JP3673819B2 - Friction stir welding method between metals - Google Patents

Friction stir welding method between metals Download PDF

Info

Publication number
JP3673819B2
JP3673819B2 JP2003000005A JP2003000005A JP3673819B2 JP 3673819 B2 JP3673819 B2 JP 3673819B2 JP 2003000005 A JP2003000005 A JP 2003000005A JP 2003000005 A JP2003000005 A JP 2003000005A JP 3673819 B2 JP3673819 B2 JP 3673819B2
Authority
JP
Japan
Prior art keywords
friction stir
joining
stir welding
flame retardant
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003000005A
Other languages
Japanese (ja)
Other versions
JP2004209522A (en
Inventor
雅敏 有年
孝次 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyogo Prefectural Government
Original Assignee
Hyogo Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyogo Prefectural Government filed Critical Hyogo Prefectural Government
Priority to JP2003000005A priority Critical patent/JP3673819B2/en
Publication of JP2004209522A publication Critical patent/JP2004209522A/en
Application granted granted Critical
Publication of JP3673819B2 publication Critical patent/JP3673819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の金属の被接合部に対して、工具を、回転しながら圧入した状態で接合方向に移動させることで、金属間を摩擦攪拌接合する接合方法に関するものである。
【0002】
【従来の技術】
通常のマグネシウム(Mg)合金(例えば、AZ61、AZ91等)を溶融させてカルシウム(Ca)を含有したマグネシウム合金は、表面に酸化カルシウム被膜を形成させるため、カルシウムを含まないマグネシウム合金に比べて機械的強度(引張強さ、硬さ等)が低下しないだけでなく、燃焼試験において発火温度を上昇させる効果、すなわち難燃性を有する。これらの特性を持つマグネシウム合金、すなわち難燃性マグネシウム合金は、表面に酸化カルシウム被膜を形成しており、この被膜が酸化に対してきわめて有効な保護被膜として作用するため、難燃性効果を持っている(たとえば、特許文献1や非特許文献1参照。)。
【0003】
また、アルミニウム合金プレート同士を接合(突き合わせ、重ね合わせ、隅肉形状等)する方法として、非磨耗プローブを回転させながら、その先端部の小さな中央シリンダー部分を結合線に圧入する。結合線は、中央シリンダー部分の側面との摩擦により加熱されて高温に上昇すると、塑性変形抵抗を失い、中央シリンダー部分の回転に引きずられるようにして塑性流動を生じる。このような塑性流動を保持しながら結合線の方向に非磨耗プローブを移動させると、結合線の付近は逐次摩擦により攪拌・一体化されて接合が行われる(たとえば、特許文献2参照。)。
【0004】
そして、カルシウムを含まない通常のマグネシウム合金の接合には、これまでTIG(タングステン・イナート・ガス)溶接やMIG(メタル・イナート・ガス)などが用いられている。
【0005】
上述したアルミニウム合金の摩擦攪拌接合では、板厚が2.0mmの場合、工具が高速回転(例えば、3000rpm)、接合速度が高速(例えば、500mm/分)で接合できる。このようなアルミニウム合金の摩擦攪拌接合は、アルミニウム合金製の鉄道車両をはじめ、自動車部品等に実用化されている。
【0006】
これに対して、カルシウムを含まない通常のマグネシウム合金(例えば、AZ31 板厚2.0mm)では、アルミニウム合金と同様に高温変形抵抗が小さく、塑性流動しやすいため、板厚が2.0mmの場合には工具を6000rpmのような高速回転、1250mm/分の高速度で接合しても良好な接合効果が得られる。通常のマグネシウム合金(AZ31)の摩擦攪拌接合については、溶接学会平成13年度秋季全国大会講演概要(第69集)132頁から133頁に示されている。
【0007】
しかしながら、難燃性マグネシウム合金は、アルミニウム合金に比べて硬いだけでなく、高温変形抵抗が大きい。このため、難燃性マグネシウム合金の摩擦攪拌接合では、たとえば非磨耗プローブを高速回転、高速度で接合すると、高温中で塑性流動しにくいため、金属組織の塑性流動が不連続になり、その結果として接合部に空隙(あるいは割れなどの欠陥)が形成される。接合部で連続的な塑性流動を起こすことによって、割れの発生を防止する接合方法が必要となる。
【0008】
さらに難燃性マグネシウム合金は、硬いだけでなく、熱伝導性が悪い。このため、摩擦攪拌接合を開始する位置で、非磨耗プローブを回転させながら接合部に圧入して時間が経過しても、難燃性マグネシウム合金と非磨耗プローブとの間に摩擦熱が発生しない。摩擦熱が発生しない状況では、摩擦攪拌接合ができないだけでなく、非磨耗プローブが硬い難燃性マグネシウム合金との間で生じる摩擦によって摩耗することになる。摩擦熱の発生を促進するために非磨耗プローブの回転数を早くすると、非磨耗プローブの摩耗が顕著になるため、高速回転は不適である。このような状況を防止するとともに、摩擦攪拌接合を可能にするためには、摩擦攪拌接合を開始する位置で非磨耗プローブを圧入して摩擦熱を発生させる方法が必要となる。
【0009】
【特許文献1】
特開2000−109963(第2−3頁、図1)
【0010】
【特許文献2】
特許第2712838号公報(第2−3頁、第1図)
【0011】
【非特許文献1】
坂本満、秋山茂、荻尾剛、大城桂作著「鋳造工学 第69巻 第3号」(社)日本鋳造工学会出版、1997年3月25日、P.227−233
