JP2007253033A - Catalyst for producing methacrylic acid, its production method, and production method of methacrylic acid - Google Patents

Catalyst for producing methacrylic acid, its production method, and production method of methacrylic acid Download PDF

Info

Publication number
JP2007253033A
JP2007253033A JP2006079015A JP2006079015A JP2007253033A JP 2007253033 A JP2007253033 A JP 2007253033A JP 2006079015 A JP2006079015 A JP 2006079015A JP 2006079015 A JP2006079015 A JP 2006079015A JP 2007253033 A JP2007253033 A JP 2007253033A
Authority
JP
Japan
Prior art keywords
methacrylic acid
catalyst
producing
liquid
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006079015A
Other languages
Japanese (ja)
Other versions
JP4825030B2 (en
Inventor
Tsutomu Fujita
藤田  勉
Tomohiro Masaki
朋博 柾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006079015A priority Critical patent/JP4825030B2/en
Publication of JP2007253033A publication Critical patent/JP2007253033A/en
Application granted granted Critical
Publication of JP4825030B2 publication Critical patent/JP4825030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst used when producing methacrylic acid by gas-phase catalytic oxidation of methacrolein with molecular oxygen, which can display higher yield of methacrylic acid. <P>SOLUTION: A production method of the catalyst with a specific composition for producing methacrylic acid has a calcination step for calcining a catalyst precursor at 200-500°C, and a removing step for extracting at least a part of water-soluble component in a calcined material obtained in the calcination step from the calcined material into an extraction solvent to be removed. After the removing step, drying and calcination are usually carried out. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用されるメタクリル酸製造用触媒およびその製造方法と、メタクリル酸の製造方法に関する。   The present invention relates to a catalyst for producing methacrylic acid used when producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, a method for producing the same, and a method for producing methacrylic acid.

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する触媒としては、モリブドリン酸、モリブドリン酸塩などを主成分とするものが知られている。これら触媒の製造方法については数多くの検討がなされていて、その多くでは、まず、触媒を構成する各元素を含む水溶液または水性スラリーなどの原料液を調製し、その後、これを乾燥、焼成することで、触媒を製造している。その他には、原料液を乾燥後、予備焼成を行ってから、アンモニア水で混練り処理、再乾燥、焼成を実施する方法なども検討されている(特許文献1参照。)。   As a catalyst for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen, a catalyst containing molybdophosphoric acid, molybdophosphate or the like as a main component is known. Many studies have been made on the production methods of these catalysts. In many of them, first, a raw material liquid such as an aqueous solution or an aqueous slurry containing each element constituting the catalyst is prepared, and then this is dried and calcined. And the catalyst is manufactured. In addition, after the raw material liquid is dried and pre-baked, a method of kneading with ammonia water, re-drying, and baking is also studied (see Patent Document 1).

ところが、これら従来の方法で製造された触媒は、必ずしも工業用触媒として十分なメタクリル酸収率を発揮するものではなかった。
そこで、触媒中の低活性成分を除去し、活性種の割合を高めることで、触媒の性能を向上させようとする方法が検討されている。この種の触媒の活性種は、モリブドリン酸やモリブドバナリン酸などの水溶性成分であると考えられ(非特許文献1参照。)、一方、触媒原料に由来する硫酸根などは低活性成分であると考えられている。このような観点から、例えば特許文献2には、硫酸根を触媒の原料液から硫酸バリウムとして除去する技術が開示されている。
特開平9−290161号公報 特開平6−287160号公報 植嶋ら、表面,24(10),582(1986)
However, the catalysts produced by these conventional methods do not always exhibit a sufficient methacrylic acid yield as an industrial catalyst.
Therefore, a method for improving the performance of the catalyst by removing low active components in the catalyst and increasing the ratio of active species has been studied. The active species of this type of catalyst are considered to be water-soluble components such as molybdophosphoric acid and molybdovanaric acid (see Non-Patent Document 1), while sulfate radicals derived from catalyst raw materials are low-activity components. It is considered. From such a viewpoint, for example, Patent Document 2 discloses a technique for removing sulfate radicals as barium sulfate from a catalyst raw material liquid.
JP-A-9-290161 JP-A-6-287160 Ueshima et al., Surface, 24 (10), 582 (1986)

しかしながら、特許文献2に記載されているような方法でも、触媒性能の向上は不十分であった。   However, even with the method described in Patent Document 2, the improvement in catalyst performance was insufficient.

本発明は上記事情に鑑みてなされたもので、より高いメタクリル酸収率を発揮できるメタクリル酸製造用触媒の提供を課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the catalyst for methacrylic acid production which can exhibit a higher methacrylic acid yield.

上述したように、この種のメタクリル酸製造用触媒の活性種は、モリブドリン酸やモリブドバナリン酸などの水溶性成分であるとされ、従来は、このような水溶性成分の触媒中の比率を高めようとする検討がなされてきたが、本発明者らは鋭意検討した結果、驚くべきことに、水溶性成分の少なくとも一部を除去することによって、その理由は明らかではないが、より高いメタクリル酸収率を発揮できるメタクリル酸製造用触媒が得られることを見出して本発明を完成するに至った。   As described above, the active species of this type of methacrylic acid production catalyst are considered to be water-soluble components such as molybdophosphoric acid and molybdovanaric acid, and conventionally, the ratio of such water-soluble components in the catalyst will be increased. However, as a result of intensive studies, the present inventors have surprisingly found that the reason for this is not clear by removing at least a part of the water-soluble component, but higher methacrylic acid yield. The present invention was completed by finding that a catalyst for producing methacrylic acid capable of exhibiting a high rate was obtained.

本発明のメタクリル酸製造用触媒の製造方法は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するための下記式(1)で示される触媒の製造方法であって、触媒前駆体を200〜500℃で焼成する焼成工程と、該焼成工程で得られた焼成物から、該焼成物中の水溶性成分の少なくとも一部を抽出溶媒に抽出して除去する除去工程とを有することを特徴とする。
α1Moα2α3Cuα4α5α6α7α8 (1)
(式中、P、Mo、V、Cu及びOはそれぞれリン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Xはヒ素、テルル、アンチモン、セレン、ケイ素からなる群より選ばれた1種類の元素を示し、Yはビスマス、ジルコニウム、銀、鉄、亜鉛、クロム、マグネシウム、コバルト、マンガン、バリウム、セリウム、ランタンからなる群より選ばれた1種類の元素を示し、Zはカリウム、ルビジウム、及びセシウムからなる群より選ばれた1種類の元素を示す。α1〜α8は各元素の原子比率を表し、α2=12のときα1=0.5〜3、α3=0.01〜3、α4=0.01〜2、α5=0.01〜3、α6=0〜3、α7=0.01〜3であり、α8は前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
本発明のメタクリル酸製造用触媒は、前記製造方法により製造されたことを特徴とする。
また、本発明のメタクリル酸の製造方法は、前記メタクリル酸製造用触媒を用いることを特徴とする。
The method for producing a catalyst for producing methacrylic acid according to the present invention is a method for producing a catalyst represented by the following formula (1) for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. A firing step of firing the precursor at 200 to 500 ° C., and a removal step of extracting and removing at least a part of the water-soluble components in the fired product from the fired product obtained in the firing step into an extraction solvent. It is characterized by having.
P α1 Mo α2 V α3 Cu α4 X α5 Y α6 Z α7 O α8 (1)
(Wherein, P, Mo, V, Cu and O are element symbols indicating phosphorus, molybdenum, vanadium, copper and oxygen, respectively. X is 1 selected from the group consisting of arsenic, tellurium, antimony, selenium and silicon. Y represents one element, Y represents one element selected from the group consisting of bismuth, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, barium, cerium, and lanthanum, and Z represents potassium and rubidium. , And one element selected from the group consisting of cesium, α1 to α8 represent the atomic ratio of each element, and when α2 = 12, α1 = 0.5 to 3, α3 = 0.01 to 3, α4 = 0.01-2, α5 = 0.01-3, α6 = 0-3, α7 = 0.01-3, and α8 is an oxygen atom necessary to satisfy the valence of each component. (The ratio.)
The catalyst for producing methacrylic acid of the present invention is produced by the production method described above.
Moreover, the manufacturing method of methacrylic acid of this invention uses the said catalyst for methacrylic acid manufacture.

