JP6731601B2 - Joining method for magnesium alloy materials - Google Patents

Joining method for magnesium alloy materials Download PDF

Info

Publication number
JP6731601B2
JP6731601B2 JP2016047823A JP2016047823A JP6731601B2 JP 6731601 B2 JP6731601 B2 JP 6731601B2 JP 2016047823 A JP2016047823 A JP 2016047823A JP 2016047823 A JP2016047823 A JP 2016047823A JP 6731601 B2 JP6731601 B2 JP 6731601B2
Authority
JP
Japan
Prior art keywords
tool
friction stir
upper tool
lower tool
magnesium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016047823A
Other languages
Japanese (ja)
Other versions
JP2017159340A (en
Inventor
藤井 英俊
英俊 藤井
林太郎 上路
林太郎 上路
好昭 森貞
好昭 森貞
武 石川
武 石川
健太郎 渥美
健太郎 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Japan Transport Engineering Co
Original Assignee
Osaka University NUC
Japan Transport Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Japan Transport Engineering Co filed Critical Osaka University NUC
Priority to JP2016047823A priority Critical patent/JP6731601B2/en
Publication of JP2017159340A publication Critical patent/JP2017159340A/en
Application granted granted Critical
Publication of JP6731601B2 publication Critical patent/JP6731601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は難燃性マグネシウム合金材の摩擦攪拌接合方法に関する。 The present invention relates to a friction stir welding method for a flame-retardant magnesium alloy material.

各種輸送機器の省エネルギー化に対する要求等から、構造体への軽金属材の導入が進んでいる。特に、マグネシウムは実用金属中で最も軽量で比強度が高く、従来使用されてきた鉄鋼材やアルミニウム合金材の代替材として期待されている。 Due to demands for energy saving of various transportation equipment, introduction of light metal materials into structures is progressing. In particular, magnesium is the lightest of the practical metals and has a high specific strength, and is expected as a substitute material for the steel materials and aluminum alloy materials that have been conventionally used.

ここで、マグネシウムは活性な金属であり、燃焼しやすいことが用途拡大の障壁となっていたが、カルシウム(Ca)が添加されたマグネシウム合金の開発により、十分な難燃性を有するマグネシウム合金が実用化されている。 Here, magnesium is an active metal, and the fact that it is easy to burn has been a barrier to expansion of applications, but the development of a magnesium alloy to which calcium (Ca) has been added has led to the development of a magnesium alloy with sufficient flame retardancy. It has been put to practical use.

このような状況下において、難燃性マグネシウム合金材を接合する技術の確立が必要不可欠となっている。しかしながら、マグネシウムは難溶接材であり、溶接割れが生じやすく、溶接歪が大きいこと等が知られている。特に、一般的な溶融溶接では十分な接合強度及び信頼性を有する継手を得ることは極めて困難である。 Under these circumstances, it is essential to establish a technique for joining flame-retardant magnesium alloy materials. However, magnesium is a difficult-to-weld material, and it is known that weld cracking is likely to occur and welding distortion is large. In particular, it is extremely difficult to obtain a joint having sufficient joint strength and reliability by general fusion welding.

これに対し、マグネシウム材への摩擦攪拌接合の適用が検討されている。摩擦攪拌接合は固相接合であることから溶融溶接と比較して接合温度が低く、接合界面における金属間化合物の形成を抑制することができる等の利点を有している。 On the other hand, application of friction stir welding to magnesium materials is being studied. Since friction stir welding is a solid phase welding, it has advantages such as lower welding temperature than fusion welding and the formation of intermetallic compounds at the welding interface.

例えば、特許文献1(特開2011−79022号公報)では、マグネシウム及びマグネシウム合金の摩擦攪拌接合方法であって、摩擦攪拌接合用ツールのショルダ径/プローブ径が4以上であることを特徴とする摩擦攪拌接合方法、が開示されている。 For example, Patent Document 1 (JP 2011-79022A) discloses a friction stir welding method for magnesium and magnesium alloys, characterized in that a tool for friction stir welding has a shoulder diameter/probe diameter of 4 or more. A friction stir welding method is disclosed.

上記特許文献1に記載の摩擦攪拌接合方法においては、相対的にショルダ部による影響を強く受ける攪拌領域を増加させることで、マグネシウムの底面が接合表面に対して45°に配向することを抑制でき、従来よりも高い継手効率を有する摩擦攪拌接合継手を得ることができる、としている。 In the friction stir welding method described in Patent Document 1, it is possible to suppress the bottom surface of magnesium from being oriented at 45° with respect to the joining surface by increasing the stirring area relatively affected by the shoulder portion. It is said that it is possible to obtain a friction stir welding joint having higher joint efficiency than conventional ones.

特開2015−139808号公報JP, 2015-139808, A

しかしながら、上記特許文献1に開示されている接合方法では、マグネシウム材の摩擦攪拌接合において問題となる強い集合組織の形成を完全に抑制することができず、接合部に十分な引張強度及び伸びを付与することができない。特に、難燃性マグネシウム合金では母材中に酸化カルシウム粒子が分散しており、当該酸化カルシウム粒子は接合部の延性を低下させてしまう。よって、従来の摩擦攪拌接合では、引張強度と伸びを高いレベルで両立する難燃性マグネシウム合金の接合部を得ることができない。 However, the joining method disclosed in Patent Document 1 cannot completely suppress the formation of a strong texture, which is a problem in friction stir welding of magnesium materials, so that sufficient tensile strength and elongation can be obtained at the joint. Cannot be granted. In particular, in a flame-retardant magnesium alloy, calcium oxide particles are dispersed in the base material, and the calcium oxide particles reduce the ductility of the joint. Therefore, in the conventional friction stir welding, it is not possible to obtain a joint portion of the flame-retardant magnesium alloy that achieves both high tensile strength and high elongation.