【0012】
【発明が解決しようとする課題】
ところで、難燃性マグネシウム合金は、難燃性だけでなく軽量やリサイクル性を生かして鉄道車両、自動車、エレベーター用の筐体などの電機製品など、広範な産業分野で応用が期待されている。この難燃性マグネシウム合金は、上記種々の製品の構造体や部品を製作する上で、接合することが不可欠となっている。
【0013】
その際に、難燃性マグネシウム合金の接合にTIG溶接方法やMIG溶接方法を採用したときには、難燃性マグネシウム合金を溶かして接合するため、入熱が過大になり、熱変形が大きくなるだけでなく、接合部にブローホールなどの欠陥が発生して、強度を大きく低下させることが指摘されている。
【0014】
さらに難燃性マグネシウム合金は、本合金中に酸化カルシウム被膜を形成する複合材料となって酸化に対する保護作用を持っている。このような難燃性マグネシウム合金の接合に、上述のTIG溶接、MIG溶接や電子ビーム溶接などの溶融接合を用いると、酸化カルシウム被膜が溶融するため、難燃性の効果が損なわれることになる。
【0015】
そこで本発明の請求項1記載の発明は、通常のマグネシウム合金を溶融してカルシウムを含有させることによって難燃性の効果を持つマグネシウム合金同士、あるいは難燃性マグネシウム合金と異種金属との接合を、難燃性マグネシウム合金の特性を損なうことなく、強度低下や熱変形を抑制して行える金属間の摩擦攪拌接合方法を提供することを目的としたものである。
【0016】
【課題を解決するための手段】
前述した目的を達成するために、本発明の請求項1記載の金属間の摩擦攪拌接合方法は、複数の金属の被接合部に対して、工具を、回転しながら圧入した状態で接合方向に移動させることで、金属間を摩擦攪拌接合する接合方法であって、前記工具は、被接合部に圧入する小径部と、この小径部と同軸の大径部とを有するとともに、小径部の外面には回転方向に対して逆方向の螺子が形成されており、接合しようとする複数の金属のうち、少なくとも1つの金属はカルシウムを含有した難燃性マグネシウム合金からなり、これら金属の被接合部の開始位置にマグネシウム薄板を挿入したのち、被接合部の開始位置に工具の小径部を回転しながら圧入した状態で接合方向に相対移動させて、逆方向の螺子により圧入方向とは逆向きに攪拌しながら摩擦攪拌接合することを特徴としたものである。
【0017】
したがって請求項1の発明によると、工具を回転しながら、その小径部を被接合部に圧入させるとともに、工具を接合方向に移動させることによって、被接合部に生じる摩擦熱により接合部の変形抵抗を減少させ、塑性流動させて、金属間に接合部を形成しながら固相接合し得る。
【0018】
このようにして、少なくとも1つが難燃性マグネシウム合金からなる複数の金属間の摩擦攪拌接合を行えるのであり、その際に開始位置に挿入しているマグネシウム薄板によって摩擦熱の発生を促進し得、以て接合を好適に行える。また小径部に形成した逆方向の螺子により、底部で生じる塑性流動を、圧入方向とは逆向きに攪拌させながら表面(上面)まで押し上げ得るとともに、大径部の面による押え込み作用によって、塑性流出を規制し得、以て充分な攪拌を行えることになる。
【0019】
【発明の実施の形態】
以下に、本発明の実施の形態を、金属の突き合わせ溶接に採用した状態として、図1、図2に基づいて説明する。
【0020】
接合しようとする2枚の金属は、カルシウムを含有した難燃性マグネシウム合金1,2であって、これら難燃性マグネシウム合金1,2の被接合部(たとえば、突き合わせ溶接の場合は2枚の難燃性マグネシウム合金1,2の界面)3で、摩擦攪拌接合の開始位置3Aには、マグネシウム薄板(純マグネシウム、あるいは通常のマグネシウム合金)4が板厚方向に挿入される。そして2枚の難燃性マグネシウム合金1,2は、クランプ手段(図示せず。)によって相対位置が定着されている。
【0021】
円筒状の工具10は、接合部に圧入する下端の小径部11と、この小径部11と同軸で中間の大径部12と、上部の本体部13とを有し、回転駆動装置(図示せず。)に保持された状態で、縦方向軸心14の回りに回転自在に構成される。前記小径部11の外面には回転方向Aに対して逆方向の螺子11aが形成されており、また大径部12の下面によって流出阻止面12aが形成されている。なお工具10は、その前進角度θを[3°]として傾斜させた縦方向軸心14の回りに回転自在に構成されている。
【0022】
摩擦攪拌接合を行うに、まず図1(a)(b)の実線に示すように、被接合部3の開始位置3Aに小径部11を対向させた状態から、工具10を縦方向軸心14の回りに回転させながら、小径部11を開始位置3Aに接近移動させ、図1(a)(b)の仮想線に示すように、小径部11を開始位置3Aに当接させる。そして小径部11をさらに移動させて、図1(c)に示すように、小径部11を開始位置3Aに圧入させるとともに、流出阻止面12aを難燃性マグネシウム合金1,2の表面に部分的に押し付け(圧接させ)る。
【0023】
これにより被接合部3は、小径部11の側面および大径部12の下面との摩擦熱により加熱されて高温に上昇することになり、以て塑性変形抵抗を失い(減少させ)、小径部11の回転に引きずられるようにして塑性流動を生じる。このような塑性流動を保持しながら接合方向Bに工具10を移動させることで、図1(d)や図2、図4(a)に示すように、被接合部3の付近は逐次摩擦により攪拌・一体化され、以て接合部5を形成しながらの固相接合が行われる。
【0024】
このようにして2枚の難燃性マグネシウム合金1,2間の摩擦攪拌接合が行われるのであり、その際に開始位置3Aには、マグネシウム薄板4が挿入されていることで、摩擦熱の発生を促進し得、以て接合を好適に行える。また小径部11に逆方向の螺子11aが形成されていることで、底部で生じる塑性流動を、圧入方向とは逆向きに攪拌させながら表面(上面)まで押し上げ得るとともに、流出阻止面12aによる押え込み作用によって、塑性流出を規制し得、以て充分な攪拌を行えることになる。
【0025】
上記した実施の形態に示すように、摩擦攪拌接合を開始する位置3Aで工具10の小径部11を圧入して、難燃性マグネシウム合金1,2との間で摩擦熱の発生を促進させ方法によると、摩擦攪拌接合を開始する位置3Aの付近にだけマグネシウム薄板4を板厚方向に挿入するだけで、摩擦熱が発生し接合ができるようになる。しかも、小径部11における逆方向の螺子11aや大径部12における流出阻止面12aの摩耗が減少することが明らかになった。被接合部3に挿入するマグネシウム薄板4の板厚は、2.0mm以上あれば、摩擦熱を発生させる効果があることが確認された。摩擦熱の発生を促進するマグネシウム薄板4は、開始位置3Aの近傍の難燃性マグネシウム合金中1,2に固溶しており、難燃性の効果を損なうことない。
【0026】