本発明によれば、より高いメタクリル酸収率を発揮できるメタクリル酸製造用触媒を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the catalyst for methacrylic acid manufacture which can exhibit a higher methacrylic acid yield can be provided.

以下、本発明について詳細に説明する。
本発明は、下記式(1)で表される組成を有し、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に使用されるメタクリル酸製造用触媒の製造方法に関するものである。
Hereinafter, the present invention will be described in detail.
The present invention relates to a method for producing a catalyst for producing methacrylic acid, which has a composition represented by the following formula (1), and is used for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen. Is.

α1Moα2α3Cuα4α5α6α7α8 (1)
(式中、P、Mo、V、Cu及びOはそれぞれリン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Xはヒ素、テルル、アンチモン、セレン、ケイ素からなる群より選ばれた1種類の元素を示し、Yはビスマス、ジルコニウム、銀、鉄、亜鉛、クロム、マグネシウム、コバルト、マンガン、バリウム、セリウム、ランタンからなる群より選ばれた1種類の元素を示し、Zはカリウム、ルビジウム、及びセシウムからなる群より選ばれた1種類の元素を示す。α1〜α8は各元素の原子比率を表し、α2=12のときα1=0.5〜3、α3=0.01〜3、α4=0.01〜2、α5=0.01〜3、α6=0〜3、α7=0.01〜3であり、α8は前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
P α1 Mo α2 V α3 Cu α4 X α5 Y α6 Z α7 O α8 (1)
(Wherein, P, Mo, V, Cu and O are element symbols indicating phosphorus, molybdenum, vanadium, copper and oxygen, respectively. X is 1 selected from the group consisting of arsenic, tellurium, antimony, selenium and silicon. Y represents one element, Y represents one element selected from the group consisting of bismuth, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, barium, cerium, and lanthanum, and Z represents potassium and rubidium. , And one element selected from the group consisting of cesium, α1 to α8 represent the atomic ratio of each element, and when α2 = 12, α1 = 0.5 to 3, α3 = 0.01 to 3, α4 = 0.01-2, α5 = 0.01-3, α6 = 0-3, α7 = 0.01-3, and α8 is an oxygen atom necessary to satisfy the valence of each component. (The ratio.)

上記式(1)のメタクリル酸製造用触媒を製造する際には、好ましくは、まず、触媒を構成する各元素(酸素以外)を上記式(1)に示される比率で含む原料液を調製し(原料液調製工程)、ついで、これを乾燥する(乾燥工程)ことにより、触媒前駆体を製造する。
原料液の調製方法には特に制限はないが、水に各元素の原料を投入し、30〜100℃に加熱、撹拌してスラリー状の原料液を調製する方法が好ましい。水の使用量は、各元素の原料の合計100質量部に対して、200〜1000質量部が好ましい。
When producing the methacrylic acid production catalyst of the above formula (1), preferably, first, a raw material liquid containing each element (other than oxygen) constituting the catalyst at a ratio represented by the above formula (1) is prepared. (Raw material preparation step) Then, this is dried (drying step) to produce a catalyst precursor.
The method for preparing the raw material liquid is not particularly limited, but a method of preparing a slurry-like raw material liquid by charging the raw materials of each element into water and heating and stirring at 30 to 100 ° C. is preferable. As for the usage-amount of water, 200-1000 mass parts is preferable with respect to a total of 100 mass parts of the raw material of each element.

各元素の原料としては、各元素の酸化物、硝酸塩、炭酸塩、アンモニウム塩等を適宜選択して使用することができる。例えば、モリブデンの原料としてはモリブデン酸や三酸化モリブデンが好ましいが、パラモリブデン酸アンモニウム等も使用できる。リンの原料としては、正リン酸、五酸化リン、リン酸アンモニウム等が使用できる。バナジウムの原料としては、メタバナジン酸アンモニウム、五酸化二バナジウム等が使用できる。また、銅の原料としては硝酸銅、硫酸銅、炭酸銅等が使用できる。
原料液の調製スケールには特に制限はないが、モリブデンの原料の一回の使用量として好ましくは100g〜10t、より好ましくは1kg〜1tであると、良好な原料液を安定に調製することができる。
As raw materials for each element, oxides, nitrates, carbonates, ammonium salts and the like of each element can be appropriately selected and used. For example, molybdic acid or molybdenum trioxide is preferable as a raw material of molybdenum, but ammonium paramolybdate or the like can also be used. As a raw material of phosphorus, orthophosphoric acid, phosphorus pentoxide, ammonium phosphate, etc. can be used. As a raw material of vanadium, ammonium metavanadate, divanadium pentoxide, or the like can be used. Moreover, copper nitrate, copper sulfate, copper carbonate, etc. can be used as a raw material of copper.
Although there is no particular limitation on the preparation scale of the raw material liquid, a preferable raw material liquid can be stably prepared when the amount of the molybdenum raw material used is preferably 100 g to 10 t, more preferably 1 kg to 1 t. it can.

また、スラリー状の原料液を調製する場合、その原料液のpHは8未満であることが好ましく、3未満であることがより好ましい。pHが8未満であると、好ましい構造の触媒前駆体が得られやすく、その結果、より高いメタクリル酸収率を発揮できるメタクリル酸製造用触媒が得られる。   Moreover, when preparing a slurry-form raw material liquid, the pH of the raw material liquid is preferably less than 8, and more preferably less than 3. When the pH is less than 8, a catalyst precursor having a preferable structure is easily obtained, and as a result, a catalyst for producing methacrylic acid capable of exhibiting a higher yield of methacrylic acid is obtained.

このような原料液を乾燥し、触媒前駆体を得る乾燥工程の具体的な方法には特に制限はないが、例えば蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等が挙げられる。乾燥に使用する乾燥機の種類、機種、乾燥時の温度、雰囲気等には特に制限はなく、例えば、空気雰囲気下100〜180℃で0.1〜20時間乾燥する条件などが挙げられるが、乾燥条件を変えることによって、触媒前駆体の流動性、成形性などの物性を制御できるため、目的に応じた条件を設定することが好ましい。   There are no particular limitations on the specific method of the drying step of drying such a raw material liquid to obtain a catalyst precursor, and examples thereof include an evaporating and drying method, a spray drying method, a drum drying method, and an airflow drying method. . There are no particular limitations on the type, model, drying temperature, atmosphere, and the like of the dryer used for drying, and examples include conditions for drying at 100 to 180 ° C. in an air atmosphere for 0.1 to 20 hours. Since the physical properties such as fluidity and moldability of the catalyst precursor can be controlled by changing the drying conditions, it is preferable to set conditions according to the purpose.

ついで、このように乾燥して得られた触媒前駆体を200〜500℃で焼成する焼成工程を行う。また、焼成工程の前には、必要に応じて、触媒前駆体を予備成形する成形工程を実施してもよい。
その際、具体的な成形方法には特に制限はなく、公知の乾式および湿式の成形方法が適用でき、例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状についても特に限定されず、例えば、円柱状、リング状、球状等の形状が挙げられる。また、成形時には、触媒前駆体に担体等を添加せず、触媒前駆体のみを成形することが好ましい。
Next, a firing step is performed in which the catalyst precursor obtained by drying in this manner is fired at 200 to 500 ° C. Moreover, you may implement the shaping | molding process which preforms a catalyst precursor as needed before a baking process.
In that case, there is no restriction | limiting in particular in a specific shaping | molding method, A well-known dry type and wet shaping | molding method can be applied, For example, tableting shaping | molding, press molding, extrusion molding, granulation shaping | molding etc. are mentioned. The shape of the molded product is not particularly limited, and examples thereof include a columnar shape, a ring shape, and a spherical shape. Further, at the time of molding, it is preferable to mold only the catalyst precursor without adding a carrier or the like to the catalyst precursor.

焼成工程での焼成方法や焼成条件は特に限定されず、公知の方法および条件を適用できる。好ましい焼成条件は、触媒を構成する各元素の原料(触媒原料)、触媒組成、原料液の調製法などによって異なるが、通常、空気等の酸素含有ガス流通下または不活性ガス流通下で200〜500℃、好ましくは300〜400℃で、0.5時間以上、好ましくは1〜40時間焼成する。ここで不活性ガスとは触媒活性を低下させないような気体のことを指し、窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。   The firing method and firing conditions in the firing step are not particularly limited, and known methods and conditions can be applied. Preferable calcination conditions vary depending on the raw materials (catalyst raw materials) of each element constituting the catalyst, the catalyst composition, the preparation method of the raw material liquid, etc., but are usually 200 to 200 under an oxygen-containing gas flow such as air or an inert gas flow. Baking is performed at 500 ° C., preferably 300 to 400 ° C., for 0.5 hour or longer, preferably 1 to 40 hours. Here, the inert gas refers to a gas that does not decrease the catalytic activity, and examples thereof include nitrogen, carbon dioxide, helium, and argon.

ついで、焼成工程で得られた焼成物中の水溶性成分の少なくとも一部を焼成物から抽出して除去する除去工程を行う。具体的には、抽出溶媒に焼成物を分散させたり、浸漬したりした後、公知の分離法により固液分離し、固体成分を回収する。
抽出に使用する抽出溶媒としては、水や、無機酸および/または無機塩の水溶液などの水性溶媒が好適である。無機酸および/または無機塩の水溶液を使用する場合には、そのpHは8未満であることが触媒の化学構造や物理構造を維持する点で好ましく、また、ナトリウム、カリウム、カルシウム、マグネシウムを含まない方が触媒の性能に悪影響を与えない点でより好ましい。抽出溶媒の使用量は特に限定されないが、焼成物の質量に対して500倍以下の質量であることが好ましく、2〜50倍がより好ましい。
Next, a removal step is performed in which at least a part of the water-soluble component in the fired product obtained in the firing step is extracted from the fired product and removed. Specifically, after the fired product is dispersed or immersed in the extraction solvent, solid-liquid separation is performed by a known separation method to recover the solid component.
As the extraction solvent used for extraction, water or an aqueous solvent such as an aqueous solution of an inorganic acid and / or an inorganic salt is suitable. In the case of using an aqueous solution of an inorganic acid and / or an inorganic salt, the pH is preferably less than 8 from the viewpoint of maintaining the chemical structure and physical structure of the catalyst, and includes sodium, potassium, calcium and magnesium. It is more preferable that it does not adversely affect the performance of the catalyst. Although the usage-amount of an extraction solvent is not specifically limited, It is preferable that it is the mass of 500 times or less with respect to the mass of a baked product, and 2-50 times is more preferable.

抽出溶媒に焼成物を分散させる時には、抽出溶媒に焼成物を投入して単に撹拌するだけでもよいが、抽出効率が高まることから、超音波を照射しながら、1〜60分間保持することが好ましい。また、抽出溶媒の温度は、10〜100℃が好ましい。
固液分離法としては、ろ過、遠心分離等が適用でき、焼成物の粒子径に応じて選択すればよい。例えば、抽出溶媒中の焼成物の粒子径が数μm以上である場合にはろ過を適用できるが、抽出溶媒中の焼成物に1μm以下の粒子が含まれる場合には、このような粒子の分離はろ過では困難であることから、遠心分離を適用することが好ましい。
遠心分離を適用する場合には、液体成分の全量を必ずしも固体成分から除去しなくてもよいが、より高いメタクリル酸収率のメタクリル酸製造用触媒が得られることから、使用した抽出溶媒の質量の10質量%以上に相当する量の液体を除去することが好ましく、さらに作業性も考慮すると、50〜80質量%の量を除去することが好ましい。
このような除去工程によれば、上記式(1)中、Zで示される元素以外の元素を含む成分が水溶性成分として主に除去される。
When the fired product is dispersed in the extraction solvent, the fired product may be simply added to the extraction solvent and stirred, but it is preferable to hold for 1 to 60 minutes while irradiating ultrasonic waves because the extraction efficiency is increased. . The temperature of the extraction solvent is preferably 10 to 100 ° C.
As the solid-liquid separation method, filtration, centrifugation, or the like can be applied, and it may be selected according to the particle size of the fired product. For example, when the particle size of the fired product in the extraction solvent is several μm or more, filtration can be applied. However, when the fired product in the extraction solvent contains particles of 1 μm or less, such particles are separated. Since it is difficult to filter, it is preferable to apply centrifugation.
When centrifugation is applied, the total amount of the liquid component does not necessarily have to be removed from the solid component, but since a catalyst for producing methacrylic acid with a higher methacrylic acid yield is obtained, the mass of the extraction solvent used It is preferable to remove an amount of liquid corresponding to 10% by mass or more, and considering workability, it is preferable to remove an amount of 50 to 80% by mass.
According to such a removal process, the component containing elements other than the element shown by Z in said Formula (1) is mainly removed as a water-soluble component.

こうして水溶性成分の少なくとも一部が除去された後の固体成分、または、固体成分とこの固体成分に付随して残留した残留液との混合スラリーを再度乾燥し(再乾燥工程)、好ましくは再度焼成する(再焼成工程)ことによって、メタクリル酸製造用触媒が得られる。再乾燥工程および再焼成工程は、それぞれ上述の乾燥工程および焼成工程と同様の方法、条件で行えばよい。
また、再焼成工程の前には、必要に応じて、再乾燥工程により得られた再乾燥品を公知の乾式および湿式の成形方法で再成形する再成形工程を行ってもよい。具体的な成形方法や成形品の形状としては、先に成形工程において例示した各種方法、形状を同様に採用できる。また、成形時には、担体等を添加しないで成形することが好ましいが、必要に応じて、例えばグラファイトやタルクなどの公知の添加剤を加えてもよい。
The solid slurry after removing at least a part of the water-soluble component in this way, or the mixed slurry of the solid component and the residual liquid remaining accompanying the solid component is dried again (re-drying step), preferably again By calcination (refiring step), a catalyst for producing methacrylic acid is obtained. What is necessary is just to perform a re-drying process and a rebaking process by the method and conditions similar to the above-mentioned drying process and baking process, respectively.
Moreover, you may perform the remolding process of remolding the re-dried product obtained by the re-drying process by the well-known dry type and wet molding method before a rebaking process as needed. As specific molding methods and shapes of molded products, various methods and shapes exemplified above in the molding step can be similarly employed. Further, at the time of molding, it is preferable to mold without adding a carrier or the like, but a known additive such as graphite or talc may be added as necessary.

こうして製造されたメタクリル酸製造用触媒に、メタクロレインと分子状酸素を含む原料ガスを接触させることにより、メタクロレインが分子状酸素により気相接触酸化され、メタクリル酸が得られる。
ここで原料ガス中のメタクロレイン濃度には制限はなく、任意の濃度に設定できるが、1〜20容量%が適当であり、特に3〜10容量%が好ましい。原料ガス中の分子状酸素濃度は、メタクロレイン1モルに対して0.5〜4モルが好ましく、より好ましくは1〜3モルである。また、原料ガスには、希釈のために窒素、炭酸ガス等の不活性ガスを加えてもよいし、水蒸気を加えてもよい。
反応圧力は、通常、大気圧から数百kPaまでの範囲内で設定される。反応温度は、通常、230〜450℃の範囲内で設定され、メタクリル酸収率の点からは、250〜400℃が好ましい。
By contacting the raw material gas containing methacrolein and molecular oxygen with the methacrylic acid production catalyst thus produced, methacrolein is vapor-phase contact oxidized with molecular oxygen to obtain methacrylic acid.
Here, there is no restriction | limiting in the methacrolein density | concentration in source gas, Although it can set to arbitrary density | concentrations, 1-20 volume% is suitable, and 3-10 volume% is especially preferable. The molecular oxygen concentration in the raw material gas is preferably 0.5 to 4 mol, more preferably 1 to 3 mol, relative to 1 mol of methacrolein. In addition, an inert gas such as nitrogen or carbon dioxide may be added to the raw material gas for dilution, or water vapor may be added.
The reaction pressure is usually set within a range from atmospheric pressure to several hundred kPa. The reaction temperature is usually set within the range of 230 to 450 ° C., and from the point of methacrylic acid yield, 250 to 400 ° C. is preferable.

以上説明したメタクリル酸製造用触媒の製造方法は、触媒前駆体を200〜500℃で焼成する焼成工程と、該焼成工程で得られた焼成物中の水溶性成分の少なくとも一部を焼成物から抽出溶媒に抽出して除去する除去工程とを有しているため、その理由は明らかではないが、高収率でメタクリル酸を製造可能なメタクリル酸製造用触媒を提供できる。   The method for producing a catalyst for producing methacrylic acid described above includes a firing step of firing a catalyst precursor at 200 to 500 ° C., and at least a part of the water-soluble component in the fired product obtained in the firing step from the fired product. However, the reason is not clear, but a catalyst for methacrylic acid production capable of producing methacrylic acid in a high yield can be provided.

以下、本発明について、実施例を挙げて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
また、下記の実施例および比較例中の「部」は質量部である。
原料ガスおよび生成物の分析はガスクロマトグラフィーを用いて行った。なお、メタクロレインの反応率、生成するメタクリル酸の選択率および単流収率は以下のように定義される。
メタクロレインの反応率(%)=(B/A)×100
メタクリル酸の選択率(%)=(C/B)×100
メタクリル酸の単流収率(%)=(C/A)×100
ここで、Aは供給したメタクロレインのモル数、Bは反応したメタクロレインのモル数、Cは生成したメタクリル酸のモル数である。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not limited to these Examples.
Further, “parts” in the following examples and comparative examples are parts by mass.
The analysis of the raw material gas and the product was performed using gas chromatography. In addition, the reaction rate of methacrolein, the selectivity of the methacrylic acid to produce | generate, and a single flow yield are defined as follows.
Reaction rate of methacrolein (%) = (B / A) × 100
Methacrylic acid selectivity (%) = (C / B) × 100
Single flow yield of methacrylic acid (%) = (C / A) × 100
Here, A is the number of moles of methacrolein supplied, B is the number of moles of reacted methacrolein, and C is the number of moles of methacrylic acid produced.

[実施例1]
(1)原料液調製工程
(A液の調製)
純水200部に、三酸化モリブデン100部、85質量%リン酸6.67部、メタバナジン酸アンモニウム3.39部、硝酸第二銅2.10部、硝酸第二鉄0.47部、60%砒酸水溶液9.59部を加え、100℃の還流下で5時間攪拌してA液を調製した。
A液中に含まれるアンモニウムの量は、A液中に含まれるモリブデン原子12モルに対して0.5モルであった。
(B液の調製)
重炭酸セシウム10.10部を純水28.43部に50℃で溶解してB液を調製した。
(A液とB液の混合)
A液を50℃まで冷却した後、B液を攪拌しながらA液と混合し、10分間攪拌してA−B混合液を調製した。
このようにして得られたA−B混合液を液温50℃で攪拌しながら、このA−B混合液に、硝酸アンモニウム2.20部、重炭酸アンモニウム12.00部を純水20.00部に溶解した溶液を加えて、触媒前駆体を含むスラリーを得た。
(2)乾燥工程
この触媒前駆体を含むスラリーを101℃まで加熱し、撹拌しながら蒸発乾固した後、さらに、130℃で16時間乾燥して、触媒前駆体を得た。
(3)成形工程および焼成工程
得られた触媒前駆体を打錠成形機により、外径5mm、内径2mm、長さ5mmのリング状に成形した。この成形品を空気流通下、380℃にて12時間焼成して、焼成物を得た。
[Example 1]
(1) Raw material solution preparation step (preparation of solution A)
200 parts of pure water, 100 parts of molybdenum trioxide, 6.67 parts of 85 mass% phosphoric acid, 3.39 parts of ammonium metavanadate, 2.10 parts of cupric nitrate, 0.47 parts of ferric nitrate, 60% A solution A was prepared by adding 9.59 parts of an aqueous arsenic acid solution and stirring for 5 hours at 100 ° C. under reflux.
The amount of ammonium contained in the A liquid was 0.5 mol with respect to 12 mol of molybdenum atoms contained in the A liquid.
(Preparation of liquid B)
Liquid B was prepared by dissolving 10.10 parts of cesium bicarbonate in 28.43 parts of pure water at 50 ° C.
(Mixing of liquid A and liquid B)
After cooling A liquid to 50 degreeC, B liquid was mixed with A liquid, stirring, and it stirred for 10 minutes, and prepared AB mixed liquid.
While stirring the AB mixture thus obtained at a liquid temperature of 50 ° C., 2.20 parts of ammonium nitrate and 12.00 parts of ammonium bicarbonate were added to 20.00 parts of pure water. The solution dissolved in was added to obtain a slurry containing the catalyst precursor.
(2) Drying Step The slurry containing this catalyst precursor was heated to 101 ° C., evaporated to dryness with stirring, and further dried at 130 ° C. for 16 hours to obtain a catalyst precursor.
(3) Molding step and calcination step The obtained catalyst precursor was molded into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm by a tableting machine. This molded product was fired at 380 ° C. for 12 hours under air flow to obtain a fired product.