以上のような従来技術における問題点に鑑み、本発明の目的は、高い接合強度と良好な伸びを有する継手を安定して得ることができる難燃性マグネシウム合金の接合方法を提供することにある。 In view of the above problems in the prior art, an object of the present invention is to provide a joining method for a flame-retardant magnesium alloy, which can stably obtain a joint having high joining strength and good elongation. ..

本発明者は上記目的を達成すべく、摩擦攪拌接合方法と継手強度の関係等について鋭意研究を重ねた結果、被接合部の両面から摩擦攪拌すること等が接合部の強度及び延性の向上に効果的であることを見出し、本発明に到達した。 In order to achieve the above-mentioned object, the present inventor has conducted extensive studies on the relationship between the friction stir welding method and the joint strength, and as a result, friction stir welding from both sides of the welded portion improves the strength and ductility of the welded portion. They have found that they are effective and have reached the present invention.

即ち、本発明は、
第1の被接合材と第2の被接合材との被接合部の表面側と裏面側とに、上部ツールと下部ツールとを相対向するように配置し、前記上部ツールと前記下部ツールとによって前記被接合部を同時に摩擦攪拌することで前記第1の被接合材と前記第2の被接合材とを摩擦攪拌接合する方法であって、
前記第1の被接合材と前記第2の被接合材の少なくとも一方を、マグネシウム合金に0.5〜12.0重量%のカルシウムが添加された難燃性マグネシウム合金とすること、
を特徴とするマグネシウム合金の接合方法を提供する。
That is, the present invention is
An upper tool and a lower tool are arranged so as to face each other on a front surface side and a back surface side of a joined portion of the first joined material and the second joined material, and the upper tool and the lower tool are arranged. A method of friction stir welding the first material to be welded and the second material to be welded by simultaneously frictionally stirring the material to be welded by
At least one of the first material to be joined and the second material to be joined is a flame-retardant magnesium alloy in which 0.5 to 12.0% by weight of calcium is added to a magnesium alloy,
A method for joining magnesium alloys is provided.

一般的な摩擦攪拌接合では、摩擦攪拌接合用ツール表面の接線方向にマグネシウムの(0001)底面が配向して集合組織を形成し、継手特性が低下することが知られている。これに対し、本発明の摩擦攪拌接合方法においては上部ツールによって生じる材料流動と下部ツールによって生じる材料流動との相互作用によって材料流動が複雑化し、強い配向を有する集合組織の形成を抑制することができる。 It is known that in general friction stir welding, the (0001) bottom surface of magnesium is oriented in the tangential direction of the surface of the tool for friction stir welding to form a texture, and the joint characteristics deteriorate. On the other hand, in the friction stir welding method of the present invention, the material flow is complicated by the interaction between the material flow generated by the upper tool and the material flow generated by the lower tool, and it is possible to suppress the formation of a texture having a strong orientation. it can.

ここで、上下からの摩擦攪拌が特に難燃性マグネシウム合金に効果的である理由については必ずしも明らかになっていないが、被接合材を難燃性マグネシウム合金材とすることで、通常のマグネシウム合金よりも顕著に材料流動を複雑化することができる。カルシウム添加に起因して形成される微細硬質粒子の影響により、摩擦攪拌中に変形しやすい領域と変形し難い領域が形成されることが原因の一つではないかと考えられる。加えて、微細硬質粒子のピン止め効果によって粒成長を抑制することができ、微細な母材結晶粒を形成することができる。つまり、難燃性マグネシウム合金の特徴である微細硬質粒子は材料流動特性を低下させるため、一般的な摩擦攪拌接合では不利であるが、上下からの適当な摩擦攪拌を用いることで難燃性マグネシウム合金の継手特性を飛躍的に向上させることができる。 Here, the reason why the friction stirring from above and below is particularly effective for the flame-retardant magnesium alloy is not always clear, but by using the flame-retardant magnesium alloy material as the material to be joined, the normal magnesium alloy The material flow can be made more complicated than that. It is considered that this is one of the causes that the regions that are easily deformed and the regions that are difficult to deform are formed during frictional stirring due to the influence of the fine hard particles formed due to the addition of calcium. In addition, grain growth can be suppressed by the pinning effect of fine hard particles, and fine base material crystal grains can be formed. In other words, the fine hard particles, which are the characteristics of the flame-retardant magnesium alloy, deteriorate the material flow characteristics, which is disadvantageous in general friction stir welding, but by using appropriate friction stir from above and below The joint characteristics of the alloy can be dramatically improved.

本発明の被接合材の少なくとも一方として用いる難燃性マグネシウム合金は、マグネシウム合金に0.5〜12.0重量%のカルシウムが添加された難燃性マグネシウム合金であって、本発明の効果を損なわない限りにおいて、従来公知の種々の難燃性マグネシウム合金を用いることができる。 The flame-retardant magnesium alloy used as at least one of the materials to be joined of the present invention is a flame-retardant magnesium alloy in which 0.5 to 12.0% by weight of calcium is added to the magnesium alloy. Various conventionally known flame-retardant magnesium alloys can be used as long as they are not impaired.

本発明のマグネシウム合金の接合方法においては、前記下部ツールの回転速度を前記上部ツールの回転速度の50〜90%とすること、が好ましい。下部ツールの回転速度を上部ツールの回転速度の50〜90%とすることで、継手に母材と同等レベルの伸びを付与することができる。下部ツールの回転速度を上部ツールの回転速度の50%以上とすることで、下部ツールによる攪拌不足を抑制することができ、90%以下とすることで、攪拌部への入熱が過多となることを抑制することができる。 In the magnesium alloy joining method of the present invention, it is preferable that the rotation speed of the lower tool is 50 to 90% of the rotation speed of the upper tool. By setting the rotation speed of the lower tool to be 50 to 90% of the rotation speed of the upper tool, it is possible to impart elongation to the joint at the same level as that of the base metal. By setting the rotation speed of the lower tool to 50% or more of the rotation speed of the upper tool, insufficient stirring by the lower tool can be suppressed, and by setting it to 90% or less, heat input to the stirring section becomes excessive. Can be suppressed.

また、本発明のマグネシウム合金の接合方法においては、前記下部ツールの回転速度を前記上部ツールの回転速度の80〜90%とすること、がより好ましい。下部ツールの回転速度を上部ツールの回転速度の80%以上とすることで、継手強度を母材強度の90%程度にまで上昇させることができる。つまり、下部ツールの回転速度を上部ツールの回転速度の80〜90%とすることで、強度と伸びを高いレベルで兼ね備えた難燃性マグネシウム合金の継手を得ることができる。下部ツールの回転速度を上部ツールの回転速度の80%以上とすることで継手強度が顕著に高くなる理由については必ずしも明らかになっていないが、被接合部の十分な攪拌、材料流動の複雑化による強い集合組織形成の抑制、強ひずみの導入による母材結晶粒の微細化等が良好にバランスする結果であると思われる。 In the magnesium alloy joining method of the present invention, it is more preferable that the rotation speed of the lower tool is 80 to 90% of the rotation speed of the upper tool. By setting the rotation speed of the lower tool to 80% or more of the rotation speed of the upper tool, the joint strength can be increased to about 90% of the base material strength. That is, by setting the rotation speed of the lower tool to 80 to 90% of the rotation speed of the upper tool, it is possible to obtain a flame-retardant magnesium alloy joint having both high strength and high elongation. The reason why the joint strength is significantly increased by setting the rotation speed of the lower tool to 80% or more of the rotation speed of the upper tool is not always clear, but sufficient stirring of the welded part and complication of material flow are complicated. It is considered that the results show that the suppression of the formation of a strong texture due to the above and the refinement of the base material crystal grains due to the introduction of the strong strain are well balanced.

また、本発明のマグネシウム合金の接合方法においては、プローブ部を有する摩擦攪拌接合用ツールを前記上部ツールとして用い、プローブ部を有さないフラットツールを前記下部ツールとして用いること、が好ましい。下部ツールにフラットツールを用いることで、プローブ部を有する上部ツールで形成される材料流動とは異なる材料流動を形成させることができ、上部ツール及び下部ツールに同種のツールを用いる場合と比較して、材料流動をより複雑化することができる。加えて、下部ツールがプローブ部を有する場合は当該プローブの通過領域も材料流動によって埋め戻す必要があり、適切接合条件範囲の観点から問題となる。 In the magnesium alloy joining method of the present invention, it is preferable to use a friction stir welding tool having a probe portion as the upper tool and a flat tool having no probe portion as the lower tool. By using a flat tool for the lower tool, it is possible to form a material flow that is different from the material flow formed by the upper tool that has the probe part, and compared with the case of using the same type of tool for the upper tool and the lower tool. The material flow can be made more complicated. In addition, when the lower tool has a probe portion, the passage area of the probe needs to be backfilled by material flow, which is a problem from the viewpoint of an appropriate range of joining conditions.

また、本発明のマグネシウム合金の接合方法においては、前記上部ツールの底面(被接合材と当接する面)と前記下部ツールの底面(被接合材と当接する面)とのなす角が0.5〜7°であること、が好ましい。上部ツールの底面と下部ツールの底面とのなす角を0.5〜7°とすることで、材料流動を効率的に複雑化することができる。 In the magnesium alloy joining method of the present invention, the angle between the bottom surface of the upper tool (the surface that contacts the material to be welded) and the bottom surface of the lower tool (the surface that contacts the material to be welded) is 0.5. It is preferably ˜7°. By setting the angle between the bottom surface of the upper tool and the bottom surface of the lower tool to be 0.5 to 7°, the material flow can be efficiently complicated.