難燃性マグネシウム合金1,2の摩擦攪拌接合では、工具10を低速(たとえば、1500rpm)で回転させながら、接合速度を低速(たとえば、100mm/分)で接合することが必要である。また、接合部5に広い範囲で高温領域を形成させるための専用工具が必要となる。難燃性マグネシウム合金1,2用の工具10は、小径部11と大径部12との形状・寸法が重要な要素なる。表1は、難燃性マグネシウム合金1,2の板厚が2.0mmの場合の小径部11と大径部12との径寸法(直径寸法)を示したものであり、ここで小径部11の長さは板厚と同じ2mmである。
【0027】
【表1】

Figure 0003673819
表1に示すように、難燃性マグネシウム合金1,2用の工具10においては、その小径部11と大径部12との径は、アルミニウム合金や通常のマグネシウム合金の場合よりも大きい。すなわち、板厚2.0mmのアルミニウム合金や通常のマグネシウム合金では、小径部の径は3.0mm、大径部の径は10mm以下である。これに対して、難燃性マグネシウム合金1,2における小径部11の径は4.0mm、大径部12の径は14mm以上である。
【0028】
すなわち、難燃性マグネシウム合金1,2の摩擦攪拌接合に用いる工具10の小径部11および大径部12の径は、アルミニウム合金やカルシウムを含まない通常のマグネシウム合金の場合における小径部や大径部の径よりも大きくしている。この理由は、摩擦攪拌によって塑性流動を生じる領域を大きくして高温領域を拡大することによって、連続的な塑性流動が形成されるようにするためである。なお、難燃性マグネシウム合金1,2の摩擦攪拌接合方法は、たとえばアルミニウム合金の摩擦攪拌接合(特許第3070735号)とは異なるものである。
【0029】
さらに難燃性マグネシウム合金1,2の摩擦攪拌接合に際しては、小径部11に逆方向の螺子11aを切っており、これにより、底部で生じる塑性流動を攪拌させながら板表面まで押し上げる構造にしている。なお、小径部に回転方向と同方向の螺子を切った場合は、欠陥が生じやすい底面付近の塑性流動が生じにくいことになる。また、小径部に螺子を切らない工具もあるが、この場合、螺子を切った工具に比べて摩擦による発熱効果が小さい。
【0030】
以下に、本発明の一実施例を説明する。
難燃性マグネシウム合金として、(AZ60+Ca)同士を摩擦攪拌接合した。ここで、AZ60とは、A(アルミニウムの略称)が6%、Z(亜鉛の略称)が0%、残りがマグネシウムというマグネシウム合金の化学成分を表示する方法である。難燃性マグネシウム合金(たとえば、AZ60+Ca)は、カルシウムを含まない通常のマグネシウム合金(AZ60)を溶融させてカルシウム(Ca)を含有させたものである。
【0031】
板厚が2.0mmの難燃性マグネシウム合金板を、突き合わせ形状にして摩擦攪拌接合した。主な接合条件は、工具の回転数1500rpm、接合速度100mm/分である。接合を開始する位置付近の突き合わせ部のみに板厚0.2mmの純マグネシウム板を挿入した。
【0032】
接合した継手性能は、図3に示すように、平行部を持つ引張試験片に加工して引張試験における引張強さや伸びを調べ、難燃性マグネシウム合金母材と比較した(単位はmm)。これに対して、難燃性マグネシウム合金を突き合わせ形状でTIG溶接を行い、接合部の組織観察や継手の引張強さを調べ、摩擦攪拌接合の結果と比較した。
【0033】
(AZ60+Ca)同士を摩擦攪拌接合した接合部の金属組織を観察した結果、接合表面のビードは連続的に形成されており、欠陥は観察されなかった。また、接合部の底面付近を組織観察した結果、接合不良時に形成されやすいキッシング・ボンドと言われる微小な未密着部は検出されなかった。これに対して、TIG溶接では、接合部の裏面付近で明瞭な割れが数多く観察され、欠陥が発生することが明らかになった。また、酸化カルシウムは、摩擦攪拌によって寸断されて微細化し、ほぼ均一に分布していた。
【0034】
なお、工具を高速回転(例えば、3000rpm)、高速度(例えば、500mm/分)で摩擦攪拌接合した接合部を組織観察した結果、酸化カルシウムは微細化するものの、不均一に分布していた。このような酸化カルシウムの不均一な分布は、接合部において難燃性を低下させることを示唆している。
【0035】
摩擦攪拌接合継手とTIG溶接継手の引張強さを調べた結果は、表2に示すとおりである。
【0036】
【表2】
Figure 0003673819
表2において、TIG溶接の場合、継手の引張強さは247MPaで、継手は接合部で破断した。これに対して、摩擦攪拌接合継手の引張強さは273MPaであり、継手は難燃性マグネシウム合金の母材部で破断した。摩擦攪拌接合継手の伸びは、6.0%で母材と同等であるのに対して、TIG溶接継手の伸びは僅か1.2%であった。以上の接合結果より、固相接合の摩擦攪拌接合は、TIG溶接に代表される溶融接合に比べて難燃性マグネシウム合金の接合方法として適している。
【0037】
上述した本発明における摩擦攪拌接合(難燃性マグネシウム合金同士あるいは難燃性マグネシウム合金と異種金属との組み合わせの場合)方法は、図4(a〜f)に示すように、板材の突き合わせ接合、板材の重ね合わせ接合、板材の隅肉の継手形状の接合などに適用し得るものである。なお、本発明における難燃性マグネシウム合金は、通常のマグネシウム合金を溶融させてカルシウムを含有させたものであり、1%〜3%のカルシウムを含有させるものが好適であるが、カルシウム含有量に制限はない。
【0038】
上記した実施の形態では、摩擦攪拌接合方法として、板材の突き合わせ接合、板材の重ね合わせ接合、板材の隅肉の継手形状の接合などに適用しているが、これはパイプ材を対象とした、突き合わせ接合、重ね合わせ接合、隅肉の継手形状の接合にも適用し得るものである。
【0039】
上記した実施の形態では、難燃性マグネシウム合金1,2同士の摩擦攪拌接合が示されているが、これは難燃性マグネシウム合金と異種金属、たとえば通常のマグネシウム合金、アルミニウム合金、銅合金などとの摩擦攪拌接合も同様である。
【0040】
上記した実施の形態では、工具10が、その前進角度θを[3°]として傾斜させた縦方向軸心14の回りに回転自在に構成されているが、この傾斜角度や傾斜方向は、板厚や金属材質によって任意に変更可能であり、場合によっては、傾斜がなく垂直状であってもよい。
【0041】
【発明の効果】
上記した本発明の請求項1によると、工具を回転しながら、その小径部を被接合部に圧入させるとともに、工具を接合方向に移動させることによって、被接合部に生じる摩擦熱により接合部の変形抵抗を減少させ、塑性流動させて、金属間に接合部を形成しながら固相接合できる。このようにして、通常のマグネシウム合金を溶融してカルシウムを含有させることによって難燃性の効果を持つマグネシウム合金同士、あるいは難燃性マグネシウム合金と異種金属との接合を、難燃性マグネシウム合金の特性を損なうことなく、強度低下や熱変形を抑制して行うことができる。