(4)除去工程
得られた焼成物100部を水1000部に加えて、室温で1時間攪拌した。ついで、得られた分散液を日立工機(株)製himac CR22Fにアングルロータ R20A2を装着した遠心分離器に供して、12000rpm、5℃の条件下で5分間の分離を行った。この条件の遠心で加えられる重力の計算値は約17300Gである。遠心分離により固体成分を沈降させた後、上澄みのうち750部(使用した抽出溶媒の質量の75質量%に相当)を除去した。
なお、上澄みを乾燥したところ、47質量部の固体が得られた。また、この固体を原子吸光光度法、および、ICP発光分析法により元素分析したところ、酸素以外の組成がP1.0Mo120.77As0.88Cu0.24Fe0.02であった。
(5)再乾燥工程
こうして水溶性成分の少なくとも一部を含む上澄みが除去された後の固体成分とこれに付随して残留した残留液との混合物を再度撹拌してスラリー状態としながら蒸発乾固し、ついで、130℃で16時間乾燥して再乾燥品を得た。
(6)再成形工程および再焼成工程
得られた再乾燥品を打錠成形機により、外径5mm、内径2mm、長さ5mmのリング状に再成形した。そして、この再成形品を空気流通下、380℃にて12時間焼成して、メタクリル酸製造用触媒を得た。
得られた触媒の酸素以外の組成は、P1.0Mo120.2As0.5Cu0.05Fe0.02Cs1.9であった。
この触媒を反応管に充填し、下記条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
(4) Removal step 100 parts of the obtained fired product was added to 1000 parts of water and stirred at room temperature for 1 hour. Subsequently, the obtained dispersion was subjected to a centrifuge in which an angle rotor R20A2 was mounted on a Himac CR22F manufactured by Hitachi Koki Co., Ltd., and separation was performed for 5 minutes under conditions of 12000 rpm and 5 ° C. The calculated value of gravity applied by centrifugation under this condition is about 17300G. After sedimentation of the solid component by centrifugation, 750 parts (corresponding to 75% by mass of the extraction solvent used) of the supernatant were removed.
When the supernatant was dried, 47 parts by mass of solid was obtained. Further, when this solid was subjected to elemental analysis by atomic absorption spectrophotometry and ICP emission spectrometry, the composition other than oxygen was P 1.0 Mo 12 V 0.77 As 0.88 Cu 0.24 Fe 0.02 . there were.
(5) Re-drying step The mixture of the solid component after removing the supernatant containing at least a part of the water-soluble component and the residual liquid remaining therewith is stirred again to form a slurry and evaporated to dryness. Then, it was dried at 130 ° C. for 16 hours to obtain a re-dried product.
(6) Re-molding step and re-baking step The obtained re-dried product was re-formed into a ring shape having an outer diameter of 5 mm, an inner diameter of 2 mm, and a length of 5 mm using a tableting machine. The remolded product was calcined at 380 ° C. for 12 hours under air flow to obtain a methacrylic acid production catalyst.
The composition of the obtained catalyst other than oxygen was P 1.0 Mo 12 V 0.2 As 0.5 Cu 0.05 Fe 0.02 Cs 1.9 .
This catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the following conditions. The results are shown in Table 1.

(反応条件)
反応ガス:メタクロレイン5容量%、酸素10容量%、水蒸気30容量%、窒素55容量%の混合ガス
反応温度:290℃
反応圧力:101kPa(絶対圧力)
接触時間:3.6秒
(Reaction conditions)
Reaction gas: 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor, 55% by volume of nitrogen Reaction temperature: 290 ° C.
Reaction pressure: 101 kPa (absolute pressure)
Contact time: 3.6 seconds

[実施例2]
(1)原料液調製工程
(A液の調製)
純水200部に、三酸化モリブデン100部、85質量%リン酸6.67部、メタバナジン酸アンモニウム3.39部、60%砒酸水溶液9.59部を加え、100℃の還流下で5時間攪拌してA液を調製した。
A液中に含まれるアンモニウムの量は、A液中に含まれるモリブデン原子12モルに対して0.5モルであった。
(B液の調製)
重炭酸セシウム10.10部を純水28.43部に50℃で溶解してB液を調製した。
(C液の調製)
25質量%アンモニア水41.34部をC液とした。
C液中に含まれるアンモニウムの量は、A液中に含まれるモリブデン原子12モルに対して10.5モルであった。
(A液、B液、C液の混合)
A液を70℃まで冷却した後、B液を攪拌しながらA液に混合し、10分間攪拌してA−B混合液を調製した。次いで、A−B混合液を撹拌しながら、このA−B混合液にC液を10分間かけて徐々に添加した。C液混合後、50℃で60分間撹拌保持し、A−B−C混合液を調製した。
このようにして得られたA−B−C混合液を液温50℃で撹拌しながら、これに硝酸第二銅2.10部、硝酸第二鉄0.47部を純水9.80部に溶解した溶液を加えて、触媒前駆体を含むスラリーを得た。
[Example 2]
(1) Raw material solution preparation step (preparation of solution A)
To 200 parts of pure water, 100 parts of molybdenum trioxide, 6.67 parts of 85% by weight phosphoric acid, 3.39 parts of ammonium metavanadate, and 9.59 parts of 60% aqueous arsenic acid solution are added and stirred at 100 ° C. under reflux for 5 hours. A solution was prepared.
The amount of ammonium contained in the A liquid was 0.5 mol with respect to 12 mol of molybdenum atoms contained in the A liquid.
(Preparation of liquid B)
Liquid B was prepared by dissolving 10.10 parts of cesium bicarbonate in 28.43 parts of pure water at 50 ° C.
(Preparation of liquid C)
The liquid C was 41.34 parts of 25% by mass aqueous ammonia.
The amount of ammonium contained in the C liquid was 10.5 mol with respect to 12 mol of molybdenum atoms contained in the A liquid.
(Mixture of liquid A, liquid B, liquid C)
After cooling A liquid to 70 degreeC, B liquid was mixed with A liquid, stirring, and it stirred for 10 minutes, and prepared AB mixed liquid. Subsequently, C liquid was gradually added over 10 minutes to this AB mixed liquid, stirring AB mixed liquid. After mixing the liquid C, the mixture was stirred and held at 50 ° C. for 60 minutes to prepare an ABC liquid mixture.
While stirring the thus-obtained ABC mixed liquid at a liquid temperature of 50 ° C., 2.10 parts of cupric nitrate and 0.47 part of ferric nitrate were added to 9.80 parts of pure water. The solution dissolved in was added to obtain a slurry containing the catalyst precursor.

(2)乾燥工程〜(6)再成形工程および再焼成工程
(2)〜(6)の各工程を実施例1と同様に行って、メタクリル酸製造用触媒を得た。
得られた触媒の酸素以外の組成は、P1.0Mo120.2As0.4Cu0.05Fe0.015Cs2.0であった。
この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
なお、除去工程で得られた上澄み液を乾燥したところ、45質量部の固体が得られた。また、この固体を実施例1と同様に元素分析したところ、酸素以外の組成がP1.0Mo120.75As0.95Cu0.23Fe0.02であった。
(2) Drying step to (6) Re-molding step and re-baking step The steps (2) to (6) were carried out in the same manner as in Example 1 to obtain a catalyst for producing methacrylic acid.
The composition of the obtained catalyst other than oxygen was P 1.0 Mo 12 V 0.2 As 0.4 Cu 0.05 Fe 0.015 Cs 2.0 .
The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.
In addition, when the supernatant liquid obtained at the removal process was dried, 45 mass parts solid was obtained. When this solid was subjected to elemental analysis in the same manner as in Example 1, the composition other than oxygen was P 1.0 Mo 12 V 0.75 As 0.95 Cu 0.23 Fe 0.02 .

[実施例3]
純水200部に、三酸化モリブデン100部、85質量%リン酸6.67部、70.9質量%シュウ酸バナジル7.59部、硝酸第二銅2.10部、硝酸第二鉄0.47部、酸化テルル3.70部を加え、100℃の還流下で5時間攪拌してA液を調製した以外は、実施例1と同様にして、メタクリル酸製造用触媒を製造した。
得られた触媒の酸素以外の組成は、P1.0Mo120.2Te0.3Cu0.05Fe0.01Cs1.9であった。
この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
なお、除去工程で得られた上澄み液を乾燥したところ、47質量部の固体が得られた。また、この固体を実施例1と同様に元素分析したところ、酸素以外の組成がP1.0Mo120.77Te0.49Cu0.24Fe0.02であった。
[Example 3]
To 200 parts of pure water, 100 parts of molybdenum trioxide, 6.67 parts of 85% by weight phosphoric acid, 7.59 parts of 70.9% by weight vanadyl oxalate, 2.10 parts of cupric nitrate, 0. A catalyst for methacrylic acid production was produced in the same manner as in Example 1 except that 47 parts and 3.70 parts of tellurium oxide were added and stirred for 5 hours under reflux at 100 ° C. to prepare solution A.
The composition of the obtained catalyst other than oxygen was P 1.0 Mo 12 V 0.2 Te 0.3 Cu 0.05 Fe 0.01 Cs 1.9 .
The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.
In addition, when the supernatant liquid obtained at the removal process was dried, 47 mass parts solid was obtained. When this solid was subjected to elemental analysis in the same manner as in Example 1, the composition other than oxygen was P 1.0 Mo 12 V 0.77 Te 0.49 Cu 0.24 Fe 0.02 .

[実施例4]
純水200部に、三酸化モリブデン100部、85質量%リン酸6.67部、70.9質量%シュウ酸バナジル7.59部、硝酸第二銅2.10部、硝酸マンガン2.49部、、三酸化アンチモン3.38部を加え、100℃の還流下で5時間攪拌してA液を調製した以外は、実施例1と同様にして、メタクリル酸製造用触媒を製造した。
得られた触媒の酸素以外の組成は、P1.0Mo120.2Sb0.3Cu0.05Mn0.1Cs1.9であった。
この触媒を反応管に充填し、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
なお、除去工程で得られた上澄み液を乾燥したところ、47質量部の固体が得られた。また、この固体を実施例1と同様に元素分析したところ、酸素以外の組成がP1.0Mo120.77Sb0.49Cu0.24Mn0.1であった。
[Example 4]
200 parts of pure water, 100 parts of molybdenum trioxide, 6.67 parts of 85 mass% phosphoric acid, 7.59 parts of 70.9 mass% vanadyl oxalate, 2.10 parts of cupric nitrate, 2.49 parts of manganese nitrate A catalyst for methacrylic acid production was produced in the same manner as in Example 1 except that 3.38 parts of antimony trioxide was added and stirred for 5 hours under reflux at 100 ° C. to prepare solution A.
The composition of the obtained catalyst other than oxygen was P 1.0 Mo 12 V 0.2 Sb 0.3 Cu 0.05 Mn 0.1 Cs 1.9 .
The catalyst was filled in a reaction tube, and methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.
In addition, when the supernatant liquid obtained at the removal process was dried, 47 mass parts solid was obtained. In addition, when the solid was subjected to elemental analysis in the same manner as in Example 1, the composition other than oxygen was P 1.0 Mo 12 V 0.77 Sb 0.49 Cu 0.24 Mn 0.1 .

[比較例1]
実施例1における(1)原料液調製工程〜(3)成形工程および焼成工程までを行い、(4)除去工程以降の工程を行わず、(3)で得られた焼成物を触媒として使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
得られた触媒(焼成物)の酸素以外の組成は、P1.0Mo120.5As0.7Cu0.15Fe0.02Cs0.9であった。
[Comparative Example 1]
In Example 1, (1) the raw material liquid preparation step to (3) the molding step and the firing step are performed, (4) the steps after the removal step are not performed, and the fired product obtained in (3) is used as a catalyst. Then, methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.
The composition of the obtained catalyst (baked product) other than oxygen was P 1.0 Mo 12 V 0.5 As 0.7 Cu 0.15 Fe 0.02 Cs 0.9 .

[比較例2]
実施例2における(1)原料液調製工程〜(3)成形工程および焼成工程までを行い、(4)除去工程以降の工程を行わず、(3)で得られた焼成物を触媒として使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
得られた触媒(焼成物)の酸素以外の組成は、P1.0Mo120.5As0.7Cu0.15Fe0.02Cs0.9であった。
[Comparative Example 2]
In Example 2, (1) the raw material solution preparation step to (3) the molding step and the firing step are performed, (4) the steps after the removal step are not performed, and the fired product obtained in (3) is used as a catalyst. Then, methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.
The composition of the obtained catalyst (baked product) other than oxygen was P 1.0 Mo 12 V 0.5 As 0.7 Cu 0.15 Fe 0.02 Cs 0.9 .

[比較例3]
実施例3における(1)原料液調製工程〜(3)成形工程および焼成工程までを行い、(4)除去工程以降の工程を行わず、(3)で得られた焼成物を触媒として使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
得られた触媒(焼成物)の酸素以外の組成は、P1.0Mo120.5Te0.4Cu0.15Fe0.02Cs0.9であった。
[Comparative Example 3]
In Example 3, (1) the raw material solution preparation step to (3) the molding step and the firing step are performed, (4) the steps after the removal step are not performed, and the fired product obtained in (3) is used as a catalyst. Then, methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.
The composition of the obtained catalyst (calcined product) other than oxygen was P 1.0 Mo 12 V 0.5 Te 0.4 Cu 0.15 Fe 0.02 Cs 0.9 .

[比較例4]
実施例4における(1)原料液調製工程〜(3)成形工程および焼成工程までを行い、(4)除去工程以降の工程を行わず、(3)で得られた焼成物を触媒として使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
得られた触媒(焼成物)の酸素以外の組成は、P1.0Mo120.5Sb0.4Cu0.15Mn0.1Cs0.9であった。
[Comparative Example 4]
In Example 4, (1) the raw material solution preparation step to (3) the molding step and the firing step are performed, (4) the steps after the removal step are not performed, and the fired product obtained in (3) is used as a catalyst. Then, methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.
The composition of the obtained catalyst (baked product) other than oxygen was P 1.0 Mo 12 V 0.5 Sb 0.4 Cu 0.15 Mn 0.1 Cs 0.9 .

[比較例5]
比較例1と同様の方法で焼成物を得て、これを触媒として使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
ただし、焼成物の酸素以外の組成が、実施例1で製造されたメタクリル酸製造用触媒と同じP1.0Mo120.2As0.5Cu0.05Fe0.02Cs1.9となるように、原料液調製工程での原料の使用量を調整した。
[Comparative Example 5]
A baked product was obtained in the same manner as in Comparative Example 1, and this was used as a catalyst to produce methacrylic acid by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.
However, the composition other than oxygen in the calcined product is the same P 1.0 methacrylic acid production catalyst prepared in Example 1 Mo 12 V 0.2 As 0.5 Cu 0.05 Fe 0.02 Cs 1. The amount of the raw material used in the raw material liquid preparation step was adjusted so as to be 9 .

[比較例6]
比較例2と同様の方法で焼成物を得て、これを触媒として使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
ただし、焼成物の酸素以外の組成が、実施例2で製造されたメタクリル酸製造用触媒と同じP1.0Mo120.2As0.4Cu0.05Fe 0.015 Cs2.0となるように、原料液調製工程での原料の使用量を調整した。
[Comparative Example 6]
A fired product was obtained in the same manner as in Comparative Example 2, and this was used as a catalyst to produce methacrylic acid by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.
However, the composition other than oxygen of the baked product is the same as the catalyst for producing methacrylic acid produced in Example 2 P 1.0 Mo 12 V 0.2 As 0.4 Cu 0.05 Fe 0.015 Cs2 . The amount of the raw material used in the raw material liquid preparation step was adjusted so as to be zero .

[比較例7]
比較例3と同様の方法で焼成物を得て、これを触媒として使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
ただし、焼成物の酸素以外の組成が、実施例3で製造されたメタクリル酸製造用触媒と同じP1.0Mo120.2Te0.3Cu0.05Fe0.01Cs1.9となるように、原料液調製工程での原料の使用量を調整した。
[Comparative Example 7]
A baked product was obtained in the same manner as in Comparative Example 3, and this was used as a catalyst to produce methacrylic acid by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.
However, the composition of the fired product other than oxygen is the same as that of the methacrylic acid production catalyst produced in Example 3 P 1.0 Mo 12 V 0.2 Te 0.3 Cu 0.05 Fe 0.01 Cs1 . The amount of the raw material used in the raw material liquid preparation step was adjusted so as to be 9 .

[比較例8]
比較例4と同様の方法で焼成物を得て、これを触媒として使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
ただし、焼成物の酸素以外の組成が、実施例4で製造されたメタクリル酸製造用触媒と同じP1.0Mo120.2Sb0.3Cu0.05Mn0.1Cs1.9となるように、原料液調製工程での原料の使用量を調整した。
[Comparative Example 8]
A baked product was obtained in the same manner as in Comparative Example 4, and this was used as a catalyst to produce methacrylic acid by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.
However, P 1.0 Mo 12 V 0.2 Sb 0.3 Cu 0.05 Mn 0.1 Cs 1. The composition other than oxygen of the fired product is the same as that of the catalyst for methacrylic acid production produced in Example 4 . The amount of the raw material used in the raw material liquid preparation step was adjusted so as to be 9 .

[比較例9]
比較例1と同様の方法で(1)原料液調製工程と(2)乾燥工程とを行った。
ついで、得られた触媒前駆体100部を1000部の水に加え、室温で1時間撹拌した。その後、得られたスラリーを実施例1の(5)再乾燥工程と同様にして蒸発乾固した後、実施例1の(6)再成形工程および再焼成工程と同様の工程を実施した。
得られたものを触媒として使用して、実施例1と同様の条件で気相接触酸化によるメタクリル酸の製造を実施した。結果を表1に示す。
[Comparative Example 9]
(1) The raw material solution preparation step and (2) the drying step were performed in the same manner as in Comparative Example 1.
Subsequently, 100 parts of the obtained catalyst precursor was added to 1000 parts of water and stirred at room temperature for 1 hour. Thereafter, the obtained slurry was evaporated to dryness in the same manner as in the re-drying step (5) of Example 1, and then the same steps as the re-forming step and the re-firing step in Example 1 were performed.
Using the obtained product as a catalyst, methacrylic acid was produced by gas phase catalytic oxidation under the same conditions as in Example 1. The results are shown in Table 1.

Figure 2007253033
Figure 2007253033

表1に示すように、各実施例で得られたメタクリル酸製造用触媒を使用すると、高収率でメタクリル酸を製造できた。
一方、除去工程以降を実施しなかった比較例1〜8では、実施例1〜4もよりもメタクリル酸収率が低い結果となった。特に、比較例5〜8では、最終的な触媒組成を実施例1〜4に合わせたものの、メタクリル酸収率は低く、除去工程の重要性が示された。また、除去工程を焼成工程の前に行った比較例9では、メタクリル酸収率は非常に低い結果となった。

As shown in Table 1, when the methacrylic acid production catalyst obtained in each example was used, methacrylic acid could be produced in a high yield.
On the other hand, in Comparative Examples 1-8 which did not implement after a removal process, the methacrylic acid yield became a result lower than Examples 1-4. In particular, in Comparative Examples 5 to 8, although the final catalyst composition was adjusted to that of Examples 1 to 4, the methacrylic acid yield was low, indicating the importance of the removal step. Moreover, in the comparative example 9 which performed the removal process before the baking process, the methacrylic acid yield became a very low result.

Claims (3)

メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造するための下記式(1)で示されるメタクリル酸製造用触媒の製造方法であって、
触媒前駆体を200〜500℃で焼成する焼成工程と、
該焼成工程で得られた焼成物から、該焼成物中の水溶性成分の少なくとも一部を抽出溶媒に抽出して除去する除去工程とを有することを特徴とするメタクリル酸製造用触媒の製造方法。
α1Moα2α3Cuα4α5α6α7α8 (1)
(式中、P、Mo、V、Cu及びOはそれぞれリン、モリブデン、バナジウム、銅及び酸素を示す元素記号である。Xはヒ素、テルル、アンチモン、セレン、ケイ素からなる群より選ばれた1種類の元素を示し、Yはビスマス、ジルコニウム、銀、鉄、亜鉛、クロム、マグネシウム、コバルト、マンガン、バリウム、セリウム、ランタンからなる群より選ばれた1種類の元素を示し、Zはカリウム、ルビジウム、及びセシウムからなる群より選ばれた1種類の元素を示す。α1〜α8は各元素の原子比率を表し、α2=12のときα1=0.5〜3、α3=0.01〜3、α4=0.01〜2、α5=0.01〜3、α6=0〜3、α7=0.01〜3であり、α8は前記各成分の原子価を満足するのに必要な酸素の原子比率である。)
A method for producing a methacrylic acid production catalyst represented by the following formula (1) for producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen,
A firing step of firing the catalyst precursor at 200 to 500 ° C .;
A method for producing a catalyst for methacrylic acid production, comprising: removing from the calcined product obtained in the calcining step by extracting at least a part of the water-soluble components in the calcined product into an extraction solvent. .
P α1 Mo α2 V α3 Cu α4 X α5 Y α6 Z α7 O α8 (1)
(Wherein, P, Mo, V, Cu and O are element symbols indicating phosphorus, molybdenum, vanadium, copper and oxygen, respectively. X is 1 selected from the group consisting of arsenic, tellurium, antimony, selenium and silicon. Y represents one element, Y represents one element selected from the group consisting of bismuth, zirconium, silver, iron, zinc, chromium, magnesium, cobalt, manganese, barium, cerium, and lanthanum, and Z represents potassium and rubidium. , And one element selected from the group consisting of cesium, α1 to α8 represent the atomic ratio of each element, and when α2 = 12, α1 = 0.5 to 3, α3 = 0.01 to 3, α4 = 0.01-2, α5 = 0.01-3, α6 = 0-3, α7 = 0.01-3, and α8 is an oxygen atom necessary to satisfy the valence of each component. (The ratio.)
請求項1に記載の製造方法で製造されたことを特徴とするメタクリル酸製造用触媒。   A catalyst for producing methacrylic acid, which is produced by the production method according to claim 1. 請求項2に記載のメタクリル酸製造用触媒を用いることを特徴とするメタクリル酸の製造方法。

A method for producing methacrylic acid, comprising using the catalyst for producing methacrylic acid according to claim 2.

JP2006079015A 2006-03-22 2006-03-22 Method for producing a catalyst for methacrylic acid production Active JP4825030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006079015A JP4825030B2 (en) 2006-03-22 2006-03-22 Method for producing a catalyst for methacrylic acid production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006079015A JP4825030B2 (en) 2006-03-22 2006-03-22 Method for producing a catalyst for methacrylic acid production

Publications (2)

Publication Number Publication Date
JP2007253033A true JP2007253033A (en) 2007-10-04
JP4825030B2 JP4825030B2 (en) 2011-11-30

Family

ID=38627800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006079015A Active JP4825030B2 (en) 2006-03-22 2006-03-22 Method for producing a catalyst for methacrylic acid production

Country Status (1)

Country Link
JP (1) JP4825030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148728A (en) * 2007-12-21 2009-07-09 Mitsubishi Rayon Co Ltd Catalyst and method for producing methacrylic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287160A (en) * 1991-09-03 1994-10-11 Elf Atochem Sa New catalytic system and application thereof to oxydehydrogenation reaction of saturated carboxylic acid and oxidative reaction of aldehyde to acid
JPH09290162A (en) * 1996-04-26 1997-11-11 Mitsubishi Chem Corp Production of oxidation catalyst and production of methacrylic acid
JPH09290161A (en) * 1996-04-26 1997-11-11 Mitsubishi Chem Corp Production of oxidation catalyst and production of methacrylic acid
WO2004105941A1 (en) * 2003-05-30 2004-12-09 Nippon Kayaku Kabushiki Kaisha Process for producing catalyst for methacrylic acid production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287160A (en) * 1991-09-03 1994-10-11 Elf Atochem Sa New catalytic system and application thereof to oxydehydrogenation reaction of saturated carboxylic acid and oxidative reaction of aldehyde to acid
JPH09290162A (en) * 1996-04-26 1997-11-11 Mitsubishi Chem Corp Production of oxidation catalyst and production of methacrylic acid
JPH09290161A (en) * 1996-04-26 1997-11-11 Mitsubishi Chem Corp Production of oxidation catalyst and production of methacrylic acid
WO2004105941A1 (en) * 2003-05-30 2004-12-09 Nippon Kayaku Kabushiki Kaisha Process for producing catalyst for methacrylic acid production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148728A (en) * 2007-12-21 2009-07-09 Mitsubishi Rayon Co Ltd Catalyst and method for producing methacrylic acid

Also Published As

Publication number Publication date
JP4825030B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4317211B2 (en) Catalyst for gas phase partial oxidation reaction and method for producing the same
JPWO2007032228A1 (en) Molybdenum recovery method and catalyst production method
JPWO2005039760A1 (en) Method for producing catalyst for producing methacrylic acid, catalyst for producing methacrylic acid, method for producing methacrylic acid
JP2007283265A (en) Method of manufacturing catalyst for producing methacrylic acid
JP5180303B2 (en) Method for producing improved acrylic acid production catalyst
JP4825030B2 (en) Method for producing a catalyst for methacrylic acid production
JP2008284416A (en) Method for manufacturing metal oxide catalyst
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2007000803A (en) Catalyst for synthesizing unsaturated aldehyde and unsaturated carboxylic acid
JP5560596B2 (en) Method for producing a catalyst for methacrylic acid production
JP5069152B2 (en) Unsaturated carboxylic acid synthesis catalyst, method for producing the same, and method for producing unsaturated carboxylic acid using the catalyst
JP5261231B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP4766610B2 (en) Method for producing a catalyst for methacrylic acid production
JP2007090193A (en) Production method of catalyst for methacrylic acid production and production method of methacrylic acid
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JP2000296336A (en) Catalyst for production of methacrylic acid and production of methacrylic acid
JP2005066476A (en) Method for producing catalyst for producing methacrylic acid, catalyst produced by the method, and method for producing metacrylic acid
JP5885019B2 (en) Method for producing a catalyst for methacrylic acid production
JP5149135B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP5024183B2 (en) Method for producing shaped catalyst comprising heteropolyacid compound
JP2006102740A (en) Catalyst for producing methacrylic acid, process for producing the same and process for producing methacrylic acid
JP4564317B2 (en) Method for producing a catalyst for methacrylic acid production
JP5842378B2 (en) Method for producing catalyst for synthesis of unsaturated carboxylic acid
JP4601420B2 (en) Method for producing a catalyst for methacrylic acid production
JP2005230720A (en) Method for preparing catalyst for producing methacrylic acid and catalyst for producing methacrylic acid prepared using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110909

R151 Written notification of patent or utility model registration

Ref document number: 4825030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250