更に、本発明のマグネシウム合金の接合方法においては、前記上部ツールのみに前進角を設けること、が好ましい。上部ツールのみに前進角を設けることにより、上部ツールによって形成される材料流動と前進角を設けない下部ツールによって形成される材料流動とに変化を与えることができ、これらの相互作用によって最終的に得られる材料流動をより効率的に複雑化することができる。なお、上部ツールの前進角は0.5〜5°とすることが好ましく、2〜4°とすることがより好ましい。 Further, in the magnesium alloy joining method of the present invention, it is preferable that only the upper tool has an advance angle. By providing the advancing angle only to the upper tool, it is possible to change the material flow formed by the upper tool and the material flow formed by the lower tool without the advancing angle, and these interactions ultimately lead to The resulting material flow can be more efficiently complicated. The advance angle of the upper tool is preferably 0.5 to 5°, more preferably 2 to 4°.

本発明によれば、高い接合強度と良好な伸びを有する継手を安定して得ることができる難燃性マグネシウム合金の接合方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the joining method of the flame-retardant magnesium alloy which can obtain stably the joint which has high joint strength and favorable elongation can be provided.

本発明のマグネシウム合金の接合方法を示す模式図である。It is a schematic diagram which shows the joining method of the magnesium alloy of this invention. 摩擦攪拌接合継手の攪拌部近傍の断面マクロ写真である。It is a cross-sectional macro photograph of the vicinity of the stirring portion of the friction stir welding joint. 引張試験片の採取位置及び形状を示す模式図である。It is a schematic diagram which shows the sampling position and shape of a tensile test piece. 摩擦攪拌接合継手の引張特性を示すグラフである。It is a graph which shows the tensile characteristic of a friction stir welding joint. 攪拌部のEBSD結晶方位マップ像及び平均結晶粒径である。It is an EBSD crystal orientation map image and an average crystal grain size of a stirring part.

以下、図面を参照しながら本発明のマグネシウム合金の接合方法の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Hereinafter, typical embodiments of the method for joining magnesium alloys of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these. In the following description, the same or corresponding parts will be denoted by the same reference symbols, and redundant description may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions of each of the illustrated components and their ratios may differ from the actual ones.

図1は、本発明のマグネシウム合金の接合方法を示す模式図である。第1の被接合材2と第2の被接合材4とを突合せ、被接合界面6が形成されている。ここで、被接合界面6に対して適切な位置に、表面側に上部ツール8、裏面側に下部ツール10が相対向するように配置し、被接合界面6を上部ツール8及び下部ツール10によって同時に摩擦攪拌することで攪拌部12が形成され、接合が達成される。 FIG. 1 is a schematic diagram showing a method for joining magnesium alloys according to the present invention. The first joined material 2 and the second joined material 4 are butted against each other to form the joined interface 6. Here, the upper tool 8 is arranged on the front surface side and the lower tool 10 is arranged on the rear surface side at appropriate positions with respect to the bonded interface 6, and the bonded interface 6 is arranged by the upper tool 8 and the lower tool 10. At the same time, friction stirring is performed to form the stirring portion 12, and the joining is achieved.

摩擦攪拌接合はFSW(Friction Stir Welding)と称され、接合しようとする二つの金属材からなる被接合材それぞれの端部を突き合わせ、回転ツールの先端に設けられた突起部(プローブ部)を両者の端部の間に挿入し、これら端部の長手方向に沿って回転ツールを回転させつつ移動させることによって、二つの金属部材を接合する方法である。 Friction stir welding is called FSW (Friction Stir Welding), and the ends of the materials to be joined made of two metal materials to be joined are butted against each other, and the protrusion (probe) provided at the tip of the rotary tool is used. It is a method of joining two metal members by inserting the two metal members by inserting them between the end portions of the two and rotating the rotary tool along the longitudinal direction of these end portions.

第1の被接合材2と第2の被接合材4の少なくとも一方は、マグネシウム合金に0.5〜12.0重量%のカルシウムが添加された難燃性マグネシウム合金である。本発明の効果を損なわない限りにおいて、難燃性マグネシウム合金のその他の組成及び組織は特に限定されず、従来公知の種々の難燃性マグネシウム合金を用いることができる。 At least one of the first to-be-joined material 2 and the second to-be-joined material 4 is a flame-retardant magnesium alloy in which 0.5 to 12.0% by weight of calcium is added to the magnesium alloy. Other compositions and structures of the flame-retardant magnesium alloy are not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known flame-retardant magnesium alloys can be used.

上部ツール8にはプローブ部を有する摩擦攪拌接合用ツールを用い、下部ツール10にはプローブ部を有さないフラットツールを用いることが好ましい。この場合、上部ツール8はプローブ部を有する摩擦攪拌接合用ツールであれば特に限定されず、従来公知の種々の形状及び材質のツールを用いることができる。プローブ部の長さは第1の被接合材2及び第2の被接合材4の厚さによって決定すればよく、当該厚さと略同等か僅かに短い長さとすることが好ましい。また、材質としては、例えば、工具鋼、超硬合金及びセラミックス等を挙げることができる。 It is preferable to use a friction stir welding tool having a probe portion for the upper tool 8 and a flat tool having no probe portion for the lower tool 10. In this case, the upper tool 8 is not particularly limited as long as it is a friction stir welding tool having a probe portion, and conventionally known tools having various shapes and materials can be used. The length of the probe portion may be determined by the thicknesses of the first material 2 and the second material 4 to be joined, and it is preferable that the length is approximately equal to or slightly shorter than the thickness. Further, examples of the material include tool steel, cemented carbide, and ceramics.

また、下部ツール10の形状及び材質も上部ツール8の場合と同様に、第1の被接合材2及び第2の被接合材4の材質及び厚さ等によって適宜決定すればよい。ここで、下部ツール10の表面は完全にフラットである必要はなく、例えば、僅かな凹形状や凸形状としてもよい。なお、下部ツール10にプローブ部を設ける場合、当該プローブ部の長さは上部ツール8のプローブ部の長さの2/3以下とすることが好ましい。下部ツール10のプローブ部の長さを上部ツール8のプローブ部の長さの2/3以下とすることで、攪拌部における欠陥の形成を抑制することができる。また、下部ツール10は回転する裏板と見做すこともでき、用いる材質の熱伝導率によって、攪拌部12への入熱及び抜熱を制御することができる。 Further, the shape and material of the lower tool 10 may be appropriately determined depending on the material and thickness of the first material 2 and the second material 4 to be bonded, as in the case of the upper tool 8. Here, the surface of the lower tool 10 does not need to be completely flat, and may have, for example, a slight concave shape or a convex shape. When the probe part is provided on the lower tool 10, the length of the probe part is preferably set to be ⅔ or less of the length of the probe part of the upper tool 8. By setting the length of the probe portion of the lower tool 10 to be ⅔ or less of the length of the probe portion of the upper tool 8, formation of defects in the stirring portion can be suppressed. The lower tool 10 can also be regarded as a rotating back plate, and the heat input to and the heat removal from the stirring unit 12 can be controlled by the thermal conductivity of the material used.

下部ツール10の回転速度は、上部ツール8の回転速度の50〜90%とすることが好ましい。下部ツール10の回転速度を上部ツール8の回転速度の50〜90%とすることで、継手に母材(第1の被接合材2及び/又は第2の被接合材4)と同等レベルの伸びを付与することができる。下部ツール10の回転速度を上部ツール8の回転速度の50%以上とすることで、下部ツール10による攪拌不足を抑制することができ、90%以下とすることで、攪拌部12への入熱が過多となることを抑制することができる。 The rotation speed of the lower tool 10 is preferably 50 to 90% of the rotation speed of the upper tool 8. By setting the rotation speed of the lower tool 10 to 50 to 90% of the rotation speed of the upper tool 8, the joint has a level equivalent to that of the base material (the first joined material 2 and/or the second joined material 4). Elongation can be imparted. By setting the rotation speed of the lower tool 10 to 50% or more of the rotation speed of the upper tool 8, insufficient stirring by the lower tool 10 can be suppressed, and by setting it to 90% or less, heat input to the stirring unit 12 can be reduced. Can be prevented from becoming excessive.

また、下部ツール10の回転速度は、上部ツール8の回転速度の80〜90%とすることがより好ましい。下部ツール10の回転速度を上部ツール8の回転速度の80%以上とすることで、継手強度を母材(第1の被接合材2及び/又は第2の被接合材4)強度の90%程度にまで上昇させることができる。つまり、下部ツール10の回転速度を上部ツール8の回転速度の80〜90%とすることで、強度と伸びを高いレベルで兼ね備えた難燃性マグネシウム合金の継手を得ることができる。下部ツール10の回転速度を上部ツール8の回転速度の80%以上とすることで継手強度が高くなる理由については必ずしも明らかになっていないが、上述の通り、被接合部の十分な攪拌、材料流動の複雑化による強い集合組織形成の抑制、強ひずみの導入による母材結晶粒の微細化等が良好にバランスする結果であると思われる。 Further, the rotation speed of the lower tool 10 is more preferably 80 to 90% of the rotation speed of the upper tool 8. By setting the rotation speed of the lower tool 10 to 80% or more of the rotation speed of the upper tool 8, the joint strength is 90% of the strength of the base material (the first welded material 2 and/or the second welded material 4). Can be raised to a degree. That is, by setting the rotation speed of the lower tool 10 to 80 to 90% of the rotation speed of the upper tool 8, it is possible to obtain a flame-retardant magnesium alloy joint having both high strength and high elongation. The reason why the joint strength is increased by setting the rotation speed of the lower tool 10 to 80% or more of the rotation speed of the upper tool 8 is not always clear, but as described above, sufficient stirring of the joined portion, material It is considered that the result is a good balance between suppression of formation of strong texture due to complicated flow, and refinement of base material crystal grains due to introduction of strong strain.

また、上部ツール8及び/又は下部ツール10を傾斜させ、上部ツール8の底面(被接合材と当接する面)と下部ツール10の底面(被接合材と当接する面)とのなす角を0.5〜7°とすることが好ましい。上部ツール8の底面と下部ツール10の底面とのなす角を0.5〜7°とすることで、材料流動を効率的に複雑化することができる。 Further, the upper tool 8 and/or the lower tool 10 is inclined so that the angle formed by the bottom surface of the upper tool 8 (the surface that contacts the material to be welded) and the bottom surface of the lower tool 10 (the surface that contacts the material to be welded) is 0. It is preferably 0.5 to 7°. By setting the angle between the bottom surface of the upper tool 8 and the bottom surface of the lower tool 10 to be 0.5 to 7°, the material flow can be efficiently complicated.

更に、下部ツール10には前進角を設けず、上部ツール8のみに前進角を設けることが好ましい。上部ツール8のみに前進角を設けることにより、上部ツール8によって形成される材料流動と下部ツール10によって形成される材料流動とに変化を付けることができ、これらの相互作用によって最終的に得られる材料流動をより複雑化することができる。なお、上部ツール8の前進角は0.5〜5°とすることが好ましく、2〜4°とすることがより好ましい。 Further, it is preferable that the lower tool 10 is not provided with an advance angle, and only the upper tool 8 is provided with an advance angle. By providing the advancing angle only to the upper tool 8, it is possible to change the material flow formed by the upper tool 8 and the material flow formed by the lower tool 10, and it is finally obtained by their interaction. Material flow can be made more complicated. The advance angle of the upper tool 8 is preferably 0.5 to 5°, more preferably 2 to 4°.

以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。なお、上記実施形態は突合せ接合となっているが、本発明のマグネシウム合金の接合方法は重ね合わせ接合にも適用することができる。また、上部ツールと下部ツールの配置を上下逆にする態様も本発明の技術的範囲に含まれる。 Although the representative embodiments of the present invention have been described above, the present invention is not limited to these, and various design changes are possible, and all the design changes are included in the technical scope of the present invention. Be done. In addition, although the above embodiment is a butt joint, the joining method of the magnesium alloy of the present invention can be applied to the lap joint. Further, a mode in which the upper tool and the lower tool are arranged upside down is also included in the technical scope of the present invention.

≪実施例1≫
図1に示す配置で、難燃性マグネシウム合金AZX612板材(Al:6wt%,Zn:1wt%,Ca:2wt%,Mg:Bal.)同士を突合せ、当該突合せ面の上下からツールを挿入して摩擦攪拌接合を施した。上部ツール及び下部ツールは工具鋼(JIS−SKD61)製とし、上部ツールは底面にプローブ部(突起部)を有する一般的な摩擦攪拌接合用ツール、下部ツールはプローブ部(突起部)を有さないフラットツールとした。上部ツール本体部は直径15mmの円柱状、プローブ部(突起部)は直径6mm、長さ2.8mmの円柱状であり、下部ツールは直径15mmの円柱状である。
<<Example 1>>
In the arrangement shown in FIG. 1, flame-retardant magnesium alloy AZX612 plate materials (Al: 6 wt %, Zn: 1 wt %, Ca: 2 wt %, Mg: Bal.) are butted against each other, and a tool is inserted from above and below the butted surface. Friction stir welding was performed. The upper tool and the lower tool are made of tool steel (JIS-SKD61), the upper tool is a general friction stir welding tool having a probe portion (projection portion) on the bottom surface, and the lower tool has a probe portion (projection portion). With no flat tools. The upper tool body has a cylindrical shape with a diameter of 15 mm, the probe portion (protrusion) has a cylindrical shape with a diameter of 6 mm and a length of 2.8 mm, and the lower tool has a cylindrical shape with a diameter of 15 mm.

摩擦攪拌接合条件は、上部ツール前進角:3°、下部ツール前進角:0°、上部ツール回転速度:600rpm、下部ツール回転速度:600rpm、上部ツール回転方向:時計回り、下部ツール回転方向:時計回り、接合速度:500mm/min、制御方式:ツール位置制御(上部ツール底面及び下部ツール底面を被接合材に略0.2mm挿入)とした。なお、板材のサイズは200mm×65mm×3mmである。得られた摩擦攪拌接合継手の攪拌部近傍の断面マクロ写真を図2に示す。 Friction stir welding conditions are: upper tool advance angle: 3°, lower tool advance angle: 0°, upper tool rotation speed: 600 rpm, lower tool rotation speed: 600 rpm, upper tool rotation direction: clockwise, lower tool rotation direction: clock Rotation, welding speed: 500 mm/min, control method: tool position control (upper tool bottom surface and lower tool bottom surface inserted into the material to be welded by approximately 0.2 mm). The size of the plate material is 200 mm×65 mm×3 mm. FIG. 2 shows a cross-sectional macrophotograph of the vicinity of the stirring portion of the obtained friction stir welding joint.

得られた摩擦攪拌接合継手から図3に示す位置及び形状の引張試験片を切り出し、引張試験機(SHIMADZU Autograph AGS−X 10kN)を用いてクロスヘッドスピード1mm/minにて引張試験を行った。得られた引張特性を図4に示す。 A tensile test piece having the position and shape shown in FIG. 3 was cut out from the obtained friction stir welded joint, and a tensile test was performed at a crosshead speed of 1 mm/min using a tensile tester (SHIMADZU Autograph AGS-X 10 kN). The tensile properties obtained are shown in FIG.

得られた摩擦攪拌接合継手の攪拌部における、異なる4領域のEBSD結晶方位マップ像及び平均結晶粒径を図5に示す。測定領域は図5に示すa〜eで、母材の平均粒径は図中に値を示している。なお、EBSD測定にはFE−SEM(日本電子株式会社製JSM−7001FA)及びTSL社製のOIM data Collection ver5.31を用いた。 FIG. 5 shows EBSD crystal orientation map images and average crystal grain sizes of four different regions in the stirring portion of the obtained friction stir welding joint. The measurement area is a to e shown in FIG. 5, and the average particle size of the base material is shown in the figure. For EBSD measurement, FE-SEM (JSM-7001FA manufactured by JEOL Ltd.) and OIM data Collection ver 5.31 manufactured by TSL were used.

≪実施例2≫
下部ツールの回転速度を500rpmとした以外は実施例1と同様にして、摩擦攪拌接合継手を得た。また、実施例1と同様にして各種評価を行い、得られた結果を図2、図4及び図5に示した。
<<Example 2>>
A friction stir welding joint was obtained in the same manner as in Example 1 except that the rotation speed of the lower tool was 500 rpm. Various evaluations were performed in the same manner as in Example 1, and the obtained results are shown in FIGS. 2, 4 and 5.

≪実施例3≫
下部ツールの回転速度を400rpmとした以外は実施例1と同様にして、摩擦攪拌接合継手を得た。また、実施例1と同様にして各種評価を行い、得られた結果を図2、図4及び図5に示した。
<<Example 3>>
A friction stir welding joint was obtained in the same manner as in Example 1 except that the rotation speed of the lower tool was 400 rpm. Various evaluations were performed in the same manner as in Example 1, and the obtained results are shown in FIGS. 2, 4 and 5.

≪実施例4≫
下部ツールの回転速度を300rpmとした以外は実施例1と同様にして、摩擦攪拌接合継手を得た。また、実施例1と同様にして各種評価を行い、得られた結果を図2、図4及び図5に示した。
<<Example 4>>
A friction stir welding joint was obtained in the same manner as in Example 1 except that the rotation speed of the lower tool was 300 rpm. Various evaluations were performed in the same manner as in Example 1, and the obtained results are shown in FIGS. 2, 4 and 5.

≪比較例≫
本発明の実施例と比較するために、被接合材の表面側からのみツールを挿入する一般的な摩擦攪拌接合を行った。具体的には、摩擦攪拌接合用ツールとして上部ツールのみを用いて回転速度を1000rpmとし、下部ツールの代わりに工具鋼製の固定裏板を用いた以外は実施例1と同様にして、摩擦攪拌接合継手を得た。また、実施例1と同様にして各種評価を行い、得られた結果を図2、図4及び図5に示した。
≪Comparison example≫
For comparison with the examples of the present invention, general friction stir welding was performed in which the tool was inserted only from the surface side of the materials to be welded. Specifically, the friction stir welding was performed in the same manner as in Example 1 except that only the upper tool was used as the friction stir welding tool, the rotation speed was set to 1000 rpm, and a fixed back plate made of tool steel was used in place of the lower tool. A joint was obtained. Further, various evaluations were performed in the same manner as in Example 1, and the obtained results are shown in FIGS. 2, 4 and 5.

ここで、下部ツールを用いた場合は攪拌部への入熱が増加することを考慮し、本発明の実施例と略同等の比較を行うために、比較例ではツールの回転速度を1000rpmに増加させている。 Here, in consideration of an increase in heat input to the stirring section when the lower tool is used, in order to perform a comparison substantially similar to the embodiment of the present invention, the rotation speed of the tool is increased to 1000 rpm in the comparative example. I am making it.

図2において、実施例1〜実施例4では上部ツール及び下部ツールの影響を受けた攪拌部が形成されており、当該攪拌部に欠陥は認められない。また、比較例で得られた継手の攪拌部は一般的に知られている形状を有しており、実施例と同じく欠陥は認められない。 In FIGS. 2A and 2B, in Examples 1 to 4, the stirring section affected by the upper tool and the lower tool is formed, and no defect is recognized in the stirring section. Further, the stirring portion of the joint obtained in the comparative example has a generally known shape, and no defects are recognized as in the example.

図4において、実施例で得られた全ての摩擦攪拌接合継手の引張強度及び伸びは、比較例で得られた摩擦攪拌接合継手の引張強度及び伸びよりも明らかに高い値を示している。特に、実施例2及び実施例3で得られた摩擦攪拌接合継手の伸びは被接合材と同等であり、実施例1及び実施例2で得られた摩擦攪拌接合継手の引張強度は被接合材の9割以上となっている。 In FIG. 4, the tensile strengths and elongations of all the friction stir welded joints obtained in the examples are clearly higher than those of the friction stir welded joints obtained in the comparative example. In particular, the elongation of the friction stir welded joints obtained in Examples 2 and 3 is equivalent to that of the materials to be welded, and the tensile strength of the friction stir welded joints obtained in Examples 1 and 2 is the material to be welded. More than 90%.

図5において、比較例で得られた攪拌部には(0001)底面の強い集合組織が形成されているのに対し、実施例で得られた攪拌部では結晶粒の方位がランダム化されていることが分かる。なお、実施例の母材結晶粒径は比較例よりも僅かに大きくなっているが、未接合部の母材結晶粒径と比較すると数分の1程度にまで微細化されている。 In FIG. 5, in the stirring part obtained in the comparative example, a strong texture of (0001) bottom face is formed, whereas in the stirring part obtained in the example, the orientation of crystal grains is randomized. I understand. Although the base material crystal grain size of the example is slightly larger than that of the comparative example, the base material crystal grain size is reduced to a fraction of that of the base material crystal grain size of the unbonded portion.

2・・・第1の被接合材、
4・・・第2の被接合材、
6・・・被接合界面、
8・・・上部ツール、
10・・・下部ツール、
12・・・攪拌部。
2... the first material to be joined,
4... second material to be joined,
6... Interface to be bonded,
8... upper tool,
10... Lower tool,
12... Stirrer.

Claims (3)

第1の被接合材と第2の被接合材との被接合部の表面側と裏面側とに、上部ツールと下部ツールとを相対向するように配置し、前記上部ツールと前記下部ツールとによって前記被接合部を同時に摩擦攪拌することで前記第1の被接合材と前記第2の被接合材とを摩擦攪拌接合する方法であって、
前記第1の被接合材と前記第2の被接合材の少なくとも一方を、マグネシウム合金に0.5〜12.0重量%のカルシウムが添加された難燃性マグネシウム合金とし、
前記上部ツールのみに前進角を設けること、
を特徴とするマグネシウム合金の接合方法。
An upper tool and a lower tool are arranged so as to face each other on a front surface side and a back surface side of a joined portion of the first joined material and the second joined material, and the upper tool and the lower tool are arranged. A method of friction stir welding the first material to be welded and the second material to be welded by simultaneously frictionally stirring the material to be welded by
At least one of the first to-be-joined material and the second to-be-joined material is a flame-retardant magnesium alloy obtained by adding 0.5 to 12.0% by weight of calcium to a magnesium alloy,
Providing an advance angle only on the upper tool,
A method for joining magnesium alloys characterized by the above.
プローブ部を有する摩擦攪拌接合用ツールを前記上部ツールとして用い、
プローブ部を有さないフラットツールを前記下部ツールとして用いること、
を特徴とする請求項1に記載のマグネシウム合金の接合方法。
Using a friction stir welding tool having a probe portion as the upper tool,
Using a flat tool without a probe as the lower tool,
The method for joining magnesium alloys according to claim 1, wherein:
前記上部ツールの底面と前記下部ツールの底面とのなす角が0.5〜7°であること、
を特徴とする請求項1又は2に記載のマグネシウム合金の接合方法。
An angle between the bottom surface of the upper tool and the bottom surface of the lower tool is 0.5 to 7°,
The method for joining magnesium alloys according to claim 1 or 2, characterized in that:
JP2016047823A 2016-03-11 2016-03-11 Joining method for magnesium alloy materials Active JP6731601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016047823A JP6731601B2 (en) 2016-03-11 2016-03-11 Joining method for magnesium alloy materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016047823A JP6731601B2 (en) 2016-03-11 2016-03-11 Joining method for magnesium alloy materials

Publications (2)

Publication Number Publication Date
JP2017159340A JP2017159340A (en) 2017-09-14
JP6731601B2 true JP6731601B2 (en) 2020-07-29

Family

ID=59853666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016047823A Active JP6731601B2 (en) 2016-03-11 2016-03-11 Joining method for magnesium alloy materials

Country Status (1)

Country Link
JP (1) JP6731601B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3673819B2 (en) * 2003-01-06 2005-07-20 兵庫県 Friction stir welding method between metals
JP3740125B2 (en) * 2003-01-16 2006-02-01 三菱重工業株式会社 Friction stir welding apparatus and joining method thereof
JP4838389B1 (en) * 2010-09-03 2011-12-14 三菱日立製鉄機械株式会社 Double-side friction stir welding method for metal plates with gaps in the butt
JP6383961B2 (en) * 2014-03-26 2018-09-05 国立大学法人大阪大学 Friction stir welding apparatus and friction stir welding method

Also Published As

Publication number Publication date
JP2017159340A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
Watanabe et al. Joining of aluminum alloy to steel by friction stir welding
Elangovan et al. Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy
JP6579596B2 (en) Low temperature bonding method for metal material and bonded structure
Elangovan et al. Developing an empirical relationship to predict tensile strength of friction stir welded AA2219 aluminum alloy
JP5021097B2 (en) Joining method of aluminum alloy material
JPWO2005105361A1 (en) Metal joining method
JP7247996B2 (en) Rotary tool for double-sided friction stir welding and double-sided friction stir welding method
Dutra et al. Metallurgical characterization of the 5083H116 aluminum alloy welded with the cold metal transfer process and two different wire-electrodes (5183 and 5087)
JP5690331B2 (en) Dissimilar material joined body and joining method thereof
US20190040504A1 (en) Particulate for additive manufacturing techniques
JPWO2013077455A1 (en) Aluminum member joining method and aluminum structure joined by the joining method
JP6731601B2 (en) Joining method for magnesium alloy materials
JP6426883B2 (en) Method of manufacturing joined body excellent in corrosion resistance
JP6645615B2 (en) Joining method
JP6590334B2 (en) Friction stir welding method and friction stir welding member
JP6675554B2 (en) Dissimilar material friction stir welding method
JP2005186072A (en) Method of movable surface-friction welding for joining thin plate
JP2006281303A (en) Submerged arc welding method for high strength steel sheet
JP3673819B2 (en) Friction stir welding method between metals
Li et al. Feasibility and interface migration characteristics of friction stir lap welding of LA141 Mg-Li alloy
JP6033542B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
JP6801702B2 (en) Friction stir welding member and friction stir welding method
KR102375236B1 (en) Friction stir welding method of high strength material
JP6574691B2 (en) Dissimilar metal joined body and manufacturing method thereof
JP2007296563A (en) Friction welding method for steel and aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6731601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250