【0042】
その際に開始位置に挿入しているマグネシウム薄板によって摩擦熱の発生を促進でき、以て接合を好適に行うことができる。また小径部に形成した逆方向の螺子により、底部で生じる塑性流動を、圧入方向とは逆向きに攪拌させながら表面(上面)まで押し上げることができるとともに、大径部の面による押え込み作用によって、塑性流出を規制でき、以て充分な攪拌を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示し、金属間の摩擦攪拌接合方法の工程であって、(a)は接合開始前の正面図、(b)は接合開始前の側面図、(c)は接合開始時の側面図、(d)は接合中の側面図である。
【図2】同接合中の一部切り欠き斜視図である。
【図3】本発明の摩擦攪拌接合方法で得た継手と、TIG溶接方法で得た継手の引張試験片形状・寸法の説明図である。
【図4】本発明の摩擦攪拌接合方法が可能な継手形状例を示した概略斜視図である。
【符号の説明】
1 難燃性マグネシウム合金(金属)
2 難燃性マグネシウム合金(金属)
3 被接合部
3A 摩擦攪拌接合の開始位置
4 マグネシウム薄板
5 接合部
10 工具
11 小径部
11a 逆方向の螺子
12 大径部
12a 流出阻止面
13 本体部
14 縦方向軸心
A 回転方向
B 接合方向
θ 前進角度[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joining method for friction stir welding between metals by moving a tool in a joining direction in a press-fitted state while rotating with respect to a plurality of metal joining parts.
[0002]
[Prior art]
A magnesium alloy containing calcium (Ca) by melting an ordinary magnesium (Mg) alloy (for example, AZ61, AZ91, etc.) forms a calcium oxide film on the surface, and therefore, compared with a magnesium alloy not containing calcium. Not only does the mechanical strength (tensile strength, hardness, etc.) not decrease, but also has the effect of raising the ignition temperature in the combustion test, that is, flame retardancy. Magnesium alloys with these characteristics, that is, flame retardant magnesium alloys, have a calcium oxide coating on the surface, which acts as a protective coating that is extremely effective against oxidation, and therefore has a flame retardant effect. (For example, refer to Patent Document 1 and Non-Patent Document 1).
[0003]
As a method for joining (butting, stacking, fillet shape, etc.) the aluminum alloy plates, a small central cylinder portion at the tip of the non-abrasion probe is pressed into the connecting line while rotating the non-abrasive probe. When the bond line is heated by friction with the side surface of the central cylinder portion and rises to a high temperature, the bond line loses plastic deformation resistance and causes plastic flow by being dragged by the rotation of the central cylinder portion. When the non-abrasion probe is moved in the direction of the bond line while maintaining such plastic flow, the vicinity of the bond line is agitated and integrated by sequential friction to perform bonding (see, for example, Patent Document 2).
[0004]
For joining ordinary magnesium alloys not containing calcium, TIG (tungsten inert gas) welding, MIG (metal inert gas), or the like has been used so far.
[0005]
In the friction stir welding of the aluminum alloy described above, when the plate thickness is 2.0 mm, the tool can be joined at a high speed rotation (for example, 3000 rpm) and the joining speed at a high speed (for example, 500 mm / min). Such aluminum alloy friction stir welding has been put to practical use in aluminum alloy railway vehicles, automobile parts, and the like.
[0006]
On the other hand, a normal magnesium alloy not containing calcium (for example, AZ31 plate thickness of 2.0 mm) has a low high temperature deformation resistance and is likely to plastically flow in the same manner as an aluminum alloy. A good joining effect can be obtained even if the tool is joined at a high speed such as 6000 rpm and at a high speed of 1250 mm / min. The friction stir welding of a normal magnesium alloy (AZ31) is shown on pages 132 to 133 of the outline of the Annual Meeting of the Welding Society of Japan in FY 2001 (69th Annual Meeting).
[0007]
However, the flame retardant magnesium alloy is not only harder than the aluminum alloy, but also has a high temperature deformation resistance. For this reason, in friction stir welding of flame retardant magnesium alloy, for example, if a non-abrasive probe is joined at high speed and high speed, plastic flow of the metal structure becomes discontinuous because the plastic flow is difficult at high temperatures. As a result, voids (or defects such as cracks) are formed in the joint. There is a need for a joining method that prevents the occurrence of cracks by causing a continuous plastic flow at the joint.
[0008]
Furthermore, the flame retardant magnesium alloy is not only hard but also has poor thermal conductivity. For this reason, no frictional heat is generated between the flame retardant magnesium alloy and the non-abrasion probe even if time passes after the non-abrasion probe is rotated and pressed into the joint at the position where the friction stir welding starts. . In situations where no frictional heat is generated, not only friction stir welding is not possible, but the non-abrasive probe will wear due to friction generated between it and the hard flame retardant magnesium alloy. If the rotational speed of the non-wear probe is increased in order to promote the generation of frictional heat, the wear of the non-wear probe becomes significant, so that high-speed rotation is not suitable. In order to prevent such a situation and to enable friction stir welding, a method for generating frictional heat by press-fitting a non-abrasion probe at a position where friction stir welding is started is necessary.
[0009]
[Patent Document 1]
JP-A 2000-109963 (page 2-3, FIG. 1)
[0010]
[Patent Document 2]
Japanese Patent No. 2712838 (page 2-3, FIG. 1)
[0011]
[Non-Patent Document 1]
Sakamoto Mitsuru, Shigeru Akiyama, Tsuyoshi Hagio, Katsura Oshiro, “Casting Engineering Vol. 69, No. 3” (published by Japan Foundry Engineering Society), March 25, 1997, p. 227-233
[0012]
[Problems to be solved by the invention]
By the way, the flame retardant magnesium alloy is expected to be applied in a wide range of industrial fields such as electric products such as railway vehicles, automobiles, and elevator housings by making use of not only flame retardancy but also light weight and recyclability. It is indispensable to join this flame-retardant magnesium alloy in producing the structures and parts of the above-mentioned various products.
[0013]
At that time, when TIG welding method or MIG welding method is adopted for joining the flame retardant magnesium alloy, the flame retardant magnesium alloy is melted and joined, so the heat input becomes excessive and the thermal deformation only increases. However, it has been pointed out that defects such as blowholes occur in the joints and the strength is greatly reduced.
[0014]
Further, the flame retardant magnesium alloy serves as a composite material for forming a calcium oxide film in the alloy and has a protective action against oxidation. When the above-mentioned TIG welding, MIG welding, electron beam welding, or other fusion bonding is used for joining such a flame retardant magnesium alloy, the calcium oxide film is melted, so that the flame retardant effect is impaired. .
[0015]
Therefore, the invention according to claim 1 of the present invention is to join magnesium alloys having flame retardancy effects by melting ordinary magnesium alloys and containing calcium, or joining flame retardant magnesium alloys and dissimilar metals. An object of the present invention is to provide a friction stir welding method between metals which can be performed while suppressing strength reduction and thermal deformation without impairing the properties of the flame retardant magnesium alloy.
[0016]
[Means for Solving the Problems]
In order to achieve the above-described object, the friction stir welding method between metals according to claim 1 of the present invention is performed in a joining direction in a state in which a tool is press-fitted while rotating with respect to a plurality of metal joining parts. It is a joining method for friction stir welding between metals by moving the tool, wherein the tool has a small diameter part press-fitted into the joined part, a large diameter part coaxial with the small diameter part, and an outer surface of the small diameter part Are formed of a flame retardant magnesium alloy containing calcium, and a joined portion of these metals is formed of a plurality of metals to be joined. After inserting the magnesium thin plate at the starting position, rotate the small diameter part of the tool to the start position of the welded part while rotating it, and move it relative to the joining direction, and reverse the direction of the press-fitting direction with the reverse screw. Stirring Is obtained and wherein the friction stir joining.
[0017]
Therefore, according to the first aspect of the present invention, while the tool is rotated, the small diameter portion is press-fitted into the joined portion, and the tool is moved in the joining direction, whereby the deformation resistance of the joined portion is caused by the frictional heat generated in the joined portion. And can be plastically flowed to form a solid phase joint while forming a joint between the metals.
[0018]
In this way, it is possible to perform friction stir welding between a plurality of metals, at least one of which is made of a flame-retardant magnesium alloy, and at this time, the generation of frictional heat can be promoted by the magnesium thin plate inserted at the starting position, Therefore, joining can be performed suitably. Also, the plastic flow generated at the bottom can be pushed up to the surface (upper surface) while stirring in the direction opposite to the press-fitting direction by the reverse direction screw formed in the small diameter part, and the plastic outflow is caused by the pressing action by the surface of the large diameter part. Therefore, sufficient stirring can be performed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described based on FIG. 1 and FIG. 2 as a state adopted for metal butt welding.
[0020]
The two metals to be joined are flame retardant magnesium alloys 1 and 2 containing calcium, and to-be-joined portions of these flame retardant magnesium alloys 1 and 2 (for example, two pieces in the case of butt welding) At the start position 3A of the friction stir welding at the interface 3 of the flame retardant magnesium alloys 1 and 2, a magnesium thin plate (pure magnesium or normal magnesium alloy) 4 is inserted in the plate thickness direction. The relative positions of the two flame-retardant magnesium alloys 1 and 2 are fixed by clamping means (not shown).
[0021]
The cylindrical tool 10 includes a small diameter portion 11 at the lower end that is press-fitted into the joint portion, a large diameter portion 12 that is coaxial with the small diameter portion 11 and an intermediate portion, and an upper main body portion 13. In the state where the vertical axis 14 is held. A screw 11 a is formed on the outer surface of the small diameter portion 11 in the direction opposite to the rotation direction A, and an outflow prevention surface 12 a is formed by the lower surface of the large diameter portion 12. The tool 10 is configured to be rotatable around a longitudinal axis 14 inclined with the advance angle θ set to [3 °].
[0022]
When performing friction stir welding, first, as shown by the solid lines in FIGS. 1A and 1B, the tool 10 is moved from the state where the small diameter portion 11 is opposed to the start position 3 </ b> A of the bonded portion 3 to the longitudinal axis 14. The small-diameter portion 11 is moved closer to the start position 3A while being rotated around the center, and the small-diameter portion 11 is brought into contact with the start position 3A as indicated by phantom lines in FIGS. Then, the small-diameter portion 11 is further moved to press-fit the small-diameter portion 11 into the start position 3A as shown in FIG. 1C, and the outflow prevention surface 12a is partially applied to the surfaces of the flame-retardant magnesium alloys 1 and 2. Press against (press contact).
[0023]
As a result, the bonded portion 3 is heated by the frictional heat between the side surface of the small diameter portion 11 and the lower surface of the large diameter portion 12 and rises to a high temperature, thereby losing (decreasing) the plastic deformation resistance. The plastic flow is caused to be dragged by 11 rotations. By moving the tool 10 in the joining direction B while maintaining such plastic flow, as shown in FIGS. 1 (d), 2 and 4 (a), the vicinity of the welded portion 3 is caused by sequential friction. Solid phase bonding is performed while stirring and integrating, and thus forming the bonding portion 5.
[0024]
In this way, the friction stir welding between the two flame-retardant magnesium alloys 1 and 2 is performed. At this time, the magnesium thin plate 4 is inserted into the start position 3A, so that frictional heat is generated. Therefore, joining can be performed suitably. Further, since the screw 11a in the reverse direction is formed in the small-diameter portion 11, the plastic flow generated at the bottom can be pushed up to the surface (upper surface) while being stirred in the direction opposite to the press-fitting direction and pressed by the outflow prevention surface 12a. By the action, plastic outflow can be restricted, and sufficient stirring can be performed.
[0025]
As shown in the above-described embodiment, a method for promoting the generation of frictional heat between the flame retardant magnesium alloys 1 and 2 by press-fitting the small diameter portion 11 of the tool 10 at the position 3A where friction stir welding is started. According to this, only by inserting the magnesium thin plate 4 in the thickness direction only in the vicinity of the position 3A where the friction stir welding is started, frictional heat is generated and the joining can be performed. Moreover, it has been clarified that the wear of the reverse direction screw 11a in the small diameter portion 11 and the outflow prevention surface 12a in the large diameter portion 12 is reduced. It was confirmed that if the thickness of the magnesium thin plate 4 to be inserted into the joined portion 3 is 2.0 mm or more, there is an effect of generating frictional heat. The magnesium thin plate 4 that promotes the generation of frictional heat is dissolved in the flame retardant magnesium alloys 1 and 2 in the vicinity of the start position 3A, and does not impair the flame retardant effect.
[0026]
In the friction stir welding of the flame retardant magnesium alloys 1 and 2, it is necessary to join the tool 10 at a low speed (for example, 100 mm / min) while rotating the tool 10 at a low speed (for example, 1500 rpm). Moreover, a dedicated tool for forming a high temperature region in a wide range in the joint portion 5 is required. In the tool 10 for the flame retardant magnesium alloys 1 and 2, the shapes and dimensions of the small diameter portion 11 and the large diameter portion 12 are important elements. Table 1 shows the diameter (diameter dimension) of the small diameter portion 11 and the large diameter portion 12 when the plate thickness of the flame retardant magnesium alloys 1 and 2 is 2.0 mm. Is 2 mm, which is the same as the plate thickness.
[0027]
[Table 1]
Figure 0003673819
As shown in Table 1, in the tool 10 for the flame retardant magnesium alloys 1 and 2, the diameters of the small diameter portion 11 and the large diameter portion 12 are larger than those of an aluminum alloy or a normal magnesium alloy. That is, in an aluminum alloy having a plate thickness of 2.0 mm or a normal magnesium alloy, the diameter of the small diameter portion is 3.0 mm and the diameter of the large diameter portion is 10 mm or less. On the other hand, the diameter of the small diameter part 11 in the flame retardant magnesium alloys 1 and 2 is 4.0 mm, and the diameter of the large diameter part 12 is 14 mm or more.
[0028]
That is, the diameters of the small diameter portion 11 and the large diameter portion 12 of the tool 10 used for friction stir welding of the flame retardant magnesium alloys 1 and 2 are the small diameter portion and the large diameter in the case of a normal magnesium alloy not containing an aluminum alloy or calcium. It is larger than the diameter of the part. The reason is that a continuous plastic flow is formed by enlarging the region where the plastic flow is generated by friction stirring and enlarging the high temperature region. The friction stir welding method for the flame retardant magnesium alloys 1 and 2 is different from, for example, the friction stir welding for an aluminum alloy (Japanese Patent No. 3070735).
[0029]
Further, in the friction stir welding of the flame retardant magnesium alloys 1 and 2, a screw 11a in the opposite direction is cut in the small diameter portion 11, thereby pushing up the plastic flow generated at the bottom to the plate surface while stirring. . In addition, when the screw | thread of the same direction as a rotation direction is cut in a small diameter part, it will become difficult to produce the plastic flow near the bottom face which tends to produce a defect. In addition, there is a tool that does not cut the screw at the small diameter portion, but in this case, the heat generation effect due to friction is smaller than that of the tool that cut the screw.
[0030]
An embodiment of the present invention will be described below.
As a flame retardant magnesium alloy, (AZ60 + Ca) were friction stir welded together. Here, AZ60 is a method for displaying chemical components of a magnesium alloy in which A (abbreviation of aluminum) is 6%, Z (abbreviation of zinc) is 0%, and the remainder is magnesium. A flame retardant magnesium alloy (for example, AZ60 + Ca) is obtained by melting calcium (Ca) by melting a normal magnesium alloy (AZ60) not containing calcium.
[0031]
A flame retardant magnesium alloy plate having a thickness of 2.0 mm was abutted and friction stir welded. Main joining conditions are a tool rotation speed of 1500 rpm and a joining speed of 100 mm / min. A pure magnesium plate having a thickness of 0.2 mm was inserted only into the butted portion in the vicinity of the position where the joining was started.
[0032]
As shown in FIG. 3, the bonded joint performance was processed into a tensile test piece having a parallel portion, the tensile strength and elongation in the tensile test were examined, and compared with the flame-retardant magnesium alloy base material (unit: mm). On the other hand, TIG welding was performed on the flame-retardant magnesium alloy in a butt shape, and the structure observation of the joint and the tensile strength of the joint were examined, and compared with the results of friction stir welding.
[0033]
As a result of observing the metal structure of the joint where (AZ60 + Ca) was friction stir welded, the beads on the joint surface were formed continuously, and no defects were observed. Further, as a result of observing the structure near the bottom surface of the bonded portion, a minute non-adhered portion called a kissing bond that is likely to be formed at the time of bonding failure was not detected. On the other hand, in TIG welding, many clear cracks were observed near the back surface of the joint, and it became clear that defects occurred. In addition, the calcium oxide was broken and fined by friction stirring, and was distributed almost uniformly.
[0034]
In addition, as a result of observing the structure of the joint obtained by friction stir welding of the tool at a high speed (for example, 3000 rpm) and at a high speed (for example, 500 mm / min), calcium oxide was finely distributed but was unevenly distributed. Such a non-uniform distribution of calcium oxide suggests that flame retardancy is reduced at the joint.
[0035]
The results of examining the tensile strength of the friction stir welded joint and the TIG welded joint are as shown in Table 2.
[0036]
[Table 2]
Figure 0003673819
In Table 2, in the case of TIG welding, the tensile strength of the joint was 247 MPa, and the joint was broken at the joint. In contrast, the tensile strength of the friction stir welded joint was 273 MPa, and the joint was broken at the base material portion of the flame retardant magnesium alloy. The elongation of the friction stir welded joint was 6.0%, which is equivalent to that of the base material, whereas the elongation of the TIG welded joint was only 1.2%. From the above joining results, the friction stir welding of the solid phase joining is more suitable as a joining method of the flame retardant magnesium alloy than the melt joining represented by TIG welding.
[0037]
The friction stir welding in the present invention described above (in the case of a combination of flame retardant magnesium alloys or a combination of a flame retardant magnesium alloy and a dissimilar metal) is a butt joint of plate materials, as shown in FIGS. The present invention can be applied to overlapping joining of plate materials, joining of joint shapes of fillets of plate materials, and the like. In addition, the flame retardant magnesium alloy in the present invention is obtained by melting a normal magnesium alloy to contain calcium, and preferably containing 1% to 3% calcium. There is no limit.
[0038]
In the above-described embodiment, as a friction stir welding method, it is applied to butt joining of plate materials, overlap bonding of plate materials, joining of joint shapes of fillets of plate materials, etc., but this is intended for pipe materials, The present invention can also be applied to a butt joint, a lap joint, and a fillet joint shape joint.
[0039]
In the above-described embodiment, the friction stir welding between the flame retardant magnesium alloys 1 and 2 is shown. This is different from the flame retardant magnesium alloy, for example, a normal magnesium alloy, an aluminum alloy, a copper alloy, etc. The same applies to the friction stir welding.
[0040]
In the above-described embodiment, the tool 10 is configured to be rotatable about the longitudinal axis 14 that is inclined with the advance angle θ set to [3 °]. It can be arbitrarily changed depending on the thickness and metal material, and in some cases, it may be vertical without an inclination.
[0041]
【The invention's effect】
According to the first aspect of the present invention described above, while rotating the tool, the small diameter portion is press-fitted into the joined portion, and the tool is moved in the joining direction so that the frictional heat generated in the joined portion causes frictional heat generated in the joined portion. Solid state joining can be performed while reducing deformation resistance and causing plastic flow to form joints between metals. In this way, by joining a magnesium alloy having a flame retardant effect by melting a normal magnesium alloy and containing calcium, or joining a flame retardant magnesium alloy and a dissimilar metal, the flame retardant magnesium alloy Without deteriorating the characteristics, it is possible to suppress the strength reduction and thermal deformation.
[0042]
At that time, the generation of frictional heat can be promoted by the magnesium thin plate inserted at the start position, so that the joining can be suitably performed. In addition, the plastic flow generated at the bottom can be pushed up to the surface (upper surface) while stirring in the direction opposite to the press-fitting direction by the screw in the reverse direction formed on the small diameter part, and by the pressing action by the surface of the large diameter part, Plastic outflow can be controlled, and sufficient agitation can be performed.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the present invention, which is a process of a friction stir welding method between metals, wherein (a) is a front view before joining starts, (b) is a side view before joining starts, (c) ) Is a side view at the start of joining, and (d) is a side view during joining.
FIG. 2 is a partially cutaway perspective view during the joining.
FIG. 3 is an explanatory view of the shape and dimensions of a tensile test piece of a joint obtained by the friction stir welding method of the present invention and a joint obtained by the TIG welding method.
FIG. 4 is a schematic perspective view showing an example of a joint shape capable of the friction stir welding method of the present invention.
[Explanation of symbols]
1 Flame retardant magnesium alloy (metal)
2 Flame retardant magnesium alloy (metal)
3 Joined part 3A Friction stir welding start position 4 Magnesium thin plate 5 Joined part 10 Tool 11 Small diameter part 11a Reverse screw 12 Large diameter part 12a Outflow prevention surface 13 Main body part 14 Vertical axis A Rotation direction B Joining direction θ Advance angle

Claims (1)

複数の金属の被接合部に対して、工具を、回転しながら圧入した状態で接合方向に移動させることで、金属間を摩擦攪拌接合する接合方法であって、
前記工具は、被接合部に圧入する小径部と、この小径部と同軸の大径部とを有するとともに、小径部の外面には回転方向に対して逆方向の螺子が形成されており、接合しようとする複数の金属のうち、少なくとも1つの金属はカルシウムを含有した難燃性マグネシウム合金からなり、これら金属の被接合部の開始位置にマグネシウム薄板を挿入したのち、被接合部の開始位置に工具の小径部を回転しながら圧入した状態で接合方向に相対移動させて、逆方向の螺子により圧入方向とは逆向きに攪拌しながら摩擦攪拌接合することを特徴とする金属間の摩擦攪拌接合方法。
A joining method for friction stir welding between metals by moving a tool in a joining direction in a state where it is press-fitted while rotating, against a plurality of metal joined parts,
The tool has a small-diameter portion that is press-fitted into the welded portion, and a large-diameter portion that is coaxial with the small-diameter portion, and a screw in a direction opposite to the rotation direction is formed on the outer surface of the small-diameter portion. Among the plurality of metals to be tried, at least one metal is made of a flame retardant magnesium alloy containing calcium, and after inserting a magnesium thin plate at the start position of the welded portion of these metals, at the start position of the welded portion. Friction stir welding between metals characterized in that the small diameter part of the tool is rotated and relatively moved in the joining direction while being pressed and friction stir welding is performed while stirring in the opposite direction to the press-fitting direction with a screw in the opposite direction. Method.
JP2003000005A 2003-01-06 2003-01-06 Friction stir welding method between metals Expired - Fee Related JP3673819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000005A JP3673819B2 (en) 2003-01-06 2003-01-06 Friction stir welding method between metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000005A JP3673819B2 (en) 2003-01-06 2003-01-06 Friction stir welding method between metals

Publications (2)

Publication Number Publication Date
JP2004209522A JP2004209522A (en) 2004-07-29
JP3673819B2 true JP3673819B2 (en) 2005-07-20

Family

ID=32818470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000005A Expired - Fee Related JP3673819B2 (en) 2003-01-06 2003-01-06 Friction stir welding method between metals

Country Status (1)

Country Link
JP (1) JP3673819B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516469B2 (en) * 2005-04-08 2010-08-04 本田技研工業株式会社 Laminate bonding method
JP2011079022A (en) * 2009-10-07 2011-04-21 Kurimoto Ltd FRICTION STIR WELDING METHOD FOR Mg AND Mg ALLOY
JP6731601B2 (en) * 2016-03-11 2020-07-29 国立大学法人大阪大学 Joining method for magnesium alloy materials
KR102246705B1 (en) * 2017-04-14 2021-05-03 아사히 가세이 가부시키가이샤 Dissimilar material joint material including flame-retardant magnesium alloy layer
JP7121402B2 (en) * 2017-08-08 2022-08-18 国立大学法人大阪大学 Magnesium-lithium alloy joining method and joined body

Also Published As

Publication number Publication date
JP2004209522A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
Watanabe et al. Joining of aluminum alloy to steel by friction stir welding
JP6350334B2 (en) Joining method and composite rolled material manufacturing method
Rao et al. Effect of process parameters on microstructure and mechanical behaviors of friction stir linear welded aluminum to magnesium
Ji et al. Effect of lap configuration on magnesium to aluminum friction stir lap welding assisted by external stationary shoulder
JP5044128B2 (en) Friction stir welding method and friction stir welding member for aluminum alloy and steel plate
Thomas Friction stir welding and related friction process characteristics
WO2019054400A1 (en) Double-sided friction stir welding method for metal plate and double-sided friction stir welding device
Dutra et al. Metallurgical characterization of the 5083H116 aluminum alloy welded with the cold metal transfer process and two different wire-electrodes (5183 and 5087)
WO2017154658A1 (en) Method for low-temperature joining of metal materials, and joint structure
JP2012183565A (en) Friction stir welding method and welding jig
JP2017070994A (en) Tool for friction stir welding and friction stir welding method
JP5151036B2 (en) Friction stir welding method
JP2006239734A (en) Weld joint and method for forming the same
Sajan et al. Friction stir welding of aluminum 6082 with mild steel and its joint analyses
Bandi et al. Friction stir lap welding of AZ31B and AA6061 alloys using tin as an inter-layer
JP3673819B2 (en) Friction stir welding method between metals
JPH10137952A (en) Joining method between aluminum material and different metal materials
JP2007301573A (en) Friction stirring and joining method and friction stirred and joined structure
JP7173081B2 (en) Friction stir welding method for aluminum alloy plate and steel plate
JP2007222899A (en) Friction stirring and joining method of dissimilar metallic members
JP6675554B2 (en) Dissimilar material friction stir welding method
WO2018154939A1 (en) Joining method
Chen Refill friction stir spot welding of dissimilar alloys
Ebrahimpour et al. Metallurgical and mechanical study of the effect of FSW parameters on dissimilar joining of St37 and AZ31
JP7165315B2 (en) Friction stir welding method for aluminum alloy plate and steel plate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees