JP6590334B2 - Friction stir welding method and friction stir welding member - Google Patents
Friction stir welding method and friction stir welding member Download PDFInfo
- Publication number
- JP6590334B2 JP6590334B2 JP2015063994A JP2015063994A JP6590334B2 JP 6590334 B2 JP6590334 B2 JP 6590334B2 JP 2015063994 A JP2015063994 A JP 2015063994A JP 2015063994 A JP2015063994 A JP 2015063994A JP 6590334 B2 JP6590334 B2 JP 6590334B2
- Authority
- JP
- Japan
- Prior art keywords
- magnesium alloy
- friction stir
- stir welding
- joint
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003756 stirring Methods 0.000 title claims description 119
- 238000003466 welding Methods 0.000 title claims description 115
- 238000000034 method Methods 0.000 title claims description 43
- 239000000463 material Substances 0.000 claims description 184
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 183
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 154
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 139
- 229910052782 aluminium Inorganic materials 0.000 claims description 130
- 229910052742 iron Inorganic materials 0.000 claims description 91
- 229910052751 metal Inorganic materials 0.000 claims description 90
- 239000002184 metal Substances 0.000 claims description 90
- 239000011777 magnesium Substances 0.000 claims description 81
- 239000000523 sample Substances 0.000 claims description 78
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 77
- 229910052749 magnesium Inorganic materials 0.000 claims description 76
- 239000000956 alloy Substances 0.000 claims description 75
- 230000005496 eutectics Effects 0.000 claims description 11
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 239000000470 constituent Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 86
- 238000005304 joining Methods 0.000 description 69
- 229910000765 intermetallic Inorganic materials 0.000 description 39
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 32
- 230000002950 deficient Effects 0.000 description 26
- 238000013507 mapping Methods 0.000 description 23
- 230000008878 coupling Effects 0.000 description 21
- 238000010168 coupling process Methods 0.000 description 21
- 238000005859 coupling reaction Methods 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 12
- 238000003780 insertion Methods 0.000 description 12
- 230000037431 insertion Effects 0.000 description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 238000002844 melting Methods 0.000 description 9
- 230000008018 melting Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000010408 film Substances 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000001771 impaired effect Effects 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910015372 FeAl Inorganic materials 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- -1 plate Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Description
本発明はマグネシウム又はマグネシウム合金材と鉄系材との異材摩擦攪拌接合方法及びそれにより得られる異材摩擦攪拌接合部材に関する。 The present invention relates to a dissimilar material friction stir welding method for magnesium or a magnesium alloy material and an iron-based material, and a dissimilar material friction stir welding member obtained thereby.
燃費の向上及び環境負荷低減の観点等から、各種輸送用機器の軽量化が切望されている。ここで、マグネシウム材は構造部材として用いることができる金属中で最も比重が小さく、汎用されている鉄系材の一部分をマグネシウム材で代替することができれば、効果的に構造部材の軽量化を達成することができる。 From the viewpoint of improving fuel consumption and reducing environmental impact, there is a strong demand for weight reduction of various types of transportation equipment. Here, magnesium material has the smallest specific gravity among metals that can be used as a structural member, and if a part of commonly used iron-based material can be replaced with magnesium material, the weight of the structural member can be effectively reduced. can do.
しかしながら、マグネシウムと鉄は互いに固溶しない系(二相分離型)であり、極めて接合が困難である。これに対し、マグネシウム材と鉄系材との接合に関しては、これまでにも種々検討されており、主として共晶溶融を利用した接合方法が提案されている。 However, magnesium and iron are systems that do not form a solid solution with each other (two-phase separation type) and are extremely difficult to join. On the other hand, regarding the joining of magnesium material and iron-based material, various studies have been made so far, and joining methods mainly utilizing eutectic melting have been proposed.
例えば、特許文献1(特開2009−269071号公報)では、鋼材として亜鉛めっきを施した亜鉛めっき鋼板を、マグネシウム合金材としてAl含有マグネシウム合金材を使用し、接合に際して、MgとZnの共晶溶融を生じさせて酸化皮膜や不純物などを接合界面から排出すると共に、Al−Mg系とFe−Al系の金属間化合物を生成させ、Al3Mg2とFeAl3とが混在する複合組織を備えた化合物層を介して、両材料の新生面同士を接合する方法が開示されている。 For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2009-269071), a galvanized steel sheet that has been galvanized as a steel material and an Al-containing magnesium alloy material as a magnesium alloy material are used. A composite structure in which Al 3 Mg 2 and FeAl 3 coexist is produced by causing melting and discharging oxide films and impurities from the bonding interface and generating Al—Mg and Fe—Al intermetallic compounds. A method for joining the new surfaces of both materials via a compound layer is disclosed.
前記特許文献1に記載の接合方法においては、マグネシウム合金材と鋼材からなる被接合材の間に第3の材料を介在させ、Mg及び/又はFeと第3の材料に含まれる金属との間で共晶溶融を生じさせることによって、酸化皮膜が低温で容易に接合界面から排出され、被接合材の新生面同士を接触させることができ、加えて、Mg及びFeのそれぞれとAlとの金属間化合物が混在する複合組織を備えた化合物層が接合界面に介在することにより、冶金的に直接接合が困難な材料の組合せであっても相互拡散が可能となり、強固な接合が達成される、としている。 In the joining method described in Patent Document 1, a third material is interposed between a material to be joined made of a magnesium alloy material and a steel material, and between Mg and / or Fe and a metal contained in the third material. By causing eutectic melting at, the oxide film can be easily discharged from the bonding interface at a low temperature, and the new surfaces of the materials to be bonded can be brought into contact with each other, and in addition, between each of Mg and Fe and Al metal As a compound layer with a composite structure in which compounds are mixed is present at the bonding interface, mutual diffusion is possible even with a combination of materials that are difficult to metallurgically bond directly, and strong bonding is achieved. Yes.
一方で、継手の機械的特性やひずみ等の観点から、材料の溶融を伴わない固相接合が注目されており、高速で回転する円筒状のツールを被接合材に圧入し、材料との摩擦熱を利用して接合を達成する摩擦攪拌接合(FSW)の実用化が急速に進んでいる。ここで、摩擦攪拌接合はプロセス条件による接合部への入熱制御等が容易であり、異材接合にも有利な接合方法である。 On the other hand, from the viewpoint of mechanical properties and strain of joints, solid-phase bonding that does not involve melting of materials is attracting attention. A cylindrical tool that rotates at high speed is press-fitted into the material to be joined, and friction with the material occurs. Friction stir welding (FSW), which achieves joining using heat, has been rapidly put into practical use. Here, the friction stir welding is easy to control the heat input to the joint according to the process conditions, and is an advantageous joining method for dissimilar material joining.
例えば、特許文献2(特開2004−255420号公報)では、鋼材とアルミニウム材との異材接合に関し、鋼材とアルミニウム材を突合わせて形成される突合わせ線に対して、ツール底面のプローブ部を鋼材側に僅かに入り込ませる(大部分をアルミニウム材に配置する)摩擦攪拌接合方法が開示されている。 For example, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-255420), regarding a dissimilar material joining between a steel material and an aluminum material, a probe portion on the bottom surface of the tool is provided with respect to a butt line formed by abutting the steel material and the aluminum material. There is disclosed a friction stir welding method in which the steel material is slightly penetrated (mostly disposed in an aluminum material).
前記特許文献2に記載の摩擦攪拌接合方法においては、プローブが鋼材側に僅かに入り込んでいるために、鋼材の新しい界面が削り出されると同時に、プローブと接触しているアルミニウム材近傍の領域では、塑性流動が生じる。加えて、プローブの進行方向に対して後側となる領域では、塑性流動したアルミニウム材が大きな圧縮力を受けて、新しく露出した清浄な鋼材表面との間で接合が達成される、としている。 In the friction stir welding method described in Patent Document 2, since the probe slightly enters the steel material side, a new interface of the steel material is cut out, and at the same time, in the region near the aluminum material in contact with the probe. Plastic flow occurs. In addition, in the region on the rear side with respect to the advancing direction of the probe, the aluminum material that has flowed plastically receives a large compressive force, and the joining to the newly exposed clean steel surface is achieved.
しかしながら、上記特許文献1に開示されている接合方法は、脆弱な金属間化合物層の厚さを制御することが困難であることに加え、被接合材として用いることができる鋼材の種類や大きさが限定されてしまう。また、上記特許文献2に開示されている摩擦攪拌接合方法は、互いに固溶しないマグネシウムと鉄との異材接合に用いることが困難であり、当該組合せにおいては十分な継手強度を有する接合部材を得ることができない。 However, in the joining method disclosed in Patent Document 1, it is difficult to control the thickness of the fragile intermetallic compound layer, and the type and size of the steel material that can be used as a material to be joined. Will be limited. Further, the friction stir welding method disclosed in Patent Document 2 is difficult to use for dissimilar material joining of magnesium and iron that are not solid-solved with each other, and in this combination, a joining member having sufficient joint strength is obtained. I can't.
また、被接合材にアルミニウムを固溶するマグネシウム合金を用いる場合、当該アルミニウムによって上記金属間化合物層(中間層)が形成され、接合が達成される。しかしながら、当該金属間化合物層(中間層)の形成によって、マグネシウム合金のアルミニウム濃度が低下し、アルミニウム欠乏層が形成されてしまう。 Moreover, when using the magnesium alloy which dissolves aluminum into a to-be-joined material, the said intermetallic compound layer (intermediate layer) is formed with the said aluminum, and joining is achieved. However, the formation of the intermetallic compound layer (intermediate layer) reduces the aluminum concentration of the magnesium alloy and forms an aluminum deficient layer.
アルミニウムが固溶したマグネシウム合金は当該固溶によって強度が上昇(固溶強化)しているため、アルミニウム欠乏層が形成するとマグネシウム合金の強度が低下し、それに伴って継手強度が低下してしまう。なお、アルミニウム欠乏層の形成によるマグネシウム又はマグネシウム合金材と鉄系材との異材摩擦攪拌接合継手の強度低下は、発明者が接合界面近傍の元素分布と継手強度の関係を詳細に検討して見出したものである。 Since the strength of the magnesium alloy in which aluminum is dissolved is increased (solid solution strengthening) due to the solid solution, the strength of the magnesium alloy is reduced when the aluminum-deficient layer is formed, and the joint strength is reduced accordingly. Note that the reduction in strength of the friction stir welded joint between dissimilar materials made of magnesium or a magnesium alloy material and an iron-based material due to the formation of an aluminum-deficient layer was found by the inventors examining in detail the relationship between the element distribution near the joint interface and the joint strength It is a thing.
以上のような従来技術における問題点に鑑み、本発明の目的は、マグネシウム又はマグネシウム合金材と鉄系材との簡便かつ効率的な異材摩擦攪拌接合方法及び、それにより得られる高い継手強度を有する異材摩擦攪拌接合部材を提供することにある。 In view of the above problems in the prior art, the object of the present invention is to provide a simple and efficient dissimilar friction stir welding method for magnesium or a magnesium alloy material and an iron-based material, and high joint strength obtained thereby. The object is to provide a different material friction stir welding member.
本発明者は上記目的を達成すべく、摩擦攪拌接合条件及び接合界面の微細組織及び元素分布と継手強度の関係等について鋭意研究を重ねた結果、マグネシウム又はマグネシウム材と鉄系材との接触界面に適当なインサート材を配置して摩擦攪拌接合を施すことが極めて有効であることを見出し、本発明に到達した。 In order to achieve the above object, the present inventor has conducted extensive research on the friction stir welding conditions, the microstructure of the joint interface and the relationship between element distribution and joint strength, etc., and as a result, the contact interface between magnesium or a magnesium material and an iron-based material. The present inventors have found that it is extremely effective to dispose an appropriate insert material and to apply friction stir welding to the present invention.
即ち、本発明は、
マグネシウム又はマグネシウム合金材と鉄系材との摩擦攪拌接合方法であって、
前記マグネシウム又はマグネシウム合金材と前記鉄系材とを、前記マグネシウム又はマグネシウム合金材よりも高いアルミニウム含有量を有する金属層を介して接触させ、
摩擦攪拌接合用ツールのプローブ部の側面又は底面を、前記金属層と前記鉄系材の接触面に対して前記鉄系材側に0.05mm以上入り込ませること、
を特徴とする摩擦攪拌接合方法を提供する。なお、鉄系材とは鉄を主成分とする金属材を広く含むものであり、鉄、鋼及び鋳鉄を含むものである。
That is, the present invention
A friction stir welding method between magnesium or a magnesium alloy material and an iron-based material,
The magnesium or magnesium alloy material and the iron-based material are brought into contact via a metal layer having an aluminum content higher than that of the magnesium or magnesium alloy material,
Making the side or bottom of the probe part of the friction stir welding tool enter 0.05 mm or more on the iron-based material side with respect to the contact surface of the metal layer and the iron-based material,
A friction stir welding method is provided. The iron-based material includes a wide range of metal materials mainly composed of iron, and includes iron, steel, and cast iron.
プローブを鉄系材側に0.05mm以上入り込ませることで鉄系材が僅かに切削され、摩擦攪拌接合中に鉄系材の新生面が形成される。当該新生面に、アルミニウムを含有する金属層又はマグネシウム合金材の材料流動が押圧されることで、接合界面に主として鉄とアルミニウムからなる金属間化合物層(中間層)が形成され、マグネシウム又はマグネシウム合金材と鉄系材との冶金的な接合が達成される。 By inserting the probe into the iron-based material side by 0.05 mm or more, the iron-based material is slightly cut, and a new surface of the iron-based material is formed during the friction stir welding. By pressing the material flow of the metal layer or magnesium alloy material containing aluminum on the new surface, an intermetallic compound layer (intermediate layer) mainly composed of iron and aluminum is formed at the joining interface, and the magnesium or magnesium alloy material And metallurgical joining of iron-based materials is achieved.
本発明の摩擦攪拌接合方法においては、前記金属層にマグネシウム合金板を用いること、が好ましい。金属層として、被接合材であるマグネシウム又はマグネシウム合金材よりも高いアルミニウム含有量を有するマグネシウム合金板を用いることで、当該マグネシウム合金板に固溶しているアルミニウムを接合界面近傍に供給することができる。 In the friction stir welding method of the present invention, it is preferable to use a magnesium alloy plate for the metal layer. By using a magnesium alloy plate having a higher aluminum content than the magnesium or magnesium alloy material to be joined as the metal layer, aluminum dissolved in the magnesium alloy plate can be supplied to the vicinity of the joining interface. it can.
被接合材にマグネシウム材を用いる場合、マグネシウムと鉄は互いに固溶しないことから、冶金的な接合が達成されないが、マグネシウム合金板に固溶しているアルミニウムが摩擦攪拌接合中に接合界面に供給され、主として鉄とアルミニウムからなる金属間化合物層(中間層)を形成することで良好な接合が達成される。ここで、前記金属層にアルミニウム板等を用いてもよいが、アルミニウムが固溶したマグネシウム合金板を用いることで、接合界面へのアルミニウムの供給がより円滑となる。加えて、被接合材の一方がマグネシウム又はマグネシウム合金材であることから、金属層を同種のマグネシウム合金材とすることで、被接合材と金属層の材料流動挙動の差異を小さくすることができる。 When magnesium material is used as the material to be joined, magnesium and iron are not solid-solved with each other, so metallurgical joining is not achieved, but aluminum dissolved in the magnesium alloy plate is supplied to the joint interface during friction stir welding Good bonding is achieved by forming an intermetallic compound layer (intermediate layer) mainly composed of iron and aluminum. Here, an aluminum plate or the like may be used for the metal layer, but by using a magnesium alloy plate in which aluminum is dissolved, the supply of aluminum to the joint interface becomes smoother. In addition, since one of the materials to be joined is magnesium or a magnesium alloy material, the difference in material flow behavior between the materials to be joined and the metal layer can be reduced by making the metal layer the same type of magnesium alloy material. .
また、被接合材にアルミニウムを固溶したマグネシウム合金を用いる場合、主として鉄とアルミニウムからなる金属間化合物層(中間層)の形成に伴い、当該金属間化合物層(中間層)の近傍にアルミニウム欠乏層が形成してしまう。これに対し、金属層として、アルミニウム板や被接合材であるマグネシウム合金材よりも高いアルミニウム含有量を有するマグネシウム合金板等を用いることで、アルミニウムを接合界面近傍に供給することができ、アルミニウム欠乏層の形成を効果的に抑制することができる。 In addition, when a magnesium alloy in which aluminum is dissolved in the material to be joined is used, an aluminum deficiency is formed in the vicinity of the intermetallic compound layer (intermediate layer) with the formation of an intermetallic compound layer (intermediate layer) mainly composed of iron and aluminum. Layers will form. On the other hand, by using a magnesium alloy plate or the like having a higher aluminum content than the aluminum plate or the magnesium alloy material to be bonded as the metal layer, aluminum can be supplied to the vicinity of the bonding interface, and the aluminum deficiency Formation of the layer can be effectively suppressed.
また、本発明の摩擦攪拌接合方法においては、
前記マグネシウム又はマグネシウム合金材と前記鉄系材とを前記金属層を介して突合せ、
前記摩擦攪拌接合用ツールの回転方向と進行方向とが同一になる位置に、前記鉄系材を配置すること、が好ましい。
In the friction stir welding method of the present invention,
Butting the magnesium or magnesium alloy material and the iron-based material through the metal layer,
It is preferable to arrange the iron-based material at a position where the rotational direction and the traveling direction of the friction stir welding tool are the same.
突合せ接合とすることで、プローブの回転を利用して、アルミニウムを含有する金属層又はマグネシウム合金材の材料流動を、鉄系材の新生面により強力に押圧することができ、強固な接合部を得ることができる。より具体的には、摩擦攪拌接合用ツールの回転方向と進行方向とが同一になる位置(一般的に、前進側と称呼される)に鉄系材を配置することで、鉄系材の新生面に材料流動を押圧させることができる。 By using butt bonding, the rotation of the probe can be used to strongly press the material flow of the aluminum-containing metal layer or magnesium alloy material against the new surface of the iron-based material, thereby obtaining a strong bonded portion. be able to. More specifically, a new surface of the iron-based material is arranged by placing the iron-based material at a position where the rotational direction and the traveling direction of the friction stir welding tool are the same (generally referred to as the forward side). The material flow can be pressed.
また、突合せ接合とする場合、前記プローブ部の側面を前記金属層と前記鉄系材の接触面に対して前記鉄系材側に0.1〜1.5mm入り込ませること、が好ましい。鉄系材へのプローブ部側面の挿入量を0.1mm以上とすることで、接合に必要な十分な新生面を形成させることができ、当該挿入量を1.5mm以下とすることで、接合部近傍に分散する鉄系材の切削屑に起因する接合特性の低下を抑制することができる。 Moreover, when setting it as butt joining, it is preferable to make the side surface of the said probe part enter into the said iron-type material side 0.1-1.5 mm with respect to the contact surface of the said metal layer and the said iron-type material. By setting the insertion amount of the probe part side surface to the iron-based material to be 0.1 mm or more, a sufficient new surface necessary for bonding can be formed, and by setting the insertion amount to 1.5 mm or less, the bonding part It is possible to suppress a decrease in bonding characteristics caused by the cutting waste of the iron-based material dispersed in the vicinity.
更に、突合せ接合とする場合、前記金属層の幅を、0.05mm〜前記プローブの略直径とすること、が好ましい。金属層の幅を0.05mm以上とすることで、主として鉄とアルミニウムからなる金属間化合物層(中間層)の形成及び/又はアルミニウム欠乏層の抑制に必要なアルミニウムを接合部近傍に十分供給することができる。また、金属層の幅をプローブの略直径以下とすることで、マグネシウム又はマグネシウム合金材、金属層及び鉄系材を、プローブ部によって全て確実に攪拌することができる。 Furthermore, in the case of butt joining, it is preferable that the width of the metal layer is 0.05 mm to approximately the diameter of the probe. By setting the width of the metal layer to 0.05 mm or more, sufficient aluminum is supplied in the vicinity of the joint, which is necessary for forming an intermetallic compound layer (intermediate layer) mainly composed of iron and aluminum and / or suppressing an aluminum deficient layer. be able to. Further, by setting the width of the metal layer to be approximately equal to or less than the diameter of the probe, the magnesium or magnesium alloy material, the metal layer, and the iron-based material can all be reliably stirred by the probe portion.
また、本発明の摩擦攪拌接合方法においては、
前記マグネシウム合金材をAZ31マグネシウム合金材とし、
前記金属層をAZ61マグネシウム合金層又はAZ91マグネシウム合金層とすること、が好ましい。
In the friction stir welding method of the present invention,
The magnesium alloy material is AZ31 magnesium alloy material,
The metal layer is preferably an AZ61 magnesium alloy layer or an AZ91 magnesium alloy layer.
被接合材であるマグネシウム合金材をAZ31マグネシウム合金材とすることで、当該AZ31マグネシウム合金材に含まれているアルミニウムを用いて金属間化合物層(中間層)を形成させることができる。また、AZ61マグネシウム合金及びAZ91マグネシウム合金はAZ31マグネシウム合金よりもアルミニウムの含有量が高いことに加え、アルミニウムはマグネシウムに固溶された状態で存在しているため、金属層をAZ61マグネシウム合金層又はAZ91マグネシウム合金層とすることで、被接合材であるAZ31マグネシウム合金材へのアルミニウム欠乏層の形成を効果的に抑制することができる(アルミニウムが欠乏した領域に対する金属層からのアルミニウムの供給が速やかに達成される)。 By using the magnesium alloy material to be bonded as an AZ31 magnesium alloy material, an intermetallic compound layer (intermediate layer) can be formed using aluminum contained in the AZ31 magnesium alloy material. Further, since the AZ61 magnesium alloy and the AZ91 magnesium alloy have a higher aluminum content than the AZ31 magnesium alloy, and the aluminum is present in a solid solution state in the magnesium, the metal layer is made of the AZ61 magnesium alloy layer or the AZ91 magnesium alloy layer. By using a magnesium alloy layer, the formation of an aluminum-deficient layer in the AZ31 magnesium alloy material that is the material to be joined can be effectively suppressed (the supply of aluminum from the metal layer to the region deficient in aluminum is quickly performed). Achieved).
加えて、本発明の摩擦攪拌接合方法においては、更に、金属層とマグネシウム合金材との接触界面に、金属層及び/又はマグネシウム合金材の構成元素と共晶反応する第二金属層を形成させること、が好ましく、第二金属層が銀又は亜鉛を含むこと、がより好ましい。顕著な酸化被膜を有する被接合材に摩擦攪拌接合を施す場合、攪拌部に酸化物が線状に分布し、継手特性が低下する。金属層とマグネシウム合金材の接触界面に銀層又は亜鉛層が存在することで、接合部近傍で共晶溶融が生じ、接合部から酸化物が排出されることで、酸化物の配列を抑制することができる。加えて、銀及び亜鉛がアルミニウム欠乏層に供給され、マグネシウム合金の強度低下を抑制する効果もある。 In addition, in the friction stir welding method of the present invention, a second metal layer that reacts with the constituent elements of the metal layer and / or the magnesium alloy material is formed at the contact interface between the metal layer and the magnesium alloy material. It is preferable that the second metal layer contains silver or zinc. When friction stir welding is performed on a material to be joined having a remarkable oxide film, the oxide is linearly distributed in the stirring portion, and the joint characteristics are deteriorated. Due to the presence of the silver layer or zinc layer at the contact interface between the metal layer and the magnesium alloy material, eutectic melting occurs in the vicinity of the joint, and the oxide is discharged from the joint, thereby suppressing the arrangement of the oxide. be able to. In addition, silver and zinc are supplied to the aluminum-deficient layer, and there is an effect of suppressing the strength reduction of the magnesium alloy.
また、本発明は、マグネシウム又はマグネシウム合金材と鉄系材との接合部材であって、接合界面に、主としてアルミニウムと鉄とから構成される金属間化合物層を有し、前記接合界面の近傍におけるアルミニウム濃度が、前記マグネシウム又はマグネシウム合金材のアルミニウム濃度と比較して、1原子%以上低下していないこと、を特徴とする摩擦攪拌接合継手も提供する。 Further, the present invention is a joining member of magnesium or a magnesium alloy material and an iron-based material, and has an intermetallic compound layer mainly composed of aluminum and iron at a joining interface, in the vicinity of the joining interface. There is also provided a friction stir welded joint characterized in that the aluminum concentration does not decrease by 1 atomic% or more compared to the aluminum concentration of the magnesium or magnesium alloy material.
本発明の接合部材は、接合界面に薄い金属間化合物層(中間層)を有すると共に、アルミニウム欠乏層を有していないことから、極めて良好な継手強度を有している。本発明の効果を損なわない限りにおいて、金属間化合物層(中間層)の膜厚は特に限定されないが、1μm以下であることが好ましい。 The joining member of the present invention has a very good joint strength since it has a thin intermetallic compound layer (intermediate layer) at the joining interface and does not have an aluminum-deficient layer. As long as the effects of the present invention are not impaired, the thickness of the intermetallic compound layer (intermediate layer) is not particularly limited, but is preferably 1 μm or less.
ここで、アルミニウム欠乏層とは、被接合材のマグネシウム合金よりもアルミニウム濃度が明瞭に低下(1原子%以上の低下)した領域を意味する。例えば、被接合材にアルミニウム濃度が略3原子%のAZ31マグネシウム合金材を用いた場合、アルミニウム濃度が略2原子%未満となる領域をアルミニウム欠乏層とみなすことができる。 Here, the aluminum-deficient layer means a region where the aluminum concentration is clearly reduced (decrease of 1 atomic% or more) as compared with the magnesium alloy of the material to be joined. For example, when an AZ31 magnesium alloy material having an aluminum concentration of approximately 3 atomic% is used as the material to be joined, a region where the aluminum concentration is less than approximately 2 atomic% can be regarded as an aluminum deficient layer.
なお、本発明の摩擦攪拌接合継手は、本発明の摩擦攪拌接合方法によって簡便に得ることができる。 The friction stir welding joint of the present invention can be easily obtained by the friction stir welding method of the present invention.
本発明によれば、マグネシウム又はマグネシウム合金材と鉄系材の簡便かつ効率的な異材摩擦攪拌接合方法及び、それにより得られる十分な継手強度を有する異材摩擦攪拌接合部材を提供することができる。 According to the present invention, it is possible to provide a simple and efficient dissimilar material friction stir welding method for magnesium or a magnesium alloy material and an iron-based material, and a dissimilar material friction stir welding member having sufficient joint strength obtained thereby.
以下、図面を参照しながら本発明の異材摩擦攪拌接合方法及びそれにより得られる摩擦攪拌接合部材の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Hereinafter, representative embodiments of the dissimilar material friction stir welding method of the present invention and the friction stir welding member obtained thereby will be described in detail with reference to the drawings, but the present invention is not limited thereto. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions and ratios of the components shown may be different from the actual ones.
(1)摩擦攪拌接合方法
摩擦攪拌接合とは、FSW(Friction Stir Welding)と称され、接合しようとする二つの金属材からなる被接合材それぞれの端部を突き合わせ、回転ツールの先端に設けられた突起部(プローブ)を両者の端部の間に挿入し、これら端部の長手方向に沿って回転ツールを回転させつつ移動させることによって、二つの金属部材を接合する方法である。
(1) Friction stir welding method Friction stir welding is referred to as FSW (Friction Stir Welding), which is provided at the tip of a rotating tool by abutting the ends of each of the two metal materials to be joined. This is a method of joining two metal members by inserting a protruding portion (probe) between both ends and moving the rotating tool along the longitudinal direction of these ends while rotating the rotary tool.
本発明における「摩擦攪拌接合」とは、回転ツールを回転させつつ接合方向に向けて移動させる摩擦攪拌接合、回転ツールを回転させつつ接合部位で移動させないスポット摩擦攪拌接合、被接合材同士を接合部位で突合せる摩擦攪拌接合、及び被接合材同士を重ね合わせて一方の被接合材の側から重ね合せた部位まで回転ツールを挿入する摩擦攪拌接合の4つのいずれかの態様、並びにこれらを任意に組み合わせた態様が含まれるが、以下、代表的な態様として、突合せ接合及び重ね合せ接合について詳細に説明する。 “Friction stir welding” in the present invention refers to friction stir welding in which the rotating tool is rotated and moved in the joining direction, spot friction stir welding in which the rotating tool is not rotated and moved at the joining site, and the materials to be joined are joined together. Any one of four modes of friction stir welding to be abutted at a part and friction stir welding in which a rotating tool is inserted from the side of one of the members to be joined together by overlapping the parts to be joined, and these are arbitrarily selected In the following, butt joining and lap joining will be described in detail as representative aspects.
(1−1)突合せ接合
図1は、突合せ接合の場合における被接合材の配置を示す概略図である。マグネシウム又はマグネシウム合金材2と鉄系材4との突合せ面に、金属層6が挿入されている。なお、「金属層6の挿入」とは、薄膜、板状及び粉末状の金属層6を突合せ面に配置してもよく、従来公知の種々の方法を用いて、被接合界面に金属層6を形成させてもよい。
(1-1) Butt-joining FIG. 1 is a schematic view showing the arrangement of materials to be joined in the case of butt-joining. A metal layer 6 is inserted into a butt surface between the magnesium or magnesium alloy material 2 and the iron-based material 4. The “insertion of the metal layer 6” means that the metal layer 6 in the form of a thin film, a plate, or a powder may be disposed on the abutting surface. May be formed.
摩擦攪拌接合用ツールの概略図及び突合せ接合の場合における被接合材と摩擦攪拌接合用ツールの位置関係を、図2及び図3にそれぞれ示す。摩擦攪拌接合用ツール10は、ツール本体12の底面にプローブ部14を有している。回転する摩擦攪拌接合用ツール10のプローブ部14を被接合材に圧入し、ツール本体12の底面(ショルダ部16)と被接合材(マグネシウム又はマグネシウム合金材2及び鉄系材4)とを当接させることで摩擦熱が発生し、被接合材の材料流動が生じる。 FIG. 2 and FIG. 3 show a schematic view of the friction stir welding tool and the positional relationship between the material to be joined and the friction stir welding tool in the case of butt welding, respectively. The friction stir welding tool 10 has a probe portion 14 on the bottom surface of the tool main body 12. The probe portion 14 of the rotating friction stir welding tool 10 is press-fitted into the material to be joined, and the bottom surface (shoulder portion 16) of the tool body 12 and the materials to be joined (magnesium or magnesium alloy material 2 and iron-based material 4) are brought into contact. Friction heat is generated by the contact, and material flow of the materials to be joined occurs.
本発明の摩擦攪拌接合においては、プローブ部14を鉄系材4に0.05mm以上挿入させる(a≧0.05mm)ことで、鉄系材4に新生面を形成させることができ、当該新生面にマグネシウム又はマグネシウム合金材2及び金属層6の材料流動を押圧することで、接合が達成される。 In the friction stir welding of the present invention, a new surface can be formed on the iron-based material 4 by inserting the probe portion 14 into the iron-based material 4 by 0.05 mm or more (a ≧ 0.05 mm). Joining is achieved by pressing the material flow of the magnesium or magnesium alloy material 2 and the metal layer 6.
プローブ部14の形状は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の形状を用いることができるが、螺子やテーパーを有さないものが好ましく、先端部分が曲面となっていないものが好ましい。プローブ部14に螺子やテーパーを有さない場合は、鉄系材4の側面にプローブ部14の側面を均一に当接させることが可能であり、鉄系材4の新生面を均一に形成することができる。また、プローブ部14の先端部分が曲面でなければ、ショルダ部16からプローブ部14の中心部又は側面部までの距離が同一となることから、被接合材の裏面に未接合部が形成される可能性が低い。 The shape of the probe portion 14 is not particularly limited as long as the effect of the present invention is not impaired, and various conventionally known shapes can be used, but those having no screw or taper are preferable, and the tip portion is a curved surface. Those not present are preferred. When the probe part 14 does not have a screw or a taper, the side face of the probe part 14 can be uniformly brought into contact with the side face of the iron-based material 4, and the new surface of the iron-based material 4 is formed uniformly. Can do. Moreover, since the distance from the shoulder part 16 to the center part or side part of the probe part 14 will become the same if the front-end | tip part of the probe part 14 is not a curved surface, an unjoined part is formed in the back surface of a to-be-joined material. Less likely.
金属層6には、マグネシウム又はマグネシウム合金材2よりも高いアルミニウム含有量を有する金属の箔、板及び粉末等を用いることができる。なお、粉末は表面積が大きく、表面に形成されている酸化被膜が継手特性を低下させる可能性があるため、接合領域への分散性を担保できる限りにおいて、粒径が大きな粉末を用いることが好ましい。また、マグネシウム又はマグネシウム合金材2及び/又は鉄系材4の突合せ面に、めっき等の従来公知の種々の方法で、マグネシウム又はマグネシウム合金材2よりも高いアルミニウム含有量を有する金属被膜を形成させてもよい。ここで、当該金属皮膜中のアルミニウム含有量を傾斜させ、鉄系材4側のアルミニウム含有量を多くすることで、最終的に得られる接合部のアルミニウム濃度を平均化することができる。 For the metal layer 6, a metal foil, plate, powder or the like having an aluminum content higher than that of magnesium or the magnesium alloy material 2 can be used. In addition, since the powder has a large surface area and the oxide film formed on the surface may deteriorate the joint characteristics, it is preferable to use a powder having a large particle size as long as dispersibility in the joining region can be ensured. . Further, a metal film having an aluminum content higher than that of the magnesium or magnesium alloy material 2 is formed on the butted surfaces of the magnesium or magnesium alloy material 2 and / or the iron-based material 4 by various conventionally known methods such as plating. May be. Here, the aluminum content of the joint part finally obtained can be averaged by inclining the aluminum content in the metal film and increasing the aluminum content on the iron-based material 4 side.
金属層6に用いる金属は、マグネシウム又はマグネシウム合金材2よりも高いアルミニウム含有量を有していれば特に限定されず、例えば、アルミニウム、アルミニウム合金及びマグネシウム合金等を用いることができるが、マグネシウム合金を用いることが好ましい。マグネシウム合金としては、例えば、AZ31マグネシウム合金、AZ61マグネシウム合金、及びAZ91マグネシウム合金等を好適に用いることができる。 The metal used for the metal layer 6 is not particularly limited as long as it has an aluminum content higher than that of magnesium or the magnesium alloy material 2. For example, aluminum, an aluminum alloy, a magnesium alloy, or the like can be used. Is preferably used. As the magnesium alloy, for example, AZ31 magnesium alloy, AZ61 magnesium alloy, AZ91 magnesium alloy, and the like can be suitably used.
AZ系のマグネシウム合金にはアルミニウムが固溶しており、当該アルミニウムが摩擦攪拌接合中に接合部近傍に供給されることで、良好な接合継手を得ることができる。具体的には、被接合材として純マグネシウム又はアルミニウムを含有しないマグネシウム合金を用いる場合、金属層6から供給されるアルミニウムと鉄系材4の新生面が反応し、主としてアルミニウムと鉄とからなる金属間化合物(中間層)が形成される。当該金属間化合物層(中間層)により、アルミニウムを含まないマグネシウム材と鉄系材4との冶金的な接合が達成される。 Aluminum is dissolved in the AZ-based magnesium alloy, and the aluminum is supplied to the vicinity of the joint during friction stir welding, so that a good joint can be obtained. Specifically, in the case of using pure magnesium or a magnesium alloy containing no aluminum as the material to be bonded, the new surface of the iron-based material 4 reacts with the aluminum supplied from the metal layer 6, and the inter-metal mainly composed of aluminum and iron. A compound (intermediate layer) is formed. The intermetallic compound layer (intermediate layer) achieves metallurgical joining between the magnesium material not containing aluminum and the iron-based material 4.
また、被接合材としてアルミニウムを含有するマグネシウム合金材を用いる場合、当該マグネシウム合金材に含まれるアルミニウムと鉄系材4の新生面とが反応し、金属間化合物層(中間層)が形成され、マグネシウム合金材と鉄系材4との冶金的な接合が達成される。しかしながら、当該金属間化合物層(中間層)の形成にアルミニウムが消費されるため、アルミニウム欠乏層が形成されてしまう。ここで、本発明においては、被接合材であるマグネシウム合金のアルミニウム濃度(原子%)よりも略1原子%以上アルミニウム濃度が低い領域をアルミニウム欠乏層と定義する。 Further, when a magnesium alloy material containing aluminum is used as a material to be joined, aluminum contained in the magnesium alloy material reacts with the new surface of the iron-based material 4 to form an intermetallic compound layer (intermediate layer), and magnesium. Metallurgical joining between the alloy material and the iron-based material 4 is achieved. However, since aluminum is consumed to form the intermetallic compound layer (intermediate layer), an aluminum-deficient layer is formed. Here, in the present invention, a region in which the aluminum concentration is lower by about 1 atomic% or more than the aluminum concentration (atomic%) of the magnesium alloy that is the bonded material is defined as an aluminum-deficient layer.
一般的に、アルミニウムを固溶させたマグネシウム合金は固溶強化されているため、アルミニウム濃度が低下すると強度が低下する。つまり、接合部にアルミニウム欠乏層が形成されてしまうと、当該アルミニウム欠乏層の強度に起因して継手強度が低下してしまう。金属間化合物層(中間層)が形成する組合せの異材接合においては、脆い金属間化合物層(中間層)が厚くならないように、典型的には約1μm以下の厚さとすることで継手強度が担保される。ここで、従来の溶融溶接と比較すると摩擦攪拌接合の入熱は小さいため、金属間化合物層の厚さを1μm以下とすることは比較的容易である。しかしながら、金属間化合物層の厚さを1μm以下とした場合であっても、アルミニウム欠乏層が形成されると良好な継手を得ることができない。 In general, since a magnesium alloy in which aluminum is dissolved is strengthened by solid solution, the strength is lowered when the aluminum concentration is lowered. That is, if an aluminum deficient layer is formed at the joint, the joint strength decreases due to the strength of the aluminum deficient layer. In joints of dissimilar materials formed by an intermetallic compound layer (intermediate layer), the joint strength is typically ensured by setting the thickness to about 1 μm or less so that the brittle intermetallic compound layer (intermediate layer) is not thickened. Is done. Here, since the heat input of the friction stir welding is small as compared with the conventional fusion welding, it is relatively easy to set the thickness of the intermetallic compound layer to 1 μm or less. However, even when the thickness of the intermetallic compound layer is 1 μm or less, a good joint cannot be obtained when the aluminum-deficient layer is formed.
本発明の摩擦攪拌接合においては、金属層6から上記アルミニウム欠乏層にアルミニウムが供給される。加えて、金属層6のアルミニウム濃度はマグネシウム又はマグネシウム合金材2よりも高いことから、マグネシウム又はマグネシウム合金材2のアルミニウム濃度(原子%)よりも略1原子%以上アルミニウム濃度が低い領域(アルミニウム欠乏層)の形成を効果的に抑制することができる。 In the friction stir welding of the present invention, aluminum is supplied from the metal layer 6 to the aluminum deficient layer. In addition, since the aluminum concentration of the metal layer 6 is higher than that of the magnesium or magnesium alloy material 2, the aluminum concentration is lower by about 1 atomic% or more than the aluminum concentration (atomic%) of the magnesium or magnesium alloy material 2 (aluminum deficiency). Formation) can be effectively suppressed.
鉄系材4は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の鉄系材を用いることができる。鉄系材4同士の摩擦攪拌接合では、摩擦攪拌接合用ツール10の摩耗・破損等を考慮する必要があるが、本発明の摩擦攪拌接合においてはプローブ部14を僅かに鉄系材4に挿入するのみであることから、強度及び硬度の高い鉄系材であっても問題なく被接合材とすることができる。 The iron-based material 4 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known iron-based materials can be used. In the friction stir welding between the iron-based materials 4, it is necessary to consider wear / breakage of the friction stir welding tool 10. In the friction stir welding according to the present invention, the probe portion 14 is slightly inserted into the iron-based material 4. Therefore, even an iron-based material having high strength and hardness can be used as a material to be joined without any problem.
本発明の摩擦攪拌接合においては、マグネシウム又はマグネシウム合金材2と鉄系材4とを金属層6を介して突合せ、摩擦攪拌接合用ツール10の回転方向と進行方向とが同一になる位置に、鉄系材4を配置すること、が好ましい。 In the friction stir welding of the present invention, the magnesium or magnesium alloy material 2 and the iron-based material 4 are abutted through the metal layer 6, and the rotational direction and the traveling direction of the friction stir welding tool 10 are the same, It is preferable to dispose the iron-based material 4.
プローブ部14の側面を鉄系材4側に挿入する量は、0.05mm以上とする必要がある。挿入量を0.05mm以上とすることで、接合に必要な新生面を鉄系材4に形成させることができ、接合界面強度の不足による継手特性の低下を抑制することができる。 The amount by which the side surface of the probe portion 14 is inserted into the iron-based material 4 side needs to be 0.05 mm or more. By setting the amount of insertion to 0.05 mm or more, a new surface necessary for joining can be formed on the iron-based material 4, and deterioration of joint characteristics due to insufficient joining interface strength can be suppressed.
また、突合せ接合とすることで、プローブ部14の回転を利用して、アルミニウムを含有する金属層6又はマグネシウム合金材2の材料流動を、鉄系材4の新生面により強力に押圧することができ、強固な接合部を得ることができる。より具体的には、摩擦攪拌接合用ツール10の回転方向と進行方向とが同一になる位置(一般的に、前進側と称呼される)に鉄系材4を配置することで、鉄系材4の新生面に材料流動を押圧させることができる。 Further, by using butt joining, the material flow of the aluminum-containing metal layer 6 or the magnesium alloy material 2 can be strongly pressed against the new surface of the iron-based material 4 by utilizing the rotation of the probe portion 14. A strong joint can be obtained. More specifically, by arranging the iron-based material 4 at a position where the rotational direction and the traveling direction of the friction stir welding tool 10 are the same (generally referred to as a forward side), the iron-based material is arranged. The material flow can be pressed against the 4 new surfaces.
また、突合せ接合とする場合、プローブ部14の側面を金属層6と鉄系材4の接触面に対して鉄系材4側に0.1〜1.5mm入り込ませること、が好ましい。鉄系材4へのプローブ部14の挿入量を0.1mm以上とすることで、接合に必要な十分な新生面を形成させることができ、当該挿入量を1.5mm以下とすることで、接合部近傍に分散する鉄系材4の切削屑に起因する接合特性の低下を抑制することができる。 Moreover, when setting it as butt joining, it is preferable to make 0.1-1.5 mm enter into the iron-type material 4 side with respect to the contact surface of the metal layer 6 and the iron-type material 4. By setting the insertion amount of the probe portion 14 to the iron-based material 4 to be 0.1 mm or more, a sufficient new surface necessary for bonding can be formed, and by setting the insertion amount to 1.5 mm or less, bonding is possible. It is possible to suppress a decrease in bonding characteristics due to the cutting waste of the iron-based material 4 dispersed in the vicinity of the part.
突合せ接合の場合、金属層6の幅cを、0.05mm〜プローブ部14の略直径とすること、が好ましい。金属層6の幅cを0.05mm以上とすることで、主として鉄とアルミニウムからなる金属間化合物層(中間層)の形成及び/又はアルミニウム欠乏層の抑制に必要なアルミニウムを接合部近傍に供給することができる。また、金属層6の幅cをプローブ部14の略直径以下とすることで、マグネシウム又はマグネシウム合金材2、金属層6及び鉄系材4を、プローブ部14によって全て確実に攪拌することができる。 In the case of butt joining, it is preferable that the width c of the metal layer 6 is 0.05 mm to approximately the diameter of the probe portion 14. By setting the width c of the metal layer 6 to 0.05 mm or more, aluminum necessary for forming an intermetallic compound layer (intermediate layer) mainly composed of iron and aluminum and / or suppressing an aluminum deficient layer is supplied to the vicinity of the joint. can do. Further, by setting the width c of the metal layer 6 to be approximately equal to or less than the diameter of the probe portion 14, the magnesium or magnesium alloy material 2, the metal layer 6, and the iron-based material 4 can all be reliably stirred by the probe portion 14. .
マグネシウム又はマグネシウム合金材2、鉄系材4及び金属層6として用いることができる材料の組合せは種々存在するが、マグネシウム合金材2をAZ31マグネシウム合金材とし、金属層6をAZ61マグネシウム合金板又はAZ91マグネシウム合金板とすること、が好ましい。 There are various combinations of materials that can be used as the magnesium or magnesium alloy material 2, the iron-based material 4, and the metal layer 6, but the magnesium alloy material 2 is an AZ31 magnesium alloy material, and the metal layer 6 is an AZ61 magnesium alloy plate or AZ91. It is preferable to use a magnesium alloy plate.
被接合材であるマグネシウム合金材2をAZ31マグネシウム合金材とすることで、当該AZ31マグネシウム合金材に含まれているアルミニウムを用いて金属間化合物層(中間層)を形成させることができる。また、AZ61マグネシウム合金及びAZ91マグネシウム合金はAZ31マグネシウム合金よりもアルミニウムの含有量が高いことに加え、アルミニウムはマグネシウムに固溶された状態で存在しているため、金属層6をAZ61マグネシウム合金板又はAZ91マグネシウム合金板とすることで、被接合材であるAZ31マグネシウム合金材へのアルミニウム欠乏層の形成を効果的に抑制することができる。 By using the magnesium alloy material 2 to be bonded as an AZ31 magnesium alloy material, an intermetallic compound layer (intermediate layer) can be formed using aluminum contained in the AZ31 magnesium alloy material. In addition, since the AZ61 magnesium alloy and the AZ91 magnesium alloy have a higher aluminum content than the AZ31 magnesium alloy, and the aluminum is present in a solid solution state in the magnesium, the metal layer 6 is formed on the AZ61 magnesium alloy plate or By using the AZ91 magnesium alloy plate, the formation of an aluminum-deficient layer on the AZ31 magnesium alloy material, which is a material to be joined, can be effectively suppressed.
加えて、本発明の摩擦攪拌接合方法においては、更に、金属層6とマグネシウム合金材2との接触界面に、金属層6及び/又はマグネシウム合金材2の構成元素と共晶反応する第二金属層を形成すること、が好ましく、当該第二金属層が銀又は亜鉛を含むこと、がより好ましい。図4に、第二金属層を用いる場合の摩擦攪拌接合の模式図を示す。顕著な酸化被膜を有する被接合材に摩擦攪拌接合を施す場合、攪拌部に酸化物が線状に分布し、継手特性が悪くなってしまう。金属層6とマグネシウム合金材2との接触界面に第二金属層20が存在することで、接合部近傍で共晶溶融が生じ、接合部から酸化物を排出することで、酸化物の配列を抑制することができる。加えて、銀及び亜鉛がアルミニウム欠乏層に供給され、マグネシウム合金2の強度低下を抑制する効果もある。また、接合部に2回目の摩擦攪拌接合を施し、酸化物を破砕・分散させることでも、当該酸化物による継手特性の低下を抑制することができる。 In addition, in the friction stir welding method of the present invention, the second metal that undergoes a eutectic reaction with the constituent elements of the metal layer 6 and / or the magnesium alloy material 2 further at the contact interface between the metal layer 6 and the magnesium alloy material 2. It is preferable to form a layer, and it is more preferable that the second metal layer contains silver or zinc. In FIG. 4, the schematic diagram of the friction stir welding in the case of using a 2nd metal layer is shown. When friction stir welding is performed on a material to be joined having a remarkable oxide film, the oxide is linearly distributed in the stirring portion, resulting in poor joint characteristics. Due to the presence of the second metal layer 20 at the contact interface between the metal layer 6 and the magnesium alloy material 2, eutectic melting occurs in the vicinity of the joint, and the oxide is discharged from the joint, thereby changing the arrangement of the oxide. Can be suppressed. In addition, silver and zinc are supplied to the aluminum-deficient layer, and there is an effect of suppressing the strength reduction of the magnesium alloy 2. Moreover, the fall of the joint characteristic by the said oxide can also be suppressed by giving a 2nd friction stir welding to a junction part, and crushing and disperse | distributing an oxide.
第二金属層20を用いる場合、第二金属層20の幅dと金属層6の幅cとの合計(d+c)を、0.05mm〜プローブ部14の略直径とすること、が好ましい。d+cを0.05mm以上とすることで、主として鉄とアルミニウムからなる金属間化合物層(中間層)の形成及び/又はアルミニウム欠乏層の抑制に必要なアルミニウムを接合部近傍に供給することができ、加えて、第二金属層20の共晶(溶融)によって、酸化物の配列を抑制することができる。また、d+cをプローブ部14の略直径以下とすることで、マグネシウム又はマグネシウム合金材2、金属層6、第二金属層20及び鉄系材4を全て確実に攪拌することができる。 When the second metal layer 20 is used, it is preferable that the total (d + c) of the width d of the second metal layer 20 and the width c of the metal layer 6 be 0.05 mm to the approximate diameter of the probe portion 14. By setting d + c to 0.05 mm or more, aluminum necessary for the formation of an intermetallic compound layer (intermediate layer) mainly composed of iron and aluminum and / or suppression of the aluminum deficient layer can be supplied in the vicinity of the joint, In addition, the arrangement of oxides can be suppressed by the eutectic (melting) of the second metal layer 20. Further, by setting d + c to be approximately equal to or less than the diameter of the probe portion 14, the magnesium or magnesium alloy material 2, the metal layer 6, the second metal layer 20, and the iron-based material 4 can all be reliably stirred.
第二金属層20には、マグネシウム又はマグネシウム合金材2、及び金属層6と共晶を形成する元素を含む金属材を用いることができ、マグネシウム又はマグネシウム合金材2、及び金属層6と共晶を形成する元素としては、例えば、Cu,Ni,Ag,Au,Ba,Bi,Ca,Ce,Ga,Ge,Hg,Li,Pb,Pu,Sb,Si,Sn,Sr,Th,Tl,Y,Zn等を例示することができる。 For the second metal layer 20, a metal material containing an element that forms a eutectic with the magnesium or the magnesium alloy material 2 and the metal layer 6 can be used, and the eutectic with the magnesium or the magnesium alloy material 2 and the metal layer 6 can be used. Examples of the element forming Cu include Ni, Ag, Au, Ba, Bi, Ca, Ce, Ga, Ge, Hg, Li, Pb, Pu, Sb, Si, Sn, Sr, Th, Tl, and Y. Zn and the like can be exemplified.
なお、摩擦攪拌接合には、摩擦攪拌接合用ツール10の位置を一定とする接合方法、摩擦攪拌接合用ツール10に印加する荷重を一定とする接合方法、及び摩擦攪拌接合用ツール10に対するトルクを一定とする方法が存在する。本発明の摩擦攪拌接合方法にはこれらの全ての方法を用いることができるが、摩擦攪拌接合用ツール10の位置を一定とする接合方法を用いることが好ましい。当該接合方法を用いることで、摩擦攪拌接合用ツール10と被接合材との位置関係を厳密に制御することができる。 The friction stir welding includes a joining method in which the position of the friction stir welding tool 10 is constant, a joining method in which the load applied to the friction stir welding tool 10 is constant, and torque applied to the friction stir welding tool 10. There is a way to make it constant. Although all these methods can be used for the friction stir welding method of the present invention, it is preferable to use a joining method in which the position of the friction stir welding tool 10 is kept constant. By using the joining method, the positional relationship between the friction stir welding tool 10 and the material to be joined can be strictly controlled.
また、摩擦攪拌接合の主たるプロセスパラメータには、摩擦攪拌接合用ツール10の回転速度、移動速度及び荷重等が存在する。当該プロセス条件は、用いる摩擦攪拌接合用ツール10の形状及び材質や、被接合材の種類及び材質等によって適宜選定すればよいが、欠陥が存在しない良好な攪拌部が得られると共に、上記金属間化合物層(中間層)の厚さが1μm未満となる条件を好適に用いることができる。 The main process parameters of friction stir welding include the rotational speed, moving speed, load, and the like of the friction stir welding tool 10. The process conditions may be appropriately selected depending on the shape and material of the friction stir welding tool 10 to be used, the type and material of the material to be joined, and the like. Conditions under which the thickness of the compound layer (intermediate layer) is less than 1 μm can be suitably used.
(1−2)重ね合せ接合
図5に、重ね合せ接合の場合における被接合材と摩擦攪拌接合用ツールの位置関係を示す。重ね合せ接合の場合、金属層6を介してマグネシウム又はマグネシウム合金2と鉄系材4を重ね合せ、プローブ部14をマグネシウム合金2側から挿入する。
(1-2) Lap Joining FIG. 5 shows the positional relationship between the material to be joined and the friction stir welding tool in the case of overlap joining. In the case of lap joining, magnesium or the magnesium alloy 2 and the iron-based material 4 are overlapped via the metal layer 6, and the probe portion 14 is inserted from the magnesium alloy 2 side.
この際、プローブ部14の底面を、鉄系材4に0.05mm以上挿入させることで、鉄系材4に新生面を形成させることができ、当該新生面にマグネシウム又はマグネシウム合金材2及び金属層6の材料流動を押圧することで、接合が達成される。ここで、プローブ部14の底面を鉄系材4に挿入するために、プローブ部14の長さgを、マグネシウム又はマグネシウム合金2の厚さfと金属層6の厚さeの合計(f+e)よりも僅かに長くすることが好ましい。但し、マグネシウム又はマグネシウム合金材2への摩擦攪拌接合用ツールの圧入量が大きい場合、プローブ部14の長さgがマグネシウム又はマグネシウム合金2の厚さfと金属層6の厚さeの合計(f+e)と同程度であっても、プローブ部14の底面が鉄系材4に挿入されることになる。 At this time, by inserting the bottom surface of the probe portion 14 into the iron-based material 4 by 0.05 mm or more, a new surface can be formed on the iron-based material 4, and the magnesium or magnesium alloy material 2 and the metal layer 6 can be formed on the new surface. Bonding is achieved by pressing the material flow. Here, in order to insert the bottom surface of the probe portion 14 into the iron-based material 4, the length g of the probe portion 14 is the sum of the thickness f of the magnesium or magnesium alloy 2 and the thickness e of the metal layer 6 (f + e). It is preferable to make the length slightly longer. However, when the press-fitting amount of the friction stir welding tool to the magnesium or magnesium alloy material 2 is large, the length g of the probe portion 14 is the sum of the thickness f of the magnesium or magnesium alloy 2 and the thickness e of the metal layer 6 ( Even if it is approximately the same as f + e), the bottom surface of the probe portion 14 is inserted into the iron-based material 4.
また、重ね合せ接合の場合、第二金属層20をマグネシウム又はマグネシウム合金材2と金属層6との間に挿入することで、突合せ接合の場合と同様に、第二金属層20の共晶(溶融)によって酸化物の配列を抑制することができる。 In the case of lap joining, the second metal layer 20 is inserted between the magnesium or magnesium alloy material 2 and the metal layer 6 so that the eutectic ( Melting) can suppress the arrangement of oxides.
(2)接合部材
図6に、本発明の接合部材の概略断面図を示す。なお、本発明の接合部材の代表的な態様として、図6では突合せ接合部材を示している。本発明の接合部材30は、マグネシウム又はマグネシウム合金2と鉄系材4とを摩擦攪拌接合したものであり、マグネシウム又はマグネシウム合金2と鉄系材4との接合界面に、金属間化合物層40が形成されている。
(2) Joining member In FIG. 6, the schematic sectional drawing of the joining member of this invention is shown. In addition, as a typical aspect of the joining member of the present invention, FIG. 6 shows a butt joining member. The joining member 30 of the present invention is obtained by friction stir welding of magnesium or a magnesium alloy 2 and an iron-based material 4, and an intermetallic compound layer 40 is formed at the joint interface between the magnesium or magnesium alloy 2 and the iron-based material 4. Is formed.
金属間化合物層40の厚さは、本発明の効果を損なわない限りにおいて特に限定されないが、1μm以下とすることが好ましい。金属間化合物層40の厚さを1μm以下とすることで、接合部材30の脆化を抑制することができる。 The thickness of the intermetallic compound layer 40 is not particularly limited as long as the effects of the present invention are not impaired, but is preferably 1 μm or less. By making the thickness of the intermetallic compound layer 40 1 μm or less, embrittlement of the bonding member 30 can be suppressed.
加えて、主としてアルミニウムと鉄からなる金属間化合物層40が形成した場合、従来の接合方法では金属間化合物層40の近傍にアルミニウムの濃度が低下したアルミニウム欠乏層が形成されてしまうが、接合部材30では当該アルミニウム欠乏層が存在しない。ここで、アルミニウム欠乏層とは、マグネシウム又はマグネシウム合金材2のアルミニウム濃度(原子%)よりも略1原子%以上アルミニウム濃度が低い領域を意味する。 In addition, when the intermetallic compound layer 40 mainly composed of aluminum and iron is formed, an aluminum deficient layer having a reduced aluminum concentration is formed in the vicinity of the intermetallic compound layer 40 in the conventional bonding method. In 30, the aluminum deficient layer does not exist. Here, the aluminum-deficient layer means a region where the aluminum concentration is lower by about 1 atomic% or more than the aluminum concentration (atomic%) of the magnesium or magnesium alloy material 2.
マグネシウム又はマグネシウム合金材2は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々のマグネシウム又はマグネシウム合金材を用いることができる。また、鉄系材4も本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の鉄系材を用いることができる。 Magnesium or magnesium alloy material 2 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known magnesium or magnesium alloy materials can be used. Further, the iron-based material 4 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known iron-based materials can be used.
以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 As mentioned above, although typical embodiment of this invention was described, this invention is not limited only to these, Various design changes are possible and these design changes are all contained in the technical scope of this invention. It is.
≪実施例1≫
図7に示す配置で、純マグネシウム及び低炭素鋼(SPCC)の板材をAZ61マグネシウム合金の薄板を介して突き合わせ、当該突き合わせ面に摩擦攪拌接合用ツールを挿入して摩擦攪拌接合(線接合)を施した。なお、純マグネシウムは後退側、低炭素鋼(SPCC)は前進側に配置されている。純マグネシウム、低炭素鋼(SPCC)及びAZ61マグネシウム合金の組成を表1に示す。純マグネシウム板材及び低炭素鋼(SPCC)板材のサイズは、長さ300mm×幅75mm×厚さ2mmとし、AZ61マグネシウム合金薄板のサイズは、長さ300mm×幅1.0mm×厚さ2mmとした。
Example 1
In the arrangement shown in FIG. 7, pure magnesium and low carbon steel (SPCC) plate materials are butted through a thin plate of AZ61 magnesium alloy, and a friction stir welding tool is inserted into the butted surface to perform friction stir welding (line bonding). gave. Pure magnesium is disposed on the retreat side, and low carbon steel (SPCC) is disposed on the advance side. Table 1 shows the compositions of pure magnesium, low carbon steel (SPCC) and AZ61 magnesium alloy. The size of the pure magnesium plate and the low carbon steel (SPCC) plate was 300 mm long × 75 mm wide × 2 mm thick, and the size of the AZ61 magnesium alloy thin plate was 300 mm long × 1.0 mm wide × 2 mm thick.
ここで、摩擦攪拌接合用ツールはプローブ部側面が低炭素鋼(SPCC)板に0.5mm挿入される位置に配置し、摩擦攪拌接合用ツールの回転速度及び移動速度は、それぞれ1500rpm及び100mm/minとした。なお、摩擦攪拌接合は摩擦攪拌接合用ツールの位置制御方式で行い、摩擦攪拌接合用ツールのプローブ部底面が被接合材裏面と略同一となるように設定した。 Here, the friction stir welding tool is placed at a position where the side surface of the probe is inserted 0.5 mm into the low carbon steel (SPCC) plate, and the rotational speed and moving speed of the friction stir welding tool are 1500 rpm and 100 mm / 100 respectively. It was set to min. The friction stir welding was performed by the position control method of the friction stir welding tool, and the bottom surface of the probe portion of the friction stir welding tool was set to be substantially the same as the back surface of the material to be joined.
摩擦攪拌接合用ツールには、図8に示す超硬合金製のもの(ショルダ径:12mm,プローブ径:4mm,プローブ長:1.9mm)を用い、実施継手1を得た。なお、摩擦攪拌接合用ツールのプローブ部底面は完全なフラット形状になっており、プローブ部の側面に螺子やテーパー等は形成されていない。 As the friction stir welding tool, a cemented carbide (shoulder diameter: 12 mm, probe diameter: 4 mm, probe length: 1.9 mm) shown in FIG. Note that the bottom surface of the probe portion of the friction stir welding tool has a completely flat shape, and no screw or taper is formed on the side surface of the probe portion.
≪実施例2≫
AZ61マグネシウム合金薄板の幅を2.0mmとした以外は実施例1と同様にして、実施継手2を得た。
<< Example 2 >>
An execution joint 2 was obtained in the same manner as in Example 1 except that the width of the AZ61 magnesium alloy thin plate was 2.0 mm.
≪実施例3≫
AZ61マグネシウム合金薄板の幅を3.0mmとした以外は実施例1と同様にして、実施継手3を得た。
Example 3
An implementation joint 3 was obtained in the same manner as in Example 1 except that the width of the AZ61 magnesium alloy sheet was set to 3.0 mm.
≪実施例4≫
AZ61マグネシウム合金薄板を純アルミニウム(A1050)薄板とし、幅を0.05mmとした以外は実施例1と同様にして、実施継手4を得た。
Example 4
An execution joint 4 was obtained in the same manner as in Example 1 except that the AZ61 magnesium alloy thin plate was a pure aluminum (A1050) thin plate and the width was 0.05 mm.
≪実施例5≫
純アルミニウム(A1050)薄板の幅を0.10mmとした以外は実施例4と同様にして、実施継手5を得た。
Example 5
An implementation joint 5 was obtained in the same manner as in Example 4 except that the width of the pure aluminum (A1050) thin plate was 0.10 mm.
≪実施例6≫
純アルミニウム(A1050)薄板の幅を0.15mmとした以外は実施例4と同様にして、実施継手6を得た。
Example 6
An implementation joint 6 was obtained in the same manner as in Example 4 except that the width of the pure aluminum (A1050) thin plate was 0.15 mm.
≪実施例7≫
AZ61マグネシウム合金薄板の代替として、幅0.20mmのギャップ(被接合材の突き合わせ面に幅0.20mmのスペーサーを挿入し、ギャップを形成させた)に純アルミニウム(A1050)粉末を充填した以外は実施例1と同様にして、実施継手7を得た。
Example 7
As an alternative to the AZ61 magnesium alloy sheet, except that pure aluminum (A1050) powder was filled into a 0.20 mm wide gap (a 0.20 mm wide spacer was inserted into the butt surface of the material to be joined to form a gap). In the same manner as in Example 1, an execution joint 7 was obtained.
≪実施例8≫
純アルミニウム(A1050)粉末を充填するギャップの幅を0.25mmとした以外は実施例7と同様にして、実施継手8を得た。
Example 8
Example 8 was obtained in the same manner as Example 7 except that the width of the gap filled with pure aluminum (A1050) powder was 0.25 mm.
≪実施例9≫
純アルミニウム(A1050)粉末を充填するギャップの幅を0.30mmとした以外は実施例7と同様にして、実施継手9を得た。
Example 9
An execution joint 9 was obtained in the same manner as in Example 7 except that the width of the gap filled with pure aluminum (A1050) powder was set to 0.30 mm.
≪実施例10≫
更に、AZ61マグネシウム合金薄板と純マグネシウム板材との界面に厚さ0.01mmの銀箔を配置した以外は実施例2と同様にして、実施継手10を得た。
Example 10
Further, an execution joint 10 was obtained in the same manner as in Example 2 except that a silver foil having a thickness of 0.01 mm was disposed at the interface between the AZ61 magnesium alloy thin plate and the pure magnesium plate.
≪比較例1≫
被接合材の突き合わせ面にAZ61マグネシウム合金の薄板を挿入しなかったこと以外は 実施例1と同様にして、比較継手1を得た。
≪Comparative example 1≫
Comparative joint 1 was obtained in the same manner as in Example 1 except that a thin plate of AZ61 magnesium alloy was not inserted into the butt surface of the material to be joined.
≪比較例2≫
プローブ部側面が突き合わせ面から純マグネシウム側に0.1mmとなるように摩擦攪拌接合用ツールを配置した(プローブ部は低炭素鋼(SPCC)板側に挿入されない)こと以外は比較例1と同様にして、比較継手2を得た。
≪Comparative example 2≫
Similar to Comparative Example 1 except that the friction stir welding tool was arranged so that the side surface of the probe part was 0.1 mm from the butted surface to the pure magnesium side (the probe part was not inserted into the low carbon steel (SPCC) plate side). Thus, comparative joint 2 was obtained.
≪比較例3≫
プローブ部側面が突き合わせ面と略同一になるように摩擦攪拌接合用ツールを配置したこと以外は比較例1と同様にして、比較継手3を得た。
«Comparative Example 3»
A comparative joint 3 was obtained in the same manner as in Comparative Example 1 except that the friction stir welding tool was arranged so that the side surface of the probe part was substantially the same as the butted surface.
≪比較例4≫
プローブ部側面が低炭素鋼(SPCC)板に0.1mm挿入される位置に摩擦攪拌接合用ツールを配置した以外は比較例1と同様にして、比較継手4を得た。
<< Comparative Example 4 >>
A comparative joint 4 was obtained in the same manner as in Comparative Example 1 except that the friction stir welding tool was disposed at a position where the probe side surface was inserted 0.1 mm into a low carbon steel (SPCC) plate.
≪比較例5≫
プローブ部側面が低炭素鋼(SPCC)板に0.25mm挿入される位置に摩擦攪拌接合用ツールを配置した以外は比較例1と同様にして、比較継手5を得た。
<< Comparative Example 5 >>
Comparative joint 5 was obtained in the same manner as in comparative example 1 except that the friction stir welding tool was disposed at a position where the probe part side surface was inserted 0.25 mm into the low carbon steel (SPCC) plate.
≪比較例6≫
プローブ部側面が低炭素鋼(SPCC)板に1.0mm挿入される位置に摩擦攪拌接合用ツールを配置した以外は比較例1と同様にして、比較継手6を得た。
<< Comparative Example 6 >>
A comparative joint 6 was obtained in the same manner as in Comparative Example 1 except that the friction stir welding tool was disposed at a position where the probe part side surface was inserted 1.0 mm into a low carbon steel (SPCC) plate.
≪比較例7≫
プローブ部側面が低炭素鋼(SPCC)板に1.4mm挿入される位置に摩擦攪拌接合用ツールを配置した以外は比較例1と同様にして、比較継手7を得た。
<< Comparative Example 7 >>
A comparative joint 7 was obtained in the same manner as in Comparative Example 1 except that the friction stir welding tool was disposed at a position where the probe side surface was inserted 1.4 mm into a low carbon steel (SPCC) plate.
≪比較例8≫
プローブ部側面が低炭素鋼(SPCC)板に1.7mm挿入される位置に摩擦攪拌接合用ツールを配置した以外は比較例1と同様にして、比較継手8を得た。
«Comparative Example 8»
A comparative joint 8 was obtained in the same manner as in Comparative Example 1 except that the friction stir welding tool was disposed at a position where the probe part side surface was inserted into a low carbon steel (SPCC) plate by 1.7 mm.
≪比較例9≫
プローブ部側面が低炭素鋼(SPCC)板に2.0mm挿入される位置に摩擦攪拌接合用ツールを配置した以外は比較例1と同様にして、比較継手9を得た。
<< Comparative Example 9 >>
A comparative joint 9 was obtained in the same manner as in Comparative Example 1 except that the friction stir welding tool was disposed at a position where the probe part side surface was inserted 2.0 mm into the low carbon steel (SPCC) plate.
≪比較例10≫
被接合材の突き合わせ面にAZ61マグネシウム合金の薄板を挿入せず、被接合材として純マグネシウム板の代わりにAZ31マグネシウム合金板を用いたこと以外は実施例1と同様にして、比較継手10を得た。AZ31マグネシウム合金の組成を表2に示す。
<< Comparative Example 10 >>
A comparative joint 10 was obtained in the same manner as in Example 1 except that a thin plate of AZ61 magnesium alloy was not inserted into the butted surface of the material to be joined, and an AZ31 magnesium alloy plate was used as the material to be joined instead of a pure magnesium plate. It was. Table 2 shows the composition of the AZ31 magnesium alloy.
≪比較例11≫
被接合材の突き合わせ面にAZ61マグネシウム合金の薄板を挿入せず、被接合材として純マグネシウム板の代わりにAZ61マグネシウム合金板を用いたこと以外は実施例1と同様にして、比較継手11を得た。
<< Comparative Example 11 >>
A comparative joint 11 was obtained in the same manner as in Example 1 except that a thin plate of AZ61 magnesium alloy was not inserted into the butted surface of the material to be joined, and an AZ61 magnesium alloy plate was used instead of the pure magnesium plate as the material to be joined. It was.
≪比較例12≫
被接合材の突き合わせ面にAZ61マグネシウム合金の薄板を挿入せず、被接合材として純マグネシウム板の代わりにAZ91マグネシウム合金板を用いたこと以外は実施例1と同様にして、比較継手12を得た。
<< Comparative Example 12 >>
A comparative joint 12 was obtained in the same manner as in Example 1 except that a thin plate of AZ61 magnesium alloy was not inserted into the butted surface of the material to be joined, and an AZ91 magnesium alloy plate was used as the material to be joined instead of a pure magnesium plate. It was.
≪比較例13≫
プローブ部側面が突き合わせ面からAZ31純マグネシウム合金側に0.1mmとなるように摩擦攪拌接合用ツールを配置した(プローブ部は低炭素鋼(SPCC)板側に挿入されない)こと以外は比較例10と同様にして、比較継手13を得た。
<< Comparative Example 13 >>
Comparative Example 10 except that the friction stir welding tool is arranged so that the side surface of the probe part is 0.1 mm from the butted surface to the AZ31 pure magnesium alloy side (the probe part is not inserted into the low carbon steel (SPCC) plate side). In the same manner as above, a comparative joint 13 was obtained.
≪比較例14≫
プローブ部側面が突き合わせ面と略同一になるように摩擦攪拌接合用ツールを配置したこと以外は比較例10と同様にして、比較継手14を得た。
«Comparative example 14»
A comparative joint 14 was obtained in the same manner as in Comparative Example 10 except that the friction stir welding tool was arranged so that the probe portion side surface was substantially the same as the butted surface.
≪比較例15≫
プローブ部側面が低炭素鋼(SPCC)板に0.1mm挿入される位置に摩擦攪拌接合用ツールを配置した以外は比較例10と同様にして、比較継手15を得た。
<< Comparative Example 15 >>
A comparative joint 15 was obtained in the same manner as in Comparative Example 10 except that the friction stir welding tool was disposed at a position where the probe side surface was inserted 0.1 mm into a low carbon steel (SPCC) plate.
≪比較例16≫
プローブ部側面が低炭素鋼(SPCC)板に0.25mm挿入される位置に摩擦攪拌接合用ツールを配置した以外は比較例10と同様にして、比較継手16を得た。
<< Comparative Example 16 >>
A comparative joint 16 was obtained in the same manner as in Comparative Example 10 except that the friction stir welding tool was disposed at a position where the probe side surface was inserted 0.25 mm into the low carbon steel (SPCC) plate.
≪比較例17≫
プローブ部側面が低炭素鋼(SPCC)板に1.0mm挿入される位置に摩擦攪拌接合用ツールを配置した以外は比較例10と同様にして、比較継手17を得た。
<< Comparative Example 17 >>
A comparative joint 17 was obtained in the same manner as in Comparative Example 10 except that the friction stir welding tool was disposed at a position where the probe part side surface was inserted 1.0 mm into the low carbon steel (SPCC) plate.
≪比較例18≫
プローブ部側面が低炭素鋼(SPCC)板に1.4mm挿入される位置に摩擦攪拌接合用ツールを配置した以外は比較例10と同様にして、比較継手18を得た。
<< Comparative Example 18 >>
A comparative joint 18 was obtained in the same manner as in Comparative Example 10 except that the friction stir welding tool was disposed at a position where the probe part side surface was inserted 1.4 mm into a low carbon steel (SPCC) plate.
≪比較例19≫
プローブ部側面が低炭素鋼(SPCC)板に1.7mm挿入される位置に摩擦攪拌接合用ツールを配置した以外は比較例10と同様にして、比較継手19を得た。
≪Comparative example 19≫
A comparative joint 19 was obtained in the same manner as in Comparative Example 10 except that the friction stir welding tool was disposed at a position where the probe portion side surface was inserted by 1.7 mm into a low carbon steel (SPCC) plate.
≪比較例20≫
プローブ部側面が低炭素鋼(SPCC)板に2.0mm挿入される位置に摩擦攪拌接合用ツールを配置した以外は比較例10と同様にして、比較継手20を得た。
<< Comparative Example 20 >>
A comparative joint 20 was obtained in the same manner as in Comparative Example 10 except that the friction stir welding tool was disposed at a position where the probe part side surface was inserted 2.0 mm into a low carbon steel (SPCC) plate.
[引張試験]
上記実施例及び比較例で得られた継手を用いて、図9に示す試験片を作製し、引張強度を測定した。試験片の切り出しには放電加工機を用い、被接合材の突き合わせ面が試験片の中央に位置するように切り出した。試験片の標点距離及び幅は、それぞれ60mm及び8mmとし、接合部表面のバリ等を排除するため、試験片の厚さが1.5mmとなるまで研磨した。
[Tensile test]
Using the joints obtained in the above Examples and Comparative Examples, a test piece shown in FIG. 9 was produced, and the tensile strength was measured. The test piece was cut out using an electric discharge machine so that the butted surface of the material to be joined was located at the center of the test piece. The specimen distance and width were 60 mm and 8 mm, respectively, and the specimen was polished until the thickness of the specimen became 1.5 mm in order to eliminate burrs and the like on the surface of the joint.
引張試験機(SHIMADZU Autograph AGS−X 10kN)を用い、クロスヘッド速度3.6mm/minで継手の引張強度を測定した。実施継手1〜3及び比較継手1の引張強度を図10に示す。接合界面に挿入するAZ61マグネシウム合金薄板の厚さが1mm及び2mmの場合(実施継手1及び2)、当該薄板を挿入しない場合(比較継手1)よりも大幅に高い引張強度が得られている。これは、AZ61マグネシウム合金薄板に含まれるアルミニウムが接合界面に供給され、鉄とアルミニウムとを主成分とする金属間化合物層が形成されたためである。AZ61マグネシウム合金薄板の厚さが3mmの場合はAZ61マグネシウム合金薄板が十分に攪拌(分断)されず、比較的大きな破片が攪拌部中に残存したため、当該破片が破壊の起点となって引張強度が低下したと考えられる。なお、摩擦攪拌条件(ツールの回転数及び移動速度等)を最適化することにより、上記破片の残存を抑制することができる。 Using a tensile tester (SHIMADZU Autograph AGS-X 10 kN), the tensile strength of the joint was measured at a crosshead speed of 3.6 mm / min. The tensile strengths of the working joints 1 to 3 and the comparative joint 1 are shown in FIG. When the thickness of the AZ61 magnesium alloy thin plate inserted into the joining interface is 1 mm and 2 mm (implemented joints 1 and 2), a significantly higher tensile strength is obtained than when the thin plate is not inserted (comparative joint 1). This is because aluminum contained in the AZ61 magnesium alloy thin plate was supplied to the bonding interface, and an intermetallic compound layer mainly composed of iron and aluminum was formed. When the thickness of the AZ61 magnesium alloy sheet is 3 mm, the AZ61 magnesium alloy sheet is not sufficiently agitated (divided), and relatively large fragments remain in the agitating part. It is thought that it fell. It should be noted that by optimizing the friction stirring conditions (such as the rotational speed and moving speed of the tool), the remaining pieces can be suppressed.
実施継手4〜6及び比較継手1の引張強度を図11に示す。接合界面に挿入する純アルミニウム(A1050)薄板の厚さが0.05〜0.15mmの場合(実施継手4〜6)、当該薄板を挿入しない場合(比較継手1)よりも高い引張強度が得られている。これは、純アルミニウム(A1050)薄板のアルミニウムが接合界面に供給され、鉄とアルミニウムとを主成分とする金属間化合物層が形成されたためである。 The tensile strength of the implementation joints 4-6 and the comparison joint 1 is shown in FIG. When the thickness of the pure aluminum (A1050) thin plate inserted into the joining interface is 0.05 to 0.15 mm (implemented joints 4 to 6), higher tensile strength is obtained than when the thin plate is not inserted (comparative joint 1). It has been. This is because pure aluminum (A1050) thin plate aluminum was supplied to the bonding interface, and an intermetallic compound layer composed mainly of iron and aluminum was formed.
実施継手7〜9及び比較継手1の引張強度を図12に示す。純アルミニウム(A1050)粉末を充填するギャップの幅を0.20mm及び0.25mmとした場合(実施継手7及び8)、当該粉末を用いない場合(比較継手1)よりも高い引張強度が得られている。これは、純アルミニウム(A1050)粉末のアルミニウムが接合界面に供給され、鉄とアルミニウムとを主成分とする金属間化合物が形成されたためである。 The tensile strength of the implementation joints 7-9 and the comparative joint 1 is shown in FIG. When the width of the gap filled with pure aluminum (A1050) powder is 0.20 mm and 0.25 mm (implemented joints 7 and 8), higher tensile strength is obtained than when the powder is not used (comparative joint 1). ing. This is because pure aluminum (A1050) powder aluminum was supplied to the bonding interface, and an intermetallic compound mainly composed of iron and aluminum was formed.
比較継手1、10〜12の引張強度及び継手効率を図13に示す。引張強度及び継手効率は、被接合材(マグネシウム材)に含まれるアルミニウム濃度の増加に伴って高くなっている。これは、被接合材(マグネシウム材)に含まれるアルミニウムによって接合界面に金属間化合物が形成されることに加え、アルミニウム濃度が高い場合はアルミニウム欠乏層の影響が比較的小さくなることが原因である。 The tensile strength and joint efficiency of comparative joints 1 and 10 to 12 are shown in FIG. Tensile strength and joint efficiency are increased with an increase in the concentration of aluminum contained in the material to be joined (magnesium material). This is because, in addition to the formation of intermetallic compounds at the bonding interface by the aluminum contained in the material to be joined (magnesium material), the influence of the aluminum-deficient layer becomes relatively small when the aluminum concentration is high. .
比較継手1〜9の引張強度を図14に示す。低炭素鋼(SPCC)板へのプローブ挿入量が0.1〜1.4mmの場合(比較継手1、4〜7)、比較的高い継手強度が得られている。これに対し、プローブが低炭素鋼(SPCC)板に挿入されていない場合(比較継手2及び3)においては、強度が殆ど得られていない。これは、マグネシウム板の接合面において、新生面が形成されないことが主原因であると思われる。また、低炭素鋼(SPCC)板へのプローブ挿入量が大き過ぎる場合(比較継手8及び9)、引張強度が低下している。低炭素鋼(SPCC)板へのプローブ挿入量が大き過ぎる場合、プローブによるマグネシウム板の切削量が大きくなり、接合界面近傍に分散した切削片によって強度が低下したものと考えられる。 The tensile strength of the comparative joints 1-9 is shown in FIG. When the probe insertion amount into the low carbon steel (SPCC) plate is 0.1 to 1.4 mm (Comparative joints 1 and 4 to 7), relatively high joint strength is obtained. On the other hand, when the probe is not inserted into the low carbon steel (SPCC) plate (comparative joints 2 and 3), almost no strength is obtained. This seems to be mainly due to the fact that a new surface is not formed on the joint surface of the magnesium plate. Moreover, when the probe insertion amount to the low carbon steel (SPCC) plate is too large (comparative joints 8 and 9), the tensile strength is reduced. When the probe insertion amount into the low carbon steel (SPCC) plate is too large, the cutting amount of the magnesium plate by the probe is increased, and it is considered that the strength is reduced by the cutting pieces dispersed near the joining interface.
比較継手10,13〜20の引張強度を図15に示す。低炭素鋼(SPCC)板へのプローブ挿入量が0.1〜1.4mmの場合(比較継手10、13〜18)、比較的高い継手強度が得られている。これに対し、プローブが低炭素鋼(SPCC)板に挿入されていない場合(比較継手13及び14)においては、強度が殆ど得られていない。これは、AZ31マグネシウム合金板の接合面において、新生面が形成されないことが主原因であると思われる。また、低炭素鋼(SPCC)板へのプローブ挿入量が大き過ぎる場合(比較継手19及び20)、引張強度が低下している。低炭素鋼(SPCC)板へのプローブ挿入量が大き過ぎる場合、プローブによるAZ31マグネシウム合金板の切削量が大きくなり、接合界面近傍に分散した切削片によって強度が低下したものと考えられる。 The tensile strength of the comparative joints 10 and 13 to 20 is shown in FIG. When the probe insertion amount into the low carbon steel (SPCC) plate is 0.1 to 1.4 mm (comparative joints 10 and 13 to 18), relatively high joint strength is obtained. On the other hand, when the probe is not inserted into the low carbon steel (SPCC) plate (comparative joints 13 and 14), almost no strength is obtained. This seems to be mainly due to the fact that a new surface is not formed on the joint surface of the AZ31 magnesium alloy plate. Moreover, when the probe insertion amount to the low carbon steel (SPCC) plate is too large (comparative joints 19 and 20), the tensile strength is reduced. When the probe insertion amount into the low carbon steel (SPCC) plate is too large, the cutting amount of the AZ31 magnesium alloy plate by the probe is increased, and it is considered that the strength is reduced by the cutting pieces dispersed near the joining interface.
実施継手2、実施継手10及び比較継手1の引張強度を図16に示す。図16はインサート材を用いない場合、AZ61マグネシウム合金薄板のみを用いる場合、AZ61マグネシウム合金薄板及び銀箔を用いる場合の継手強度比較であるが、AZ61マグネシウム合金薄板を用いることで継手強度が飛躍的に上昇し、更に、銀箔を用いることで、継手強度が母材(純マグネシウム)と同等程度にまで達していることが分かる。 The tensile strength of the implementation joint 2, the implementation joint 10, and the comparison joint 1 is shown in FIG. FIG. 16 is a comparison of joint strength when no insert material is used, when only AZ61 magnesium alloy sheet is used, and when AZ61 magnesium alloy sheet and silver foil are used, but joint strength is dramatically improved by using AZ61 magnesium alloy sheet. Furthermore, it turns out that joint strength has reached to the same level as a base material (pure magnesium) by using silver foil.
[接合部の断面観察]
接合部における欠陥形成の有無及び接合界面の状況等を確認するため、接合部の断面を光学顕微鏡、SEM−EDS(JEOL JSM−7001FA)及びSTEM−EDS(JEOL JEM−2100F)によって詳細に観察した。なお、SEM観察の条件は加速電圧:15kV及び照射電流:10Aとし、STEM観察の加速電圧は200kVとした。
[Section observation of the joint]
In order to confirm the presence / absence of defect formation at the joint and the state of the joint interface, the cross section of the joint was observed in detail with an optical microscope, SEM-EDS (JEOL JSM-7001FA) and STEM-EDS (JEOL JEM-2100F). . The conditions for SEM observation were acceleration voltage: 15 kV and irradiation current: 10 A, and the acceleration voltage for STEM observation was 200 kV.
SEM観察用の断面試料作製には、アルゴンイオンビームと遮蔽板を用いて試料断面を研磨するクロスセクションポリッシャー(JEOL IB−09020CP)を使用した。なお、クロスセクションポリッシャーの加速電圧は5.5kVとした。また、STEM観察用の試料作製には、集束イオンビーム(Focused Ion Beam:FIB)を用い、厚さ約100nmの観察試料を作製した。 A cross section polisher (JEOL IB-09020CP) that uses a argon ion beam and a shielding plate to polish the sample cross section was used for the preparation of the cross section sample for SEM observation. The acceleration voltage of the cross section polisher was 5.5 kV. Further, a focused ion beam (FIB) was used for preparing a sample for STEM observation, and an observation sample having a thickness of about 100 nm was prepared.
比較継手1の接合部断面の光学顕微鏡写真を図17に示す。接合部に欠陥は形成されておらず、マグネシウム板と低炭素鋼(SPCC)板との接合界面が形成されている。なお、その他の実施継手及び比較継手においても明瞭な欠陥の形成は観察されなかった。比較継手1、10及び11の接合界面近傍のSEM−EDS元素マッピングの結果を、それぞれ図18、図19及び図20に示す。比較継手1では被接合材であるマグネシウム板にアルミニウムが含有されていないことから、接合界面に明瞭な金属間化合物層が観察されない。これに対し、比較継手10及び11の接合界面には、アルミニウムと鉄を主成分とする金属間化合物層が形成されている。また、より高倍率のSEM−EDS元素マッピングより、金属間化合物層近傍のアルミニウム濃度が低下していることが分かる(図21及び図22)。 An optical micrograph of the cross section of the joint portion of the comparative joint 1 is shown in FIG. Defects are not formed in the joint, and a joint interface between the magnesium plate and the low carbon steel (SPCC) plate is formed. In addition, formation of a clear defect was not observed also in other implementation joints and comparative joints. The results of SEM-EDS element mapping in the vicinity of the joint interface of the comparative joints 1, 10 and 11 are shown in FIGS. 18, 19 and 20, respectively. In the comparative joint 1, aluminum is not contained in the magnesium plate, which is a material to be joined, so that a clear intermetallic compound layer is not observed at the joining interface. On the other hand, an intermetallic compound layer mainly composed of aluminum and iron is formed at the joint interface between the comparative joints 10 and 11. Moreover, it can be seen from the higher magnification SEM-EDS element mapping that the aluminum concentration in the vicinity of the intermetallic compound layer is lowered (FIGS. 21 and 22).
比較継手10及び11の接合界面近傍のSTEM−EDS元素マッピングの結果を、図23及び図24にそれぞれ示す。接合界面に形成されている金属間化合物層の近傍(マグネシウム合金側)のアルミニウム濃度は顕著に減少しており、母材のアルミニウム濃度と比較して、1原子%以上の減少が認められる領域(アルミニウム欠乏層)が形成している。なお、金属間化合物層の厚さは極めて薄く、比較継手10及び11共に1μm以下である。 The results of STEM-EDS element mapping in the vicinity of the joint interface of the comparative joints 10 and 11 are shown in FIGS. 23 and 24, respectively. The aluminum concentration in the vicinity of the intermetallic compound layer formed on the bonding interface (magnesium alloy side) is remarkably reduced, and a region where a decrease of 1 atomic% or more is recognized compared with the aluminum concentration of the base material ( An aluminum deficient layer). In addition, the thickness of the intermetallic compound layer is extremely thin, and both the comparative joints 10 and 11 are 1 μm or less.
引張試験後の比較継手10の破断面に関し、AZ31マグネシウム合金板側及び低炭素鋼(SPCC)板側のSEM−EDS元素マッピングの結果を、図25及び図26にそれぞれ示す。低炭素鋼(SPCC)板側の破断面にはマグネシウム(Mg)が検出され、AZ31マグネシウム合金板側の破断面には鉄(Fe)が殆ど検出されないことから、AZ31マグネシウム合金板側のアルミニウム欠乏層で破断したものと考えられる。 With respect to the fracture surface of the comparative joint 10 after the tensile test, the results of SEM-EDS element mapping on the AZ31 magnesium alloy plate side and the low carbon steel (SPCC) plate side are shown in FIGS. 25 and 26, respectively. Aluminum (Mg) is detected on the fracture surface on the low carbon steel (SPCC) plate side, and iron (Fe) is hardly detected on the fracture surface on the AZ31 magnesium alloy plate side. It is thought that the layer broke.
実施継手1、4及び8の接合部断面のSEM−EDS元素マッピングの結果を、図27、図28及び図29にそれぞれ示す。全ての接合部において欠陥は認められず、良好な継手が得られていることが分かる。また、破断位置を点線で示しているが、破断位置が接合界面の金属間化合物層から離れている。これは、突き合わせ面に挿入した金属層からのアルミニウム供給により、アルミニウム欠乏層の形成が抑制された結果である。 The results of SEM-EDS element mapping of the joint sections of the joints 1, 4 and 8 are shown in FIGS. 27, 28 and 29, respectively. It can be seen that no defects were observed in all the joints, and a good joint was obtained. Moreover, although the fracture | rupture position is shown with the dotted line, the fracture | rupture position is separated from the intermetallic compound layer of a joining interface. This is a result of suppressing the formation of the aluminum deficient layer by supplying aluminum from the metal layer inserted in the butt surface.
実施継手1の接合部断面に関し、高倍率のSEM−EDS元素マッピングの結果を図30に示す。酸化物が線状に並んだ領域が観察されることから、当該酸化物を起点とする破断が生じたものと考えられる。 FIG. 30 shows the result of SEM-EDS element mapping at a high magnification with respect to the cross section of the joint portion of the joint 1. Since the region where the oxides are arranged in a line is observed, it is considered that the fracture starting from the oxide occurred.
実施継手12の接合断面に関し、高倍率のSEM−EDS元素マッピングの結果を図31に示す(マッピングの領域は実施継手1に関して酸化物が観察された領域に対応している)。図31においては酸素濃度が高い領域は認められず、銀箔に起因する溶融により、酸化物の排出が達成されていることが分かる。なお、その他の領域においても同様の元素マッピングを行ったが、酸化物が存在する領域は認められなかった。 FIG. 31 shows the result of high-magnification SEM-EDS element mapping with respect to the bonding cross section of the working joint 12 (the mapping region corresponds to the region where oxide was observed with respect to the working joint 1). In FIG. 31, a region having a high oxygen concentration is not recognized, and it can be seen that oxide discharge is achieved by melting due to the silver foil. In addition, although the same elemental mapping was performed also in other area | regions, the area | region where an oxide exists was not recognized.
[接合部の破断位置観察]
本発明を用いることによる破断位置の変化を明らかにするため、引張試験片の破断位置を比較した。図32に、破断後の試験片(実施継手2,実施継手12及び比較継手1)の外観写真を示す。
[Fracture position observation of the joint]
In order to clarify the change of the breaking position by using the present invention, the breaking positions of the tensile test pieces were compared. In FIG. 32, the external appearance photograph of the test piece (Execution joint 2, Implementation joint 12, and Comparative joint 1) after a fracture is shown.
接合にインサート材を用いていない比較継手1に関しては、低炭素鋼(SPCC)板と純マグネシウム板との接合界面で破断しており、これは当該接合界面の強度が不十分であることを意味している。これに対し、インサート材としてAZ61マグネシウム合金薄板を用いた実施継手2の破断位置は、攪拌部外縁(酸化物が存在する位置)にシフトしている。更に、銀箔を用いた実施継手12では、破断位置が純マグネシウム板に完全にシフトしている。これらの結果は、本発明の摩擦攪拌接合方法を用いることで十分な接合界面強度を実現することができ、特に、被接合材及び/又はインサート材であるマグネシウム合金材の構成元素と共晶反応する第二金属層を用いることで、被接合材の母材強度並みの継手強度が実現可能であることを示している。 Regarding the comparative joint 1 which does not use an insert material for joining, it breaks at the joining interface between the low carbon steel (SPCC) plate and the pure magnesium plate, which means that the strength of the joining interface is insufficient. is doing. On the other hand, the breaking position of the joint 2 using the AZ61 magnesium alloy thin plate as the insert material is shifted to the outer edge of the stirring portion (position where the oxide exists). Further, in the joint joint 12 using silver foil, the breaking position is completely shifted to the pure magnesium plate. These results show that a sufficient joint interface strength can be realized by using the friction stir welding method of the present invention, and in particular, eutectic reaction with constituent elements of the magnesium alloy material which is the material to be joined and / or the insert material. It shows that joint strength comparable to the base material strength of the material to be joined can be realized by using the second metal layer.
2・・・マグネシウム又はマグネシウム合金材、
4・・・鉄系材、
6・・・金属層、
10・・・摩擦攪拌接合用ツール、
12・・・ツール本体、
14・・・プローブ部、
16・・・ショルダ部、
20・・・第二金属層、
30・・・接合部材、
40・・・金属間化合物層。
2 Magnesium or magnesium alloy material,
4 ... Iron-based materials,
6 ... metal layer,
10 ... friction stir welding tool,
12 ... Tool body,
14 ... Probe part,
16 ... shoulder part,
20 ... second metal layer,
30 ... joining member,
40: Intermetallic compound layer.
Claims (6)
前記マグネシウム又はマグネシウム合金材と前記鉄系材とを、前記マグネシウム又はマグネシウム合金材よりも高いアルミニウム含有量を有する金属層を介して接触させ、
摩擦攪拌接合用ツールのプローブ部の側面又は底面を、前記金属層と前記鉄系材の接触面に対して前記鉄系材側に0.05mm以上挿入させ、
前記マグネシウム又はマグネシウム合金材と前記鉄系材とを前記金属層を介して突合せ、
前記摩擦攪拌接合用ツールの回転方向と進行方向とが同一になる位置に、前記鉄系材を配置し、
前記金属層の幅を、0.05mm〜前記プローブの略直径とすること、
を特徴とする摩擦攪拌接合方法。 A friction stir welding method between magnesium or a magnesium alloy material and an iron-based material,
The magnesium or magnesium alloy material and the iron-based material are brought into contact via a metal layer having an aluminum content higher than that of the magnesium or magnesium alloy material,
The side or bottom of the probe part of the friction stir welding tool is inserted 0.05 mm or more on the iron-based material side with respect to the contact surface of the metal layer and the iron-based material,
Butting the magnesium or magnesium alloy material and the iron-based material through the metal layer,
Place the iron-based material at a position where the rotational direction and the traveling direction of the friction stir welding tool are the same,
The width of the metal layer is 0.05 mm to approximately the diameter of the probe;
A friction stir welding method characterized by the above.
を特徴とする請求項1に記載の摩擦攪拌接合方法。 The metal layer is a magnesium alloy layer;
The friction stir welding method according to claim 1.
を特徴とする請求項1又は2に記載の摩擦攪拌接合方法。 Inserting the side surface of the probe portion 0.1 to 1.5 mm on the iron-based material side with respect to the contact surface of the metal layer and the iron-based material;
The friction stir welding method according to claim 1 or 2 .
前記金属層をAZ61マグネシウム合金層又はAZ91マグネシウム合金層とすること、
を特徴とする請求項1〜3のいずれかに記載の摩擦攪拌接合方法。 The magnesium alloy material is AZ31 magnesium alloy material,
The metal layer is an AZ61 magnesium alloy layer or an AZ91 magnesium alloy layer;
The friction stir welding method according to any one of claims 1 to 3 .
を特徴とする請求項1〜4のいずれかに記載の摩擦攪拌接合方法。 Forming a second metal layer that undergoes a eutectic reaction with constituent elements of the metal layer and / or the magnesium alloy material at a contact interface between the metal layer and the magnesium alloy material;
The friction stir welding method according to any one of claims 1 to 4 .
を特徴とする請求項5に記載の摩擦攪拌接合方法。 The second metal layer comprises silver or zinc;
The friction stir welding method according to claim 5 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015063994A JP6590334B2 (en) | 2015-03-26 | 2015-03-26 | Friction stir welding method and friction stir welding member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015063994A JP6590334B2 (en) | 2015-03-26 | 2015-03-26 | Friction stir welding method and friction stir welding member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016182628A JP2016182628A (en) | 2016-10-20 |
JP6590334B2 true JP6590334B2 (en) | 2019-10-16 |
Family
ID=57241542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015063994A Active JP6590334B2 (en) | 2015-03-26 | 2015-03-26 | Friction stir welding method and friction stir welding member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6590334B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11534871B2 (en) | 2017-04-14 | 2022-12-27 | Asahi Kasei Kabushiki Kaisha | Dissimilar metal joint including flame-retardant magnesium alloy layer |
JP7523807B2 (en) | 2019-03-27 | 2024-07-29 | 国立大学法人大阪大学 | Surface modification method for steel materials and steel structure |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4336744B2 (en) * | 2003-02-26 | 2009-09-30 | 財団法人名古屋産業科学研究所 | Friction stir welding method for dissimilar metal materials |
JP5326862B2 (en) * | 2008-09-08 | 2013-10-30 | 日産自動車株式会社 | Dissimilar metal joining method of magnesium alloy and steel |
-
2015
- 2015-03-26 JP JP2015063994A patent/JP6590334B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016182628A (en) | 2016-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shang et al. | Microstructure characteristics and mechanical properties of cold metal transfer welding Mg/Al dissimilar metals | |
JP4873404B2 (en) | Metal processing method and structure | |
Mehta et al. | Influence of tool design and process parameters on dissimilar friction stir welding of copper to AA6061-T651 joints | |
van der Rest et al. | On the joining of steel and aluminium by means of a new friction melt bonding process | |
Khojastehnezhad et al. | Microstructural characterization and mechanical properties of aluminum 6061-T6 plates welded with copper insert plate (Al/Cu/Al) using friction stir welding | |
Li et al. | Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding | |
Elrefaey et al. | Preliminary investigation of friction stir welding aluminium/copper lap joints | |
JP5044128B2 (en) | Friction stir welding method and friction stir welding member for aluminum alloy and steel plate | |
WO2014148348A1 (en) | Welding filler material for bonding different kind materials, and method for producing different kind material welded structure | |
CN102179639B (en) | Cold metal transition fusion welding-soldering connection method for magnesium steel dissimilar metal | |
Xue et al. | Wettability, microstructure and properties of 6061 aluminum alloy/304 stainless steel butt joint achieved by laser-metal inert-gas hybrid welding-brazing | |
JP2009269085A (en) | Method of bonding different metals and bonded structure | |
CN104923927A (en) | Friction stir welding-braze welding composite welding method for dissimilar metal bonding structure | |
JP2003170280A (en) | Method for connecting different kinds of metallic materials | |
JP2008068290A (en) | Flux cored wire for joining different materials, and method for joining different materials | |
JP2008207245A (en) | Joined product of dissimilar materials of steel and aluminum material | |
JP6590334B2 (en) | Friction stir welding method and friction stir welding member | |
JP2007136525A (en) | Method for joining dissimilar materials | |
JP2010201448A (en) | Filler metal for joining different materials and joining method for different materials | |
Chu et al. | Structure-Property correlation in weld metals and interface regions of titanium/steel dissimilar joints | |
JP6958099B2 (en) | Join joint | |
Singh et al. | Influence of wire feed rate to speed ratio on arc stability and characteristics of cold metal transfer weld–brazed dissimilar joints | |
JP6675554B2 (en) | Dissimilar material friction stir welding method | |
Zhu et al. | Intermediate layer, microstructure and mechanical properties of aluminum alloy/stainless steel butt joint using laser–MIG hybrid welding–brazing method | |
Chen et al. | Continuous nanoscale Al2Fe transition layer strengthened magnesium-steel spot joints |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190709 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190729 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6590334 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |