた低融点メッキ鋼板に、アルミ合金を重ね合わせて接合面領域を形成することを示す図である。 FIG. 2 illustrates an embodiment of the present invention. FIG. 2 is a view showing that a joining surface region is formed by superimposing an aluminum alloy on a low melting point plated steel sheet in which a plated layer is provided on the steel sheet.
本発明は、図2に示すように、請求項に記載する第1の金属材料としての鋼板と、請求項に記載する第2の金属材料としてのアルミ合金との摩擦攪拌接合方法であるが、前記鋼板には請求項に記載する皮膜として、前記鋼板の表面にアルミ合金20の融点より低いメッキを施したメッキ層30aを有する鋼板(以後、低融点メッキ鋼板と称する)30を用いたことを特徴とする。 As shown in FIG. 2, the present invention is a friction stir welding method of a steel plate as a first metal material described in the claims and an aluminum alloy as a second metal material described in the claims. For the steel sheet, a steel sheet (hereinafter referred to as a low melting point plated steel sheet) 30 having a plating layer 30a plated on the surface of the steel sheet that is lower than the melting point of the aluminum alloy 20 was used as the film described in the claims. Features.
なお、本実施形態では請求項に記載する皮膜としてのメッキ層を有する鋼板を使用し、前記メッキ層として亜鉛、アルミニウム、マグネシウム(Zn−Al−Mg)から組成される合金による溶融亜鉛メッキを施したが、皮膜の融点がアルミ合金20の融点より低いという条件を満たせば、その皮膜の種類や成分は限定しない。また、低融点メッキ鋼板30のように鋼板全体にメッキ層(皮膜)を有する必要はなく、少なくともアルミ合金20との接合面領域21にメッキ層(皮膜)を有すれば本発明の効果が得られる。 In this embodiment, a steel sheet having a plating layer as a coating described in the claims is used, and hot galvanizing with an alloy composed of zinc, aluminum, and magnesium (Zn—Al—Mg) is applied as the plating layer. However, as long as the condition that the melting point of the film is lower than the melting point of the aluminum alloy 20 is satisfied, the type and components of the film are not limited. Further, unlike the low melting point plated steel sheet 30, it is not necessary to have a plating layer (film) on the entire steel sheet, and the effect of the present invention can be obtained if at least the bonding surface region 21 with the aluminum alloy 20 has a plating layer (film). It is done.
図3は、アルミ合金20の表面20bにショルダ部11が接触するまで、接合ピン10を塑性流動域20aに挿入した時の、先端部10aの位置を示す図である。 FIG. 3 is a view showing the position of the tip portion 10a when the joining pin 10 is inserted into the plastic flow region 20a until the shoulder portion 11 contacts the surface 20b of the aluminum alloy 20. As shown in FIG.
図3に示すように、接合ツール1を回転しながら、アルミ合金20の表面20bに近づけていき接合ピン10の先端部10aをアルミ合金20の表面20bに接触させ、塑性流動域20aを形成しながら、ショルダ部11がアルミ合金20の表面20bに摺接するまで、接合ピン10を回転しながらアルミ合金20の塑性流動域20aに挿入していく。 As shown in FIG. 3, while rotating the welding tool 1, the tip part 10a of the joining pin 10 is brought into contact with the surface 20b of the aluminum alloy 20 while being brought close to the surface 20b of the aluminum alloy 20, thereby forming a plastic flow region 20a. However, until the shoulder portion 11 is in sliding contact with the surface 20b of the aluminum alloy 20, the joining pin 10 is rotated and inserted into the plastic flow region 20a of the aluminum alloy 20.
このとき、接合ピン10の先端部10aは、アルミ合金20と低融点メッキ鋼表面30bとの接触面20cからの距離L1が、0mm〜0.1mmの範囲でアルミ合金20の塑性流動域20a内にあるか(図3の(a)参照)もしくは、接合ピン10の先端部10aは、接触面20cからの距離L2が0mm〜0.2mmの範囲で、低融点メッキ鋼板30の中に挿入するか(図3の(b)参照)、いずれかの位置になるように接合ピン10のショルダ部11からの突出量が設定される。 At this time, the tip portion 10a of the joining pin 10 is within the plastic flow region 20a of the aluminum alloy 20 when the distance L1 from the contact surface 20c between the aluminum alloy 20 and the low melting point plated steel surface 30b is in the range of 0 mm to 0.1 mm. (See FIG. 3A), or the tip portion 10a of the joining pin 10 is inserted into the low melting point plated steel sheet 30 with a distance L2 from the contact surface 20c of 0 mm to 0.2 mm. (See FIG. 3B), the protruding amount of the joining pin 10 from the shoulder portion 11 is set so as to be in any position.
つまり、請求項に記載のように、第1の金属材料としての低融点メッキ鋼板30への接合ピン10の挿入量が、−0.1mm〜0.2mmの範囲となっている。 That is, as described in the claims, the insertion amount of the joining pin 10 into the low melting point plated steel sheet 30 as the first metal material is in the range of −0.1 mm to 0.2 mm.
この、接合ピン10の低融点メッキ鋼板30の中への挿入量は、摩擦攪拌接合による接合強度と加工効率から決定される値である。 The amount of insertion of the joining pin 10 into the low melting point plated steel sheet 30 is a value determined from the joining strength and processing efficiency by friction stir welding.
すなわち、図3の(b)に示すように、接合ピン10を低融点メッキ鋼板30に挿入した場合、接合ピン10の回転接触により低融点メッキ鋼板30のメッキ層30aが削られる部分と、後記するようにメッキ層30aの拡散による部分とに鋼板新生面30d(図4の(c)参照)が現れる。ここで、接合ピン10の回転接触により低融点メッキ鋼板30のメッキ層30aが削られた部分のほうが完全にメッキ層30aの成分を除去できるため、メッキ層30aの拡散により現れる鋼板新生面30d(図4の(c)参照)の部分よりも、アルミ合金20との摩擦攪拌接合の強度が高くなる。 That is, as shown in FIG. 3B, when the joining pin 10 is inserted into the low melting point plated steel sheet 30, a portion where the plating layer 30 a of the low melting point plated steel sheet 30 is scraped by the rotational contact of the joining pin 10, and In this way, a new steel plate surface 30d (see FIG. 4C) appears at the portion of the plating layer 30a diffused. Here, since the component of the plating layer 30a can be completely removed in the portion where the plating layer 30a of the low melting point plated steel plate 30 is scraped by the rotational contact of the joining pin 10, the new steel plate surface 30d (FIG. The strength of the friction stir welding with the aluminum alloy 20 is higher than the portion (see (c) of 4).
したがって、接合ピン10を微少量だけ低融点メッキ鋼板30に挿入すると、接合ピン10を低融点メッキ鋼板30に挿入しない場合にくらべて、若干強い摩擦攪拌接合を得られる。しかし、接合ピン10を低融点メッキ鋼板30に挿入することで、硬い鋼板を削らなくてはならず、加工抵抗が増えるため加工効率は落ちる。 Therefore, when a small amount of the joining pin 10 is inserted into the low melting point plated steel sheet 30, a slightly stronger friction stir welding can be obtained as compared with the case where the joining pin 10 is not inserted into the low melting point plated steel sheet 30. However, by inserting the joining pin 10 into the low melting point plated steel plate 30, the hard steel plate must be cut, and the processing resistance increases, so the processing efficiency decreases.
加工抵抗は、接合ピン10の低融点メッキ鋼板30への挿入量が増えるほど大きくなるため、加工効率を考慮すると接合ピン10の、低融点メッキ鋼板30への挿入量は0.2mmが限界となる。 Since the processing resistance increases as the insertion amount of the joining pin 10 into the low melting point plated steel sheet 30 increases, the insertion amount of the joining pin 10 into the low melting point plated steel sheet 30 is limited to 0.2 mm in consideration of processing efficiency. Become.
反対に、図3の(a)に示すように、接合ピン10の先端部10aをアルミ合金20の塑性流動域20a内に留め置く場合、後記するようにメッキ層30aの拡散によって鋼板新生面30d(図4の(c)参照)は現れるが、先端部10aが接触面20cから一定距離以上離れると、充分な摩擦熱をメッキ層30aに供給できず、充分にメッキ層30aが拡散されないため、摩擦攪拌接合の強度が低下することになる。 On the contrary, as shown in FIG. 3A, when the front end portion 10a of the joining pin 10 is retained in the plastic flow region 20a of the aluminum alloy 20, the new steel plate surface 30d (diffusion of the plated layer 30a will be described later). 4 (c)) appears, but if the tip 10a is separated from the contact surface 20c by a certain distance or more, sufficient frictional heat cannot be supplied to the plating layer 30a, and the plating layer 30a is not sufficiently diffused. The strength of stir welding will decrease.
以上のことより、最適な摩擦攪拌接合の強度を得ることができかつ、加工効率に与える影響も少ない範囲として、接触面20cから先端部10aまでの距離が設定され、図3の(a)におけるL1は0mm〜0.1mmの範囲、図3の(b)におけるL2は0mm〜0.2mmの範囲とした。 From the above, the distance from the contact surface 20c to the tip 10a is set as a range in which the optimum strength of friction stir welding can be obtained and the influence on the processing efficiency is small, and in FIG. L1 was in the range of 0 mm to 0.1 mm, and L2 in FIG. 3B was in the range of 0 mm to 0.2 mm.
図4は、本発明に係る摩擦攪拌接合方法の接合過程を示す概略図である。図4の(a)に示すように、ショルダ部11がアルミ合金20の表面20bに摺接する位置で、接合ツール1は回転を続けるため、接合ピン10およびショルダ部11からは摩擦による熱がアルミ合金20と低融点メッキ鋼板30に供給され続け、アルミ合金20の塑性流動域20aが、ショルダ部11の直径と略等しい範囲かつ、アルミ合金20の表面20bから低融点メッキ鋼表面30bと接触する接触面20cまでの範囲に広がる。 FIG. 4 is a schematic view showing a joining process of the friction stir welding method according to the present invention. As shown in FIG. 4A, the welding tool 1 continues to rotate at the position where the shoulder portion 11 is in sliding contact with the surface 20b of the aluminum alloy 20, so that heat from friction is generated from the joining pin 10 and the shoulder portion 11 by aluminum. The alloy 20 continues to be supplied to the low melting point plated steel sheet 30, and the plastic flow region 20 a of the aluminum alloy 20 comes into contact with the low melting point plated steel surface 30 b from the surface 20 b of the aluminum alloy 20 in a range substantially equal to the diameter of the shoulder portion 11. The range extends to the contact surface 20c.
一方、低融点メッキ鋼板30については、アルミ合金20の塑性流動域20aが持つ温度がメッキ層30aの融点より高いことから、塑性流動域20aと低融点メッキ鋼表面30bが接する接触面20cでは、図4の(b)に示すように、メッキ層30aが溶けてメッキ層溶融部30cが出現する。そして、メッキ層溶融部30cの溶けたメッキ成分は、塑性流動域20aの塑性流動によって拡散されるため、図4の(c)に示すようにアルミ合金20の塑性流動域20aと低融点メッキ鋼板30が接する鋼板新生面30dが現れる。 On the other hand, for the low melting point plated steel sheet 30, since the temperature of the plastic flow region 20a of the aluminum alloy 20 is higher than the melting point of the plating layer 30a, the contact surface 20c where the plastic flow region 20a and the low melting point plated steel surface 30b are in contact with each other: As shown in FIG. 4B, the plating layer 30a melts and the plating layer melting portion 30c appears. And since the molten plating component of the plating layer melting part 30c is diffused by the plastic flow in the plastic flow region 20a, the plastic flow region 20a of the aluminum alloy 20 and the low melting point plated steel plate as shown in FIG. A new steel plate surface 30d in contact with 30 appears.
摩擦攪拌接合は、アルミ合金20の塑性流動域20aと低融点メッキ鋼板30の鋼板新生面30dが接する面における固相接合によって接合されるため、図4の(d)に示すようにアルミ合金20と低融点メッキ鋼板30の接合界面30eはアルミ合金20に生成される塑性流動域20aと略等しい大きさとなる。 Since the friction stir welding is performed by solid phase bonding on the surface where the plastic flow region 20a of the aluminum alloy 20 and the steel plate new surface 30d of the low melting point plated steel plate 30 are in contact with each other, as shown in FIG. The joining interface 30e of the low melting point plated steel sheet 30 has a size substantially equal to the plastic flow region 20a generated in the aluminum alloy 20.
ここで、塑性流動域20aは、前記のように接合ツール1のショルダ部11の直径と略等しい範囲にまで広がっているので、接合界面30eは、接合ツール1のショルダ部11の直径と略等しいといえる。 Here, since the plastic flow region 20a extends to a range substantially equal to the diameter of the shoulder portion 11 of the joining tool 1 as described above, the joining interface 30e is substantially equal to the diameter of the shoulder portion 11 of the joining tool 1. It can be said.
図5は、従来技術で鋼板とアルミ合金の摩擦攪拌接合を実施した場合の接合界面を示す図である。図5に示すように、SP鋼板やGA鋼板などの鋼板40とアルミ合金20を従来技術で摩擦攪拌接合した場合に生成される接合界面20dは、前記のとおり摩擦攪拌接合加工時の接合ピン10b(図5において、想像線で示される)と略等しい大きさである。 FIG. 5 is a view showing a bonding interface when friction stir welding between a steel plate and an aluminum alloy is performed by the conventional technique. As shown in FIG. 5, the bonding interface 20 d generated when the steel plate 40 such as the SP steel plate or the GA steel plate and the aluminum alloy 20 are friction stir welded by the conventional technique is the joining pin 10 b at the time of the friction stir welding processing as described above. The size is substantially equal to (indicated by an imaginary line in FIG. 5).
したがって、図4の(d)で示される、本発明により生成される接合界面30eは、図5で示される従来技術により生成される接合界面20dより大きく、本発明によって従来技術よりも接合強度の高い摩擦攪拌接合を行えるといえる。 Therefore, the bonding interface 30e generated by the present invention shown in FIG. 4 (d) is larger than the bonding interface 20d generated by the prior art shown in FIG. It can be said that high friction stir welding can be performed.
そして、前記の摩擦攪拌接合において、接合ツール1を必要な長さだけアルミ合金20の表面20bに沿って送れば、必要な接合長を有する摩擦攪拌接合を行える。 In the friction stir welding, if the joining tool 1 is sent along the surface 20b of the aluminum alloy 20 by a necessary length, the friction stir welding having a necessary joining length can be performed.
なお、GA鋼板のメッキに使用される亜鉛の融点は約420℃であり、摩擦攪拌接合加工時におけるアルミ合金20の塑性流動域20aの約450℃より低いが、GA鋼板のメッキ処理は合金化溶融亜鉛メッキ処理であり、メッキ層が鋼板と一部で合金化しているためメッキ表面の融点は約750℃以上になり、アルミ合金20の塑性流動域20aから供給される熱では拡散されない。 The melting point of zinc used for the plating of the GA steel sheet is about 420 ° C., which is lower than about 450 ° C. of the plastic flow region 20a of the aluminum alloy 20 during the friction stir welding process. Since it is a hot dip galvanizing process and the plating layer is partially alloyed with the steel plate, the melting point of the plating surface is about 750 ° C. or higher and is not diffused by the heat supplied from the plastic flow zone 20a of the aluminum alloy 20.
一方で、本実施形態で使用する低融点メッキ鋼板30のメッキ層30aを構成するメッキは、Zn−Al−Mgからなる溶融亜鉛メッキであり、メッキ層30aが鋼板と合金化することがないためメッキ層30aの融点は約400℃となり、本発明の効果を奏する。 On the other hand, the plating constituting the plating layer 30a of the low melting point plated steel sheet 30 used in the present embodiment is hot dip galvanizing made of Zn—Al—Mg, and the plating layer 30a is not alloyed with the steel sheet. The melting point of the plating layer 30a is about 400 ° C., and the effects of the present invention are exhibited.
図6は、本実施形態による摩擦攪拌接合の接合強度試験を行うための試供材を示す図であり、図7は前記供試材による摩擦攪拌接合の引張りせん断強度を示す図である。 FIG. 6 is a diagram showing a test material for performing a joint strength test of friction stir welding according to the present embodiment, and FIG. 7 is a diagram showing a tensile shear strength of the friction stir welding by the test material.
以下、図6に示す供試材の形状ならびに摩擦攪拌接合方法を用いて、表1に示す条件で摩擦攪拌接合を行い、引張りせん断強度を測定する接合強度試験をしたところ、図7に示す結果を得られた。
なお、図7における接合部材の表記と図6における供試材A60と供試材B61は、表1に表記される供試材(A〜D)に以下のように対応する。
接合部材:低融点メッキ鋼板
供試材A60:表1記載の供試材A
供試材B61:表1記載の供試材B
接合部材:GA鋼板
供試材A60:表1記載の供試材A
供試材B61:表1記載の供試材C
接合部材:SP鋼板
供試材A60:表1記載の供試材A
供試材B61:表1記載の供試材D
接合部材:アルミ合金
供試材A60:表1記載の供試材A
供試材B61:表1記載の供試材A
In addition, the description of the joining member in FIG. 7, and the test material A60 and the test material B61 in FIG. 6 correspond to the test materials (A to D) described in Table 1 as follows.
Joining member: low melting point plated steel sheet Specimen A60: Specimen A shown in Table 1
Specimen B61: Specimen B listed in Table 1
Joining member: GA steel plate Specimen A60: Specimen A shown in Table 1
Specimen B61: Specimen C listed in Table 1
Joining member: SP steel plate Test material A60: Test material A described in Table 1
Specimen B61: Specimen D listed in Table 1
Joining member: Aluminum alloy Specimen A60: Specimen A listed in Table 1
Specimen B61: Specimen A listed in Table 1
図7によると、アルミ合金と低融点メッキ鋼板の摩擦攪拌接合においては、約5kNの引張りせん断強度が得られ、他の組み合わせによる摩擦攪拌接合で得られる引張りせん断強度(約3.0kN〜約3.8kN)よりも大きく、接合強度が高いことがわかる。 According to FIG. 7, in the friction stir welding of the aluminum alloy and the low melting point plated steel sheet, a tensile shear strength of about 5 kN is obtained, and the tensile shear strength (about 3.0 kN to about 3 k) obtained by the friction stir welding by other combinations is obtained. It can be seen that the bonding strength is high.
図8に、本実施形態による摩擦攪拌接合部材の接合界面の電子顕微鏡写真を示す。図8によると、上部のアルミ合金と下部の鋼板の間の接合界面に、黒枠で囲まれた部分で示されるように金属間化合物が生成されていることが確認され、その組成はFe4Al13であった。 In FIG. 8, the electron micrograph of the joining interface of the friction stir welding member by this embodiment is shown. According to FIG. 8, it was confirmed that an intermetallic compound was formed at the bonding interface between the upper aluminum alloy and the lower steel plate, as indicated by the portion surrounded by the black frame, and the composition was Fe4Al13. It was.
さらに、図8に示すように、前記の金属間化合物は厚みが10nm〜1μmの範囲であり、接合界面全域にわたる連続した層状形態ではなく、粒状形態もしくは分断された層状形態として接合界面内に分散していることが確認された。 Furthermore, as shown in FIG. 8, the intermetallic compound has a thickness in the range of 10 nm to 1 μm, and is dispersed in the joint interface as a granular form or a divided layer form rather than a continuous layer form over the entire joint interface. It was confirmed that
一般に、金属間化合物はもろく破断を発生しやすい。したがって、接合界面に連続した層状形態で存在すると、接合界面の強度を低下する原因となる。 In general, intermetallic compounds are brittle and easily break. Therefore, if it exists in a continuous layered form at the bonding interface, it causes a decrease in the strength of the bonding interface.
また、金属間化合物の厚みが増えることでも、接合界面の強度は低下することから、金属間化合物は薄いほうが、強度の高い接合界面を得ることができる。 Further, since the strength of the bonding interface decreases even when the thickness of the intermetallic compound is increased, a stronger bonding interface can be obtained when the intermetallic compound is thinner.
本発明の実施形態による摩擦攪拌接合部材の接合界面は、前記のように金属間化合物が分散して存在しかつ、厚みも10nm〜1μmの範囲に抑えられることから、金属間化合物のもろさを金属間化合物の非存在領域で補填でき、接合界面の強度の低下を防ぐことができる。 The joint interface of the friction stir welding member according to the embodiment of the present invention has the intermetallic compound dispersed therein as described above, and the thickness can be suppressed in the range of 10 nm to 1 μm. This can be compensated for in the absence of the intercalation compound, and a decrease in the strength of the bonding interface can be prevented.
以上、本発明の実施形態について記述したが、請求項に記載する皮膜はメッキ層に限ったものではなく、アルミ合金より融点が低く、摩擦攪拌接合時にアルミ合金に生成される塑性流動域の塑性流動によって拡散されるという条件を満たすものであれば、その種類は問わない。 As described above, the embodiment of the present invention has been described. However, the film described in the claims is not limited to the plating layer, the melting point is lower than that of the aluminum alloy, and the plasticity of the plastic flow region generated in the aluminum alloy during friction stir welding is described. Any kind of material can be used as long as it satisfies the condition of being diffused by flow.
1 接合ツール
10 接合ピン
20 アルミ合金
20a 塑性流動域
21 接合面領域
30 低融点メッキ鋼板
30a メッキ層
30d 鋼板新生面
DESCRIPTION OF SYMBOLS 1 Joining tool 10 Joining pin 20 Aluminum alloy 20a Plastic flow area 21 Joining surface area 30 Low melting point plated steel plate 30a Plating layer 30d New steel plate surface
Claims (5)
前記第1の金属材料の表面には、少なくとも接合面領域で前記第2の金属材料が接する側の表面に、前記第2の金属材料の融点よりも低い融点を有する皮膜を形成し、
前記第1の金属材料と前記第2の金属材料を重ね合わせて前記接合面領域を形成し、
前記接合面領域において前記第2の金属材料の表面から回転する接合ピンを、
前記第1の金属材料と前記第2の金属材料が接合する接合界面の近傍まで挿入して摩擦攪拌し、
前記第2の金属材料の塑性流動により前記皮膜を拡散して前記第1の金属材料の新生面を露出させ、
前記新生面において固相接合することを特徴とする摩擦攪拌接合方法。 In a friction stir welding method by a combination of a first metal material and a second metal material having a melting point lower than the melting point of the first metal material,
On the surface of the first metal material, a film having a melting point lower than the melting point of the second metal material is formed at least on the surface on the side where the second metal material is in contact with the bonding surface region;
The first metal material and the second metal material are overlapped to form the bonding surface region;
A joining pin that rotates from the surface of the second metal material in the joining surface region;
Inserting the first metal material and the second metal material to the vicinity of the bonding interface where the first metal material and the second metal material are bonded, and stirring the friction;
Diffusing the film by plastic flow of the second metal material to expose a new surface of the first metal material;
Friction stir welding method, wherein solid phase bonding is performed on the new surface.
前記第1の金属材料と前記第2の金属材料が接合する接合界面に、金属間化合物が生成され、
前記金属間化合物は、厚みが10nm〜1μmの粒状形態もしくは、分断された層状形態であってかつ、前記接合界面に分散することを特徴とする摩擦攪拌接合部材。 The friction stir welding member in which the first metal material and the second metal material having a melting point lower than the melting point of the first metal material are friction stir welded by the friction stir welding method according to any one of claims 1 to 4. Because
An intermetallic compound is generated at a bonding interface where the first metal material and the second metal material are bonded,
The friction stir welding member, wherein the intermetallic compound has a granular form having a thickness of 10 nm to 1 μm or a divided layered form and is dispersed at the joining interface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006078342A JP5044128B2 (en) | 2006-03-22 | 2006-03-22 | Friction stir welding method and friction stir welding member for aluminum alloy and steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006078342A JP5044128B2 (en) | 2006-03-22 | 2006-03-22 | Friction stir welding method and friction stir welding member for aluminum alloy and steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007253172A true JP2007253172A (en) | 2007-10-04 |
JP5044128B2 JP5044128B2 (en) | 2012-10-10 |
Family
ID=38627927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006078342A Expired - Fee Related JP5044128B2 (en) | 2006-03-22 | 2006-03-22 | Friction stir welding method and friction stir welding member for aluminum alloy and steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5044128B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012148334A (en) * | 2011-01-21 | 2012-08-09 | Honda Motor Co Ltd | Method for joining of different material-joint structure |
JP2012170967A (en) * | 2011-02-18 | 2012-09-10 | Hiroshima Prefecture | Method of joining dissimilar metal plate and joint structure of dissimilar metal plate |
US8308051B2 (en) * | 2011-04-05 | 2012-11-13 | Suzuki Motor Corporation | Method of welding dissimilar metal materials and welded body of dissimilar metal materials |
JP2013244519A (en) * | 2012-05-28 | 2013-12-09 | Honda Motor Co Ltd | Friction stir welding member and friction stir welding method |
US8840006B2 (en) * | 2012-09-18 | 2014-09-23 | Honda Motor Co., Ltd. | Friction-stir joining method |
US9067621B2 (en) | 2010-12-06 | 2015-06-30 | Honda Motor Co., Ltd. | Subframe structure |
US9260133B2 (en) | 2012-07-25 | 2016-02-16 | Honda Motor Co., Ltd. | Friction-stir welded structure |
KR20160075941A (en) | 2014-12-19 | 2016-06-30 | 재단법인 포항산업과학연구원 | Friction stir welding method of different materials |
JP2016153133A (en) * | 2015-02-20 | 2016-08-25 | スズキ株式会社 | Production method of lamination structure joint body having three or more layers using friction agitation joint tool, and lamination structure joint body produced by the same |
JP2016153132A (en) * | 2015-02-20 | 2016-08-25 | スズキ株式会社 | Production method of lamination structure joint body having three or more layers using friction agitation joint tool, and lamination structure joint body produced by the same |
US10796727B1 (en) | 2019-05-08 | 2020-10-06 | Seagate Technology Llc | Using solid state deposition in the manufacture of data storage devices, and related devices and components thereof |
WO2021024687A1 (en) * | 2019-08-07 | 2021-02-11 | 国立大学法人大阪大学 | Dissimilar material solid phase bonding method, and dissimilar material solid phase bonded structure |
US11017819B1 (en) | 2019-05-08 | 2021-05-25 | Seagate Technology Llc | Data storage devices, and related components and methods of making |
US11590559B2 (en) | 2021-02-01 | 2023-02-28 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing cast product and forged product with insert joined thereto |
US11839929B2 (en) | 2019-02-08 | 2023-12-12 | Toyota Jidosha Kabushiki Kaisha | Dissimilar metal welding method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103008875A (en) * | 2012-12-28 | 2013-04-03 | 北京理工大学 | Dissimilar metal welding joint and welding method thereof |
JP2018034165A (en) | 2016-08-29 | 2018-03-08 | 株式会社神戸製鋼所 | Arc spot-welding method for jointing different materials, joint assisting member, and different-material welded joint |
JP2018047477A (en) | 2016-09-20 | 2018-03-29 | 株式会社神戸製鋼所 | Arc-welding method for joining dissimilar material, joint auxiliary member and dissimilar material welding coupling |
JP2018051570A (en) | 2016-09-26 | 2018-04-05 | 株式会社神戸製鋼所 | Dissimilar material jointing spot welding method, joint auxiliary member, and dissimilar material welding coupling |
WO2018123716A1 (en) | 2016-12-27 | 2018-07-05 | 株式会社神戸製鋼所 | Arc welding method for multimaterial joining, joining assistance member, multimaterial welded joint, and plate material equipped with joining assistance member |
JP6829218B2 (en) | 2018-02-28 | 2021-02-10 | 株式会社神戸製鋼所 | Arc welding method for joining dissimilar materials |
JP7017501B2 (en) | 2018-11-14 | 2022-02-08 | 株式会社神戸製鋼所 | Welding method for joining dissimilar materials, joining auxiliary members, and welded joints made of dissimilar materials |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003275876A (en) * | 2002-03-18 | 2003-09-30 | Sumitomo Light Metal Ind Ltd | Member for joining different kinds of metals, and method for joining different metal members |
JP2005034879A (en) * | 2003-07-15 | 2005-02-10 | Mazda Motor Corp | Friction welding method and friction welding structure |
JP2006175502A (en) * | 2004-12-24 | 2006-07-06 | Nissan Motor Co Ltd | Different kinds of metal welding method |
-
2006
- 2006-03-22 JP JP2006078342A patent/JP5044128B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003275876A (en) * | 2002-03-18 | 2003-09-30 | Sumitomo Light Metal Ind Ltd | Member for joining different kinds of metals, and method for joining different metal members |
JP2005034879A (en) * | 2003-07-15 | 2005-02-10 | Mazda Motor Corp | Friction welding method and friction welding structure |
JP2006175502A (en) * | 2004-12-24 | 2006-07-06 | Nissan Motor Co Ltd | Different kinds of metal welding method |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10232893B2 (en) | 2010-12-06 | 2019-03-19 | Honda Motor Co., Ltd. | Different materials joint structure |
US9067621B2 (en) | 2010-12-06 | 2015-06-30 | Honda Motor Co., Ltd. | Subframe structure |
US9834257B2 (en) | 2010-12-06 | 2017-12-05 | Honda Motor Co., Ltd. | Subframe structure |
US9764777B2 (en) | 2010-12-06 | 2017-09-19 | Honda Motor Co., Ltd. | Different materials joint structure |
US9630658B2 (en) | 2010-12-06 | 2017-04-25 | Honda Motor Co., Ltd. | Subframe structure |
JP2012148334A (en) * | 2011-01-21 | 2012-08-09 | Honda Motor Co Ltd | Method for joining of different material-joint structure |
JP2012170967A (en) * | 2011-02-18 | 2012-09-10 | Hiroshima Prefecture | Method of joining dissimilar metal plate and joint structure of dissimilar metal plate |
DE102012205477B4 (en) * | 2011-04-05 | 2016-11-10 | Suzuki Motor Corp. | Method of welding dissimilar metal materials and welded bodies of dissimilar metal materials |
US8308051B2 (en) * | 2011-04-05 | 2012-11-13 | Suzuki Motor Corporation | Method of welding dissimilar metal materials and welded body of dissimilar metal materials |
JP2013244519A (en) * | 2012-05-28 | 2013-12-09 | Honda Motor Co Ltd | Friction stir welding member and friction stir welding method |
US9260133B2 (en) | 2012-07-25 | 2016-02-16 | Honda Motor Co., Ltd. | Friction-stir welded structure |
US8840006B2 (en) * | 2012-09-18 | 2014-09-23 | Honda Motor Co., Ltd. | Friction-stir joining method |
KR20160075941A (en) | 2014-12-19 | 2016-06-30 | 재단법인 포항산업과학연구원 | Friction stir welding method of different materials |
JP2016153132A (en) * | 2015-02-20 | 2016-08-25 | スズキ株式会社 | Production method of lamination structure joint body having three or more layers using friction agitation joint tool, and lamination structure joint body produced by the same |
JP2016153133A (en) * | 2015-02-20 | 2016-08-25 | スズキ株式会社 | Production method of lamination structure joint body having three or more layers using friction agitation joint tool, and lamination structure joint body produced by the same |
US11839929B2 (en) | 2019-02-08 | 2023-12-12 | Toyota Jidosha Kabushiki Kaisha | Dissimilar metal welding method |
US11302364B2 (en) | 2019-05-08 | 2022-04-12 | Seagate Technology Llc | Data storage devices, and related components and methods of making |
US11017819B1 (en) | 2019-05-08 | 2021-05-25 | Seagate Technology Llc | Data storage devices, and related components and methods of making |
US11302363B2 (en) | 2019-05-08 | 2022-04-12 | Seagate Technology Llc | Data storage devices, and related components and methods of making |
US10796727B1 (en) | 2019-05-08 | 2020-10-06 | Seagate Technology Llc | Using solid state deposition in the manufacture of data storage devices, and related devices and components thereof |
JPWO2021024687A1 (en) * | 2019-08-07 | 2021-02-11 | ||
CN114206535A (en) * | 2019-08-07 | 2022-03-18 | 国立大学法人大阪大学 | Solid-phase bonding method for dissimilar materials and solid-phase bonded structure of dissimilar materials |
WO2021024687A1 (en) * | 2019-08-07 | 2021-02-11 | 国立大学法人大阪大学 | Dissimilar material solid phase bonding method, and dissimilar material solid phase bonded structure |
JP7262144B2 (en) | 2019-08-07 | 2023-04-21 | 国立大学法人大阪大学 | Dissimilar material solid phase bonding method and dissimilar material solid phase bonding structure |
CN114206535B (en) * | 2019-08-07 | 2024-04-02 | 国立大学法人大阪大学 | Method for solid phase bonding of dissimilar materials and solid phase bonded structure of dissimilar materials |
US11590559B2 (en) | 2021-02-01 | 2023-02-28 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing cast product and forged product with insert joined thereto |
Also Published As
Publication number | Publication date |
---|---|
JP5044128B2 (en) | 2012-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5044128B2 (en) | Friction stir welding method and friction stir welding member for aluminum alloy and steel plate | |
Watanabe et al. | Joining of aluminum alloy to steel by friction stir welding | |
US9937587B2 (en) | Process for friction stir welding dissimilar metals and workpiece assemblies formed thereby | |
KR100785557B1 (en) | Steel sheet for dissimilar materials weldbonding to aluminum material and dissimilar materials bonded body | |
US8960523B2 (en) | Friction stir welding of dissimilar metals | |
JP5740871B2 (en) | Dissimilar metal material joining method and dissimilar metal material joined body | |
JP4577620B2 (en) | Metal joining method | |
JP2005034879A (en) | Friction welding method and friction welding structure | |
US8308051B2 (en) | Method of welding dissimilar metal materials and welded body of dissimilar metal materials | |
JP2004106037A (en) | Method for bonding metal | |
JP5803069B2 (en) | Bonding method of dissimilar metal materials | |
JP2005161382A (en) | Spot-welding method for metallic member and device therefor | |
JP5690331B2 (en) | Dissimilar material joined body and joining method thereof | |
JP3940984B2 (en) | Metal joining method | |
JP4161581B2 (en) | Friction stir welding method | |
JP2002066760A (en) | Joining method of metal and joining device | |
JP2006205190A (en) | Method of joining dissimilar metals | |
JP4453682B2 (en) | Joining method and joining tool | |
JP7020562B2 (en) | How to manufacture a liquid-cooled jacket | |
JP6590334B2 (en) | Friction stir welding method and friction stir welding member | |
JP3673819B2 (en) | Friction stir welding method between metals | |
JP2021164943A (en) | Friction stir joining method for aluminum alloy plate and steel plate | |
JP2021112757A (en) | Manufacturing method for liquid-cooled jacket | |
JP2009106998A (en) | Friction spot welding method | |
JP4194419B2 (en) | Joining method and joining joint of iron-based material and aluminum-based material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120329 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120710 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120713 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5044128 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150720 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |